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Abstract. The present paper describes an algorithm for the identification of the 
dynamic parameters of an industrial robot. This approach is based on the possi-
bility to write robot dynamics in a linear form with respect to a specific set of 
dynamic parameters. To properly detect them, the coefficients of a 5th order Fast 
Fourier Series (FFS) trajectory have been optimized using a genetic algorithm. 
Such identification trajectory has been then commanded to a UR5 collaborative 
robot from Universal Robots and experimental joints torques have been recorded 
at a frequency of 125 Hz. Base dynamic parameters were identified using least 
square errors optimization reaching low standard deviations. The algorithm has 
been validated with a second persistent trajectory with good results. Temperature 
effects on friction coefficients have been analyzed by running two identification 
processes: one just after the first power up of the robot and the other one after a 
half an hour warm up.  

Keywords: Industrial Robots, Collaborative Robotics, Dynamic Modeling, Pa-
rameter Identification, High-Fidelity Modeling. 

1 Introduction 

High-fidelity (HF) models of industrial robots can be used to predict the behavior of a 
manipulator for different tasks and operating conditions. Moreover, recent researches, 
like [1], [2], and [3], highlighted how mathematical models might have a key role for 
failure detection and prediction in several mechanical and electrical systems. In this 
framework, a deep knowledge of the robot under analysis is needed to carry out reliable 
simulations based on a model customized on a specific machine. Nevertheless, as it 
often happens in industry, while the kinematic parameters of a manipulator are usually 
provided by the manufacturer, the same does not apply to the dynamic ones. As an 
example, Universal Robots provides, for UR cobots, only 4 out of 13 dynamic param-
eters for each joint/link: mass and position of the center of mass. Even URSim, the 
official offline simulator developed by Universal Robots, does not take into account all 
of them. As a consequence, under the same input trajectories, torques predicted by any 
model of the manipulator could be very different from the ones measured from the robot 
itself. This could lead to a wrong evaluation of the power used by the robot during a 
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specific application or to a not reliable assessment of the risks related to a collaborative 
robotics application such as a collision between the cobot and the human operator, that 
could cause severe accidents in those cases in which anticollision algorithms are used 
to modify the trajectory in real time to react to the motion of the operator, as reported 
in [4-6]. 

To overcome these limitations, the present research provides an algorithm able to 
identify the dynamic parameters of an industrial manipulator. The proposed approach 
has been validated with a UR5 collaborative robot.  

2 Mathematical Model of the UR5 Collaborative Robot 

For an industrial robot, the inverse dynamics formulation can be derived using Euler’s 
equations or a Lagrangian-based approach [7]. So, for a n-dof (degrees of freedom) 
manipulator, at a given instant k, it is possible to write: 

 𝑴(𝒒)�̈� + 𝑪(𝒒, �̇�)�̇� + 𝑭(�̇�) + 𝑮(𝒒) = 𝝉 (1) 

where 𝑴(𝒒) ∈ ℝ ×  is the symmetric positive definite mass matrix, 𝑪(𝒒, �̇�) ∈ ℝ ×  is 
the Coriolis and centripetal coupling matrix, 𝑭(�̇�) ∈ ℝ  is the friction force vector, 
𝑮(𝒒) ∈ ℝ  is the gravitational force vector, 𝝉 ∈ ℝ  is the joints torques vector while 
𝒒, �̇�, �̈� ∈ ℝ  are, respectively, the joints angular positions, velocities, and accelerations.  

However, for the purpose of this research, it is necessary to rewrite Eq. (1) in a linear 
form with respect to a set of properly defined dynamic parameters 𝒑 ∈ ℝ  as: 

 𝒀 ּ 𝒑 = 𝝉 (2) 

where 𝒀 ∈ ℝ ×  is the regression matrix or regressor. More in detail, for a generic 
trajectory point k, Eq. (2) has the structure reported in Eq. (3): 

 𝒀 ( ) 𝒀
( ) 𝒀

( )
𝒀 ,

( )

𝒑
𝒑
𝒑

𝒑 ,

= 𝝉( ) (3) 

where 𝒀 ( ) ∈ ℝ ×  is the regressor block built from the Lagrange motion equations 
according to [8]. In addition, for a complete model of the manipulator, Coulomb and 
viscous friction phenomena are described, for each joint i, by, respectively:           

𝒀 ( ) = 𝑑𝑖𝑎𝑔 𝑡𝑎𝑛ℎ
̇

.
∈ ℝ ×  and 𝒀 ( ) = 𝑑𝑖𝑎𝑔(�̇� ) ∈ ℝ × . The effects of 

motors inertia have been implemented in 𝒀 ,
( ) = 𝑑𝑖𝑎𝑔(�̈� ) ∈ ℝ × . Similarly, 𝒑 is 

composed by 𝒑 = [𝒑 , , 𝒑 , , 𝒑 , , 𝒑 , , 𝒑 , , 𝒑 , ] ∈ ℝ  where, for the single 
body i, 𝒑 , = [𝑚, 𝑚𝑥, 𝑚𝑦, 𝑚𝑧, 𝐽 , 𝐽 , 𝐽 , 𝐽 =  𝐽 , 𝐽 =  𝐽 , 𝐽 = 𝐽 ] ∈ ℝ , 
which contains the information about its mass, the position of the center of mass ac-
cording to the xi, yi and zi axes and its moments of inertia. The Coulomb and viscous 
coefficients have been grouped inside 𝒑 = [𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 ] ∈ ℝ  and        
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𝒑 = [𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 , 𝑓 ] ∈ ℝ , while the motor inertia of each joint are stored in 
𝒑 , = 𝐺  ּ [𝐼 , 𝐼 , 𝐼 , 𝐼 , 𝐼 , 𝐼 ] ∈ ℝ  respectively, where G is the gear ratio. 
 
2.1 Regressor Reduction 

Since not all the manipulator dynamic parameters are linearly independent, it is neces-
sary to remove from the regressor 𝒀 all the null columns to create a reduced matrix 𝒀   
with mutually independent columns, so that 𝒀  ּ 𝒑 = 𝝉, where 𝒑  is the base dynamic 
parameter vector. To do this, two numerical approaches are commonly used: QR de-
composition and Singular Value Decomposition (SVD). As in [9], the symbolic regres-
sor 𝒀 ∈ ℝ ×   is evaluated using 25 random values of angular positions, velocities, 
and accelerations. Each single regressor is stacked to form 𝒀25 ∈ ℝ25𝑛×13𝑛 . By apply-
ing the SVD reduction, 𝒀25 is written as 𝒀 = 𝑼𝚺𝑽𝑻 , where                                                
𝚺 = diag(𝜎 ) ∈ ℝ ×  is a diagonal matrix whose elements are the singular values 
𝜎  of 𝒀 , reported in Fig. 1(a). 

Fig. 1. (a) Singular values of the 𝒀25 matrix as a function of the number of the dynamic param-

eters 𝒑; (b) Cumulative energy of the 𝒀25 matrix. 

This analysis highlights how, in order to describe the 100% of the cumulative energy 
of the system [10], shown in Fig. 1(b), it is necessary to choose 52 base dynamic pa-
rameters. This information is used to check the quality of the QR decomposition 
adopted to reduce the system from 𝒀 ∈ ℝ ×   to 𝒀 ∈ ℝ ×  and from 𝒑 ∈ ℝ   to 
𝒑 ∈ ℝ  . As a result, among all the aforementioned 78 dynamic parameters of the 
UR5 (13 for each joint), only 30 are totally identifiable, 39 are identifiable with linear 
dependency, while the remaining 9 do not contribute to the dynamics of the manipula-
tor, so they cannot be identified. 



4 

2.2 Excitation Trajectory  

For a proper identification of 𝒑 , the UR5 has been commanded with a trajectory built 
using a 5th order Finite Fourier Series (FFS) as suggested by [11–13]. Alternatives to 
FFS could be found in [14] and [15], where a 5th order polynomial is used, or in [16] in 
which a B-splines have been selected. Angular positions, for each joint i, are calculated 
according to Eq. (4): 

 𝑞 (𝑡) = 𝑞 , + ∑ 𝑎 ,  𝑠𝑖𝑛 𝜔 𝑙𝑡 − 𝑏 ,  𝑐𝑜𝑠 𝜔 𝑙𝑡  (4) 

where:  

─ ωf is the fundamental frequency, equal for each joint in order to guarantee the peri-
odicity of the robot movements. It is defined as ωf=2πT, where T is the identification 
trajectory period set to 10 s; 

─  qi,0 is the joint position offset. According to the robot mounting configuration 
adopted during the experimental campaign, it is equal to [0, -π/2, 0, 0, 0, 0] rad; 

─  ai,l and bi,l are the coefficients of the FFS that have to be found by optimization in 
order to define a persistent identification trajectory able to continuously excite all 
the identifiable dynamic parameters. 

Since the UR5 must be able to execute the identification trajectory, physical constraints 
of the manipulator and of the test bench, on which the robot is mounted, have been 
implemented by adapting the non-linear constraints described in [17]. These limits have 
been chosen both according to the mechanical constraints of the robot (�̇�  and 
�̈�  are equal to π rad/s and 5.5π rad/s2 respectively) and to avoid any self-collision 
of the robot or with the environment by setting 𝑞  = [2π, π, π, 2π, 2π, 2π] rad.  

Moreover, to prevent high vibrations or unexpected behaviors at the start and end 
points of the commanded trajectory, the initial and final values of angular velocities 
and accelerations of each joint have been imposed to be 0. 

The FFS coefficients ai,l and bi,l have been identified using the MATLAB Global 
Optimization Toolbox. In particular, due to the large dimension of the problem, a ge-
netic algorithm (GA) has been used as proposed by [18] and [19]. According to [20], 
several cost functions could be used as the objective function to be minimized by GA, 
such as the one in Eq. (5) used in the present work: 

 𝑚𝑖𝑛
𝒒,�̇�,�̈�

𝑐𝑜𝑛𝑑 𝒀 (𝒒, �̇�, �̈�)  (5) 

where 𝒀𝐵 =

𝒀𝐵,1

⋮

𝒀𝐵,𝑁_𝑖𝑑

∈ ℝ(𝑛×𝑁_𝑖𝑑)×52 is the observation matrix built by piling up the 

single regressors 𝒀 ,  for each single trajectory point k of the identification trajectory. 
To solve the constrained non-linear optimization problem, a population of 300 individ-
uals has been used in the GA and, after five generations, the algorithm converged to a 
solution returning a condition number of 153. The resulting angular positions com-
manded to the UR5 are reported in Fig. 2. 
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Fig. 2. Angular positions of the UR5 joints during one period of the identification trajectory. 

To prevent an ill-conditioning of the observation matrix 𝒀𝐵, the identification trajectory 
has been repeated three times. To execute both the identification and the validation 
trajectories, the servoj function, developed by Universal Robots, has been adopted us-
ing a lookahead time and a gain of 0.03 and 500 respectively to avoid any vibration of 
the robot arm.  

3 Results 

Since the UR5 provides only the angular positions and velocities of the joints at each 
trajectory point k, while the regressor also needs the values of the angular accelerations 
to estimate the joints torques, it has been necessary to calculate them by numerical der-
ivation. This operation, however, could amplify the noise of the data, so a filter has 
been adopted as suggested by [9] and [11].  

Moreover, the robot used in the experimental campaign is not provided with torque 
sensors on its joints, so these values have been calculated by multiplying motor cur-
rents, gear ratio, and torque constants Kt. For the robot used in the experimental cam-
paign, the gear ratio is 101, while the values of Kt, equal to [0.1350 0.1361 0.1355 
0.0957 0.0865 0.0893] Nm/A, are provided by the manufacturer. 

The base dynamic parameters are obtained through the UR5 torques                        

𝝉𝐼𝐷 =

𝝉𝐼𝐷,1

⋮

𝝉𝐼𝐷,𝑁_𝑖𝑑

 measured during the identification trajectory, by using the least 

square errors optimization: 

 𝒑 = (𝒀 ּ 𝒀 )  ּ 𝒀   ּ 𝝉  (6) 
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An alternative method to Eq. (6), which takes into account the different joint sizes of 
the manipulator joints, is proposed in [9].  
 
3.1 Algorithm Validation 

To validate the proposed algorithm, a second persistent trajectory has been commanded 
to the UR5 and the predicted torques have been calculated using the reduced regressor 
and the identified base dynamic parameters. An example of the results obtained with 
the validation trajectory for the UR5 elbow (joint 3) is reported in Fig. 3. 

 

Fig. 3. Measured and predicted torques of the UR5 elbow for the validation trajectory. 

Since the described model does not take into account the static friction of the robot, 
there could be higher errors among the predicted torques and the measured ones when 
the manipulator does not move.  

To better evaluate the goodness of the proposed algorithm, the normalized error, 

defined as: 𝑒 =
_

√𝒆 ּ 𝒆 can be calculated, where 𝒆 = 𝒀 𝒑 − 𝝉  with              

𝒀𝐵 =

𝒀𝐵,1

⋮

𝒀𝐵,𝑁_𝑣𝑎𝑙

 and 𝝉𝑈𝑅5 =

𝝉𝑈𝑅5,1

⋮

𝝉𝑈𝑅5,𝑁_𝑣𝑎𝑙

 being the measured torques for each point 

k of the validation trajectory. In the proposed example, the normalized errors 𝑒  is equal 
to 0.0550. 

3.2 Effect of Temperature on Dynamic Parameters 

In order to understand the effect of friction on the results, the impact of joints temper-
ature on the estimate of the base dynamic parameters 𝒑  has been considered. To do 
so, the identification trajectory reported in Fig. 2 has been commanded to the UR5, first 
just after its power up (cold robot) and then, after 30 minutes of high dynamic 
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movements (warm robot). The temperature of the UR5 joints in the two working con-
ditions have been registered to be: 

─  Cold robot: T = [24.0, 24.0, 21.1, 24.7, 21.5, 22.5] °C; 
─  Warm robot: T = [33.8, 31.6, 29.8, 35.1, 36.8, 37.2] °C.  

The results are reported in Fig. 4, where it can be noticed that all the base dynamic 
parameters whose values should not be affected by temperature (𝒑 (1) − 𝒑 (36) and 
𝒑 (49) − 𝒑 (52)) are nearly the same in both working conditions. On the other hand, 
there are differences in the friction parameters (𝒑 (37) − 𝒑 (48)), in particular in the 
ones related to viscous friction (𝒑 (43) − 𝒑 (48)), where it has been registered a re-
duction of up to 35%. This test highlights how temperature affects the viscosity of the 
grease used to lubricate the joints and proves the stability of the proposed identification 
algorithm. 

 

Fig. 4. Values of the dynamic parameters of the UR5 collaborative robot just after its power up 
(cold robot) and after a half an hour warm up (warm robot). 

4 Conclusions 

In this paper, a method for dynamic parameters identification of an industrial robot has 
been described and tests have been run using a UR5 collaborative robot with good re-
sults. During the experimental campaign, temperature dependency of friction coeffi-
cients of the robot has been highlighted and quantified. 

The results of this work will be used to build a high-fidelity model which can be 
customized on a specific machine. Such virtual environment could be used both for a 
more reliable safety assessment of a specific robot application and for a better repre-
sentation of the behavior of the machine both in nominal and degraded working condi-
tions. 
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