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Abstract: This paper develops a predictive modeling algorithm, denoted as Real-Time Vector Fit-
ting (RTVF), which is capable of approximating the real-time linearized dynamics of multi-input
multi-output (MIMO) dynamical systems via rational transfer function matrices. Based on a gen-
eralization of the well-known Time-Domain Vector Fitting (TDVF) algorithm, RTVF is suitable for
online modeling of dynamical systems which experience both initial-state decay contributions in the
measured output signals and concurrently active input signals. These adaptations were specifically
contrived to meet the needs currently present in the electrical power systems community, where
real-time modeling of low frequency power system dynamics is becoming an increasingly coveted
tool by power system operators. After introducing and validating the RTVF scheme on synthetic test
cases, this paper presents a series of numerical tests on high-order closed-loop generator systems in
the IEEE 39-bus test system.

Keywords: power system dynamics; real-time modeling; vector fitting

1. Introduction

Due to the aggressive deployment of Wide Area Monitoring Systems (WAMS), a
deluge of time series data streams are emerging from modernizing smart grids. For
instance, as of 2017, Operating Procedure No. 22 specifies that all generation above
100 MW in the ISO New England system must provide Phasor Measuring Unit (PMU)
observability at the point of interconnection [1]. Similarly, the 2018 Nodal Operating Guide
specifies that all new generators above 20MVA in the ERCOT (Texas) system must provide
PMU observability [2]. In order to both capitalize on these data streams and enforce
effective dynamic security assessment (DSA) in the face of a rapidly modernizing energy
landscape with shrinking inertia margins [3], the North American Electric Reliability
Corporation (NERC) has recently implemented new directives [4] which mandate the
continual development of static and dynamic network planning models. The simulated
response of these models must be compared to actual time series data collected in the
network to validate their accuracy [5]. Associated procedures must also resolve model
prediction aberrations. Traditional “staged” testing of grid models can be costly and
inconvenient, because generators must go offline [6]. Thus, performing model tuning and
validation online is particularly valuable.

Furthermore, real-time modeling of the grid’s dynamics at a “wide-area” level can
provide useful operational benefits, such as modal damping ratio monitoring and controller
tuning. For instance, the 3.1 GW Pacific DC Intertie (PDCI) line in the Western United States
has been recently outfitted with a damping controller to increase its transfer capabilities [7].
This celebrated controller is tuned using an open loop transfer function model of the power
system which was empirically measured via intrusive multi-sine modulation of the HVDC
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power controllers [8]. Methods for online modeling of these types of dynamics, therefore,
could allow for enhanced controller tuning across many wide area applications.

In the electromechanical frequency range, power system dynamics are still dominated
by synchronous generators [3]. A wealth of literature exists on the nonlinear physical
modeling of these generators, their associated high-order controllers, and the networks
to which they interconnect [9,10]. Applying, tuning, and validating these models in
the context of large realistic power systems faces a variety of practical obstacles; these
include the exclusion of unmodeled dynamics, measurement noise, uncertain physical
parameter values, unknown controller changes, and, in the limiting case of linearized
modeling, residual nonlinearities and drifting equilibrium points. In recent years, a variety
of methods have been proposed for the purpose of identifying, validating and tuning
these models [4,6,11–14], usually via Kalman filter-based parameter tuning and “play-back”
simulation. The vast majority of the proposed modeling and validation algorithms are
characterized by two salient features. First, they are parameterized by a physical prior;
that is, they leverage the structure of a given physical model which can assumably be
tuned to explain the full set observed dynamics. Second, they are typically designed to be
deployed in the presence of a sufficiently strong network perturbation (e.g., ground fault).
Together, these assumptions allow for a variety of helpful simplifications, such as initial
state decay negligence and high-fidelity prior availability. Such algorithmic features can be
burdensome if the prior model is incomplete or if real-time modeling updates are desired.

Predictive modeling algorithms which are free from these limitations can provide a
variety of advantages. If power system modeling can be performed by a parameterized
“black box” approximation, then the associated algorithm will be freed from the constraints
of a potentially erroneous, or completely unknown, prior model. Additionally, if this algo-
rithm can be implemented in the face of ambient, rather than severe, operating conditions,
then updates can be performed on the fly. There is a large collection of well-cited literature
devoted to the creation of linear dynamical black box models from time series data in
power systems, primarily at the “wide area” level, but also at the individual generator level.
Excellent reviews on the topic are provided in [15,16]. One of the most popular “modal
identification” methods, known as Prony analysis, was first applied to power systems in
1990 [17]. It was further shown in [18] that Prony analysis applied to transient data and
Wiener-Hopf linear prediction applied to ambient data could both identify very similar
system dynamics. Subsequent publications further refined these methods [19,20], but most
of them were focused on identification of system modes (i.e., poles), rather than the full
transfer functions. More recent work has focused on building model reduced transfer
functions from measured terminal data. Using a simple autoregessive with exogenous
input (ARX) model, [21] develops a process for computing a dynamic equivalent transfer
function with simulated or measured data. Voltage magnitude and frequency are chosen
as inputs, while active and reactive power flows across lines are chosen as outputs. MIMO
transfer function approaches are developed in [22], where poles, zeros, and model order
are iteratively perturbed based on a least-squares numerical procedure inside a standard
MATLAB toolbox.

Most recently, vector fitting approaches have been leveraged to construct power
system models from measured field data. In [23], authors use the numerical Laplace
transform to push the problem into the frequency domain. Next, vector fitting and relative
dominant-pole measurements (RDPMs) are iteratively leveraged to build estimations of
wide area system modes. Similarly, [24] combines time domain vector fitting and the
popular ring down analysis to develop a novel modal estimation routine. In a more generic
application, [25] uses out-of-the-box TDVF to construct a SISO linear model of a turbine
governor system from measured PMU; droop gain values are then captured from the
constructed model.

The black-box identification of dynamic models from time series data goes far beyond
power system applications and is regarded as a well established field [26,27]; popular
algorithms include the Multivariable Output Error State Space (MOESP) and Numerical
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algorithms for Subspace State Space System Identification (N4SID) techniques [28]. As
noted, one prominent approach is the Time-Domain Vector Fitting (TDVF) scheme [26,29,
30]. This approach is applicable for estimating rational models of linear systems, starting
from the time domain samples of input and output data. Unfortunately, canonical TDVF
has the following restrictions:

• The system must be at rest when the data acquisition begins. This guarantees that the
input and output data are related by a linear transfer function with no contribution
from the zero-input (i.e. initial state decay) response.

• For a MIMO system with P ports, only separate modeling of each column of the
transfer matrix is possible. This limitation requires that only one of the P input
components is acting on the system during the separate modeling periods for each
transfer matrix column.

Since online modeling typically requires the unknown system to be characterized (i)
during its dynamic evolution and (ii) in the presence of concurrently acting inputs, the
above limitations often make TDVF unsuitable for real-time MIMO applications. This is
especially true in the case of electrical power systems. Due to constant load switching
and system perturbations, the system never reaches a truly steady state condition. Thus,
any measured signals from the system will always contain some degree of initial state
decay. Furthermore, generic subsystems of three-phase AC power systems are inherently
MIMO in nature [31], with orthogonal input signals (e.g., voltage magnitude and voltage
phase) which are always applied in a concurrent manner. This is still true, even when a
symmetric three-phase power system is collapsed down to a so-called single-line diagram.
Since single-line diagrams are modeled using a quasi-stationary (e.g., sinusoidal) phasor
approximation [9], there are always two components associated with the input and output
signals at the terminal of any power system component. In this quasi-stationary context,
only under very special symmetry conditions can a MIMO transfer function be fully
represented as a SISO transfer function [31].

In order to address the aforementioned limitations of canonical TDVF, this paper
introduces a generalized vector fitting extension, known as Real-Time Vector Fitting (RTVF).
The remainder of this paper is organized as follows. In Section 2, we recall the basic TDVF
scheme in order to provide a framework on which the proposed approach is built. We then
present our key contributions, namely:

1. We remove the restrictions of the basic TDVF scheme by proposing a new problem
setting (Section 3).

2. We develop a first generalization of the basic TDVF scheme by removing the require-
ment of pure zero-state conditions, hence allowing for the presence of non-vanishing
initial conditions (Section 4).

3. We develop a second generalization by allowing all input components to act concur-
rently in the time series data sets used to train the RTVF model (Section 5).

In Section 6, we provide implementation details. Numerical test results, based on both
synthetic and realistic power system models, are given in Section 7.

2. Technical Background
2.1. Notation

We denote a generic scalar as x, a generic vector as x or X0, and a generic matrix as
X. The identity matrix is denoted as I, with size inferred from the context. We use the
symbol s for the complex frequency (Laplace) variable; R and C represent the sets of real
and complex numbers, respectively.

We consider a possibly nonlinear dynamic system S with input and output signals
denoted as u(t) ∈ RP and y(t) ∈ RP, respectively. For later use, we denote with x(t) ∈ RN̄

some unknown system state vector, although we assume no information on the internal
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system representation. We assume instead that a measurement tool is available that returns
K samples of time-domain input-output vectors

u(tk), y(tk) k = 1, ..., K (1)

acquired at sampling rate Fs. Without loss of generality, we set t1 = 0 throughout this
paper. All derivations will hold true for t1 6= 0, provided the time variable is redefined as
t← t− t1.

2.2. The Standard Setting for Data-Driven Modeling

When the underlying system S is Linear and Time-Invariant (LTI), Laplace-domain
input and output signals are related by

Y(s) = H̆(s)U(s). (2)

An estimate H(s) of the true transfer function H̆(s) can be determined from the sam-
ples (1) through one of the several available data-driven model order reduction methods.
In particular, the TDVF scheme [26,29,30] considered in this work assumes that the system
is initially at rest, and the initial conditions vanish identically as

u(0) ≡ 0, y(0) ≡ 0, x(0) ≡ 0. (3)

This setting guarantees that only the zero-state response contribution is present in the
output samples.

2.3. Time-Domain Vector Fitting

The basic TDVF scheme assumes availability of

• time series of each output yij(t) at port i excited by a single input uj(t) placed at port j
and acting alone, with uk 6=j = 0; this requirement imposes a restriction on the training
sequences that can be used for model extraction;

• some initial estimate of the dominant system poles {qn, n = 1, . . . , N}. Usually, such
poles are initialized as random real or complex conjugate pairs with Re{qn} < 0 and
|qn| < Ω, where Ω is the modeling bandwidth of interest [26,32].

Based on the training data, TDVF constructs the approximation

d0 · yij(t) +
N

∑
n=1

dn · y(n)ij (t) ≈ c(0)ij · uj(t) +
N

∑
n=1

c(n)ij · u
(n)
j (t) (4)

for t = tk with k = 1, . . . , K, where c(n)ij and dn are unknown coefficients to be determined

via a linear least squares solution. In (4), superscript (n) denotes the result obtained by the
single-pole filter (i.e., convolution) via

z(n)(t) =
∫ t

0
eqn(t−τ)z(τ)dτ (5)

on any arbitrary signal z(t) with z(0) = 0. The regression problem (4) corresponds to the
frequency-domain relation

Yij(s) ≈ Hij(s)Uj(s) ≈
c(0)ij + ∑N

n=1

c(n)ij

s− qn

d0 + ∑N
n=1

dn

s− qn

· Uj(s) (6)
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which provides an element-wise rational approximation Hij(s) ≈ H̆ij(s) written in barycen-
tric form. The initial poles qn in (6) cancel out, and the actual poles of Hij(s) correspond to
the zeros zn of the denominator

D(s) = d0 +
N

∑
n=1

dn

s− qn
. (7)

Problem (4) is solved iteratively, by using these zeros as starting poles for the next
iteration via qn ← zn. Iterations stop when the poles and/or the least-squares residual
(fitting error) stabilize [26,33], or alternatively when a maximum number of iterations νmax
is reached.

3. A New Problem Setting for TDVF

Let us now consider system S operating in real time, with input and output measured
signals (1) collected during system operation. Since data recording may start at an arbitrary
time instant when system is not at rest, the output samples y(t) may include contributions
from both the zero-input and the zero-state response, implying that all initial conditions
cannot be considered as vanishing as in (3). Moreover, all input channels are expected to
be active concurrently. Therefore, the basic TDVF assumptions do not hold and need a
generalization.

From now on, we assume a mildly nonlinear systems S , whose dynamics can be
approximated [34] by splitting inputs, outputs and states as

u(t) = U0 + ũ(t),

y(t) = Y0 + ỹ(t),

x(t) = X0 + x̃(t),

(8)

where
U0 = u(0), X0 = x(0), Y0 = y(0) (9)

are regarded as non-necessarily vanishing initial conditions. The evolution of the small-signal
components ũ(t), ỹ(t), x̃(t) can be accurately related by an LTI operator with transfer
function H̆(s). Our main objective is to devise a numerical scheme that, based on the
samples (1), returns an estimate H(s) ≈ H̆(s) of the small-signal transfer function. This
objective is attained by exploiting two generalizations of the basic TDVF scheme:

1. We remove the requirements of pure zero-state conditions by allowing for the presence
of nonvanishing initial conditions (9). This problem is addressed in Section 4.

2. We allow for all input components uj acting concurrently in the training time series,
as in common system operation conditions. This problem is addressed in Section 5.

4. Handling Initial Conditions

In this section, we formulate a generalized identification problem that provides an esti-
mate H(s) of the small-signal transfer function, assuming non-vanishing initial conditions.
Although initial conditions U0, Y0 are known from the training data, no information on the
initial state X0 is available. Thus, a direct decomposition of y(t) into its zero-state and zero-
input contributions is generally not possible. This section provides theoretical justification
for the proposed RTVF formulation of Section 5 and may be skipped at first reading.

In order to characterize the role of the unknown initial state, we first consider a generic
LTI system in state-space form:

ẋ(t) = Ax(t) + Bu(t),

y(t) = Cx(t) + Du(t),
(10)
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with the only restriction that A should be nonsingular. Inserting the signal decomposi-
tion (8) into (10) leads to

ẋ(t) = ˙̃x(t) = A(X0 + x̃(t)) + B(U0 + ũ(t)) (11)

ỹ(t) + Y0 = C(X0 + x̃(t)) + D(U0 + ũ(t)). (12)

The output (12) can be equivalently rewritten by splitting the constant and the time-varying
small-signal components as

Y0 = CX0 + DU0, (13)

ỹ(t) = Cx̃(t) + Dũ(t), ∀t ≥ 0. (14)

Two scenarios are possible:

1. The system is at constant steady-state for t = 0 (equivalently, ∀t ≤ 0). This scenario is
common in electronic circuit simulation, where a constant bias is applied first and
all initial conditions are found; transient analysis is performed next, starting from
the computed initial conditions. Since electrical power systems never reach steady
state, this condition can never be exploited in practice. Under this assumption, all
small-signal components vanish for t ≤ 0. Therefore, (11) reduces to

AX0 + BU0 = 0 → X0 = −A−1BU0 (15)

and provides the initial state condition X0. Since A is nonsingular, the system has
no poles at the origin and supports constant steady-state operation. Combining (11)
with (15), for t > 0, the small-signal components fulfill the standard dynamic equation

˙̃x(t) = Ax̃(t) + Bũ(t). (16)

Combining (14) and (16) provides the small-signal transfer function H̆(s) in terms of
the state-space matrices:

H̆(s) = C(sI−A)−1B + D =
N̆(s)
D̆(s)

(17)

with D̆(s) = |sI−A|. Identification of a rational model for H̆(s) can be performed
by subtracting the initial conditions U0, Y0 from the input and output signals and
then applying a zero-state identification scheme, such as basic TDVF, to small-signal
components ũ(t), ỹ(t).

2. The second scenario is relevant for our application, and it corresponds to the case
where the system is not operating under constant steady-state conditions for t < 0. In
this setting, (15) does not hold and

X0 6= −A−1BU0. (18)

Therefore, even if the initial conditions U0, Y0 are removed from the input and output
signals, the corresponding small-signal output ỹ(t) still includes a contribution from
the initial state. This contribution is analyzed next.

Characterization of Residual Zero-Input Contributions

Assuming that U0 and X0 are known, system evolution in terms of small-signal state
components is obtained by integrating the dynamic Equation (11) for t > 0 as

x̃(t) =
∫ t

0
eA(t−τ)(Bũ(τ) + AX0 + BU0)dτ. (19)
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Simple algebraic manipulations allow us to rewrite (19) as

x̃(t) =
∫ t

0
eA(t−τ)Bũ(τ)dτ +

[
eAt − I

]
(X0 + A−1BU0)︸ ︷︷ ︸

T0

, (20)

where the contribution of the initial state condition is explicit. Note that, in case of steady-
state operation for t < 0, the second term in (20) vanishes since T0 = 0, and the correspond-
ing solution reduces to the solution of the small-signal system (16). The term T0 can thus
be considered as the difference between the actual initial state X0 and the constant state
that would be obtained if the system were operating under steady-state conditions excited
by the constant input U0.

Taking the Laplace transform of (20) yields

X̃(s) = (sI−A)−1B Ũ(s) +
[
(sI−A)−1 − s−1I

]
T0. (21)

Inserting (21) into the output equation (14) leads to

Ỹ(s) = CX̃(s) + DŨ(s) = H̆(s)Ũ(s) + Γ0(s), (22)

where H̆(s) is given by (17). Additionally,

Γ0(s) = (C(sI−A)−1 − s−1C) T0 =
Ğ(s)

s · D̆(s)
, (23)

where Ğ(s) is an unknown polynomial vector. Relation (22) is therefore equivalent to

Ỹ(s) =
N̆(s)
D̆(s)

Ũ(s) +
Ğ(s)

s · D̆(s)
. (24)

The two terms in (24) share the same denominator D̆(s) up to a pole at s = 0, which
represents the constant contribution of the non-vanishing initial conditions. This observa-
tion is the key enabling factor for building a self-consistent vector fitting scheme to estimate
model H(s) ≈ H̆(s), as it properly takes into account the presence of the additional term
Γ0(s) in (22).

5. The Real-Time Vector Fitting Scheme

In this section, we propose our Real-Time Vector Fitting (RTVF) scheme. In particular,
our key idea and the proposed generalizations follow:

1. The key idea of our method consists of adding to the standard rational transfer
function expression an extra term that shares the same denominator D(s) plus a
pole at s = 0, representing the constant contribution of the non-vanishing initial
conditions.

Ỹ(s) ≈ N(s)
D(s)

Ũ(s) +
G(s)

s · D(s)
. (25)

2. Since polynomials N(s) and D(s) are typically expanded in a standard barycentric
form as in (6) using an initial pole set qn, we propose the use of a similar expansion
for the components of the unknown vector G(s):

Gi(s) = b(0)i +
N

∑
n=1

b(n)i
s− qn

∀i = 1, . . . , P . (26)

3. We further propose to account for multiple inputs potentially exciting the system
simultaneously by applying linear superposition and expressing each output compo-
nent Ỹi(s) in terms of all input components Ũj(s).
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The above considerations lead us to parameterize and formulate the fitting condi-
tion (25) as

Ỹi(s) ≈
P

∑
j=1

c(0)ij + ∑N
n=1

c(n)ij

s− qn

d0 + ∑N
n=1

dn

s− qn

· Ũj(s) +
b(0)i + ∑N

n=1
b(n)i

s− qn

s ·
(

d0 + ∑N
n=1

dn

s− qn

) ∀i = 1, . . . , P. (27)

In (27), the coefficients c(n)ij represent the elements in the numerator N(s) of the small-
signal model transfer function H(s) expressed in barycentric form. The coefficients dn
of the denominator are common to all transfer matrix entries, so that a common pole set
is enforced for the model. Finally, the coefficients b(n)i provide a parameterization of the
zero-input response in barycentric form, as written in (25).

Multiplying both sides by the common denominator and taking the inverse Laplace
transform leads to the following time-domain fitting condition for t ≥ 0:

d0 · ỹi(t) +
N

∑
n=1

dn · ỹ(n)i (t)

≈
P

∑
j=1

[
c(0)ij · ũj(t) +

N

∑
n=1

c(n)ij · ũ
(n)
j (t)

]

+ b(0)i ·Θ(t) +
N

∑
n=1

b(n)i Θ(n)(t), ∀i = 1, . . . , P, (28)

where Θ(t) is the Heaviside unit step function.

6. Implementation

In this section, we provide a compact and efficient formulation of the least squares
formulation at the heart of the RTVF routine. Writing (28) for t = tk, with k = 1, . . . , K,
leads to the following RTVF condition in matrix form:

φi · d +
P

∑
j=1

ψj · cij + β · bi ≈ 0 ∀i = 1, 2, ..., P , (29)

where the vectors collecting the unknown coefficients are

d =

 d0
...

dN

, cij =


c(0)ij

...
c(N)

ij

, bi =


b(0)i

...
b(N)

i

, (30)

and where the regressor matrices collecting the filtered signal time samples (according
to (5)) are defined as
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φi = −


ỹi(t1) ỹ(1)i (t1) . . . ỹ(N)

i (t1)
...

...
. . .

...
ỹi(tk) ỹ(1)i (tK) . . . ỹ(N)

i (tK)

 (31)

ψj =


ũj(t1) ũ(1)

j (t1) . . . ũ(N)
j (t1)

...
...

. . .
...

ũj(tk) ũ(1)
j (tK) . . . ũ(N)

j (tK)

 (32)

β =

1 Θ(1)(t1) . . . Θ(N)(t1)
...

...
. . .

...
1 Θ(1)(tK) . . . Θ(N)(tK)

 . (33)

Further, by defining

∆ =
[
ψ1 . . . ψP β

]
, ai =

[
cT

i1 . . . cT
iP bT

i

]T
(34)

and collecting all components, (29) reveals the bordered-block-diagonal structure of the
RTVF least squares system:


∆ 0 . . . 0 φ1
0 ∆ . . . 0 φ2
...

...
. . .

...
...

0 0 . . . ∆ φP




a1
a2
...

aP
d

 ≈ 0. (35)

Standard techniques can be employed to avoid the all-zero trivial solution, as ex-
plained in [26,35].

As in standard TDVF, once the set of unknown coefficients is found by solving (35),
the zeros zn of the denominator D(s) are computed and used as initial poles for the next
iteration. The process is repeated until convergence. Pseudocode for RTVF is provided in
Algorithm 1. The final steps (lines 8–10) estimate the residues of a rational approximation
based on the fixed poles obtained from the pole relocation process (lines 1–7). In line 10,
the vector ỹi collects all time samples of the i-th small-signal output component.

Algorithm 1 The RTVF algorithm

Input: Time samples u(tk), y(tk), sampling frequency Fs, starting poles {q1, . . . , qN}, maximum
iteration number νmax

Output: Estimated transfer function H(s)
1: Compute ũ(tk)← u(tk)− u(t1), ỹ(tk)← y(tk)− y(t1)
2: for ν = 1, .., νmax do
3: Compute filtered signals ỹ(n)i (tk), ũ(n)

i (tk), Θ(n)(tk)
4: Build and solve the least squares problem (35)
5: Compute the zeros zn of denominator D(s) in (7)
6: Set qn ← zn
7: end for
8: Set D(s) = 1
9: Compute filtered signals ũ(n)

i (tk), Θ(n)(tk)
10: Build matrix ∆ and solve ∆ai ≈ ỹi for i = 1, . . . , P
11: return: H(s) = N(s), where Nij(s) is numerator of (6)
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7. Numerical Results

In this section, we test RTVF in three different settings. First, we analyze its perfor-
mance in the context of high order and high dimensional synthetic test systems. Next, we
test its ability to model individual generator dynamics in the 39-bus system. Finally, we
test its ability to model aggregated “wide area” dynamics in the 39-bus system.

7.1. Consistency

We tested the RTVF consistency by running a systematic experimental campaign over
a set of synthetic randomly generated LTI reference systems, with the objective of checking
whether RTVF could provide accurate estimates of all system poles. All modeled systems
shared the same dynamic order of N = 10, but had different sizes, with P ranging from 2
to 30. The set of input-output data were generated as colored noise which showed a flat
power spectrum up to angular frequency ωmax, where the fastest pole of the reference
system appeared. The sampling frequency was fixed to Fs = 10 ωmax/2π, and the total
number of collected samples was K = 5000 in all cases. The modeling window started at
sample k = 250.

Three metrics were used to assess performance of RTVF:

• the consistency of the pole estimates, as measured by the Hausdorff distance dH(P ,Q)
between the set of exact poles P = {p1, . . . , pN} of the true system and the set of
numerically computed poles Q = {q1, . . . , qN}; we recall that the Hausdorff distance
between two sets P and Q is defined as

dH(P ,Q) = max{sup
p∈P

inf
q∈Q
||p− q||, sup

q∈Q
inf
p∈P
||p− q||}, (36)

• the worst-case time domain output error, computed as

E∞ = max
i=1,...,P

||yi − y̆i||∞, (37)

• and the RMS-normalized maximum error, computed as

ERMS
∞ = max

i=1,...,P

||yi − y̆i||∞
||y̆i||2

. (38)

The experiments showed that RTVF recovered the system poles almost exactly, with
a set distance dH(P ,Q) ≤ 10−10 for all 29 test cases. Similar results were obtained from
the output errors: both E∞ and ERMS

∞ were less than 10−11. As Figure 1 shows, there is
no practical difference between the model and the output data samples. In this idealized
setting, we conclude that the performance of RTVF is excellent across all investigated
metrics.

To further test the consistency of RTVF, we simulated the presence of measurement
noise on the input and output signals (for the case where P = 2, N = 10). Signal corruption
was performed by adding a vector of zero-mean Gaussian random variables xn to any
input or output small-signal vector x̃ as

x̃N = x̃ + xn, (39)

with a prescribed signal to noise ratio

α = SNR = 20 log
RMS{x̃}
RMS{xn}

. (40)
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Figure 1. Time domain modeling results for a synthetic test case with P = 2. The modeling window
starts after 24 s, the validation window starts at 372 s.

In our experiments, we considered increasing levels of SNR, ranging from 10 to
100, with resolution steps of 2. For each level of SNR, we modeled R = 50 different
synthetic systems, and we computed the average Signal to Error Ratio (SER) both in time
and frequency domain, which is defined as follows. Let z be a vector collecting the samples
of either a reference time-domain output signal or a target frequency-domain transfer
matrix element, and zM the corresponding response of one of the R models. Then for this
signal the SER is defined as

SER = 20 log
RMS{z}

RMS{z− zM}
. (41)

For any fixed SNR level, we computed the time-domain TD-SER by averaging the
performance induced by (41) over the R models and the two output signals. The frequency-
domain FD-SER was computed in the same way, by averaging over the transfer matrix
elements. These two metrics are shown in the top panel of Figure 2.

The meaning of the SER being above or below the black line threshold is that RTVF is
either rejecting or amplifying the presence of the noise on the data, respectively. Since the
TD-SER is always above the plane bisector (solid black line), RTVF is able to partially reject
the presence of measurements noise in the training data. This noise rejection property is
expected, since the basis functions involved in the estimation procedure effectively filter
the noisy input and output signals via (5). On the other hand, FD-SER follows the bisector
almost exactly, confirming also a good frequency-domain accuracy.

The noise-corrupted training input signals for a representative test case for SNR = 16
are depicted in the middle panel of Figure 2, whereas the corresponding extracted model
is validated against the reference time-domain output in the bottom panel. Even with
this significant amount of noise, the time-domain prediction capabilities of the model are
excellent.
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Figure 2. Top panel: the trend of TD-SER and FD-SER against the SNR. Middle panel: corrupting one
training input signal (solid line) with SNR = 16 (a cloud of R = 50 different realizations are depicted
in a grey shade). Bottom panel: response of a time domain model extracted from one noisy data
realization (SNR = 16) compared to the reference noise-free signal.
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7.2. Generator Modeling in the IEEE 39-Bus System

In order to test the performance of RTVF in a simulated power system setting, we
collected data from time domain simulations performed on the IEEE 39-Bus New England
system. This system includes 10 generators and 19 ZIP loads; the associated load, network,
and generator models and numerical parameters were taken directly from [36]. Accordingly,
each generator was modeled as a 6th order synchronous machine with 3rd order automatic
voltage regulators and power system stabilizers; additionally, each generator was outfitted
with a 3rd order turbine governor (Type I) [37]. Each generator system, with its three
controllers, had a total of 15 dynamical states. The interaction between the generator, its
controllers, and the network is shown in Figure 3. All time domain simulations were
performed using MATLAB’s DAE solver ode23t by setting relative and absolute error
tolerances to 10−7 and 10−8, respectively.

Figure 3. Shown is the interaction between the generator, its three controllers, and the network. The
PMU collects data at the generator’s point of connection.

Load Perturbations

In order to mimic ambient load fluctuations, we applied an Ornstein-Uhlenbeck (OU)
process [38] to the active and reactive power demands at each load. The dynamics of these
processes are given by τu̇p = −up + ηp and τu̇q = −uq + ηq, where ηp, ηq are zero-mean
Gaussian variables, and the “load reversal” time constant τ was set to 50 s. We further
applied a low-pass filter (LPF), with a cutoff frequency of ∼9 Hz, to the OU variables
such that û = LPF{u}. This filtering operation was applied because dynamics above
this frequency range become inconsistent with the quasi-stationary phasor approximation
used in modeling the network’s dynamics. Therefore, high frequency load behaviour is
effectively neglected. Finally, these filtered OU variables were parameterized with time
variable t using a cubic spline interpolation and applied to the individual ZIP loads via

P(t, V) = P0(1 + β · ûp(t))
(
aZV2

+ aIV
1
+ aPV0) (42)

Q(t, V) = Q0(1 + β · ûq(t))
(
bZV2

+ bIV
1
+ bPV0), (43)

where V ≡ V/V0. As a final step, scalar variable β in (42) and (43) was experimentally
tuned to a numerical value of β = 50; this tuning generated load perturbations whose
corresponding network voltage perturbations approximately matched those of real PMU
data (in terms of signal strength).

We then applied RTVF to data measured at the machine-network interface in order
to model a single generator’s closed-loop dynamics. For modeling purposes, we treated
voltage magnitude V(t) and voltage phase θ(t) signals as inputs, and we treated current
magnitude I(t) and current phase φ(t) signals as outputs. The RTVF algorithm sought to
generate a MIMO model with P = 2 and various reduced orders N.

In order to validate the quality of the model generated in the absence of measurement
noise, we refer to the time and frequency domain references provided by the exact machine
equations. The results are provided in Figure 4. The results show the model accuracy is
excellent in both the time and frequency domains, even though the reduced model order
(in this case N = 9) is less than the machine’s true model order (N̄ = 15).
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Figure 4. Noise-free generator model extraction. Top panel: frequency domain validation of the
generator model (order N = 9) against exact machine equations. Bottom panel: the time domain
validation of the model against the current magnitude reference output.

Measurement Noise

In order to further gauge the practical effectiveness of RTVF, we applied measurement
noise to the voltage and current signals measured by the PMU. To apply this noise, we
utilized the procedure outlined in Algorithm 2, where η(t) represents an AWG noise vector.
In this algorithm, an SNR is first specified in terms of magnitude (V, I) signals, and the
proper amount of noise is then added. Next, noise with an appropriate standard deviation
is applied to the phase signals (θ, φ), such that the total vector error (TVE) in the complex
plane would be a circular cloud. In other words, an “equivalent” amount of noise is applied
to both the magnitude and phase data, relative to the specified SNR value.

Top and middle panels of Figure 5 report the frequency- and time-domain fitting
performance of a RTVF model of order N = 7 obtained for SNR = 32 dB. The corre-
sponding noise-corrupted voltage magnitude signals are depicted in the bottom panel.
Compared to the performance in the noise-free setting (Figure 4), these results show that
the frequency-domain model accuracy is still quite acceptable, and that the accuracy in the
time domain seems to be not affected by the presence of noise. Therefore, we conclude that
the time prediction capabilities of RTVF models extracted from noisy signals are potentially
adequate for power system applications.
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Algorithm 2 Measurement Noise Application

Input: Voltage & current signals V(t), I(t), θ(t), φ(t); desired SNR
Output: Noisy voltage & current signals Vn(t), In(t), θn(t), φn(t)

1: σVn ← RMS{V(t)− E{V(t)}} · 10−SNR/20

2: σIn ← RMS{I(t)− E{I(t)}} · 10−SNR/20

3: Vn(t)← V(t) + σVn · η(t)
4: In(t)← I(t) + σIn · η(t)
5: θn(t)← θ(t) + σVn · η(t)/E{V(t)}
6: φn(t)← φ(t) + σIn · η(t)/E{I(t)}

Return: Vn(t), In(t), θn(t), φn(t)

7.3. Wide Area Monitoring in the IEEE 39-Bus System

Finally, as a third experiment, we tested RTVF’s ability to perform “wide area” mon-
itoring in the 39-Bus system via predictive modeling. The proposed approach is here
compared with the ARX modeling [21,39] and the standard Time Domain Vector Fitting
scheme applied without the inclusion of initial conditions estimation. To do so, we mea-
sured the simulated current flowing across line 16–19, as shown in Figure 6, along with the
voltage perturbations on bus 16. Subsequently, we used the resulting time domain data
(i.e., V(t), θ(t), I(t), φ(t)) to model the linearized dynamics of the grey box depicted in
Figure 6, consisting of two generators, a load, and their interconnecting lines. The stochas-
tic perturbations at the load were assumed negligible, such that the observed dynamics
were fully deterministic. We collected the data at a 60 Hz sampling rate for a total duration
of 500 seconds, using the training subset t ∈ [100, 360] s to generate the models using the
three considered methods. The dynamics of this wide area had N̄ = 30 full order states, but
using the ambient PMU data, we were able to derive a reduced order model of dynamic
order N = 13.

The results are shown in Figure 7, where we compare the accuracy of the models in
terms of output current magnitude and phase (time domain). The results we provide are
referred to time domain validation data, that were not used for model generation, and
that are therefore meaningful to validate the models’ respective qualities; for the sake of
visualization, we used a different y-axis scale for the current magnitude signal returned by
the ARX model (right y-axis in the figure top panel). We observe that the proposed RTVF
method outperforms ARX and TDVF algorithms, providing highly accurate predictions.
We remark that, in principle, the application of TDVF in its standard formulation is not
even conceivable in the considered scenario due to the presence of concurrent inputs, which
were here handled by means of the proposed modified scheme of Section 6. Nevertheless,
the experiments confirm that including the effect of the initial conditions is crucial to
deriving a meaningful model. This is even more evident when the frequency responses of
the models are compared with those of the reference system, as reported in Figure 8 for
the two off-diagonal elements of the transfer matrix; the remarkable accuracy of the RTVF
model is not achieved by the ARX and TDVF algorithms.
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Figure 5. Generator model training from noisy data (SNR = 32). Top panel: frequency responses.
Middle panel: small signal current magnitude. Bottom panel: noise-corrupted input training signals
(samples from a cloud of R = 100 different realizations depicted with a shade of grey).

In the bottom panel, we showcase the model’s excellent frequency domain accuracy
by comparing it against the two off-diagonal elements of the reference transfer function.
RTVF’s capacity for accurately modeling aggregated power system dynamics, even at the
wide area level, is clearly demonstrated by the high-fidelity results in Figures 7 and 8.
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Figure 6. IEEE 39-bus New England system. The area depicted by the grey box, which geographically
corresponds to a region in southern Massachusetts, US, is used to test RTVF’s ability to perform wide
area predictive modeling.

Figure 7. Wide area test case. Time domain validation of models derived by means of RTVF, ARX, and
TDVF without inclusion of the initial conditions estimate. Top panel: Current magnitude deviation
(note that the left y-axis applies to RTVF and TDVF, while right y-axis refers to ARX; the latter
has difficulties in producing a sound approximation, especially at low frequencies). Bottom panel:
Current phase deviation.
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Figure 8. Selected transfer functions elements estimated by the RTVF, TDVF and ARX models,
compared to the reference (exact) responses.

8. Conclusions

This work proposed a new procedure, termed Real-Time Vector Fitting (RTVF), which
performs real-time predictive modeling of linearized dynamics. While the RTVF algorithm
can be applied across a broad range of dynamical engineering systems, it was specifically
developed to perform real-time predictive modeling of power system dynamics in the
presence of ambient perturbations. Accordingly, RTVF has the following features, both of
which are necessary for practical predictive modeling of power systems:

• It explicitly accounts for the presence of initial state decay in the observed output of a
power system component (e.g., generator, load, or wide-area).

• It can be applied in the face of concurrently active input signals, since this is a practical
constraint for any three-phase power system component modeled using a quasi-
stationary phasor approximation at its terminals.

Furthermore, we compared the performance of RTVF to that of the canonical TDVF
and ARX algorithms. In our experiments, the RMS error committed by RTVF on a single
transfer function element was found to be about one order of magnitude smaller than what
TDVF and ARX allowed for. The latter methods provide very poor prediction at lower
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frequencies due to an incorrect treatment of initial state decay contributions, whereas RTVF
was demonstrated to produce extremely accurate predictions over a broad frequency band.

Given the widescale deployment of PMUs and the emerging stability concerns as-
sociated with low-inertia grids, RTVF provides power system operators with a valuable
tool. This tool, for example, can build real-time models of power system components
whose physical prior models are unknown. It can also validate or enhance prior models
which are supposedly well known. Additionally, since controller parameters (e.g., droop
gain) are often changed at the local level without system operator awareness, extensions
of the RTVF scheme can be used to infer the true value of these parameters in real-time,
as was analogously demonstrated in [25]. Such capability can allow grid operators to
maintain small-signal stability and ensure that generators are properly adhering to market
regulations. To enhance its practical effectiveness, future research will couple RTVF with ad-
vanced noise filtering mechanisms. Also, physically-aware regularization techniques will
be developed to allow operators to more effectively “track” a system’s shifting dynamics
as operating equilibriums evolve over time.
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