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Abstract: The increasing capability to collect data gives us the possibility to collect a massive amount
of heterogeneous data. Among the heterogeneous data available, time-series represents a mother lode
of information yet to be fully explored. Current data mining techniques have several shortcomings
while analyzing time-series, especially when more than one time-series, i.e., multi-dimensional time-
series, should be analyzed together to extract knowledge from the data. In this context, we present
K-MDTSC (K-Multi-Dimensional Time-Series Clustering), a novel clustering algorithm specifically
designed to deal with multi-dimensional time-series. Firstly, we demonstrate K-MDTSC capability
to group multi-dimensional time-series using synthetic datasets. We compare K-MDTSC results
with k-Shape, a state-of-art time-series clustering algorithm based on K-means. Our results show
both K-MDTSC and k-Shape create good clustering results. However, K-MDTSC outperforms k-Shape
when complicating the synthetic dataset. Secondly, we apply K-MDTSC in a real case scenario
where we are asked to replace a scheduled maintenance with a predictive approach. To this end,
we create a generalized pipeline to process data from a real industrial plant welding process. We
apply K-MDTSC to create clusters of weldings based on their welding shape. Our results show that
K-MDTSC identifies different welding profiles, but that the aging of the electrode does not negatively
impact the welding process.

Keywords: machine learning; clustering; predictive maintenance; industry 4.0

1. Introduction

Thanks to the Internet of Things technology and diversified sensors nowadays, we
can collect a huge amount of heterogeneous data. Among the heterogeneous data available,
time-series are commonly found in different fields such as sales, stock prices, weather,
biomedical measurements, industrial data, audio, and video signals, etc. Time-series collect
several subsequent observations of the same sensors, thus creating a large set of ordered
samples, possibly having multiple dimensions too. Time-series data fostered many stud-
ies in the data mining community to promote novel machine learning algorithms and
applications: from time-series forecasting in stock trading [1] or sensors networks [2],
to classification time-series for health or video data [3], up to clustering to help the De-
cision Support Systems while analyzing robots trajectories data in rescue operations [4]
to name a few. Frequently, researchers rely on time-series transformations to reduce it
or its multi-dimensional nature to solve the course of dimensionality problem. Different
distance metrics are used to compute the similarities among the transformed time series [5].
Considering the nature of the data, uni-dimensional time-series involve the analysis of one
single time-series per time. However, in many fields, the need to analyze multiple and
time-series simultaneously is rising, i.e., multi-dimensional time-series. The industrial field
is one of them. With the Industry 4.0 paradigm, we can implement robots with multiple
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sensors to collect and store a massive amount of data about the manufacturing processes.
These robots generate multiple time-series, synchronized over time.

In this paper, we focus on this scenario where synchronous multi-dimensional time-
series are available. Firstly, we propose K-MDTSC (K-Multi-Dimensional Time-Series Cluster-
ing), a novel clustering algorithm specifically designed to deal with synchronous multi-
dimensional time-series. Based on a generalized version of K-means [6] and a generalized
notion of distance able to handle synchronous multi-dimensional time-series of any di-
mension, K-MDTSC automatically groups multi-dimensional time-series. In a nutshell,
the generalized distance and the synchronous nature of the data allow K-MDTSC creates
clusters without the need for any transformation or dimensionality reduction. We compare
K-MDTSC performance with k-Shape [7] a state-of-art time-series clustering algorithm based
on K-means. We run a thorough validation process using synthetic datasets composed of
distinct synchronous multi-dimensional time-series families. We study the impact of the
main multi-dimensional time-series data characteristics, i.e., we inject noise-like perturba-
tion, increase the number of families and the number of dimensions. Our results show that
both K-MDTSC and k-Shape effectively identify and group multi-dimensional time-series of
the same family. However, K-MDTSC outperforms k-Shape when noise increases, a common
problem in real data, and families’ numbers grow.

Our second goal is to apply K-MDTSC in a real case scenario. In detail, we employ
K-MDTSC in an industrial case study to gain a more profound knowledge of the process
and understand if a predictive maintenance strategy can be applied instead of the existing
periodic one. To this end, we design a generic pipeline to process the data and fed them
into our clustering algorithm. Firstly, in our pipeline, we reduce the eventual presence
of noise in each dimension of the multi-dimensional time-series employing a low pass
filter. Next, we use two data selection processes to align the multi-dimensional time-series
obtaining synchronous time-series having equal duration. Finally, different dimensions
may be characterized by time-series having different operational ranges; thus, we run
a data normalization process. We employ our generic pipeline and K-MDTSC on a real
dataset composed of two-dimensional time-series collected in the body-in-white welding
stage of an actual car manufacturing plant. During this stage, different car bodies’ welding
spots are soldered together to join the different parts of the car frame. Our results show
that the automatic pipeline effectively processes the data so that the K-MDTSC algorithm
clearly identifies different welding profiles. Furthermore, we show that there is no negative
impact on the welding profiles, suggesting that an increase in the wear and tear of the
electrode would be possible.

To support new analyses in similar scenarios where synchronous multi-dimensional
time-series are available, we release our synthetic datasets and K-MDTSC code as open-
source at [8].

The contributions of this work can be summarized as follows:

• Definition of K-MDTSC (K-Multi-Dimensional Time-Series Clustering) to group multi-
dimensional time-series.

• Thorough validation of K-MDTSC and comparison with k-Shape, a state-of-art time-
series clustering algorithm.

• Synthetic datasets and K-MDTSC code available at [8].
• Generic pipeline to process time-series data.
• Application in a real case scenario with real data from the Industrial field.

The rest of the paper is organized as follows: In Section 2, we discuss our work in
light of past literature for clustering algorithms, predictive maintenance, and applications
of clustering algorithms with a focus on time-series data. After, we report the details about
K-MDTSC and k-Shape clustering algorithms in Section 3, and present our validation results
in Section 4. Next, we present our real case scenario, the available dataset, and detail
the steps of our automatic processing pipeline in Section 5. Then, we present the relative
clustering results in Section 6. Finally, in Section 7, we draw our conclusions and derive
our future directions.
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2. Related Work

With the increasing amount of unlabeled data, clustering algorithms have been widely
used in the last years to extract knowledge from data in different fields such as image
processing [9–12], text analysis [13,14], network traffic analysis [15–18], social network
data analysis [19–21], and medical data [22–24]. Along with unlabeled data, the possibility
to collect data over time leads to the acquisition of a considerable amount of time-series
data. To cluster time-series, authors in [7] proposed k-Shape, a K-means-based clustering
algorithm to group uni-dimensional time-series by using a dynamic time warping distance.
Like them, authors in [25] used a dynamic time warping approach focusing mainly on
how to compute the clusters’ centroid. Authors in [26], instead, studied how to use a
partitional clustering algorithm to handle multi-dimensional time-series in case of both
categorical and continuous values. Authors in [27] studied how to rely only on part of the
time-series to extract local patterns and use them to cluster time-series having different
lengths. Authors in [28], instead, proposed a clustering algorithm to group sub-sequences
in multi-dimensional time-series. To study how to transform time-series data into differ-
ent domains, authors in [29] used 38 distinct datasets and evaluated different time-series
representations and different similarity measures to assess the pruning power of each
solution. Authors in [30], instead, employed an iterative discrete Wavelet Transformation
decomposition with a standard K-means algorithm to group time-series. Authors in [31]
used a dimensional reduction solution to replace time-series data with global measures
describing the time-series characteristics, and authors in [32] used a Principal Component
Analysis methodology to segment and cluster multi-dimensional time-series. Regarding
the applications, many works applied clustering to time-series: starting from the financial
field [33–35], in which time-series clustering have been used to find seasonal patterns or
expected return-risk pattern; with urban data [36] to analyze time-series about population
distribution during a day detecting a similar pattern in population distribution changes
in a different location; by using environmental data [37] to identify climate indices and
group weather stations located in the same state; focusing on meteorological data [38] to
propose a methodology able to group multi-dimensional time-series up to the medical
field [39,40] in which cluster of biomedical images have been created for several different
medical applications from human brain mapping up to the analysis of suspicious lesions
in patients with breast cancer. To give a broad view of literature regarding time-series clus-
tering, in 2005, Liao [41] presented a seminal survey regarding time-series clustering. He
summarized the previous studies related to time-series clustering, identifying similarities
between time-series, and the employed performance metrics. To update it, in 2015, authors
in [5] proposed a new overview of ten years of time-series clustering applied in different
fields. While recently, in 2020, authors in [42] benchmark eight different clustering solutions
with different distance metrics on over 100 time-series datasets. The increasing amount
of data available also fostered an increasing interest in predict maintenance approaches
in different fields such as railway [43], electric distribution network [44], aircraft [45], in-
dustrial vehicles [46], automotive [47,48], and electrical motors [49] to name a few, as well
as in robotics industry [50,51], similarly to our case study. Regarding the application of
time-series analysis for predictive maintenance, authors in [52] proposed a predictive main-
tenance pipeline based on clustering to study the laser melting manufacturing technology.
Their study proposed a preprocessing step to transform time-series into statistical features,
e.g., minimum, skewness, maximum, mode, etc. Similarly, authors in [53] propose the
adoption of custom features and the application of a Principal Component Analysis process
to select the most important features. Kulkarni et al. [54,55] use clustering to find outliers
and extract features, and then use them with autoregressive or classification models to
predict faults in industrial and refrigerator machines. Similarly, authors in [56] employed
an iterative K-means solution in the data preprocessing step to reduce the signal to analyze
in the final classification step.

The closest work to ours is proposed by authors in [57]. In this work, the authors
proposed a methodology to group multi-dimensional time-series using a spectral clustering
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algorithm. Then, they validated it and compared the clustering performance with a stan-
dard K-means implementation employing a synthetic and a networking dataset. Unlike
the previous works, in our clustering solution, we do not deal with sub-sequences or
time-series re-alignment, as we assume synchronous multi-dimensional time-series having
the same length. Moreover, we do not employ any transformation technique to transform
time-series data into features or a different domain, e.g., Fourier transforms, wavelet trans-
formation, etc. Instead, we propose a generic multi-dimensional time-series clustering
algorithm directly relying on raw synchronous multi-dimensional time-series based on a
generalized notion of the euclidean distance. We validate it by comparing the clustering
performance with another state-of-art time-series clustering algorithm, i.e., k-Shape.

Furthermore, we propose a generic pipeline to preprocess multi-dimensional time-
series and fed them into our generic multi-dimensional time-series clustering algorithm.
To the best of our knowledge, we are the first to study a real multi-dimensional time-series
dataset from the industrial field and suggest using this clustering approach to perform a
predictive maintenance strategy.

3. Time-Series Clustering

This section recalls the K-means clustering algorithm that we use as a building block
in K-MDTSC. Then, we present k-Shape as a state-of-art time-series clustering algorithm.

3.1. K-Means

K-means is a classic clustering algorithm born from statistics. It creates central-based
clusters such as the points within a cluster are closer (hence more similar) to the centroid
of the cluster (i.e., the center of the cluster) they belong to, rather than the centroid of the
other clusters. [6]. In K-means, the user specifies a single parameter k, representing the
number of desired clusters. Then, starting from the input points, K-means groups them
in k clusters, assigning them to the closest centroid. Then, it returns each cluster and the
respective centroid.

Initially, K-means randomly extracts k points in the input data space and uses them
as initial centroids of the clusters. All the input points are then assigned to the cluster
having the shortest distance (usually the Euclidean distance) from the respective centroids.
Once K-means assign all the points to a cluster, new centroids are computed and compared
with the previous ones. If the centroids do not change, the algorithm stops and returns
the generated clusters and centroids. Otherwise, the algorithm restarts reassigning all the
points to the clusters based on the new centroids. While traditional K-means represents a
simple yet efficient algorithm to group points together, it has some well-known limitations
related to the definition of distance and some well-known criticalities, such as creating
empty clusters. Most of all, K-means cannot easily deal with time-series.

3.2. k-Shape

k-Shape is one of the state-of-art time-series clustering algorithms based on K-means [7].
To cope with time-series, k-Shape employs a shape-based distance to evaluate the similarity
between two curves. In addition, the shape-based distance uses a cross-correlation distance to
identify the smallest distance between two curves even if they are not properly aligned.
To this end, firstly, it shifts one of them to identify the best alignment leading to the
smallest distance. Then to cope with time-series inherent distortions, k-Shape uses a z-
normalization process. Finally, k-Shape computes the shape-based distance by normalizing
the cross-correlation distance by the geometric mean of the autocorrelations of the individ-
ual sequences.

While k-Shape can identify time-series clusters even when they are not aligned, it
cannot handle multi-dimensional time-series per se. Indeed, k-Shape gets as input only
one-dimension time-series. Here, we adapt it to multi-dimensional time-series to cope with
this constraint.
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Given a multi-dimensional time-series XN(z), where N represent the dimensions, we
define X(z) as a one-dimension time-series by concatenating all the dimensions as follows:

X(z) =
N⋃

n=0
Xn(z)

Finally, we give as input the X(z) time-series to k-Shape.

3.3. K-MDTSC

For our implementation, we base K-MDTSC on the traditional K-means algorithm.
Firstly, we define a generalized notion of distance to handle time-series, and in particular
multi-dimensional time-series.

Given a pair of multi-dimensional time-series XN(z) and YN(z), where z represents the
sample in Z samples, and N the dimensions, we define our generalized distance as follow:

d(XN , YN) =
L

√√√√ N

∑
n=0

Z

∑
z=0
|Xn(z)−Yn(z)|L

where L represents the metric distance. For our implementation, we rely on L = 2,
i.e., the Euclidean distance. We use the distance d(.) to find the closest centroid in the K-
means algorithm. Notice that our generalized distance assumes that XN(z) and YN(z) are
synchronous multi-dimensional time-series. In case the multi-dimensional time-series may
present different phases but the same shape, i.e., synchronous but not aligned time-series,
in Section 5.2, we present our generic pipeline to align them.

In addition, in our implementation, we introduce the following improvements to the
classic K-means algorithm:

• A well-known criticality is related to the choice of the initial centroids. If a random
point is chosen as a centroid and lays in part of space where no other points belong, it
may create empty clusters. The worst the clustering result is, in the end, instead of k
clusters, the user will retrieve k− 1 clusters. To reduce this situation probability, we
choose the k initial centroids among the multi-dimensional time-series directly.

• Secondly, while the first solution reduces the probability of getting empty clusters,
some corner cases are still possible, e.g., if two similar multi-dimensional time-series
are present and both are used as centroids. To solve this issue, we verify whether
any empty cluster exists. If any is present, for each empty cluster, we select from the
most prominent cluster the farthest multi-dimensional time-series and take it as a
new centroid.

3.4. Performance Metrics

We assess the clustering performance through quality metrics, including the Error
Sum of Squares (SSE) and the Adjusted Rand index.

Error Sum of Squares (SSE): The SSE index computes the cluster cohesion [58]. On the one
hand, when the points belonging to a cluster lay close to the cluster’s centroid, the cluster
is very compact; hence a good clustering result is achieved. On the other hand, when
points are far from their cluster’s centroid, the result is bad, as it means that the points have
little similarities. Thus, given a cluster C ∈ Ĉ clusters, its multi-dimensional time-series
centroid CN(z) and the time-series XN(z) ∈ C on N dimensions, we compute the SSE index
as follow:

SSE = ∑
C∈Ĉ

∑
XN∈C

d(XN , CN)

Adjusted Rand index: The Adjusted Rand Index [59] measures the clustering algorithm’s
ability to separate points belonging to preassigned categories and re-identify them without
the category’s notion. This index is bounded between 0 and 1. When the clustering result
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and the preassigned categories perfectly agree, the Adjusted Rand index is 1. Otherwise if,
for random labeling, it gets a value close to 0. Since the Adjusted Rand Index is an external
index, hence independent from the clustering algorithm and the distance matrix, we rely
on the implementation defined in [60].

4. Results on Synthetic Data

In this section, we present our synthetic dataset, and we evaluate the capability of
k-Shape and K-MDTSC to identify groups of homogeneous curves correctly.

4.1. Synthetic Dataset Generation

We generate synthetic datasets, composed of synchronous multi-dimensional time-
series by using as building blocks the following functions:

Building Block =

{
X(t) = sin(2π f t) + Nσ(t)
Y(t) = cos(2π f t) + Nσ(t)

where f is the frequency of the sinusoidal curve, Nσ(t) is a random normal noise component
with zero mean and standard deviation σ. We add to each curve this perturbation to create
time-series having different profiles.

Based on that, we create datasets composed of multi-dimensional time-series. Firstly,
we generate a dataset composed of 200 two-dimension time-series, divided in four distinct
families. We set f = 1 and σ = 0.1. In detail, we generate the following families F:

Dataset =


F0 : (X, Y), f = 1, σ = 0.1
F1 : (Y, X), f = 1, σ = 0.1
F2 : (X, X), f = 1, σ = 0.1
F3 : (Y, Y), f = 1, σ = 0.1

(1)

Figure 1 depicts the 4 two-dimension time-series families present in our dataset. Each
family F is composed of 50 synchronous two-dimension time-series. From the plots, we
can see how each family presents synchronous time-series, each having slightly different
profiles, as shown by the resulting thickness of each family.
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(c) F2 : X, X, σ = 0.1, f = 1
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(d) F3 : Y, Y, σ = 0.1, f = 1

Figure 1. Synthetic dataset with four time-series families in two dimensions. Black curves report the centroids according to
the K-Multi-Dimensional Time-Series Clustering algorithm.

We then run the k-Shape and K-MDTSC on all samples. We test different values of
k to identify whether we achieve the best clustering performance when k is equal to the
number of families. Figure 2 reports the SSE score while increasing the number of clusters
k. As expected, both algorithms identify the best result starting from k = 4. To characterize
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the clustering results, the black curves in Figure 1 report the centroid of each family as
returned by K-MDTSC. Similar results hold for k-Shape.

1 2 3 4 5 6 7 8 9 10
# Clusters

0
2000
4000
6000
8000

SS
E

k-Shape
K-MDTSC

Figure 2. SSE Score of the synthetic data.

Perturbation Stability: Next, we study the clustering capability to handle a growing pertur-
bation. To this end, we generate datasets composed again of 4 distinct synchronous families
of two-dimension time-series. We generate datasets having always the same frequency
f = 1, and characterized by a growing perturbation σ ∈ [0, 2] with step 0.1.

Datasets =


F0 : (X, Y), f = 1, σ ∈ [0, 2]
F1 : (Y, X), f = 1, σ ∈ [0, 2]
F2 : (X, X), f = 1, σ ∈ [0, 2]
F3 : (Y, Y), f = 1, σ ∈ [0, 2]

(2)

For each dataset, we run the clustering algorithms fixing the parameter k = 4 as the
number of families. Figure 3a reports the trend of the SSE score. As expected, the higher
the perturbation, the higher the SSE score, with a SSE = 0 when no-perturbation is
present. Interestingly, K-MDTSC creates more cohesive clusters and better centroids,
as shown by the lower SSE score. To evaluate the capability of the clustering algorithm to
automatically assign points of the same family to the same cluster, in Figure 3 we compute
the Adjusted Rand Index. We can use it in our synthetic dataset as we are aware of each
multi-dimensional time-series family. With σ ≤ 1, both algorithms create a distinct cluster
for each family. With a growing perturbation, k-Shape creates more heterogeneous clusters
composed of time-series belonging to different families than K-MDTSC.
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(b) Adjusted Rand Index
Figure 3. Perturbation Stability.

Families Stability: Next, we study the stability while increasing the number of families.
To this end, we generate datasets composed of |F| distinct families of two-dimension
time-series. We generate datasets with |F| ∈ [2, 10]. We characterize each family with a
unique combination of sinusoidal curves and sinusoidal periods. As the initial dataset, we
keep σ = 0.1.
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Datasets =


F0,4,8 : (X, Y), f ∈ {1, 2, 3}, σ = 0.1
F1,5,9 : (Y, X), f ∈ {1, 2, 3}, σ = 0.1
F2,6 : (X, X), f ∈ {1, 2}, σ = 0.1
F3,7 : (Y, Y), f ∈ {1, 2}, σ = 0.1

where the families Fi i > 4 have a combination of sinusoidal curves as the family i − 4,
but with a different frequency f , e.g., with |F| = 6 we obtain F0 : (X, Y), f = 1; F1 :
(Y, X), f = 1; F2 : (X, X), f = 1; F3 : (Y, Y), f = 1.; F4 : (X, Y), f = 2.; and F5 : (Y, X), f = 2
all having a perturbation σ = 0.1.

For each dataset, we run the clustering algorithms setting the parameter k = |F|
as the number of families. Figure 4a reports the trend of the SSE score. The increasing
number of families have only a minor impact on K-MDTSC performance, while k-Shape
cannot correctly group elements of the same family together when |F| > 5. Looking at
the Adjusted Rand index (Figure 4b), k-Shape demonstrates the creation of heterogeneous
clusters composed of more than one family. Instead, in most of the cases, K-MDTSC clusters
the data correctly.
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(b) Adjusted Rand Index
Figure 4. Number of families |F| stability.

Dimensions Stability: Finally, we study the stability while increasing the number of di-
mensions D. To this end, we generate datasets composed of 4 families of D-dimensional
time-series. We generate datasets with D in[2, 10], where we characterize each family by a
unique combination of sinusoidal curves and sinusoidal periods. As the initial dataset, we
keep a σ = 0.1.

Datasets =



F0 :

{
(X, Y), f = 1, σ = 0.1
(Xi, Yj), i ∈ {2, 4, 6, 8}, j ∈ {3, 5, 7, 9}, f = Rnd, Rnd ∈ [2, 10], σ = 0.1

F1 :

{
(Y, X), f = 1, σ = 0.1
(Yi, Xj), i ∈ {2, 4, 6, 8}, j ∈ {3, 5, 7, 9}, f = Rnd, Rnd ∈ [2, 10], σ = 0.1

F2 :

{
(X, X), f = 1, σ = 0.1
(Xi, Xj), i ∈ {2, 4, 6, 8}, j ∈ {3, 5, 7, 9}, f = Rnd, Rnd ∈ [2, 10], σ = 0.1

F3 :

{
(Y, Y), f = 1, σ = 0.1
(Yi, Yj), i ∈ {2, 4, 6, 8}, j ∈ {3, 5, 7, 9}, f = Rnd, Rnd ∈ [2, 10], σ = 0.1

When D = 2, for each family, we keep the same sinusoidal curves as in Equation (1).
When D > 2, for each family, we repeat the same sinusoidal schema as the first two
dimensions but setting the frequency f as a random variable in [2, 10]. This allows us
to create dimensions having different profiles, e.g., when D = 3, we define family F0 :
(X, Y), f = 1, X, f = Rnd, Rnd ∈ [2, 10], σ = 0.1. Hence, as first and second dimension
X and Y curves having unitary frequency plus random noise perturbation, and a third
dimension being a X curve having a random frequency between 2 and 10 plus a random
noise perturbation.

We run K-MDTSC and k-Shape fixing k = 4, equal to the number of families. Both
algorithms show that once the clustering algorithm identifies families based on a few di-
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mensions, increasing the dimensions does not impact the performance. Indeed, as expected,
the SSE score increases (Figure 5a) with more dimensions; however, the Adjusted Rand
Index remains stable (Figure 5b). Still, K-MDTSC offers more cohesive clusters than k-Shape
as testified by the SSE score.
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(b) Adjusted Rand Index
Figure 5. Number of dimensions D stability.

Lessons Learned

With synchronous multi-dimensional time-series, the need for alignment drops. When
this happens, with a growing noise perturbation or a growing family number, K-MDTSC
overcomes k-Shape performance. Indeed, K-MDTSC creates either more cohesive clusters
that k-Shape, either more homogeneous clusters composed by single multi-dimensional
time-series family. Instead, the number of dimensions does not play a significant role,
with both algorithms showing perfect family re-identification.

5. Real Use Case

After evaluating K-MDTSC with a synthetic dataset, we detail the data collection
process in our industrial case study. Then, we define our problem and outline the proposed
generic pipeline to preprocess multi-dimensional time-series data.

5.1. Data Collection

To collect data about the manufacturing process, we instrument two robots in two
different working stations in the body-in-white shop of a car manufacturing production
line. Each robot is composed of one or two clamps, each one equipped with a welder
soldering different welding spots (ws) of the car body.

The robot moves through welding spots in a periodic fashion car body after car body.
While welding each welding spot ws, for each welding i, we record the voltage V(ws,i)(z),
and the current I(ws,i)(z) curves as time-series. Time-series samples t are collected with a
frequency of 1 kHz. Figure 6 reports two examples of the voltage and current time-series in
two different ws. While the same welding spot ws always follows the same welding process,
with possibly little differences only in duration, different welding spots are characterized
by different welding processes having different shapes and lengths. Based on V(ws)(z)
and I(ws)(z) we define up to two welding phases: warm-up, in which the electrode heat
up; and the steady-state when the welder solder the welding spot. Figure 6a,b reports an
example of a one-phase and a two-phase welding process (divided by the vertical dashed
line), respectively.
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(a) One-phase welding process.
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(b) two-phase welding process.
Figure 6. Voltage and current time-series.

While welding, the electrode is continuously exposed to pressure and high tem-
perature, altering the tip geometry. Furthermore, during the welding process, material
expulsion may soil the electrode, making it less efficient and worsting the welding per-
formance. Therefore, to reshape the electrode and optimize the welding process, two
maintenance operations are performed regularly: a tip dressing operation and an electrode
replacement. Firstly, every a fixed number of welds, a tip dressing operation is performed.
During a tip dressing operation, part of the electrode material is removed to clean it and
restore it to its original shape. For each robot clamp, the tip dressing operation is always
performed between the same two welding spots. We refer to these two as the welding spot
before wsb and the welding spot after wsa the maintenance operation. After each tip dressing
operation, a calibration program cp runs to calibrate the welder. Each robot runs a different
calibration program. The calibration program consists of running a welding operation
without any material. We record also the time-series of V(cp,i)(z) and I(cp,i)(z). Secondly,
while the tip dressing operation is fundamental to reset the electrode shape, it also reduces
the electrode size. Hence, after a fixed number of tip dressing operations, the electrode is
replaced with a new one. For each welding operation and each calibration program, we
record the relative wear index (w). The wear index reports the percentage of tip dressing
operations performed since the last electrode replacement with respect to the expected
number of tip dressing operations per electrode. In a nutshell, the wear represents the age
of the electrode. We use this index to track maintenance operations. Table 1 summarizes
the acquired features.

Table 1. Monitored Parameters.

Parameter Description

i When the weld was performed
ws The welding spot

I(ws,i) Time-series describing the current curve
V(ws,i) Time-series describing the voltage curve

w Percentage of tip dressing operations with respect to the
expected number of tip dressing operation per electrode

We collected data from November 2019 to February 2020 from a real FCA pant. In this
period, we record more than 60 thousand welding operations from the instrumented robots.
Table 2 summarizes the main dataset information.
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Table 2. Dataset Overview.

Working Station # Clamps # Welds Calibration
Program ID

Working Station 1 1 22,746 3
Working Station 2 1 26,546 4
Working Station 2 2 89,857 4

5.2. Problem Definition

Our goal is to study the possibility of using this welding data to migrate from periodic
maintenance to a predictive maintenance approach. To this end, we address the following
research questions:

1. Can we use the welding data to predict the electrode aging and adopt the predictive
maintenance?

2. Can we infer further information about the welding process to identify possible
patterns hinting at problems?

To answer the questions above, we develop the generic pipeline depicted in Figure 7.
First, starting from the data of a selected welding point wp, we design different prepro-
cessing steps to feed K-MDTSC and identify clusters of welding operations. Finally, we
correlate the clusters with external indexes, i.e., the wear, to identify whether different
clusters describe different electrode aging.

In detail, we perform the following steps:

• Noise reduction: While K-MDTSC can handle any multi-dimensional time-series,
domain experts suggested to us to filter the time-series to remove high-frequency
noise that depends mostly on the sensors and collection process.

• Data selection: Secondly, weldings may have different durations even within the same
welding spot. Moreover, two-phase welding spots are characterized by two distinct pe-
riods. Hence, we apply different data selection strategies to extract multi-dimensional
time-series having (i) the same duration and (ii) that appear synchronized.

• Data Normalization: Since V(ws,i)(z) and I(ws,i)(z) have different operational ranges,
we run a classic data normalization process based on z-score.

• Time-Series Clustering: We run K-MDTSC to group welding samples and identify
different welding shapes within each welding spot.

• Correlation with external indexes: Finally, we study the clusters by using the wear
to discover whether different welding shapes are characterized by different tears and
wear of the electrode.

Noise 
Reduction

Dataset

Data
Selection

Time-Series
Clustering

Data 
Normalization

Correlation 
with External 

Indexes

Preprocessing

Figure 7. Pipeline of the data analysis.

In the following we detail each step.

5.3. Noise Reduction

In the data collection the voltage V(ws,i)(z) and current I(ws,i)(z) time-series are col-
lected with a frequency of 1 kHz. Such a moderately high frequency allows us to spot
sudden and short changes. However, in the presence of noise in the acquisition system,
the samples may suffer from frequent changes although the welder’s output remains stable.
As such, to remove the noise component, we apply a low pass filter. In detail, given a
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time-series X(ws,i) with X ∈ {V, I}, we relay on a exponential moving average function
defined as follows:

X̄(ws,i)(z + 1) = α ∗ X(ws,i)(z) + (1− α) ∗ X̄(ws,i)(z)

where X̄(ws,i)(z) is the value of the exponential moving average at time z, α is the smoothing
factor. Notice that the higher α, the more weight is given to the recent observation, i.e., the
noise component, while the lower the alpha, the more we average the signal. Figure 8
reports an example of the noise reduction effect with α = 0.75.
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(b) After
Figure 8. Noise reduction.

5.4. Data Selection

Given a welding point wp, the different welding samples i may be described by curves
X̄(ws,i)(z) with X̄ ∈ {V̄, Ī} having different durations. Furthermore, for welding points
wp characterized by a two-phases welding process, the steady-state may begin in different
instant z0 based on the warm-up duration. Since our clustering solution requires that all
the time-series in the input have the same duration and are synchronized, we align all the
time-series as follows:

Whole Time-Series: Firstly, we consider the entire time-series. Given a welding point wp, we
select the entire time-series X̄(ws,∗)(z). Next, we select the earliest finish time-series E f (ws)
as the earliest time for a welding sample to finish.

E f (ws) = min(|X̄(ws,∗)|)

Finally, for each time-series i ∈ X̄(ws,∗), we get X̂(ws,i)(z) as the time-series lasting
E f (ws).

X̂(ws,i)(z) = X̄(ws,i)(z) 0 ≤ z ≤ E f (ws)

Figure 9a depicts the results of the data selection step for all the time-series of the
welding spot shown in Figure 8b.

Steady-State Aligned: Secondly, we focus only on the steady-state as the actual phase when
the welder solder. Given a welding spot wp, for each time-series X̄(ws,i)(z) we identify
the start of the steady-state Sst(ws, i) as the time when the welding process starts after the
warm-up phase ends. We identify Sst(ws, i) based on the current curve Ī(ws,i)(z). Given
Ī(ws,i)(z), the warm-up phase ends when the current value drops below a given ThresholdI .
Next, we identify Sst(ws, i) as the time when the current value Ī(ws,i)(z) overcomes the
ThresholdI again.

For each time-series i ∈ X̄(ws,∗), we get the steady-state X̃(ws,i) as follow:

X̃(ws,i)(z) = X̄(ws,i)(z) z ≥ Sst(ws, i)
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After this, the steady-states are aligned, i.e., all X̃(ws,i)(z) start synchronously. However,
since they may have different duration, we compute the earliest finish Ẽ f (ws) over all
X̃(ws,i)(z).

Finally, for each time-series i ∈ X̃(ws,∗), we get the steady-state X̃(ws,i)(z) lasting E f (ws).

X̃(ws,i)(z) = X̃(ws,i)(z) 0 ≤ z ≤ Ẽ f (ws)

Figure 9a depicts the result of the steady-states data selection step for the time-series
shown in Figure 8b.
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(a) X̂(ws,i)(z)
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(b) Steady-State aligned
Figure 9. Data Selection.

5.5. Data Normalization

After the data selection, the time-series V̂(ws,i)(z) and Î(ws,i)(z) (or Ṽ(ws,i)(z) and
Ĩ(ws,i)(z)) are represented with different ranges. As such, we run a standard z-score nor-
malization process as follows.

Given a welding sample ws, we select all the time-series V̂(ws,i)(z) and Î(ws,i)(z). We
create two time-series V̂ws(z) and Îws(z), where each one is the union of all V̂(ws,∗)(z) and
Î(ws,∗)(z) selected in the temporal order, respectively.

V̂ws(z) =
⋃

V̂(ws,i)(z) i ∈ (1, .., |V̂ws|)

Îws(z) =
⋃

Î(ws,i)(z) i ∈ (1, .., | Îws|)

Next, from Îws(z) and V̂ws(z), we extract the:

• Mean: m = 1
N ∑z∈w(z) xi(z);

• Standard deviation: σ =
√

1
N−1 ∑z∈w(z)(xi(z)−m)2

Finally, we run the z-score normalization separately for each welding sample i:

V̂ws,i(z) =
V̂(ws,i)(z)−mV

σV
i ∈ (1, .., |V̂ws|)

Îws,i(z) =
Î(ws,i)(z)−mI

σI
i ∈ (1, .., | Îws|)

6. Case Study Evaluation

We evaluate the proposed pipeline on the real data collected from a real production
line as described in Section 5.

6.1. First Robot

Firstly, we focus on the data of the robot in Working Station 1 composed of a single
clamp. Since the maintenance operation’s highest impact should be more evident in the
welding point immediately before (wpb) or after (wpa) the maintenance operation, we focus
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on them. Considering the welding technique, both use a one-phase welding process, hence
after the noise reduction step, we use the Whole Time-Series data selection process.

Focusing on wpb, Figure 10a depicts the trend of the SSE score, while Figure 10b
reports the trend of the minimum and maximum clusters size while increasing the number
of clusters k. We use these two metrics to choose the best k. The SSE score suggests that
increasing k by more than 4 gives a marginal benefit as the SSE keeps reducing at a slower
pace while increasing k. However, considering the difference between the smallest and
the biggest clusters, we can see that with more than 5 clusters, we start having a stable
minimum cluster size. In contrast, the maximum cluster size starts reducing at a slower
pace. Hence, to study the clustering result, we set k = 6.
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Figure 10. Cluster Metrics Working Station 1 Clamp 1 wsb.

Next, we focus on the intra-cluster distance as a quality metric of the clustering result.
We focus on this metric as huge distances may highlight unusual welding shapes, thus
requiring maintenance operation. Figure 10c reports the Empirical Cumulative Distribution
Function (ECDF) on the y− axis of the intra-cluster distance separately for each cluster.
The legend also reports the size of each cluster. Clusters C0, C1, and C4, accounting in
total for 248 out of 293 welding samples, show very dense results with limited intra-cluster
distance. On the contrary, small clusters show the highest distance. To investigate these
results, we focus on each cluster’s centroid separately for the current and the voltage
curves. Figure 11a,b show the denormalized current and the voltage centroids, respectively.
Cluster C5 clearly shows higher values of the current with respect to the other clusters.
Clusters C2 and C3, instead, show a higher deviation from the other clusters by looking at
the voltage curves.
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Figure 11. Clusters representation Working Station 1 Clamp 1 wsb.

To identify whether these differences also reflect on the wear, Figure 11c reports,
for each cluster, the ECDF of the wear of the welding samples. In a nutshell, we evalu-
ate whether different clusters are characterized by different wear of the electrode. Thus,
if we can use the clustering result to identify welding shapes that clearly point to main-
tenance needs, in this case, we could trigger the maintenance operation only when such
welding shapes appear. Unlike the clustering results, however, the correlation with the
wear does not show a clear picture. Clusters tend to be heterogeneous concerning this
metric, with welding samples having different wear and tear of the electrode present in all
the clusters.

Next, we focus on wpa. The SSE score (Figure 12a) reports a trend similar to the
previous case. Hence, to identify the best value of k we use the trend of the clusters size
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(Figure 12b). After k = 5, the maximum size trend starts stabilizing while the minimum
size drops after k = 6. Thus, we set k = 6. Differently from the previous case, only a
few time-series in clusters have a large distance, as shown by the tail of the distribution
in Figure 12c. This suggests a good clustering result with centroids well repressing the
respective clusters. Here, cluster C5 is the most heterogeneous one, with 25 time-series.
Considering the current centroids in Figure 13a, they clearly show differences among them,
while voltage centroids in Figure 13b are more similar. By studying the correlation with
the wear, in Figure 13c, all clusters contain heterogeneous welding samples. This hints
that both the welding points before and after the maintenance operations do not show any
particular impact on the electrode’s wear and tear.
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Figure 12. Cluster Metrics Working Station 1 Clamp 1 wsa.
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Figure 13. Clusters representation Working Station 1 Clamp 1 wsa.

Given these results, we also study calibration program 3 of the robot. The results, not
shown here for the sake of brevity, highlight that the calibration program is not a good
proxy of the maintenance operation. By discussing with domain experts, this may be
because the calibration program runs without any material, with limited electrode usage.

6.2. Second Robot

We now repeat the analysis to study whether our results are generalized to the second
robot. We focus on a welding point of the robot in the Working Station 2, Clamp 1. We
focus on a welding point characterized by a two-phase welding process. We start by
employing the Whole Time-Series data selection. Figure 14a reports the trend of the SSE
score. The presence of the warm-up phase is immediately visible. The SSE score reaches a
maximum value almost twice as much as the previous welding spot. The shape of the SSE
score suggests that we should consider at least 4 clusters. Intuitively, Figure 14b shows that
the higher k, the smaller is the maximum cluster size. From this metric, we choose k = 8 as
the maximum cluster size presents a plateau while the minimum cluster size presents a
maximum local value. By choosing k = 8, clusters C0 and C5 present, generally, a higher
intra-cluster distance (Figure 14c). Analyzing the clusters’ centroid, we can see that this is
due mostly to different peaks in the voltage curve (Figure 15a) rather than in the current
curve (Figure 14c). Similarly, with the wsb case in Figure 11c, also in Figure 15c, the wear
does not reflect the intra-cluster distance behavior. Indeed, cluster C0 presents an ECDF of
the wear as the other clusters.

Next, since the warm-up phase demonstrates to drive the clustering, we rely on the
Steady-State aligned data selection to focus on the actual welding process. We analyze the
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same two-phase welding spot to study the differences among the two clustering results.
Figure 16a reports the trend of the SSE score. Clearly, the SSE score reaches a lower
value than the previous case, slowing down in the reduction pace with at least 4 clusters.
Looking at Figure 16b, we set k = 6, as the minimum cluster size presents a plateau while
the maximum cluster size keeps decreasing. Interestingly, the intra-cluster distance in
Figure 16c shows that cluster C0 groups time-series that are always very far from their
centroid. However, the current centroid in Figure 17a shows a shape very similar to
the other clusters. Differently, the voltage centroid in Figure 17b, shows a very different
shape with a lower voltage value during the actual welding process. As in the other cases,
the ECDF of the wear, Figure 17c does not show any particular behavior related to the
different welding shapes.
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Figure 14. Cluster Metrics wp Working Station 2 Clamp 1, Whole Time-Series Data Selection.
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Figure 15. Clusters representation wp Working Station 2 Clamp 1, Whole Time-Series Data Selection.
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Figure 16. Cluster Metrics wp Working Station 2 Clamp 1, Steady-State aligned Data Selection.
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Figure 17. Clusters representation wp Working Station 2 Clamp 1, Steady-State aligned Data Selection.
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By analyzing the results with domain experts, we discover that current scheduled
maintenance is performed with a frequency higher than required. Our results, therefore,
confirm that this behavior allows the robots to weld without altering the welding shape
while increasing the wear and tear of the electrode. As a result, domain experts plan to
increase the time gap between two maintenance operations. This increase will result in a
time-reduction of the time spent for the maintenance operations and money-saving due to
increased electrodes’ usage.

Lessons Learned

Our automatic pipeline effectively preprocesses and correctly identifies different
welding profiles. Different welding profiles are not characterized by homogeneous wear
of the electrode. This heterogeneity hints that the manufacturer could postpone current
maintenance until the wear does not clearly impact the welding shape. This result is
generalized over the different welding points and robots. Furthermore, with the two-phase
welding process, the steady-state demonstrates to hold most of the information. Thus, when
possible, it is better to study the welding shape only on this part of the welding process.

6.3. Noise Sensitivity

Since K-MDTSC could handle noisy curves, here we study the impact of the noise
reduction step introduced in our case study. To this end, we repeat the clustering process
of the welding point collected by the robot in Working Station 2. We repeat our generic
pipeline, avoiding the noise reduction step and applying the steady-state aligned data
selection process. Comparing the SSE score in Figure 16a (with noise reduction) and
Figure 18a (without noise reduction), we can see that the curves have a similar trend.
However, when we do not apply the noise reduction, the maximum value increases almost
three times. The cluster size (Figure 18b), instead, shows both similar trends and clusters
cardinality with respect to the case with noise reduction (Figure 16c). Hence, we set k = 6.
The clustering result shows that clusters are much less dense than the case with noise
reduction. Indeed, in Figure 18c, we can see how all intra-cluster distances are greater than
4. Instead, in Figure 16c, most of the intra-cluster distances are lower than 4. Considering
the cluster centroids, in Figure 19a,b, the identification of different welding shapes is a
complex task, as the noise gives a major contribution, especially in the current curve.
Finally, as in the previous cases, also here (Figure 19c), different welding shapes do not
reflect differences in the electrode’s wear.

Based on these results, on the one hand, K-MDTSC confirms the capability to handle
noise data. On the other hand, a noise reduction step demonstrates to ease the analysis of
the clustering results.
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Figure 18. Cluster Metrics wp Working Station 2 Clamp 1, no noise reduction.
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Figure 19. Clusters representation wp Working Station 2 Clamp 1, no noise reduction .

Lessons Learned

The noise reduction step demonstrates limited benefits, mainly visible while consid-
ering the cluster cohesiveness and the centroids representation. Instead, the correlation
with the electrode wear does not show any impact of the noise. Indeed, also in this case the
electrode wear does not alter the welding shape.

7. Conclusions

This work presented K-MDTSC, a K-means-based clustering algorithm designed to
group synchronous multi-dimensional time-series. Firstly, we ran a thorough validation
process using synthetic datasets composed of synchronous multi-dimensional sinusoidal
curves and compared the results with k-Shape, a state-of-art time-series clustering algorithm
K-means-based. Our results showed that:

• both K-MDTSC and k-Shape correctly group multi-dimensional time-series;
• however, K-MDTSC overcomes k-Shape performance when a high number of curve

families or noise perturbation are present.

Next, we used K-MDTSC to analyze data from the body-in-white welding stage of an
actual production plant. To use K-MDTSC with real data, we deploy a generalized pipeline
that reduces the noise in the multi-dimensional time-series, realign them if needed to get
synchronous multi-dimensional time-series, normalize each dimension separately, and fi-
nally fed them into K-MDTSC. Our results show that our automatic pipeline effectively
processes the data and that K-MDTSC algorithm identifies different welding profiles. By
presenting our results to domain experts, they discover that:

• the wear and tear of the electrode do not negatively impact the welding process;
• considering the different data selection techniques, the wear and tear of the electrode

does not negatively impact it neither considering the whole welding process nor
considering only the steady-state when the actual welding process is performed;

Based on these results, experts reach the conclusion that current maintenance op-
erations are premature and could be postponed with a reduction of the time spent for
maintenance and a resulting money-saving.

To allow other researchers to replicate our results and use K-MDTSC to run similar
analyses with synchronous multi-dimensional time-series, we release the K-MDTSC code
and our synthetic datasets as open-source at [8].

As future work, we plan to extend our validation process to other public multi-
dimensional time-series datasets and run a thoroughly compare K-MDTSC algorithm with
other time-series clustering algorithms. For future analysis, we plan to extend our analyses
to the new data characterized by postponed maintenance operations.
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