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Abstract

Within the physical designing process of relational databases, the Index Selection Problem aims at

finding the subset of indexes to build for accessing the stored information. More precisely, given

a database workload, each query must be served by at most one predefined set of indexes (named

configuration) to maximize the net gain in terms of time. This gain is made up of the time gain

obtained to serve the queries through the configurations minus the fixed time needed to create and

maintain those configurations. The clustering of indexes into configurations and the limited amount

of memory available to store the indexes characterize our variant of the problem. At the same time,

established approaches in the literature have only considered those two aspects separately. We

model this setting as a generalization of the Uncapacitated Facility Location Problem with budget

constraint and propose an Integer Linear Programming formulation for it. Then, to find near-

optimal solutions in a reasonable computational time, we develop a Scatter Search meta-heuristic

exploiting the specific facility location features of the problem. We test our algorithm over a broad

set of benchmark instances and compare it with an exact solver and an efficient state-of-the-art

heuristic method.

Keywords: physical database design, index selection problem with configurations, facility
location problem, memory limitation, scatter search.

1. Introduction

The physical design is a fundamental step in developing any structured data storage, e.g., a

relational database (DB). Its main objective is to translate a logical data model (e.g., an entity-

relation scheme) into the technical specifications needed to create the relative DB structure on

a physical machine or computational device. This translation consists in defining an appropriate

set of structures to access the stored information, offering a good compromise between memory

occupation and the time required for data retrieval and maintenance. From a more technical point

of view, the design depends upon the database management system (DBMS) used on the target

device and, in turn, its specific features. For example, the supported access structures (such as
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hash functions, links, inverted indexes, clustering of data), as well as the implemented methods

for accessing the data (such as join algorithms, index intersection methods), must be taken into

account. Moreover, the access structures must deal with multiple requests (queries) on the DB,

each one possibly having its impact. It follows that the task at hand can get very complex, despite

the limited set of features offered by a DBMS.

Information in a DB table can be accessed by scanning the entire table, but, in that case, the

access time needed could be too high. Ad-hoc access paths called indexes are commonly used

to reduce such a time. In most modern and advanced DBMSs, there also exists the possibility

of combining several indexes into predefined sets called index configurations to gain efficiency by

exploiting the joint action of different, but in general few, indexes. According to Bruno (2011), the

complete DB index selection process is a complex activity composed of three main tasks: candidate

selection, cost model definition, and optimal assignment. In the first task, the search space needs

to be characterized by finding the candidate physical structures (single indexes or configurations)

that could be selected later. In the second task, a cost model must be defined to evaluate and

compare the different candidates. In the third task, candidate physical structures (or a subset of

them) must be created and assigned to a precise set of queries (workload) to maximize the efficiency

of the system response. In practice, each of the above tasks is a non-trivial problem itself. For

example, the candidate selection is commonly affected by a combinatorial explosion of the physical

structures to consider. Therefore, candidate access paths are almost always heuristically chosen

based on the configuration of each input query. Moreover, the tasks are somehow linked together,

and, in end-to-end implementation of an automated physical design system, they should be treated

as a whole. For instance, the gains/costs are commonly obtained through simulations named what-

if calls that rely on the results coming from the assignment optimization itself (see, e.g., Bruno

and Chaudhuri, 2005). Finally, specific additional constraints or limitations may affect each task.

However, in this work, we will focus only on the final optimal assignment task, which corresponds

to a well-studied combinatorial optimization setting called Index Selection Problem (ISP). We will

assume that a candidate set of physical structures has already been found, and the costs and gains

for each candidate have been estimated. Note that our optimization approach will not assume any

specific condition on developing the two previous tasks. Therefore, it can be coupled with any

available approach tailored to define the candidate structures and the cost model.

The classical ISP is about maximizing the gain in terms of execution time minus the time

required to create and maintain the selected indexes while ensuring to access the data that at most

one index will be used for each query. When configurations are allowed, the so-called Index Selection

Problem with Configurations (ISPwC) aims at finding a subset of configurations maximizing the

gain in terms of execution time (now depending on the configurations used) minus the time required

to create and maintain the indexes needed to activate the selected configurations. Moreover, at

most, one configuration can be assigned to each query. In this work, we study an ISPwC, but

we also explicitly consider a limited amount of memory available to store the indexes to make the

problem more realistic. This paper is the first to deal simultaneously with the clustering of indexes

into configurations and memory capacity to the best of our knowledge. According to Caprara et al.

(1995), the ISP can be formulated as an Uncapacitated Facility Location Problem (UFLP) and,

therefore, our ISPwC results to be a generalization of the UFLP with budget constraint. Note

that the memory limit is not a marginal aspect. It has been considered as one of the significant
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features to study in the context of the automated physical DB design in many previous works

(see, e.g., Bruno and Chaudhuri, 2005, Dash et al., 2011, Schlosser et al., 2019). This feature’s

significance comes partly because, intrinsically, there is a limited amount of available memory

space in any physical system. More importantly, in a DBMS, the memory used to store the indexes

should not compromise its capacity to store data and their relations. Usually, storage capacities are

associated with a certain percentage of the total memory available for the DBMS. Such capacity

could represent an interesting parameter for developing a sensitivity analysis in DB performances

(Schlosser et al., 2019). Nowadays, computational devices tend to become smaller and smaller in

terms of physical size and memory capacity to be easily embedded into other components. Then, the

memory limitation represents a challenging aspect of today’s industrial applications and the future.

On the other hand, it is also shared that the DB workloads have several thousands of queries and

that the DBMS can manage an enormous number of indexes and possible configurations. While, in

general, index selection optimization is addressed by quick-and-dirty heuristics, there is a practical

need for more effective and robust methods.

To the best of our knowledge, this is the first paper in the literature providing a reliable and

effective meta-heuristic solving the ISPwC with memory limitation. More precisely, we develop a

Scatter Search meta-heuristic to find near-optimal solutions in a reasonable computational time.

We test our method on a broad set of instances generated through benchmark procedures, demon-

strating its accuracy, efficiency, and flexibility concerning different instances’ features and sizes. A

comprehensive comparison with a commercial solver and a state-of-the-art heuristic is also provided.

Our algorithm has turned out to be able to deal efficiently with instances representing a workload

composed of up to 5000 queries and a DBMS supporting up to 5000 indexes organized in up to 50000

different configurations. Therefore, the method is suitable to be embedded into realistic DB design

software to improve its efficiency or even benchmark other procedures’ quality through off-line sim-

ulations. Finally, our heuristic can be used to solve different problems with a similar combinatorial

structure, e.g., simultaneous selecting and assigning problems. The paper is organized as follows.

Section 2 reviews the scientific literature related to the problem under consideration. In Section

3, we present the ISPwC and its mathematical programming formulation, while in Section 4, we

describe in detail our algorithmic approach based on the Scatter Search meta-heuristic. Section 5 is

devoted to presenting and discussing the computational experiments conducted to demonstrate our

solution algorithm’s accuracy and efficiency. Finally, Section 6 concludes the paper and sketches

some promising future research lines.

2. Literature review

The physical DB design is an essential issue for commercial DBMS, and great attention has

been dedicated to making it efficient both from academics and practitioners.

Some classical approaches related to specific commercial products also focusing on practical

issues like the DB workload characterization. Chaudhuri and Narasayya (1997) addressed the

optimization of an end-to-end system tailored for Microsoftr SQL Server in which indexes are

combined into configurations, as in our setting. The goal is to select the optimal configurations set

for a given workload while respecting an upper bound on the index number. Three stages compose

the approach. The first stage reduces the number of indexes to be considered by maintaining only

the configurations that contain a specific subset of atomic configurations (defined on workload
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properties and interaction among indexes). The second stage selects the minor cost configuration

for each query independently and creates the related indexes without exceeding the cardinality

constraint. The third stage combines single-column indexes into multi-column indexes through an

iterative approach. Instead, Valentin et al. (2000) implemented an index recommendation system

called DB2 Advisor for relational DBs. The ISP is simply modeled as a Knapsack Problem (KP)

variant. The solving approach uses a combination of two algorithms recursively. The first one

defines so-called virtual indexes (i.e., indexes whose statistics are temporarily introduced into the

schema only for the optimization process) by analyzing query of predicates (equal, join, range,

etc.) and clauses. The second one, instead, enumerates all possible indexes. A final greedy

approach selects the indexes with the best benefit-to-cost ratio until a memory limit is reached.

Yu et al. (1992) developed a Relational Database Workload Analyzer (REDWAR) to study the

structure and the complexity of SQL statements, the makeup of transactions and queries, and

composition of relations and views in a IBMr DB2 -like environment. Statistics are gathered on

query types and usage, as well as data access patterns. A clear output of this analysis is the

massive effect of variations on the indexes selection’s optimality in response time and the number

of tuples examined before getting a qualified one. More recently, Boronski and Bocewicz (2014)

observed that several commercial DBMS’s (e.g., Oracle Access Advisor or Toad) do not consider

relationships between group of queries for the index selection process. So, an extended ISP for

grouped queries is addressed by an evolutionary algorithm. The approach reduces, over many DBs

and query groups, the execution time and the number of indexes built with respect to the Oracle

Access Advisor tool. However, the algorithm’s average CPU time is several hours (or even days),

making it impossible to implement commercial software.

Several other works have studied different ISP variants under various assumptions and vari-

ous modeling and solving approaches. Comer (1978) addressed selecting a minimum-size set of

attributes that can serve as the key for a file on secondary memory. Fotouhi and Galarce (1989)

solved the same problem in the ISP context using a Genetic Algorithm and a Learning System

model to observe the DB request patterns and change the existing choices dynamically. Finkelstein

et al. (1988) considered a set of clustered and non-clustered indexes on DB tables, assuming that a

table has no more than one clustered index, and no columns have both clustered and non-clustered

indexes. Given a set of tables and a set of statements (together with the relative expected frequen-

cies of use), their ISP problem consisted in selecting, for each table, the ordering rule for the stored

records (which determines the clustered indexes) and a set of non-clustered indexes, so to minimize

the total processing cost. A limit on the entire index space is also considered. The authors develop a

methodology called DBDSGN, which mixes heuristics and exact method procedures. Other similar

ISPs have been proposed in Choenni et al. (1993), Gupta et al. (1997), and Heeren et al. (2003),

where straightforward cost models (i.e., where the size of the smallest covering index represents

the cost of a query) are assumed. However, when answering some queries through a configuration

of several indexes together, there exist interactions between indexes and, therefore, the cost model

must take into account such inter-dependencies. Later, Chaudhuri et al. (2004) considered a set

of already-chosen candidate indexes partitioned into different sets corresponding to the DB tables

where the benefit of a set of indexes is calculated through a sophisticated cost model that embeds

indexes correlations. The problem aims at finding the set of indexes that maximizes the benefit in

terms of response time for query requests, selecting at most one index per table, and not exceeding
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memory storage. The problem, modeled as a KP and proved to be NP-hard for both clustered and

non-clustered indexes, is solved using a greedy approach, in addition to a pruning strategy for the

relevant index subsets, to minimize the number of calls to the optimizer for calculating the benefits.

Asgharzadeh Talebi et al. (2013) proposed an integer programming model for a combined view-and-

index selection problem in the context of on-line analytical processing (OLAP) in DBMSs. The

problem aims to select a subset of views and indexes to minimize the evaluation time for a given

collection of queries and considering a storage limit. The cost model is similar to the one defined

by Gupta et al. (1997). There, the cost of answering a query using a view without indexes (i.e., the

number of rows of the portion of the view that must be scanned to construct the query result) is

added to the cost of answering with a view and an index (i.e., the number of rows of the portion of

the view referenced by the index). The problem is tackled through a plain solver after a significant

reduction of the search space by using both formal properties and a greedy heuristic method. Ameri

et al. (2015) presented a data mining-based approach to address the ISP for non-relational DBs. A

candidate set of indexes is obtained using different mining algorithms that analyze frequent queries

and then use the DB’s query optimizer to select optimal indexes. Together with their type, indexes

are ordered according to rules based on the properties and the queries’ particular needs. Ameri

(2016) continued the previous work by discussing the implementation of a refined and parallel min-

ing algorithm that aims to minimize the response time based on the read-write ratio of workload

operations, the selectivity of attributes, and memory limitations. The ordering rules give higher

priority to indexes with many served queries and with a lower number of write operations. More-

over, the DB query optimizer is helped by a Support Vector Machine algorithm that can extract

a representative but a limited sample of the DB to perform the final selection. Finally, Subotić

et al. (2018), proposed an automated index selection scheme to achieve optimal memory usage for

Datalog programs. Such programs work on relations and on indexes that are based on attribute

sequences. Since the relations are stored as in-memory index-organized tables to reduce lookup

times, an ISP (with some peculiarities) arises. In particular, the authors address a Minimum Index

Selection Problem seeking the minimum set of indexes covering frequently repeated calls to reduce

creation and maintenance costs and the associated memory occupation. The problem is solved by

computing a chain cover of the searches that exploits the relationship between the indexes and the

chains’ search spaces using a lexicographic order.

The research stream focused on solving the ISP as a UFLP started with the work by Caprara

et al. (1995), which contains the assumptions needed to justify the coherence of such a combinatorial

structure. The authors provide a branch-and-bound algorithm improved with the introduction of

ad-hoc valid inequalities. Lower bounds are enhanced by using two heuristic approaches that were

compared to the best available solution. The first heuristic selects indexes that maximize the global

likelihood of having those indexes in an optimal solution. In contrast, the second sorts indexes by

decreasing the objective function’s value and enumerates over subsections of the ordered indexes.

However, the algorithm can tackle only small instances for the current industrial needs. Caprara and

Salazar González (1996) generalized the above problem by introducing the configuration concept

to serve the queries, with precisely the same meaning as in our paper, but relaxing the memory

limitation constraint. By reformulating the problem as a Set Packing, the authors derive strong

valid inequalities and develop an effective branch-and-cut method. In a later paper (Caprara and

Salazar González, 1999), the same authors proposed an effective exact separation procedure for a
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well-defined family of lifted odd-hole inequalities. More recently, Kratica et al. (2003) proposed a

Genetic Algorithm for the same problem. The method adopts an elitist approach in the generational

replacement of the population of solutions and a Least Recently Used caching strategy to shorten

objective value evaluation time. The results show excellent CPU time for challenging instances of

the problem while maintaining a good quality of the obtained solutions. However, this algorithm

cannot solve our ISPwC, which must also comply with a limited amount of memory. In this paper,

we will follow this facility location-based modeling perspective, which is also particularly tailored

for deriving insightful analyses (see Fadda et al., 2021).

Some other works share some similarities with ours. Dash et al. (2011) addressed an index

tuning problem in which configurations of indexes are obtained from a heuristically generated pool

of candidates. An integer linear programming model taking advantage of the inherent structure

of the solutions space and a method that employs a linearly composable query cost function to

speed up what-if calls (as in Papadomanolakis et al., 2007) are used. The approach, called CoPhy,

which uses an off-the-shelf solver and a Lagrangean relaxation technique, results in general but

can address only instances up to 1000 queries. Very recently, Schlosser et al. (2019) employ a

recursive-based heuristic (RH) into an end-to-end system to solve massive ISP instances (where

hundreds of tables in a DB are involved) and without limiting the pool of index candidates in

the search. The approach also considers the interactions between indexes by taking advantage of

multi-attribute indexes, where each attribute relates to a specific column in the DB table. RH works

by first selecting the single-attribute index with the best ratio of the cost in serving a query to its

memory occupation. Then, the solution set is recursively updated by choosing a cost-improving

index attribute greedily to be considered either as a single-attribute index or as part of a multi-

attribute one. RH thus reduces by construction the number of what-if calls needed to estimate

the costs for an index configuration and outperforms CoPhy for large problem instances, obtaining

faster solutions with better quality.

To the best of our knowledge, the present paper is the first one dealing simultaneously with

clustering of indexes into configurations and limited storage memory. Moreover, RH by Schlosser

et al. (2019) seems to be the state-of-the-art heuristic for our problem. Hence we will use it as a

benchmark method to assess the quality and efficiency of our SS.

3. Problem definition and formulation

In this section, we formally present our ISPwC and its formulation. As already said, our focus

is on the optimal assignment part of the complex process constituting the physical design of a DB.

Therefore, we assume that the candidate access structures (indexes and configurations) and the

cost function have already been defined.

3.1. Problem statement

Let Q be the set of queries composing the DB workload, and I be the set of possible indexes

that can be built to serve the queries. Since not only single indexes but also sets of indexes can be

used for a query, let C be the set of the possible predefined configuration of indexes. The set of

indexes composing a specific configuration is the subset Ic ⊂ I and, in turn, the set of configurations

composed by a particular index is Ci = {c ∈ C : i ∈ Ic}. A configuration c is called active if all its

indexes i ∈ Ic are built. A configuration can be used to serve a query only if it is active. Note that
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a single index cannot be used anymore to serve a query directly. However, configurations composed

of only one index are allowed. Each index i ∈ I can be built using mi > 0 units of memory at a

fixed cost fi > 0, corresponding to the time needed for its creation and maintenance. Moreover,

let gcq ≥ 0 be the gain in terms of execution time of using index configuration c ∈ C for query

q ∈ Q. This gain is calculated for the time needed to serve the same query without the support of

any single index or configuration. Given the variety of queries and configurations possibly existing

in realistic DBs, the gain is a measure of how much a configuration of indexes is tailored to a

specific query type’s requirements. The gain values for all possible configurations and queries are

estimated during the cost model definition phase (see Section 1). A null gain gcq = 0 either means

that configuration c cannot be used for query q or, simply, that it does not affect its execution time.

Our ISPwC aims at selecting the indexes to build for serving the DB workload, ensuring that,

at most, one active index configuration is used for each query and the total memory usage does not

exceed a predefined maximum capacity M . The objective is to maximize the net time gain (i.e.,

the total gain obtained by serving queries through the configurations activated minus the indexes

creation and maintenance times) necessary to execute all the DB workload queries.

An example of the problem and a feasible solution structure is given in the following.

Example 1. Let us consider a sample instance of the ISPwC (graphically represented in Figure

1) involving a set of 5 indexes I = {i1, i2, i3, i4, i5}, a set of 4 configurations C = {c1, c2, c3, c4},

a DB workload composed by a set of 3 queries Q = {q1, q2, q3}, and a memory capacity M = 300.

In particular, above each index (represented by a circle in the upper tier), the relative fixed cost

Figure 1: A sample ISPwC instance and its optimal solution

fi memory occupation mi are reported in square brackets. In the medium tier each configuration
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is represented as a rectangle. The links between the indexes and the configurations represent the

configuration composition, i.e., a link exists between index i and configuration c if and only if

i ∈ Ic. In the lower tier each query composing the DB workload is represented as a triangle. Links

between a configuration and the queries represents strictly positive gains, i.e., a link exists between

configuration c and query q if and only if gcq > 0 (the value of the gain is reported beside each link).

Figure 1 also shows (through bold font and shaded gray) the optimal solution of the selected sample

instance. In particular, configuration c3 has been chosen to serve query q2 while configuration c4

serves queries q1 and q3. Accordingly, the indexes selected are all but i2. This yields a net time

gain of 26 (total gain of 82 and fixed cost of 56), with a feasible memory occupation of 291.

3.2. Mathematical model

Let us define a binary variables yi taking value 1 if index i ∈ I is built and maintained, and

0 otherwise, and a binary variables xcq taking value 1 if index configuration c ∈ C is activated to

serve query q ∈ Q, and 0 otherwise. Then, our ISPwC can be stated as follows:

max
∑
c∈C

∑
q∈Q

gcqxcq −
∑
i∈I

fiyi (1)

subject to ∑
i∈I

miyi ≤M (2)∑
c∈C

xcq ≤ 1 q ∈ Q (3)∑
c∈Ci

xcq ≤ yi i ∈ I, q ∈ Q (4)

yi ∈ {0, 1} i ∈ I (5)

xcq ∈ {0, 1} c ∈ C, q ∈ Q. (6)

The objective function (1) maximizes the total net time gain, composed by the gain raised by using

specific configurations for the queries minus the fixed cost to create/maintain the indexes built.

Inequality (2) is a classical knapsack constraint ensuring that the memory available is not exceeded.

Constraints (3) ensure that at most one configuration is activated for each query. Constraints (4)

link logically variables y and x. More precisely, if any configuration c is activated to serve a query

q, then all the indexes composing that configuration must be built. Vice versa, if an index is not

built (i.e., yi = 0), then all the configurations composed by that index cannot be activated (i.e.,

xcq = 0,∀c ∈ Ci, q ∈ Q). Finally, constraints (5)–(6) state binary conditions for the variables.

Note that our ISPwC is NP-hard, being a generalization of both the UFLP and the KP, which

are known to be NP-hard.

4. Scatter Search implementation

The Scatter Search (SS) algorithm is a population-based meta-heuristic (such as Genetic Al-

gorithms), firstly introduced by Glover (1977). Given its capability to solve both combinatorial
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and continuous optimization problems, SS has been successfully applied to various hard optimiza-

tion problems. See, e.g., the school bus routing problem (Corberán et al., 2002), the capacitated

multi-commodity network design problem (Ghamlouche et al., 2003), and even non-linear or multi-

objective problems (Rahimi-Vahed et al., 2007). SS was chosen as it provides, similarly to other

evolutionary algorithms, the right balance between accuracy and efficiency. However, compared to

Genetic Algorithms, SS shows advantages because it utilizes strategic designs and unifies principles

for joining solutions. Additionally, SS can be easily coupled with Tabu Search features, such as

adaptive memory and aspiration criteria, to influence individuals’ selection in the reference set.

As exhaustively explained in Mart́ı et al. (2006), SS consists of five basic methods/steps that we

summarize in the following:

1. a Diversification Generation Method, to generate a set of diverse solutions by taking a so-

called seed solution as input;

2. an Improvement Method, to enhance the quality of the candidate solutions;

3. a Reference Set Creation/Update Method, to build and maintain a small reference set consist-

ing of the “best” solutions, in terms of quality or diversity, found so far;

4. a Subset Generation Method, to operate on the reference set by producing a subset of its

solutions as a basis for creating combined solutions;

5. a Solution Combination Method, to transform a given subset of solutions produced by the

previous method into one or more combined solution vectors.

However, SS is very flexible, and its elements can be combined in several ways and implemented

with different degrees of sophistication.

In the following, we will discuss in detail our SS implementation.

4.1. Main framework

First, we represent our solution through a binary encoding of the set of configurations set. We

define a vector w of bits representing whether an index configuration has been used to serve at least

one query (value 1) or not (value 0)2. This encoding is sufficient to achieve a complete solution

(x,y) for our ISPwC. In fact, given a binary value wc for each configuration c ∈ C and defining

the set C̄ := {c ∈ C | wc = 1}, a ISPwC solution can be uniquely obtained by setting:

� yi = 1 for each index i ∈ Ic, c ∈ C̄, and yi = 0 otherwise;

� xcq = 1 for each query q ∈ Q if gcq ≥ gc′,q for each c, c′ ∈ C̄, c′ 6= c, and xcq = 0 otherwise.

The configuration-query assignment follows the logic of maximizing the objective function, pro-

viding the best net gain. Note that a solution obtained as before may not be feasible due to the

available memory capacity constraint in Eq. (2).

Our SS algorithm implementation is schematized in Figure 2. The black circles represent config-

uration vectors corresponding to solutions that could be unfeasible, while the gray circles represent

vectors corresponding to surely feasible solutions. The latter result from applying our particular

Improvement Method, which also guarantees the restoring of feasibility.

The precise pseudocode of the SS heuristic can be found in Algorithm 1. The method generates a

2Interesting enough, the Genetic Algorithm proposed in Kratica et al. (2003) for the unlimited-memory version of
our problem uses a binary encoding of the set of indexes instead.
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Figure 2: Schematic representation of our Scatter Search algorithm implementation.

set called divSet of different index configuration vectors using a Diversification Generation Method.

The very first time, this method takes as input a random seed solution and inverts some of its

elements by using specific rules (described later in detail). Any time a new vector is generated,

the Improvement Method is applied to the solution for two primary purposes. Namely, to ensure

the solution’s feasibility (in terms of memory usage concerning the capacity) and possibly improve

its objective function value through greedy procedures. The SS algorithm’s peculiarity is the

construction and maintenance, through the Reference Set Creation/Update Method, of a Reference

Set (refSet), i.e., a small subset of the configuration vectors that correspond to solutions having

high quality and diversity. Those vectors are used in the main iterative loop of the SS. Using the

Subset Generation Method, all the possible subsets composed of two solutions of the refSet are

created and then combined to form a new vector using the Solution Combination Method. This

approach produces a pool of new vectors, possibly corresponding to infeasible solutions. Therefore

the Improvement Method is again applied. According to a scoring function, the highest-score

vectors in the pool are used to update the refSet. We do that for multiple iterations until no new

vectors corresponding to an improved solution are found regarding the objective function value. In

the case of non-improvement, the algorithm restarts from regenerating the divSet by applying the

initial Diversification Generation Method, using the current pool’s best solution as a seed. The aim

is to provide a different refSet to restart the main SS loop.

Finally, notice that the algorithm stops once a termination criterion is met. As usual, this

criterion is based upon thresholds on numbers of iterations or CPU time. During the run-time of

the algorithm, the best solution found so far is stored in memory. When the algorithm stops, it
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Require: popSize, refSize
Ensure: a vector w corresponding to a feasible ISPwC solution (x,y)

divSet← ∅
while |divSet| 6= popSize do

Use the Diversification Generation Method to generate a vector w
Apply the Improvement Method on w
if w /∈ divSet then

Add w to divSet (i.e., divSet = divSet ∪w)
else

Discard w
end

end
Build a refSet of cardinality refSize (using half the best and half the most diverse configurations)
newSolFound← TRUE
while any termination criterion is not satisfied do

if newSolFound then
refSet updating:
Apply Subset Generation Method to create the set subsets containing all the possible subsets of refSet of

cardinality 2
newSolFound← FALSE
while subsets 6= ∅ do

Select the next subset s in subsets
Apply the Combination Method to s, for different threshold r values, to obtain new vectors and add

them to pool
Apply Improvement Method to all the vectors in the pool

end
Update refSet by selecting the best refSize solutions in refSet ∪ pool
if refSet has at least one new solution then

newSolFound← TRUE
end

else
Apply the Reference Set Criterion/Update Method to rebuild refSet:
Delete the worst refSize/2 vectors from refSet
Build a new divSet using the Diversification Generation Method with the best solution in the current
refSet as a seed

Add the new most diverse vectors generated to refSet
end

end

Algorithm 1: Scatter Search (SS) pseudocode

returns the best solution found so far.

4.2. Detailed description of the SS components

A detailed description of the main components of our SS is provided in the following.

Diversification Generation Method. This method aims at initializing the divSet with a

population of cardinality popSize of different configuration vectors. It takes as input a configuration

vector called seed (of length |C|), which is manipulated to generate other vectors. More precisely,

given a parameter 2 ≤ h ≤ |C| − 1 and a parameter q = {1, . . . , h}, the following rules are applied:

R1) generate a vector by inverting the elements in position q + kh of the vector seed, where

k = {0, 1, . . . , }, while q + kh ≤ |C|;
R2) generate a vector by inverting all the elements of the vector generated by rule R1.

An example of such diversification is shown in Table 1. In our implementation, following Glover

(1997), the parameter h is bounded by |C|/5 to decrease the number of diverse solutions considered.

Moreover, since the parameter popSize results to be a critical for the efficiency of the algorithm,

an accurate calibration is needed (see Section 5.2).
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Table 1: Configuration vectors generated from the input seed [0, 0, 0, 0, 0, 0, 0, 0, 0, 0].

h q R1 R2

2 1 [1,0,1,0,1,0,1,0,1,0] [0,1,0,1,0,1,0,1,0,1]
2 2 [0,1,0,1,0,1,0,1,0,1] [1,0,1,0,1,0,1,0,1,0]
3 1 [1,0,0,1,0,0,1,0,0,1] [0,1,1,0,1,1,0,1,1,0]
3 2 [0,1,0,0,1,0,0,1,0,0] [1,0,1,1,0,1,1,0,1,1]
3 3 [0,0,1,0,0,1,0,0,1,0] [1,1,0,1,1,0,1,1,0,1]
4 1 . . . . . .

Improvement Method. The Improvement Method is applied to every new generated vector w

to ensure that the corresponding solution (x,y) is feasible for the ISPwC problem. Moreover, the

method also tries to improve the net gain of the solution greedily.

The procedure changes the bits of a configuration vector w according to the following steps:

1. consider the bits (configurations) of w in non-decreasing order, according to the following

performance metric (PM):

PM(w, c) =
∑
q∈Q

gcq · xcq −
∑
i∈Ic

fiyi. (7)

This metric trivially follows the objective function (1) of the ISPwC problem, but considers

only a single bit c of the configuration vector;

2. while the solution remains unfeasible, switch wc from 1 to 0 (the idea is to eliminate the use

of configurations not to pay for the creation of their indexes);

3. as soon as the solution becomes feasible, switch wc from 0 to 1 unless this change causes an

infeasibility (the idea is to use as many configurations as possible without exceeding memory

occupation threshold).

Within the above algorithmic framework, two other different performance metrics are proposed.

These variations, called PM1 and PM2, are described in the following Equations:

PM1(w, c) =
∑
q∈Q

gcq · xcq −
∑
i∈Ic

(fi +mi)yi
2|ACi|

, (8)

PM2(w, c) =
∑
q∈Q

gcq · xcq −
∑
i∈Ic

fiyi
|ACi|

, (9)

where ACi is the set of active configurations in the considered solution w using index i. PM1

provides some gain for the queries where xcq = 1 and subtracts a sort of average of the fixed cost

and memory occupation. In PM2, instead, the gain is subtracted by the normalized fixed cost of

the candidate solution. Some tests about the best performance metric are shown in Section 5.2.

Reference Set Creation/Update Method. The refSet contains a mix of the configuration

vectors that are the most diverse and corresponding to the best solutions. In particular, given a

refSet of cardinality refSize, half vectors will be chosen because of their quality and half because

of their diversity.

The solutions’ quality is assessed using the objective function in Eq. (1) of the ISPwC problem.

Instead, to find the most diverse vectors from the population set, we calculate each vector’s most
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considerable average Hamming distance with respect to the rest of the refSet. A calibration of

the refSize parameter is performed in Section 5.2.

Subset Generation Method. The Subset Generation Method simply generates all subsets of

the refSet composed by two configuration vectors. In Algorithm 1, we call subsets the set of all

the above subsets.

Combination Method. In the main iterative loop, the vector pairs appearing in each subset of

the refset are combined to generate a pool of new possible configurations. Since the combination

does not guarantee the resulting solution’s feasibility, the Improvement Method is applied to each

resulting vector. The new vectors which correspond to solutions with larger value than the solutions

already found are added to the refSet.

The Combination Method is based on the use of a scoring function (SF ). More precisely, given

vectors w̄ and ¯̄w to be combined, SF is computed for each configuration c as follows:

SF (w̄, ¯̄w, c) =
PM(w̄, c) · w̄c + PM( ¯̄w, c) · ¯̄wc∑

c∈C [PM(w̄, c) + PM( ¯̄w, c)]
. (10)

Eq. (10) calculates the sum of the individual contribution of each configuration of the two vectors

with respect to the sum of the objective values associated with the solutions being combined. We

then use the scoring function as a probability for setting each bit being considered for the new

solution as 1 or 0. More precisely, in the new combined solution

wc =

{
1, if r ≤ SF (w̄, ¯̄w, c)

0, otherwise
∀c ∈ C, (11)

where r is a threshold number randomly drawn in the range [0, 1].

After obtaining combined and improved solutions from the reference set’s different subsets,

they are placed into pool. The best solutions in pool are added to the refSet. If none of the new

solutions is different from the original reference set (i.e., there are no better solutions in the current

divSet), then the reference set is rebuilt but, instead of a random seed as done in the initialization

step, the best vector is taken as a seed to repopulate the divSet.

5. Computational experiments

In this section, we first discuss the generation of the instances used for the computational

experiments. After some parameters calibration, we present and analyze extensive results to assess

our Scatter Search accurately and efficiently. All the computational experiments have been run on

an Intel(R) Core(TM) i7 CPU 860@2.80GHz machine with 16.0GB RAM and running Windows

10 Pro x64 operating system.

Our Scatter Search algorithm has been implemented through the C++ language. The code

is freely available at https://github.com/RuslanKain/odbdp-ssa. The SS time limit is set to

180 seconds. The optimal benchmarks, when possible, have been obtained by merely inputting

the model presented in Section 3.2 into CPLEX v12.8.0 MIP solver through its C/C++ Concert

Technology’s APIs and letting it run for 1 hour. Finally, several comparisons have been made with

the recursive-based heuristic (RH) proposed by Schlosser et al. (2019). A Python implementation

of the RH code, made available by the authors, has been migrated to the C++ language to have
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a fair comparison. We emphasize that RH has been implemented without the explicit distinction

between single-attribute and multi-attribute indexes (which does not hold in our problem), and

considering a configuration of multiple indexes in substitution for a multi-attribute index. As such,

the RH algorithm’s design remained unaltered but only fitted to work with the problem instances

targeted by the SS.

In the following, whenever two solution methods A and B are compared in terms of quality,

we will denote by %gapA,B the percentage gap between the objective function value of the best

solution found by B (objB) and by A (objA), i.e.

%gapA,B :=
objA − objB

objA
× 100.

Hence, a negative value for %gapA,B will indicate that method B outperforms method A.

5.1. Benchmark instances

To assess the performance of our algorithm, we create an excellent testbed of new random

instances. Based on those proposed in the literature for similar problems, the generation method

is intended to simulate realistic DB workloads and obtain hard-to-solve instances.

In Caprara and Salazar González (1996), the authors propose two different methods (Class A

and Class B) to generate ISPwC instances. However, Class B instances have resulted in being too

easy-to-solve and have been abandoned in further studies. Instead, Class A instances have also been

used in other more recent papers (see, e.g., Kratica et al., 2003) since they are still challenging.

Therefore, we adopted the Class A generation method as a general framework. Moreover, we

improve the generation method by introducing both randomnesses to diversify the instances better

and some parameter values proportional to the instance size (e.g., indexes or queries). More

precisely, for each index i ∈ I, fi is uniformly generated in [90, 110]. For each configuration c ∈ C,

the indexes composing the set Ic are selected randomly in I, given that the cardinality of each Ic
is chosen according to a uniform distribution in [1, |I|/10]. Similarly, for each configuration c ∈ C,

we randomly select in [1, |I|/10] the number of queries for which the gain gcq > 0. The exact value

of those positive gains are randomly drawn in [1, α ∗ |Ic|], where the maximum value depends on

a parameter α representing the percentage gain powered by each index i ∈ Ic with respect to a

particular query q ∈ Q. The parameter α allows to modify the proportion between gains and fixed

costs in terms of time. Finally, we need to complete the instances with a cost in terms of memory for

each index and a total available memory. Following Caprara et al. (1995), the memory occupation

mi for each index i ∈ I is uniformly generated in [450, 2500]. The total available memory M is

calculated as a certain percentage β of the memory needed to store all the created indexes, i.e.,

M = bβ
∑

i∈I mic. The higher the value of β, the milder the memory limitation in constraint (2).

Eventually, we have generated three sets of instances, called Small, Large, and Extra-Large,

respectively. The Small set contains one instance for each combination of |I| = {50, 100} indexes,

|Q| = {50, 100} queries, |C| = {500, 1000} configurations, α = {25, 50, 100}, and β = {20, 50, 80}.
The Large set contains one instance for each combination of |I| = {500, 1000}, |Q| = {500, 1000},
|C| = {5000, 10000}, and all the combinations of the above α and β values. Finally, the Extra-Large

set contains 8 very huge instances with |I| = 5000, |Q| = 5000, and 20000 or 50000 configurations.

Such instances are freely available at http://www.orgroup.polito.it/resources.html.
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5.2. Parameters calibration

Hereafter, we propose an empirical calibration of the best performance metric to use and the

best main parameters to adopt in our SS.

Performance metric calibration. Since the basic performance metric in Eq. (7) has appeared

ineffective in some preliminary experiments, we tested the performance metrics PM1 in Eq. (8) and

PM2 in Eq. (9) over 10 independent runs of SS for a subset of 24 Small instances. This subset is

representative enough since PM1 and PM2 are not correlated to the instances’ main dimensions

(|Q|, |I|, and |C|). The results are assessed by calculating the percentage gap %gapCP,SS , where

CP indicates the model solved by CPLEX within 1 hour threshold, and the time-to-best (ttb) of the

heuristic, i.e., the time in seconds that SS needs to achieve the best solution. Note that a negative

value for %gapCP,SS may happen since CPLEX cannot solve all the ISPwC instances optimally

within the threshold time. The distributions of the results obtained for %gapCP,SS and ttb are

shown in the box-plots of Figure 3a and 3b, respectively. In Figure 3a, the average %gapCP,SS

(a) Distribution of %gapCP,SS . (b) Distribution of ttb.

Figure 3: Distribution of %gapCP,SS and ttb resulting from the use of performance metrics PM1 and PM2.

values for both performance metrics are close to zero, meaning that the performance is similar to

the benchmark for most instances of the problem. However, for PM2 there are several extreme

values, which have significantly worse performance. In Figure 3b, PM2 is shown to perform a bit

better, on average, in terms of time to obtain the best solution. However, since our focus is more

on the method’s accuracy, we decided to use PM1 as the performance metric for the extensive tests

presented in the following.

Calibration of the population and reference set sizes. We experimentally tested different

ways for setting the size of divSet (popSize) and refSet (refSize). Such parameters are set as

proportions of specific instance dimensions, i.e., popSize = 10 · refSize, where refSize is set

according to one of the following formulas:

RS1 : refSize =
|C|
|Q|

; RS2 : refSize =
|C||I|
100|Q|

;

RS3 : refSize =
|C||I|
50|Q|

; RS4 : refSize =
|C|
100

.

In particular, we tested the four different settings over a representative subset of 24 Small instances

and a representative subset of 24 Large ones; indeed, the algorithm has been executed 10 times on
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each instance. In the following, we report only the results obtained by the two best settings for

each set, namely RS1 and RS2 for the Small instances (Table 2) and RS3 and RS4 for the Large

ones (Table 3). For the sake of conciseness, for each calibration setting, in each table we only

Table 2: Percentage gap (%gapCP,SS) and time-to-best (ttb) in seconds of SS with two different calibrations of
refSize and popSize for Small instances.

Calibration
Indicators over

all the instances

%gapCP,SS statistics over
10 runs per instance

ttb statistics over
10 runs per instance

Avg Stdev Best Worst Avg Stdev Best Worst

RS1

Avg: -0.74 0.35 -1.17 -0.18 60.49 43.49 15.63 141.68
Stdev: 2.39 0.47 2.60 2.39 29.59 15.53 14.57 36.04
Best: -8.00 0.00 -8.80 -7.50 8.29 7.04 0.65 31.03
Worst: 1.67 1.60 0.84 5.00 112.15 71.34 67.01 179.16

RS2

Avg: -0.70 0.25 -1.07 -0.35 59.59 44.10 13.22 138.40
Stdev: 2.49 0.34 2.65 2.32 31.77 18.22 9.59 47.73
Best: -8.47 0.00 -8.80 -8.09 8.91 2.89 0.88 27.84
Worst: 2.91 1.42 1.88 3.48 147.26 73.32 41.14 179.93

Table 3: Percentage gap (%gapRH,SS) and time-to-best (ttb) in seconds of SS with two different calibrations of
refSize and popSize for Large instances.

Calibration
Indicators over

all the instances

%gapRH,SS statistics over
10 runs per instance

ttb statistics over
10 runs per instance

Avg Stdev Best Worst Avg Stdev Best Worst

RS3

Avg: -22.94 1.39 -25.06 -21.04 71.63 44.44 20.06 144.14
Stdev: 13.86 0.94 14.40 13.53 34.75 11.27 16.25 34.65
Best: -50.88 0.00 -54.88 -48.37 7.59 14.12 1.39 46.62
Worst: -6.30 3.14 -7.33 -3.28 139.45 66.06 73.82 177.64

RS4

Avg: -22.38 1.33 -24.55 -20.81 75.53 45.99 16.59 150.34
Stdev: 13.99 0.86 14.39 13.61 31.13 11.76 17.15 32.85
Best: -53.11 0.00 -55.39 -48.92 10.78 10.63 1.72 37.56
Worst: -4.63 3.61 -6.36 3.28 129.17 71.95 64.26 176.61

report some statistics (avg, stdev, best, and worst values) concerning some aggregate indicators of

the percentage gap obtained by SS and of its time-to-best. In each cell of the tables it is reported

a specific statistic (on the columns) calculated over 10 runs of a specific indicator (on the rows)

aggregating the results for all the tested instances. For example, in cell (1, 3) of Table 2, the value

−1.17 represents the best value obtained in 10 different runs among all the average percentage gaps

calculated over all the tested instances. Note that, since CPLEX is not a suitable solver for Large

instances, in Table 3 the percentage gap reported (%gapRH,SS) is with respect to RH, which is the

state-of-the-art heuristic proposed in Schlosser et al. (2019).

In Table 2, the RS1 setting gave the best results for the Small instances, since it resulted

slightly better in all the statistics for %gapCP,SS (with an average improvement of -0.74% compared

to the benchmark). In contrast, the time behavior (ttb) for the different settings showed similar

performance, and the average time-to-best is about 1 minute. Concerning the Large instances,

Table 3 indicates that the average %gap is −22.94% when using RS3, while for RS4 the average

%gap is −22.38%. Moreover, on average, the ttb is 71.63 seconds for RS3 and 75.53 seconds for

RS4. Thus, calibration RS3 provides better solutions and finds them more quickly. So, according

to the above calibration, we decided to perform the rest of the experiments by using the calibration

RS1 for the Small instances and calibration RS3 for the Large ones. However, the SS quality and

efficiency seem not significantly influenced by the various calibrations, indicating good robustness.
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5.3. Extensive results and analysis

In the following, we present the assessment of the accuracy and the efficiency of our SS algorithm

concerning the entire set of instances discussed in Section 5.1.

Accuracy of the Scatter Search. For each instance, SS was executed 10 times to obtain valuable

statistics, while CPLEX and RH were executed once since they are deterministic methods. Table

4 contains a detailed comparison of the quality of SS and RH concerning the 72 Small instances.

They were both compared to the CPLEX benchmark results. Instead, Table 5 contains a detailed

comparison of the quality of SS with respect to RH concerning the 72 Large instances (the CPLEX

benchmarks are not available).

Table 4: Percentage gaps of SS (over 10 runs) and of RH versus CPLEX on Small instances

Instance %gapCP,RH %gapCP,SS (|I| = 50) %gapCP,SS (|I| = 100)

|Q| |C| α β |I| = 50 |I| = 100 Avg Stdev Best Worst Avg Stdev Best Worst
50 500 25 20 54.08 35.20 5.18 1.24 3.07 5.43 0.00 0.00 0.00 0.00
50 500 25 50 71.85 38.33 2.81 1.57 0.60 4.78 -0.23 0.08 -0.44 -0.18
50 500 25 80 70.17 43.35 6.27 2.34 0.76 7.78 1.82 0.83 0.87 3.16
50 500 50 20 78.58 37.42 0.00 0.00 0.00 0.00 -4.07 -2.21 0.73 -4.07
50 500 50 50 56.48 45.47 0.97 1.12 0.00 3.16 -1.47 0.41 -2.33 -0.98
50 500 50 80 75.43 49.91 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00
50 500 100 20 81.51 38.29 0.04 1.91 0.00 4.52 -1.14 0.19 -1.33 -0.75
50 500 100 50 96.39 51.76 1.02 0.13 0.84 1.27 0.73 1.45 0.38 5.00
50 500 100 80 65.41 29.06 0.32 0.20 0.01 0.40 0.31 0.15 0.00 0.47
50 1000 25 20 66.86 32.65 3.41 4.75 0.77 11.33 -5.69 0.90 -6.63 -3.89
50 1000 25 50 70.55 41.94 0.41 1.38 -1.97 2.16 4.15 0.59 3.12 4.28
50 1000 25 80 77.10 57.67 0.49 0.65 -1.12 1.07 7.80 1.54 4.32 8.25
50 1000 50 20 79.09 29.62 1.89 1.41 0.52 4.99 -4.78 0.31 -5.30 -4.01
50 1000 50 50 73.75 37.15 0.00 0.00 0.00 0.00 -2.96 0.41 -3.12 -1.83
50 1000 50 80 93.39 68.54 0.41 0.38 0.00 1.11 -1.03 0.34 -1.40 -0.23
50 1000 100 20 70.99 41.52 1.09 0.00 1.09 1.09 -9.19 0.37 -9.82 -9.12
50 1000 100 50 72.10 41.68 1.43 0.46 0.00 1.45 -0.62 0.98 -2.54 -0.16
50 1000 100 80 58.60 47.45 0.47 0.15 0.00 0.48 0.25 0.06 0.24 0.42

100 500 25 20 73.07 50.61 0.00 0.00 0.00 0.00 5.38 1.09 2.38 5.81
100 500 25 50 71.34 48.57 2.24 1.00 0.68 4.11 -0.59 1.46 -3.34 0.93
100 500 25 80 77.18 73.03 0.00 0.00 0.00 0.00 0.80 1.45 0.00 3.67
100 500 50 20 98.39 57.35 0.00 0.00 0.00 0.00 -13.72 0.00 -13.72 -13.72
100 500 50 50 84.28 45.61 1.67 0.83 0.56 3.48 -6.16 1.60 -7.11 -3.41
100 500 50 80 83.44 11.16 0.00 0.00 0.00 0.00 0.38 0.01 0.38 0.42
100 500 100 20 73.94 16.56 0.00 0.00 0.00 0.00 -0.98 0.00 -0.98 -0.98
100 500 100 50 88.07 53.39 0.00 0.00 0.00 0.00 -5.27 0.09 -5.54 -5.27
100 500 100 80 87.79 37.31 0.00 0.01 0.00 0.03 0.22 0.15 0.12 0.63
100 1000 25 20 64.42 34.73 2.54 0.00 2.54 2.54 -8.72 1.19 -12.48 -8.71
100 1000 25 50 94.95 36.63 4.03 1.91 0.39 5.88 -1.92 1.75 -5.57 -0.96
100 1000 25 80 98.90 25.33 1.20 0.66 0.36 2.38 0.85 0.72 -1.13 1.04
100 1000 50 20 77.20 15.90 0.00 0.00 0.00 0.00 -0.78 0.50 -0.86 0.33
100 1000 50 50 81.91 44.33 0.64 0.29 0.00 0.69 -6.85 1.45 -8.80 -5.25
100 1000 50 80 97.99 44.87 0.00 0.00 0.00 0.00 0.43 0.03 0.40 0.45
100 1000 100 20 88.98 44.78 3.52 0.63 2.15 3.66 -9.73 0.05 -9.79 -9.67
100 1000 100 50 78.83 52.42 -1.46 0.00 -1.46 -1.46 -8.00 0.32 -8.56 -7.50
100 1000 100 80 88.65 53.32 0.20 0.11 0.00 0.30 0.61 0.00 0.61 0.61

Avg: 78.38 42.03 1.13 0.64 0.27 2.02 -1.90 0.59 -2.83 -1.20
Best: 54.07 11.16 -1.46 0.00 -1.97 -1.46 -13.72 0.00 -13.72 -13.72

Worst: 98.9 73.03 6.27 4.75 3.07 11.33 7.80 1.75 4.32 8.25

Concerning the Small instances (Table 4), we observe that the larger the set of indexes, the

better the performance of SS. More precisely, for |I| = 50, the SS underperforms compared to the

solver with an average percentage gap performance of 1.13%, while for |I| = 100 the SS outperforms

the solver by −1.90% on average. We also note that SS found the same solution as CPLEX (i.e.,

0.0% gap) for 13 instances, primarily for |I| = 50, and outperforms the solver for 22 instances,

especially for |I| = 100. SS significantly outperforms the benchmark in some individual instances,

with the best improvement being −13.72%. Furthermore, SS shows stability in performance across
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Table 5: Percentage gaps of SS (over 10 runs) versus RH on Large instances

Instance %gapRH,SS (|I| = 500) %gapRH,SS (|I| = 1000)

|Q| |C| α β Avg Stdev Best Worst Avg Stdev Best Worst
500 5000 25 20 -36.50 0.00 -36.50 -36.50 -12.64 0.28 -12.67 -11.78
500 5000 25 50 -32.73 1.85 -34.35 -28.53 -11.10 1.30 -13.04 -8.87
500 5000 25 80 -31.51 0.71 -32.86 -30.70 -10.64 0.79 -11.96 -9.38
500 5000 50 20 -28.52 1.97 -29.93 -23.72 -7.93 1.05 -10.02 -7.39
500 5000 50 50 -26.54 1.05 -27.96 -24.21 -7.91 0.90 -10.34 -7.25
500 5000 50 80 -25.23 0.67 -26.95 -24.89 -8.60 0.64 -9.83 -7.65
500 5000 100 20 -23.32 0.00 -23.32 -23.32 -9.27 0.43 -9.73 -7.96
500 5000 100 50 -26.08 0.79 -27.68 -24.70 -14.36 1.35 -16.53 -12.20
500 5000 100 80 -28.59 1.31 -30.00 -26.16 -11.12 0.71 -12.64 -10.18
500 10000 25 20 -45.70 0.00 -45.70 -45.70 -11.48 0.13 -11.64 -11.39
500 10000 25 50 -34.81 1.80 -38.89 -32.82 -11.70 0.79 -13.13 -10.58
500 10000 25 80 -35.77 2.60 -43.04 -34.33 -10.60 0.82 -12.88 -10.14
500 10000 50 20 -27.76 2.44 -34.77 -27.00 -21.32 2.14 -21.37 -16.30
500 10000 50 50 -29.22 1.06 -31.02 -28.07 -11.64 0.90 -13.12 -10.08
500 10000 50 80 -29.19 1.15 -31.43 -28.01 -11.53 0.65 -12.26 -10.18
500 10000 100 20 -31.99 3.14 -36.56 -27.97 -6.83 1.52 -7.34 -3.74
500 10000 100 50 -29.98 2.04 -33.95 -27.90 -14.24 1.07 -15.36 -12.18
500 10000 100 80 -29.99 1.62 -34.14 -28.17 -11.97 0.91 -14.64 -11.47

1000 5000 25 20 -25.00 0.14 -25.22 -24.93 -6.30 2.00 -7.81 -3.28
1000 5000 25 50 -32.02 3.24 -36.98 -26.95 -9.86 1.15 -12.53 -8.38
1000 5000 25 80 -41.56 1.78 -43.77 -38.66 -10.93 0.80 -13.10 -10.23
1000 5000 50 20 -23.74 2.59 -27.78 -21.47 -5.75 1.52 -9.78 -4.84
1000 5000 50 50 -30.27 2.04 -33.53 -28.08 -8.86 0.81 -9.07 -6.88
1000 5000 50 80 -44.36 3.02 -46.51 -38.11 -10.47 0.82 -11.46 -9.05
1000 5000 100 20 -12.78 2.35 -17.43 -11.11 -8.33 2.82 -11.65 -4.82
1000 5000 100 50 -32.31 2.34 -34.50 -28.47 -11.03 0.81 -11.77 -9.58
1000 5000 100 80 -42.60 1.54 -45.00 -39.59 -10.85 1.02 -13.38 -10.29
1000 10000 25 20 -32.06 0.88 -33.25 -29.66 -12.71 2.20 -17.57 -11.39
1000 10000 25 50 -35.89 2.65 -41.63 -32.88 -9.99 1.46 -11.32 -6.93
1000 10000 25 80 -49.97 2.90 -54.52 -44.63 -10.56 0.98 -11.38 -8.35
1000 10000 50 20 -30.61 1.84 -36.01 -29.14 -11.92 1.81 -13.83 -10.03
1000 10000 50 50 -31.89 2.64 -39.14 -30.39 -12.90 1.54 -15.24 -9.42
1000 10000 50 80 -47.22 3.15 -53.40 -41.71 -11.17 1.15 -11.99 -8.49
1000 10000 100 20 -28.37 3.04 -32.86 -26.54 -8.30 1.17 -11.09 -7.25
1000 10000 100 50 -40.38 2.44 -46.24 -37.74 -11.22 1.23 -12.77 -8.78
1000 10000 100 80 -50.88 2.30 -54.89 -48.37 -13.23 0.62 -14.27 -12.48

Avg: -32.93 1.81 -36.16 -30.59 -10.81 1.12 -12.46 -9.14
Best: -50.88 0.00 -54.89 -48.37 -21.32 0.13 -21.37 -16.30

Worst: -12.78 3.24 -17.43 -11.11 -5.75 2.82 -7.34 -3.28

all instances, as indicated by the low standard deviations, 0.64 for |I| = 50, and 0.59 for |I| = 100,

over the average results. This stability makes our method particularly suitable to solve this kind of

instance, while CPLEX is not a reasonable alternative anymore, particularly for |I| = 100 instances.

Lastly, SS outperforms RH in terms of solution quality, as indicated by the 78.38% average gap for

|I| = 50 for and 42.03% average gap for |I| = 100 of RH compared to the benchmark. Concerning

the Large instances (Table 5), SS outperforms RH since the average percentage gap with respect to

RH is −32.93% and −10.91%, respectively. Moreover, SS can significantly outperform RH in some

cases, as shown by the best gap value of −50.88%.We also note that SS outperforms RH for all the

instances since the average %gap for all runs is always negative. Furthermore, SS shows stability

in performance across all instances, as indicated by the low average standard deviations, which are

1.81 and 1.12 for |I| = 500 and |I| = 1000, respectively. However, the results also show that the SS

and RH performances become closer as the problem’s scale increases.

To further test our SS’s scalability, we conducted experiments for the 8 Extra-Large instances

characterized by an enormous number of indexes, configurations, and queries (namely, 5000 indexes

and queries, and 20000 or 50000 configurations. The SS time limit has been therefore extended to

600 seconds. In Figure 4, we report results for 300, 450, 500, and 600 seconds in the form of box

plot distributions of the %gapRH,SS averaged over 10 runs, and using all the calibration settings for
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refSize and popSize proposed in Section 5.2 to explore a wider range of possible solutions. The box

(a) RS1 (b) RS2

(c) RS3 (d) RS4

Figure 4: Percentage gap with respect to RH (y-axis) over time for Extra-Large instances with different parameters
calibrations. The box represents the inter-quartile range (25% to %75) and reports the median value through a
dashed line and the mean value through a solid line. Maximum and minimum values are represented out of the box.

plots show a pattern similar to that observed for Small and Large instances, i.e., that of a gradual

improvement of SS over RH for more significant run-time limits. Up to 300 seconds, RH slightly

outperforms SS, but the average percentage gap is always in the [0%, 1%] range. Moreover, the

inter-quartile range (25%-75%) shifts downward, below the 0% gap, meaning that SS outperforms

RH for most cases. Comparing the different calibrations settings, it appears that the average

percentage gap is similar for all calibrations, i.e., between 0% and -1%. For RS2 and RS3, the inter-

quartile range lies below the 0% gap. Upon closer inspection, for RS3, the worst-case percentage

gap has the lowest value compared to the others. For the sake of completeness, Table 6 reports

the number of Extra-Large instances for which SS finds a configuration set returning a net gain

strictly greater than 0 (i.e, a non-trivial solution), for the different time limits and for the different

calibrations. The only difference seems regarding the 500-second mark. SS with calibrations RS2

and RS4 solved all 8 instances, while with RS1 and RS3 only one instance was not solved in time.

Efficiency of the Scatter Search. The experiments for the Small and Large instances were set

to a run-time limit of 3 minutes to find an improved solution in an acceptable time range. In

theory, if the algorithm is left running for longer, even better results could be obtained. However,

in practice, long run-times are unacceptable for real-time DB management applications. Most of

the time, it is important to obtain a good solution as fast as possible. Hence, to assess the efficiency
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Table 6: Number of Extra-Large instances solved with the different calibrations and for the different time limits.

Calibration
Time limit (seconds)

300 450 500 600
RS1 6 7 7 8
RS2 6 7 8 8
RS3 6 7 7 8
RS4 6 7 8 8

of our SS, we study its performance over time.

In particular, for the Small instances, we report results at 1, 5, 10, 30, 60, and 180 seconds, and

for the Large instances at 5, 10, 30, 60, 90, and 180 seconds. In Figure 5(a), we show the distribution

of %gapCP,SS for all the Small instances in the form of box plots over time, while the distribution

of %gapRH,SS for all the Large instances are similarly shown in Figure 5(b). We emphasize that,

for all the Small instances, a configuration set returning a net gain strictly greater than 0 was

found for all the run-time limits. Instead, all the 72 Large instances this happened only after 30

seconds, while, by the 5-second limit and the 10-second limit, 39 and 57 instances were solved,

respectively. For the Small instances, in Figure 5(a), SS can find on average solutions 5% close to

(a) Small instances (b) Large instances

Figure 5: Box plot distribution of (a) %gapCP,SS for Small instances and of (b) %gapRH,SS for Large instances over
time. The dashed line shows the median value, the solid line shows the mean value, and the circles indicate outliers.

the benchmark in 1 second. The quality rapidly increases, converging to have 0% gaps on average

around 30 seconds. The best-to-worst range of the gaps reduces gradually from approximately 21%

and -6% to 3% and -4%, thus, becoming more robust in terms of solution quality. Concerning the

Large instances, in Figure 5(b), SS obtains on average solutions with gaps around -7% with respect

to RH already after 5 seconds, with some outliers below the -20%. The average quality gradually

increases with longer run-time limits, converging to around -16% at 30 seconds. The trend shows

that the longer the time limits, the better the solution quality. The best-to-worst range consistently

shifts downward, indicating that some solutions have increasingly better quality, thus shifting the

average gap lower for longer run-time intervals.

In Figure 6, we show the speed performance (i.e., the average time-to-best) of all the approaches

for both sets of instances. In both cases, when comparing SS to CPLEX for the Small instances

in Figure 6(a) and to RH for the Large instances in Figure 6(b), we see that SS takes a longer

time. For the benchmark, the ttb gradually increases with greater time limits, but not at the
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(a) Small instances (b) Large instances

Figure 6: SS time-to-best for the different run-time intervals for (a) Small instances with respect to CPLEX and for
(b) Large instances with respect to RH.

same rate as SS. RH remains relatively constant in its time-to-best, indicating its great speed in

obtaining a solution is expected for a greedy-search based approach. Moreover, the consistency of

RH ttb means that no further improvements are made after a couple of seconds, indicating that the

searching scheme is stuck in a local optimum.

The overall SS results for both instance sets, in terms of percentage gaps versus the time-to-best,

are shown in Figure 7. The circles represent results of problem instances and are differently colored

depending on their main parameters This way, it is possible to discern the effect of the problem

instance’s parameterization on the obtained solution’s quality and speed. Figure 7(a) shows that

the improved solutions with respect to CPLEX mostly appear for |I| = {100}, which are more

computationally hard to solve than problem instances for |I| = {50}. This is even more apparent

in Figure 7(b), where the instances with |I| = 1000 are ground around the -10% gap and are almost

all obtained past the 30 second mark, while the instances with |I| = 500 are dispersed between

-50% and -20% gap. Figures 7(c) and 7(d) show that the best solutions are found for the greatest

configurations size, i.e. |C| = 1000 and |C| = 10000 of the Small and Large sets, respectively. It

seems that the availability of a larger space of solutions, increases the likelihood of finding improved

solutions by our SS. Figure 7(e) shows that for β = 20 the solutions for the Small instances are

found the soonest, and the same applies for the Large as shown in Figure 7(f).

Finally, in Figure 8, we also analyze the ttb when solving for the Extra-Large instances for the

different time limits and calibrations. We see that the ttb for SS follows a similar progression in all

cases, with calibration RS4 giving the shortest time overall. For RH, the ttb is better than SS for

all cases. Therefore, we recommend for SS the use of calibration RS2 when the solution quality is

of high priority and calibration RS4 when the ttb is deemed more valuable. We observe that RH,

being a greedy heuristic, runs much more quickly than SS for Extra-Large instances of the problem.

However, SS can find better quality solutions and help benchmark, simulations, and planning-level

decision support given enough time.

6. Conclusions

The design of a physical DB is a complex process involving several phases. In this paper, we

have focused on the last phase of this process, optimizing data structures’ assignment to a specific
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(a) Small instances (gray for |I| = 50, black for |I| =
100)

(b) Large instances (gray for |I| = 500, black for |I| =
1000)

(c) Small instances (gray for |C| = 500, black for |C| =
1000)

(d) Large instances (gray for |C| = 5000, black for
|C| = 10000)

(e) Small instances (gray for β = 20, dark gray for
β = 50, black for β = 80)

(f) Large instances (gray for β = 20, dark gray for
β = 50, black for β = 80)

Figure 7: Percentage gap with respect to benchmarks (y-axis) vs time-to-best in seconds (x-axis) for: (a), (c), and
(e) Small instances; (b), (d), and (f) Large instances. The parameters analyzed are: (a) and (b) number of indexes;
(c) and (d) number of configurations; (e) and (f) value of β.

workload of queries. Therefore, we have proposed an Index Selection Problem considering configu-

rations of indexes and a limited amount of memory simultaneously. The problem has been modeled

as a generalization of the Uncapacitated Facility Location Problem with budget constraint through

an Integer Linear Programming formulation. We have then developed a tailored Scatter Search

22



(a) RS1 (b) RS2

(c) RS3 (d) RS4

Figure 8: Average time-to-best in seconds (y-axis) for SS solutions (gray bar) and RH ones (black bar) for different
run-time limits on Extra-Large instances, with different parameters calibrations.

meta-heuristic by exploiting several features of the problem’s combinatorial structure. Our algo-

rithm’s accuracy and efficiency are tested with respect to CPLEX and a state-of-the-art heuristic

method (RH) over an extensive set of instances. CPLEX has resulted in being very unreliable even

when a significant amount of time is available. At the same time, RH (due to its greedy nature)

runs quickly but provides very low-quality solutions for almost all the types and dimensions of in-

stances. It follows that our SS method is the most suitable approach when the memory constraints

are very binding, as it happens in several practical applications. The proposed solution method’s

excellent performance makes it possibly embeddable into realistic DB design software and usable

not only for on-line developments but also for benchmarking other approaches in terms of quality.

Several future research lines can be delineated. First, our basic ISPwC can be extended by

including specific features coming from the application at hand, such as incompatibilities among

indexes or non-trivial functions, to derive the configuration gain for the marginal gain of the com-

posing indexes. In that case, our algorithm could represent a solid basis for constructing an efficient

solution procedure. Second, a combined approach of the best aspects of our Scatter Search and

RH can be attempted, where an initial solution is obtained quickly by using the latter and then

improved by the former. Third, given the high stochasticity affecting the possible workload of a

DB, we could explicitly consider a model with uncertain parameters to find not only good but also

robust solutions.
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