
Hybrid Energy Production Analysis and Modelling for Radio Access
Network Supply

Greta Vallero a, Michela Meo b

Department of Electronics and Telecommunications, Politecnico di Torino, Italy
{greta.vallero, michela.meo}@polito.it

Keywords: Renewable Energy Sources, Wind Turbine, PV Panel, Radio Access Network, Base Station, Hybrid Power
Supply System, Modelling.

Abstract: To move towards sustainability, Renewable Energy Sources (RES) have started to partially substitute fossil
fuels based energy generation. Also for the Information and Communication Technology (ICT) ecosystem
supply, and in particular in the Radio Access Networks (RANs), the usage of PV panels has been considered
an effective solution. Since the communication infrastructure has to be powered continuously, to face the
problem of the absence of the Photovoltaic (PV) panel energy production during the night, we consider a hybrid
solution, composed by a PV panel and a wind turbine, for the supply of Base Stations (BSs). Starting from
the characterisation of wind energy production, we assess the impact of the employment of the combination
of these RES on the excesses and deficits of energy production, highlighting that the hybrid solution better
fits the BS energy demand. In order to predict performance, we build polynomial models, which highlight the
effects of the variation of the installed wind and solar capacities.

1 INTRODUCTION

In order to comply with the Paris Agreement and the
European Green Deal, the electricity system has be-
gun a transition towards a more sustainable produc-
tion process (Commission, 2019). As a result, the
production share of fossil fuels has started reducing,
while a large RES penetration has been planned in
the next years. This is the response to achieve climate
goals, while facing the growth of the electricity de-
mand, which is supposed to maintain, until 2040, its
current increasing rate of 2.1% per year (IEA, 2020).
Besides the sustainability issues, this transformation
is also motivated by the petrol shock crisis, which will
occur at the end of the ”post-peak” period, in which
we are entering (Hirsch, 2008). This ”post-peak” pe-
riod starts after the peak oil moment, which occurs
at the maximum oil production phase. After this, the
oil production declines, causing energy price growth
and important economical implications. As a result,
in 2019, renewable electricity generation rose by 6%,
and 64% of this 6% derived from the installation of
new wind turbines and solar energy generators, which
are supposed to be further expanded to reach half of
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the electricity generation by 2030 (IEA, 2020). Also
the supply of the ICT sector, responsible for 3% of the
CO2 emissions in 2018 and, according to forecasts,
up to 14% in 2040, has been involved in this transfor-
mation (Belkhir and Elmeligi, 2018). The European
Commission, in (Bertoldi, 2017), under the need for
actions to improve the energy efficiency in commu-
nications, has formalised a policy for the regulation
of the energy consumption and the carbon emissions
of the Broadband Communication Equipment. Mean-
while, the communication community has recognised
the network energy efficiency as a fundamental and
urgent aspect. As well known, the BSs have been
identified as the most energy consuming components
of mobile networks (Gati et al., 2019), accounting for
80% of the total energy consumption of the Radio Ac-
cess Networks (RANs). The BSs energy consump-
tion is expected to further grow because of the rise of
the mobile IP traffic, which will reach 77.5 exabyte
(EB) per month by 2022 and 5 016 EB per month in
2030 (Gati et al., 2019; Forecast, 2019; Tariq et al.,
2020), more than, respectively, 6 and 400 times larger
than 11.5 EB per month occurred in 2017. To ad-
dress these issues, the usage of PV panel systems for
the supply of BSs, installed in proximity to these in-
frastructures, has been becoming an attractive solu-
tion (Chamola and Sikdar, 2016; Hassan et al., 2013;



Han and Ansari, 2014; Deruyck et al., 2017). Indeed,
besides the improvement of the RAN sustainability, it
is a promising approach to make the network more
independent from the power grid, as well as to re-
duce the network electricity bill, which is the key con-
tributor for the increase of the Operational Expendi-
ture (OPEX) (Renga and Meo, 2019; Pompili et al.,
2016). Because of this, 390 000 newly solar powered
BSs have been installed worldwide since 2012, at an
annual rate of 84 000 solar powered BS per year, 6
times higher with respect to 2012 and their usage is
expected to significantly advance in 6G RANs (Res.,
2013; Smertnik et al., 2014; Tariq et al., 2020). The
authors of (Deruyck et al., 2017) and (Aktar et al.,
2018) consider a PV panel system to reduce the CO2
emissions used to generate energy by burning fossil
fuels, when powering a RAN; in (Guo et al., 2019) a
wind turbine system is considered for the same pur-
pose.
While the solution is promising, various issues need
to be addressed, among which the solar panel dimen-
sioning and the possible lack of energy generation due
to its intermittent nature. Indeed, the solar energy har-
vesting presents, as other RESs, randomness, depen-
dence on the weather conditions and daily and sea-
sonal variability, making these BSs self-survival un-
stable. To tackle these issues, it is fundamental to
combine different renewable energy sources. In this
work, we consider the combination of wind and solar
RES for the supply of a BS, so as to exploit their oper-
ating characteristics and to achieve higher efficiency
than the one that could be obtained from a single en-
ergy source. In particular, in the first part of our work,
we analyse a data-set, which reports real data of the
energy production of wind turbines and PV panel sys-
tems, installed in Belgium. Then, we simulate a sin-
gle BS, powered by an hybrid system, composed by a
PV panel and a wind turbine, using real mobile traffic
demand and energy production data. This scenario is
evaluated in terms of energy performance, expressed
as annual bought energy and annual wasted energy.
Finally, models for the prediction of this energy per-
formance are proposed, as a function of the installed
capacity of the wind and solar energy generators, in
order to properly design the energy system for future
RANs.

2 DATA SET

In this work, we use the energy production data
provided by the Open Power System Data (OPSD)
project (Data, 2020). This data-set contains differ-
ent kinds of time series, such as onshore and off-
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Figure 1: Characterisation of the Belgian wind and solar
energy production: (a) Daily wind and solar energy produc-
tion in each month, (b) Normalised Auto-correlation func-
tion RX ,X (`) of the wind and solar energy production, (c)
Cumulative Density Function of the daily and nightly wind
and solar energy production.

shore wind power generation, solar power genera-
tion, installed wind and solar capacities, electricity
prices and electricity consumption, for 37 European
countries from 2012 to 2017. All variables are pro-
vided in hourly resolution, but some of them are also
available in higher resolution (half-hourly or quarter-
hourly). The data-set has been created by download-
ing the data of interest from the sources, i.e, from the
Transmission System Operators (TSOs) of the differ-
ent countries, resampling and merging them in a large
CSV file.



Because of lack of some data, we select data from
01/01/2015 to 31/12/2017 of Belgium, Switzerland,
Germany and Denmark with hourly granularity and
we consider the actual wind energy production on-
shore, actual solar power production, wind moni-
tored capacity and solar monitored capacity fields,
which are reported in MW. Each production data is
normalised by the corresponding monitored capacity,
in order to compute the wind and solar power, in W,
which is produced by, respectively, a turbine and PV
panel system whose capacity is 1 W. Then, the hourly
energy produced by a wind/solar capacity of 1 W is
computed, in Wh.

3 WIND ENERGY PRODUCTION
DATA

In this section, we discuss the characterisation of the
Belgian wind energy production as derived from the
used data-set. As mentioned in Sec. 2, it collects the
wind energy production, as well as the solar one, and
their corresponding installed capacity, registered be-
tween 2015 and 2017. We use these data to highlight
similarities and differences between solar and wind
energy production. In Fig. 1a, the typical energy pro-
duction day in each month is plotted. In particular,
plain and dashed lines indicate the mean hourly wind
and solar production, respectively, for each month.
First, we notice that, as largely discussed in (Hadji
et al., 2018; Renga et al., 2018), the solar genera-
tion strictly depends on the presence of the sun. As
a consequence, a PV panel system produces energy
only for a limited amount of hours, which signifi-
cantly varies with the seasons, from 18 hours in June
to 9 hours in December. This does not occur for the
wind energy: results suggest that a wind turbine sys-
tem produces for the whole duration of the day and its
production is almost constant during the day. More-
over, the solar energy production peaks are much
larger in summer than in winter: they are around 0.5
Wh in May, when the maximum is reached, while no
larger than 0.13 Wh in December, corresponding to
the minimum peak, resulting in a drop by 73%. Quite
the opposite occurs for the wind energy production:
January, February, November and December, respec-
tively, in red, orange, blue and purple in the figure,
present the largest values for the wind energy produc-
tion.

The auto-correlation functions RX ,X (`) of the solar
and wind energy production are reported in Fig. 1b,
in blue and orange, respectively. From this figure, it
is evident that the solar energy production is charac-
terised by a daily periodicity (see blue curve in the
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Figure 2: Silhouette index (left-y-axis, in blue) and SSE
index (right-y-axis, in orange) for different values of K.

zooming rectangle of Fig. 1b), as indicated by the vis-
ible peaks when ` of the auto-correlation is 24 or a
multiple of it. The presence of the peak when ` is
8760 means the presence of a seasonal periodicity in
the pattern. These are not the cases of the wind energy
generation. The orange curve in the figure indicates
the absence of any periodicity in the pattern and sug-
gests the high level of randomness of the wind energy
production.
Fig. 1c shows the Cumulative Distribution Functions
(CDFs) of the hourly wind and solar energy produc-
tion during the day, i.e. from 8 a.m. to 8 p.m. and dur-
ing the night, i.e. from 8 p.m. to 8 a.m.. The curves,
which correspond to the daily and nightly wind en-
ergy production and to the daily solar production, are
similar and reach 1 around 0.65 Wh. Meanwhile,
as indicated by the figure, the hourly solar produc-
tion during the night is always lower than 0.05 Wh.
This highlights again the different variation within
the daily pattern, provided by the two energy sources.
Moreover, contrary to the hourly solar energy produc-
tion, the hourly wind production is close to zero with
infinitesimal probability.

3.1 Clustering

In order to explore the daily wind energy production
and extract typical daily patterns, the K-means clus-
tering algorithm is employed. We consider as an ob-
servation the daily pattern of hourly wind energy gen-
eration; i.e., a vector of 24 elements where each ele-
ment is the energy production in a given hour of a day.
The K-means partitions the observations into K clus-
ters in which each observation belongs to the cluster
with the nearest mean, i.e. the nearest centroid, so as
to minimise the within-cluster variance. In particu-
lar, the K-means algorithm starts with K random cen-
troids, and then performs iterative calculations to op-
timise the positions of these centroids, until they sta-
bilise. In each iteration, the assignment step and the
update step are performed. In the assignment step,
each observation is assigned to the cluster with the
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Figure 3: Results of the clustering with K=5: (a)-(e) number of observations clustered in each cluster, (f) resulting centroids.

nearest mean. The update step recalculates the cen-
troid of each cluster, as the mean of the observations
assigned to that cluster. Since the performance of the
algorithm depends on the random initialisation of the
centroids, the algorithm is performed 100 times with
different random seeds.
We perform this procedure for the numbers of clus-
ters K, varying between 2 and 12. Then, we select
the K solution, using the Elbow method (Bholowalia
and Kumar, 2014; Kodinariya and Makwana, 2013).
According to it, the optimal number of clusters is in-
dicated by the elbow of the curve of the Sum of the
Squared Error (SSE), or distortions, and of the Silhou-
ette parameter (Petrovic, 2006; Desgraupes, 2013).
The SSE is the sum of distance of each observation,
i.e., a daily wind energy production pattern in our
case, from the centroid of the cluster it belongs; the
Silhouette parameter provides a measure of how close
an observation is from its centroid, compared to the
distance from the others. Fig.2, where the Silhouette
and Distortion indexes are plotted in blue and orange,
respectively, indicates that the best choice for K is 5.
Figure 3 illustrates the results of the clustering with
K equals to 5. In particular, in Fig. 3f, each curve
corresponds to the centroid of each of the 5 clusters,
while Figs. 3a-3e report, for each cluster, the number
of daily patterns, in each month, assigned to the cor-
responding cluster; the colours of the distributions of
points in clusters are the same used for the centroids.
Fig. 3f highlights that the algorithm identifies a clus-

Table 1: Values of the parameters of the consumption model
for macro and small cell BSs.

BS type Ntrx Pmax (W) P0 (W) ∆p
Macro 6 20 84 2.8

ter, characterised by a very low daily energy produc-
tion, never larger than 0.12 Wh, (blue curve in the fig-
ure, corresponding to cluster 1) and another, plotted
in green in the figure (Cluster 4), when the produc-
tion is larger, between 0.17 and 0.22 Wh. Significant
higher values are reached by the centroids plotted in
yellow, red and pink. For these clusters, these large
production values, always larger than 0.22 Wh and up
to 0.66 Wh, are reached during the first part of the day
(see pink curve in Fig. 3f), in the last part, as for the
red curve in Fig. 3f, or for the whole duration of the
day (see yellow curve in Fig. 3f). From Figs. 3a-
3e, we notice that the largest part of patterns belong
to the clusters, whose centroid is characterised by the
lowest daily wind energy production (i.e. blue and
green curves in Fig. 3f). On the contrary, the clusters,
whose centroid reaches a large amount of produced
energy during part of the day (see pink and red curves
in Fig. 3f), or for the whole duration of the day (yel-
low curve in Fig. 3f), have few patterns and those
patterns occur typically during the winter months, i.e.
January, February, November and December, while
summer is characterised by low production levels.



4 SIMULATION SET UP

In this part of the work, we consider a single macro
cell BS of a RAN, supplied by a hybrid system, with
total capacity Ctot , in kW, composed by a wind tur-
bine, whose capacity is W , in kW, and a PV panel
system, with capacity S, in kW, and the grid. Data
provided by a large Italian mobile network operator
are used in this study. They report the traces of the
traffic demand volume, in bits, of numerous BSs lo-
cated in Milan, Italy, for two months in 2015, with
granularity of 15 minutes. The traffic traces are ag-
gregated to derive an hourly granularity and they are
averaged in order to obtain the typical daily traffic de-
mand of each BS, with an hourly granularity. For our
work, two different traces are selected, corresponding
to BSs, located in different areas of the city, in order
to consider samples of quite different scenarios, and,
hence, traffic patterns, which are representative of the
various zones that coexist in an urban environment.
First, a BS located in proximity of the train station
area is selected. It is characterised by intense activity
levels, especially at the beginning and at the end of the
working hours. The second BS is picked in the San
Siro district, which includes a large soccer stadium,
meaning that the activity here is variable depending
on the scheduled matches and concerts, resulting very
heavy when these events occur.
The input power required for the operation of a BS in
an hour, denoted as E(t)

in , in Wh, is derived according
to the linear model proposed in (Auer et al., 2010):

E(t)
in = Ntrx · (P0 +∆pPmaxρ), 0≤ ρ≤ 1 (1)

where Ntrx is the number of transceivers, P0 represents
the power consumption when the radio frequency out-
put power is null, ∆p is the slope of the load dependent
power consumption, ρ is the traffic load and Pmax is
the maximum radio frequency output power at max-
imum load. Table 1 summarises the value of the pa-
rameters for a macro cell BSs (Auer et al., 2010).
As already mentioned, the considered BS is supplied
by an hybrid RES system, composed of a PV panel
and a wind turbine. The Belgian data for the wind
and solar energy, generated by, respectively, a wind
turbine and a PV panel, located in Belgium, are used,
taken from (Data, 2020) and presented in section 2.
As mentioned above, the data-set provides the amount
of Watt produced by a PV panel and a wind turbine,
both with capacity of 1 W. In order to derive the en-
ergy generated by the simulated RES system, we mul-
tiply these data by their capacity, expressed in Watt.
In our simulations, we assume that each considered
BS operates for 3 years. The BS uses the green power
generated by the RESs and when the energy produc-

tion exceeds the BS consumption, that amount of en-
ergy is wasted. In case the generated energy is not
enough to power the BS, the missing energy is bought
from the grid. In each time slot, which lasts 1 hour,
the BS energy consumption E(t)

in is computed, as in
(1), and, knowing the energy that is generated by the
supply system, E(t)

pr , during that time slot, the bought
and wasted energy are computed. The bought energy
E(t)

b measures the amount of energy, in Wh, which is
bought from the grid during that time slot, when the
RES system does not produce enough energy for the
BS supply; the wasted energy E(t)

w provides the to-
tal energy, in Wh, which exceeds the BS energy con-
sumption and so it is not used. They are given by:

E(t)
b = max(0,E(t)

in −E(t)
pr ) (2)

E(t)
w = max(0,E(t)

pr −E(t)
in ) (3)

where E(t)
in is the energy consumed at time t, computed

as in (1), E(t)
pr is the energy produced by the power

supply system at time t
Once a simulation is completed, the following en-

ergy metrics are computed:

• Eb: it is the average amount of energy, measured
in Wh/year, which is bought from the grid every
year. It is computed as follows:

Eb =
1
Y

Y ·365·24

∑
t=0

E(t)
b (4)

where E(t)
b is the energy bought from the grid at

time t, computed as in (2) and Y is the number of
considered years.

• Eb,h: it accounts for the bought energy, in
Wh/year, at hour h, with h = 0, 1, 2, .., 23, in each
year. It is given by:

Eb,h =
1
Y

Y ·365·24

∑
t=0

t%24=h

E(t)
b (5)

where, as above, E(t)
b is the energy bought from

the grid at time t (see (2)) and Y is the number of
considered years.

• Ew: it provides the annual wasted energy, in
Wh/year:

Ew =
1
Y

Y ·365·24

∑
t=0

E(t)
w (6)

where, E(t)
w is the wasted energy in time slot t, de-

rived as in (3) and Y is the number of considered
years.



• Ew,h: it measures the amount of wasted energy, in
Wh/year, at hour h, with h = 0, 1, 2, .., 23, in each
year. It is computed as:

Ew,h =
1
Y

Y ·365·24

∑
t=0

t%24=h

E(t)
w (7)

where, as above, E(t)
w is the wasted energy at time

t, computed as in (3) and Y is the number of con-
sidered years.

5 SIMULATION RESULTS

In this section, we discuss the results of the simu-
lations, using the metrics presented above. Besides
the impact of the total installed RES capacity Ctot on
these metrics, we also investigate the impact of its dis-
tribution between the PV panel capacity, S, and the
wind turbine capacity, W . In particular, we consider
Ctot equal to 1 kW, 4 kW and 5 kW and we vary its
distribution among the solar and wind energy gen-
erator systems. The results are compared with our
benchmark, i.e., the scenario in which no RES is used
and the electricity needed for the BS supply is totally
taken from the grid. This means that Eb is equal to
the annual BS energy consumption, which is, accord-
ing to our simulations, 5.1 MWh for San Siro BS and
5.6 MWh for the Train Station BS; Ew is 0 MWh.
In Fig. 4, Ew and Eb, in blue and orange, respectively,
are plotted, for the Train Station BS, on the left, and
the San Siro BS, on the right. Each row of the fig-
ure considers different total RES installed capacity:
1 kW, in Figs. 4a, 4b, 4 kW in Figs. 4c, 4d and 5 kW
in Figs. 4e, 4f. On the left of each plot, only the so-
lar capacity is used, while moving towards right, so-
lar capacity diminishes by 0.5 kW and the capacity
of the wind turbine grows of 0.5 kW at each step,
i.e., at each group of bars. From Fig. 4, we first no-
tice that Eb and Ew significantly vary with different
Ctot . Indeed, the energy bought from the grid, Eb, de-
creases if the total capacity grows, from a maximum
of 5.56 MWh, when Ctot is 1 kW, to a minimum of
0.93 MWh, when the capacity of RES is 5 kW. Sim-
ilarly, when the Ctot becomes larger, the waisted en-
ergy, Ew, rises, from 0 MWh, when Ctot is 1 kW, to a
maximum of 4.97 MWh with Ctot equals to 5 kW.
Results in Fig. 4 reveal that Eb and Ew are also af-
fected by the different distributions of these capacities
between the wind and solar systems. Indeed, given a
fixed total capacity Ctot , if the portion of wind capac-
ity grows, Eb decreases but Ew increases. When Ctot is
1 kW, the reduction of the Eb is 17% and 18% with re-
spect to the chosen benchmark, in San Siro and Train

Station areas, respectively, if the capacity is totally
used as PV panel capacity. Meanwhile, Eb reaches its
minimum value, dropping up to 34%, if all the capac-
ity is employed for the wind turbines. The situation is
different when Ctot is larger. Indeed, when it is 4 kW,
for each considered BS, the minimum Eb is reached
when the wind and the solar capacities are, respec-
tively, 3 kW and 1 kW. In this scenario, Eb drops by
74% and 76%, for the BS in the Train Station and San
Siro areas, respectively. In this case, the annual Ew is
1.43 MWh/year and 1.22 MWh/year, respectively.
Each curve in Fig. 5b represents Ew,h, with
h = 1,2,...,24, i.e., the total amount of energy which
is wasted during a year at each hour of the day, for
the Train Station BS, for different W and S combina-
tions, given Ctot equal to 4 kW. Values of Ew,h close
to 0 MWh are given before 7.00 a.m. and after 7.00
p.m., for values of W lower than 1.5 kW, which im-
plies S larger than 2.5 kW (see light green, orange and
blue curves in Fig. 5b). This is because the PV panel
is not producing in these hours and the small capac-
ity of the wind turbine does not exceed in production
for the BS supply. Between 7.00 a.m. and 7.00 p.m.,
the PV panel produces energy because of the sun’s
presence. In this period of the day, the case with W
and S equal to 1.0 kW and 3.0 kW, respectively, pro-
vides the lowest Ew,h, among the scenarios with W
and S, respectively, lower than 1.5 kW and larger than
2.5 kW. Quite the opposite occurs for Eb,h, , with
h = 1,2,...,24, whose behaviour is plotted in Fig. 5a,
for different combinations of W and S, when Ctot is
equal to 4 kW, for the Train Station BS. For values
of W larger than 2.5 kW and, consequently, S lower
than 1.5 kW, Eb,h is no larger than 0.08 MWh, before
8.00 a.m. and after 6.00 p.m., as denoted by the pink,
grey and dark green curves in Fig. 5a. In the same
time interval, if W is lower than 2.5 kW and S larger
than 1.5 kW, Eb,h increases up to z MWh. Between
8.00 a.m. and 6.00 p.m., because of the limited con-
tribution from the PV panel when its capacity is not
larger than 0.5 kW, Eb,h grows up to 0.1 MWh, mak-
ing the scenario with solar and wind capacities equal
to 3.0 kW and 1.0 kW the best in terms of Eb.
Nevertheless, as can be seen in Fig. 4c, if the tur-
bine has capacity 2.5 kW and the PV panel 1.5 kW,
the Eb drops by 73% and 75% with respect to the
benchmark scenario, respectively, resulting therefore
slightly larger than the previous case, where, as men-
tioned, up to 74% and 76% of reduction is achieved.
Nevertheless, this reduces Ew by 16% and 14%. Sim-
ilarly, when Ctot is 5 kW, the hybrid solution, with
4 kW of wind capacity and 1 kW of solar one provides
the lowest amount of Eb, as can be noticed in Figs. 4e
and 4f. It results no larger than 1.1 MWh/year, re-
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Figure 4: Simulations results: (a) Eb and Ew with Ctot equal to 1 kW for the Tran Station BS, (b) Eb and Ew with Ctot equal
to 1 kW for the San Siro BS (c) Eb and Ew with Ctot equal to 4 kW for the Tran Station BS, (d) Eb and Ew with Ctot equal to
4 kW for the San Siro BS, (e) Eb and Ew with Ctot equal to 5 kW for the Tran Station BS, (f) Eb and Ew with Ctot equal to
5 kW for the San Siro BS.

duced by more than 80% with respect to our bench-
mark, but with an amount of wasted energy larger
than 3.8 MWh/year. In order to reduce this by 26% for
the Train Station BS and by 19% for the San Siro one,
we employ a wind turbine with a capacity of 3 kW and
a PV panel, whose capacity is 2 kW, at the expense of
a little rise of the Eb, still resulting lower than 76% of
Eb in the benchmark scenario.
These results show that hybrid solutions reduce both
Eb and Ew. Indeed, for what concerns Eb, the hy-
brid solution copes with the lack of energy production
by PV panel during the night, thanks to the turbine
production. Meanwhile, the employment of the PV
panel provides a large support to the BS supply dur-
ing the BS energy consumption peaks, which occur

Table 2: p-value for the energy performance metrics Eb, Ew
and the different input parameters W and S

Eb Ew

W 0.0 0.0
S 3.0 ·10−47 0.05

daily, during the PV panel generation periods. Focus-
ing on Ew, the hybrid solutions avoid that the wind
turbine energy production exceeds the consumption
during the night, when the BS energy consumption
reaches its minimum. Similarly, the hybrid solution
prevents wasting energy during the day, during the PV
panel production hours.
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Figure 5: Simulation results for the Train Station BS, with Ctot equal to 4 kW, varying its distribution between solar and wind
capacity: (a) Eb,h, h=1,2,...,23 (b) Ew,h, h=1,2,...,23.

Table 3: Coefficients of the models for the prediction of Eb.

Country ab bb cb db eb Kb

Belgium -831.33 -1582.29 0.09 0.10 0.16 5·106

Denmark -1697.26 -793.37 0.18 0.11 0.08 5.12·106

Germany -1617.87 -851.37 0.16 0.10 0.09 5.23·106

Switzerland -1525.72 -685.82 0.15 0.08 0.07 5.30·106

6 PREDICTION MODEL

In this section, we propose two analytical prediction
models to derive Eb and Ew, in different locations,
namely, Belgium, Denmark, Germany and Switzer-
land. These models are based on the relation between
Eb, Ew, in Wh, and the installed wind and solar capac-
ity, W and S, in W . The aim of this model is to provide
a tool to investigate and predict the yearly bought and
wasted energy, when designing the RES system, for a
BS supply located in a given country.
First, for each country, we run multiple simulations,
as described in section 4, to create a data-set used
to build each model of each country. These simula-
tions are performed with different values of W and S
and for each pair of values for W and S, two different
simulations are performed, one considering the traf-
fic demand of the Train Station BS and the other the
traffic demand of the San Siro BS. For each simula-
tion, Eb and Ew are computed, so that a data-set for
Eb and another for Ew are built. Each row of the Eb
data-set contains the installed wind capacity W , the
installed solar capacity S and the resulting Eb, when
these capacities are employed to power the considered
BS. Similarly, in each entry of the Ew data-set, there
are the employed capacities W and S and the obtained

Ew. First,the statistical significant relations between
W , S and our energy metrics Eb and Ew is verified.
To do this, we use the p-value index. The p-value
results for each country are reported in Table 2, pre-
senting each value lower or equal to 0.5, confirming
the existence of statistical relationships between these
parameters.
We model this relationship as a second degree poly-
nomial, as suggested by Fig. 4. For each country, re-
ceiving as input the solar and the wind capacity, S and
W , the values of Eb and Ew are computed as follows:

Eb = abS+bbW + cbS2 +dbSW + ebW 2 +Kb (8)

Ew = awS+bwW + cwS2 +dwSW + ewW 2 (9)

where ab, bb, aw and bw are in Wh/W , cb, db, eb, cw,
dw and ew in Wh/W 2 and Kb in Wh. Each coefficient
of each model is defined through the Linear Regres-
sion, using 66% of the corresponding data-set. The
remaining 34% is employed as a test set for the model
evaluation. Note that in the model of Ew, the constant
term is not present, so that Ew is 0 MWh, when Ctot is
0 kW.
The resulting coefficients for Eb and Ew models are
listed in Tables 3 and 4. In Table 5, each row reports
R2

b and NMRSEb, which are R2 and NMRSE, com-



Table 4: Coefficients of the models for the prediction of Ew.

Country aw bw cw dw ew

Belgium 57.05 100.29 0.11 0.15 0.18
Denmark -8.98 73.81 0.19 0.14 0.09
Germany -83.70 -8.04 0.17 0.12 0.09

Switzerland -56.00 -78.81 0.15 0.09 0.06

Table 5: R2 and NMRSE of the models used for Eb (R2
b and NMRSEb, respectively) and Ew (R2

w and NMRSEw, respectively),
for each country.

Country R2
b NMRSEb R2

w NMRSEw

Belgium 0.97 0.08 0.99 0.07
Denmark 0.97 0.08 0.99 0.07
Germany 0.98 0.07 0.99 0.08

Switzerland 0.97 0.07 0.99 0.10

puted on the test set, for the model of each country,
to predict Eb. The table also gives R2 and NMRSE of
the model for the Ew prediction, respectively R2

w and
NMRSEw. According to these values, these models
predict Eb and Ew in at least 97% of the cases, as in-
dicated by R2 always larger or equal to 0.97, with an
error never larger than 0.10.
The curve of models of Eb and Ew is shown in Figs.
6a, 6b, 6c, 6d, and 6e, 6f, 6g, 6h in Belgium, Den-
mark, Germany and Switzerland, respectively. First,
we notice that the resulting model of Eb presents vis-
ible differences in Belgium with respect to the other
countries. Indeed, in Belgium, the growth of the wind
capacity W impacts more than the rise of the solar ca-
pacity S, as can be seen in Fig. 6a. In this model,
the coefficients which multiply W , i.e., bb and eb,
are larger, in absolute value, than, respectively ab and
cb, which multiply S, making Eb more variable when
that input parameter grows or decreases (see Table
3). Quite the opposite occurs for the other considered
countries (see Figs. 6b, 6c and 6d). Indeed, in these
cases, as reported in Table 3, the absolute values of bb
is always lower than ab, as well as the one of eb is al-
ways smaller than the one of cb. This means that, for
these countries, the variation of S affects more Eb than
the W one. Similarly, for the Ew model, as can be seen
in Table 4, ew is larger than cw, in the Belgian case,
making it more affected by the variation of W than
of S. Meanwhile, for the Danish, German and Swiss
cases, ew is lower than cw, meaning that the grow or
the drop of S impacts more Ew that the variation of
W .
In Figs. 7a, 7b, 7c and 7d, each curve is computed
with the Eb model and represents Eb for a given Ctot ,
increasing the installed solar capacity S, while dimin-
ishing the wind capacity W . We notice that, while the
Belgian case presents a growing trend (see 7a), for
the other countries the trend is decreasing, as can be

observed in Figs. 7b, 7c, 7d. This means that, accord-
ing to the used data, for the supply of a BS, the wind
capacity provides more usable energy than the solar,
in Belgium, while quite the opposite occurs in Den-
mark, Germany and Switzerland. From these figures,
we also notice that for Ctot large enough (larger than
2 kW), the hybrid solution is convenient, in terms of
Eb and Ew, as in the simulation results, discussed in
section 5.

7 CONCLUSIONS

In order to make RANs more sustainable and reduce
the OPEX, a hybrid system, composed by a PV panel
and a wind turbine, is considered for the BS supply, in
addition to the electric grid. First, based on real data,
we characterise the Belgian wind energy production,
comparing it with the solar one. Results reveal that,
while the solar production presents significant differ-
ences between daily and nightly hours, the nightly and
daily wind generations are almost identical. More-
over, while the largest solar energy production occurs
in summer, quite the opposite occurs for the wind en-
ergy production, which reaches its maximum produc-
tion in winter. Hence, hybrid systems allow to better
follow the BS demand with respect to single source
systems. Indeed, simulation results reveal that the hy-
brid system supply provides significant reduction of
the energy which needs to be bought from the grid.
The presence of the turbine provides nightly energy
supply to satisfy the small BS energy demand dur-
ing the night and the PV panel guarantees the daily
BS energy demand, which accounts for large values
due to peak traffic demand that the turbine alone can-
not satisfy. Finally, polynomial models for the en-
ergy performance prediction are built. These models
highlight the different impact of the wind and solar
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Figure 6: 3D shape of the models: (a) Eb model for Belgium, (b) Eb model for Denmark, (c) Eb model for Germany, (d) Eb
model for Switzerland, (e) Ew model for Belgium, (f) Ew model for Denmark, (g) Ew model for Germany, (h) Ew model for
Switzerland.
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Figure 7: Eb and Ew provided by the model, for different Ctot , varying its distribution between solar and wind capacity: (a)
Eb for Belgium, (b) Eb for Denmark, (c) Eb for Germany, (d) Eb for Switzerland, (e) Ew for Belgium, (f) Ew for Denmark, (g)
Ew for Germany, (h) Ew for Switzerland.

capacities on the energy performance. In Belgium,
the variation of the wind capacities impacts more than
the solar one. Quite the opposite occurs in Denmark,
Germany and Switzerland, where the impact of the
solar capacity variation is larger than the one due to
the wind turbine capacity variation.

REFERENCES

Aktar, M. R., Jahid, A., Hossain, M. F., and Al-Hasan,
M. (2018). Energy sustainable traffic aware hy-
brid powered off-grid cloud radio access net-
work. In 2018 International Conference on Inno-
vations in Science, Engineering and Technology
(ICISET), pages 121–125. IEEE.

Auer, G., Blume, O., Giannini, V., Godor, I., Im-
ran, M., Jading, Y., Katranaras, E., Olsson, M.,
Sabella, D., Skillermark, P., et al. (2010). D2. 3:
Energy efficiency analysis of the reference sys-
tems, areas of improvements and target break-

down. Earth, 20(10).
Belkhir, L. and Elmeligi, A. (2018). Assessing ict

global emissions footprint: Trends to 2040 &
recommendations. Journal of Cleaner Produc-
tion, 177:448–463.

Bertoldi, P. (2017). Eu code of conduct on energy
consumption of broadband equipment.

Bholowalia, P. and Kumar, A. (2014). Ebk-means:
A clustering technique based on elbow method
and k-means in wsn. International Journal of
Computer Applications, 105(9).

Chamola, V. and Sikdar, B. (2016). Solar powered
cellular base stations: Current scenario, issues
and proposed solutions. IEEE Communications
magazine, 54(5):108–114.

Commission, E. (2019). The european green deal
com/2019/640 final.

Data, O. P. S. (2020). Data package time series.
Deruyck, M., Renga, D., Meo, M., Martens, L.,

and Joseph, W. (2017). Accounting for the
varying supply of solar energy when design-



ing wireless access networks. IEEE Transac-
tions on Green Communications and Network-
ing, 2(1):275–290.

Desgraupes, B. (2013). Clustering indices. University
of Paris Ouest-Lab Modal’X, 1:34.

Forecast, C. V. (2019). Cisco visual networking in-
dex: Forecast and trends, 2017–2022. White pa-
per, Cisco Public Information.

Gati, A., Salem, F. E., Serrano, A. M. G., Mar-
quet, D., Masson, S. L., Rivera, T., Phan-Huy,
D.-T., Altman, Z., Landre, J.-B., Simon, O.,
et al. (2019). Key technologies to accelerate the
ict green evolution–an operator’s point of view.
arXiv preprint arXiv:1903.09627.

Guo, S., Zeng, D., Gu, L., and Luo, J. (2019). When
green energy meets cloud radio access network:
Joint optimization towards brown energy min-
imization. Mobile Networks and Applications,
24(3):962–970.

Hadji, F., Ihaddadene, N., Ihaddadene, R., Kherbiche,
Y., Mostefaoui, M., and Beghidja, A. H. (2018).
Solar energy in m’sila (algerian province). In
2018 6th International Renewable and Sustain-
able Energy Conference (IRSEC), pages 1–5.
IEEE.

Han, T. and Ansari, N. (2014). Powering mobile net-
works with green energy. IEEE Wireless Com-
munications, 21(1):90–96.

Hassan, H. A. H., Nuaymi, L., and Pelov, A. (2013).
Renewable energy in cellular networks: A sur-
vey. In 2013 IEEE online conference on green
communications (OnlineGreenComm), pages 1–
7. IEEE.

Hirsch, R. L. (2008). Mitigation of maximum world
oil production: Shortage scenarios. Energy pol-
icy, 36(2):881–889.

IEA (2020). World energy outlook 2020.
Kodinariya, T. M. and Makwana, P. R. (2013).

Review on determining number of cluster in
k-means clustering. International Journal,
1(6):90–95.

Petrovic, S. (2006). A comparison between the sil-
houette index and the davies-bouldin index in la-
belling ids clusters. In Proceedings of the 11th
Nordic Workshop of Secure IT Systems, pages
53–64. Citeseer.

Pompili, D., Hajisami, A., and Tran, T. X. (2016).
Elastic resource utilization framework for high
capacity and energy efficiency in cloud ran.
IEEE Communications Magazine, 54(1):26–32.

Renga, D., Hassan, H. A. H., Meo, M., and Nuaymi,
L. (2018). Energy management and base sta-
tion on/off switching in green mobile networks

for offering ancillary services. IEEE Transac-
tions on Green Communications and Network-
ing, 2(3):868–880.

Renga, D. and Meo, M. (2019). Dimensioning renew-
able energy systems to power mobile networks.
IEEE Transactions on Green Communications
and Networking, 3(2):366–380.

Res., P. (2013). Off-grid power for mobile base sta-
tions—renewable and alternative energy sources
for remote mobile telecommunications: Global
market analysis and forecasts.

Smertnik, H. et al. (2014). Green power for mo-
bile bi-annual report. GSM Association, August,
12(31):181.

Tariq, F., Khandaker, M. R., Wong, K.-K., Imran,
M. A., Bennis, M., and Debbah, M. (2020). A
speculative study on 6g. IEEE Wireless Commu-
nications, 27(4):118–125.


