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Abstract

We investigate the size of the largest entry (in absolute value) in the inverse of
certain Vandermonde matrices. More precisely, for every real b > 1, let Mb(n) be
the maximum of the absolute values of the entries of the inverse of the n × n matrix
[bij ]0≤i,j<n. We prove that limn→+∞Mb(n) exists, and we provide some formulas for
it.

1 Introduction

Let a = (a0, a1, . . . , an−1) be a list of n real numbers. The classical Vandermonde matrix
V (a) is defined as follows:

V (a) :=


1 a0 a20 · · · an−10

1 a1 a21 · · · an−11
...

...
...

. . .
...

1 an−1 a2n−1 · · · an−1n−1

 .
As is well-known, the Vandermonde matrix V (a) is invertible if and only if the ai are pairwise
distinct [3]. Formulas for the inverse V (a) (when it exists) have been known at least since
1958 [5].

*C. Sanna is a member GNSAGA of the INdAM and of CrypTO, the Group of Cryptography and Number
Theory of Politecnico di Torino.
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In what follows, n is a positive integer and b > 1 is a fixed real number. Let us define
the entries ci,j,n by

[ci,j,n]0≤i,j<n = V (b0, b1, b2, . . . , bn−1)−1, (1)

and let Mb(n) = max0≤i,j<n |ci,j,n|, the maximum of the absolute values of the entries of
V (1, b, b2, . . . , bn−1)−1. The size of the entries of inverses of Vandermonde matrices have
been studied for a long time (e.g., [1]). Recently, in a paper by the first two authors
and Daniel Kane [2], we needed to estimate M2(n), and we proved that M2(n) ≤ 34.
In fact, even more is true: the limit limn→∞M2(n) exists and equals 3

∏
i≥2
(
1 + 1

2i−1

) .
=

5.19411992918 · · · . In this paper, we generalize this result, replacing 2 with any real number
greater than 1.

Our main results are as follows:

Theorem 1. Let b > 1 and n0 = dlogb(1 + 1
b
)e. Then |ci,j,n| ≤ |cn0,n0,n| for i, j ≥ n0. Hence

Mb(n) ∈ {|ci,j,n| : 0 ≤ i, j ≤ n0}.

Theorem 2. Let b ≥ τ = (1 +
√

5)/2 and n ≥ 2. Then Mb(n) ∈ {|c0,0,n|, |c1,1,n|}.

Theorem 3. For all real b > 1 the limit limn→∞Mb(n) exists.

2 Preliminaries

For every real number x, and for all integers 0 ≤ i, j < n, let us define the power sum

σi,j,n(x) :=
∑

0≤h1<···<hi<n
h1,...,hi 6=j

xh1+···+hi .

The following lemma will be useful in later arguments.

Lemma 4. Let i, j, n be integers with 0 ≤ i < n, 0 ≤ j < n− 1, and let x be a positive real
number.

(a) If x > 1, then σi,j,n(x) ≥ σi,j+1,n(x).

(b) If x < 1, then σi,j,n(x) ≤ σi,j+1,n(x).

Proof. We have

σi,j+1,n(x)− σi,j,n(x) =
∑

(h1,...,hi)∈Si,j,n

xh1+···+hi −
∑

(h1,...,hi)∈Ti,j,n

xh1+···+hi ,

where

Si,j,n := {0 ≤ h1 < · · · < hi < n : j ∈ {h1, . . . , hi}, j + 1 /∈ {h1, . . . , hi}}
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and
Ti,j,n := {0 ≤ h1 < · · · < hi < n : j /∈ {h1, . . . , hi}, j + 1 ∈ {h1, . . . , hi}}.

Now there is a bijection Si,j,n → Ti,j,n given by

(h1, . . . , hi) 7→ (h1, . . . , hi0−1, hi0 + 1, hi0+1, . . . , hi),

where i0 is the unique integer such that hi0 = j. Hence, it follows easily that σi,j,n(x) ≥
σi,j+1,n(x) for x > 1, and σi,j,n(x) ≤ σi,j+1,n(x) for x < 1.

Lemma 5. Let i, j, n be integers with 0 ≤ i, j < n, and let x be a nonzero real number. Then

σn−i−1,j,n(x)

xn(n−1)/2−j
= σi,j,n(x−1).

Proof. Note that the subsets A of {0, 1, . . . , n − 1} − {j} of cardinality n − i − 1 are in
one-to-one correspondence with the subsets A′ of cardinality i. The correspondence is given
by the complement A 7→ A′ = {0, 1, . . . , n− 1} − {j} − A. In particular, we have∑

a∈A

a =
∑

k∈{0,1,...,n}−{j}

k −
∑
a∈A′

a =
n(n− 1)

2
− j −

∑
a∈A′

a.

As a consequence, we get that

σn−i−1,j,n(x) =
∑
A

x
∑

a∈A a = xn(n−1)/2−j
∑
A′

x−
∑

a∈A′ a = xn(n−1)/2−jσi,j,n(x−1),

as claimed.

Recall the following formula for the entries of the inverse of a Vandermonde matrix (see,
e.g., [4, §1.2.3, Exercise 40]).

Lemma 6. Let a0, . . . , an−1 be pairwise distinct real numbers. If V (a0, a1, . . . , an−1)
−1 =

[di,j]0≤i,j<n then

dn−1,jX
n−1 + dn−2,jX

n−2 + · · ·+ d0,jX
0 =

∏
0≤i<n
i 6=j

X − ai
aj − ai

.

For 0 ≤ i, j < n define

πj,n :=
∏

0≤h<n
h6=j

|bj − bh|.

We now obtain a relationship between the entries of V (b0, b1, . . . , bn−1)−1 and σi,j,n and
πj,n.
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Lemma 7. Let V (b0, b1, . . . , bn−1)−1 = [ci,j,n]0≤i,j<n. Then

|ci,j,n| =
σn−i−1,j,n
πj,n

(2)

for 0 ≤ i, j < n.

Proof. By Lemma 6, we have ∏
0≤h<n
h6=j

X − bh

bj − bh
=
∑

0≤i<n

ci,j,nX
i.

which in turn, by Vieta’s formulas, gives

cn−i−1,j,n = (−1)i

 ∏
0≤h<n
h6=j

1

bj − bh

 ∑
0≤h1<···<hi<n

h1,...,hi 6=j

bh1+···+hi (3)

for 0 ≤ i < n. The result now follows by the definitions of σ and π.

Next, we obtain some inequalities for π.

Lemma 8. Define n0 = dlogb(1 + 1
b
)e. Then

πj,n ≤ πj+1,n for n0 ≤ j < n.

Proof. For 0 ≤ j < n− 1, we have

πj+1,n :=
∏

0≤h<n
h6=j+1

|bj+1 − bh| = bn−1
∏

0≤h<n
h−16=j

|bj − bh−1| = bn+j−1 − bn−2

bn−1 − bj
πj,n.

A quick computation shows that the following inequalities are equivalent:

bn+j−1 − bn−2

bn−1 − bj
≥ 1 ⇐⇒ bj ≥ bn−1 + bn−2

bn−1 + 1
.

Let n0 be the minimum positive integer such that bn0 ≥ 1 + 1
b
. Then n0 = dlogb(1 + 1

b
)e.

Hence, for n0 ≤ j < n, we have

bj ≥ 1 +
1

b
>
bn−1 + bn−2

bn−1 + 1
,

so that
πj,n ≤ πj+1,n for n0 ≤ j < n. (4)

Finally, we have the easy

Lemma 9. For 0 ≤ i, j < n we have ci,j,n = cj,i,n.

Proof. V (b0, b1, . . . , bn−1) is a symmetric matrix, so its inverse is also.
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3 Proof of Theorem 1

Proof. Suppose i, j ≥ n0. Then

|ci,j,n| =
σn−i−1,j,n
πj,n

(by (2))

≤ σn−i−1,n0,n

πj,n
(by Lemma 4 (a))

≤ σn−i−1,n0,n

πn0,n

(by Lemma 8)

= |ci,n0,n| (by (2)),

and so we get
|ci,j,n| ≤ |ci,n0,n|. (5)

But
ci,n0,n = cn0,i,n (6)

by Lemma 9. Make the substitutions n0 for i and i for j in (5) to get

|cn0,i,n| ≤ |cn0,n0,n|. (7)

The result now follows by combining Eqs. (5), (6), and (7).

4 Proof of Theorem 2

Proof. Since b ≥ τ , it follows that b ≥ 1 + 1/b. Hence in Theorem 1 we can take n0 = 1, and
this gives Mb(n) ∈ {|c0,0,n|, |c1,0,n|, |c0,1,n|, |c1,1,n|}. However, by explicit calculation, we have

σn−1,1,n = bn(n−1)/2−1

σn−2,1,n = bn(n−1)/2−1 +
∑

(n−1)(n−2)/2−1≤i≤n(n−1)/2−3

bi,

so that
σn−1,1,n ≤ σn−2,1,n. (8)

Hence

|c1,0,n| = |c0,1,n| (by Lemma 9)

=
σn−1,1,n
π1,n

(by (2))

≤ σn−2,1,n
π1,n

(by (8))

= |c1,1,n| (by (2)),

and the result follows.
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5 Proof of Theorem 3

Proof. We have

|ci,j,n| =
σn−i−1,j,n
πj,n

=
σn−i−1,j,n(b)∏
0≤h<n
h6=j
|bj − bh|

=
σn−i−1,j,n(b)∏

0≤h<n
h6=j

(bh · |bj−h − 1|)

=
σn−i−1,j,n(b)

bn(n−1)/2−j
· 1∏

0≤h<n
h6=j
|bj−h − 1|

= σi,j,n(b−1)
1∏

0≤h<n
h6=j
|bj−h − 1|

,

where we used Lemma 5.
For x < 1 define

σi,j,∞(x) =
∑

0≤h1<···<hi<∞
h1,...,hi 6=j

1

xh1+···+hi
,

with the convention σ0,j,∞(x) := 1.
Hence the limits

`i,j := lim
n→+∞

|ci,j,n|

= lim
n→+∞

σi,j,n(b−1)
1∏

0≤h<n
h6=j
|bj−h − 1|

= lim
n→+∞

σi,j,n(b−1)
∏

0≤h<j

1

bj−h − 1

∏
j<h<n

1

1− bj−h

= lim
n→+∞

σi,j,n(b−1)
∏

1≤s≤j

1

bs − 1

∏
1≤t<n−j

1

1− b−t

= σi,j,∞(b−1)

( ∏
1≤s≤j

1

bs − 1

)(∏
t≥1

1

1− b−t

)
(9)

exist and are finite.
From Theorem 1 we see that

lim
n→+∞

Mb(n) = max
0≤i≤j<n0

lim
n→+∞

|ci,j,n| = max
0≤i≤j≤n0

`i,j,

and the proof is complete.
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From this theorem we can explicitly compute limn→+∞Mb(n) for b ≥ τ .

Corollary 10. Let α=̇2.324717957 be the real zero of the polynomial X3 − 3X2 + 2X − 1.

(a) If b ≥ α, then limn→∞Mb(n) =
∏

t≥1(1− b−t)−1.

(b) If τ ≤ b ≤ α, then limn→∞Mb(n) = b2−b+1
b(b−1)2

∏
t≥1(1− b−t)−1.

Proof. From Theorem 2 we know that for b ≥ τ we have limn→∞Mb(n) ∈ {`0,0, `1,1}. Now
an easy calculation based on (9) shows that

`0,0 =
∏
t≥1

(1− b−t)−1

`1,1 =
b2 − b+ 1

b(b− 1)2

∏
t≥1

(1− b−t)−1.

By solving the equation b2−b+1
b(b−1)2 = 1, we see that for b ≥ α we have `0,0 ≥ `1,1, while if

τ ≤ b ≤ α we have `1,1 ≥ `0,0. This proves both parts of the claim.

Remark 11. The quantity Mb(n) converges rather slowly to its limit when b is close to 1.
The following table gives some numerical estimates for Mb(n).

b limn→∞Mb(n)
3 1.785312341998534190367486

α
.
= 2.3247 2.4862447382651613433

2 5.194119929182595417
τ
.
= 1.61803 26.788216012030303413

1.5 67.3672156
1.4 282.398
1.3 3069.44
1.2 422349.8

6 Final remarks

We close with a conjecture we have been unable to prove.

Conjecture 12. Let b > 1 and n0 = dlogb(1+ 1
b
)e. Then, for all sufficiently large n, we have

Mb(n) = |ci,i,n| for some i, 0 ≤ i ≤ n0.
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