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Abstract

We investigate the size of the largest entry (in absolute value) in the inverse of
certain Vandermonde matrices. More precisely, for every real b > 1, let My(n) be
the maximum of the absolute values of the entries of the inverse of the n X n matrix
[bij]0§i7j<n. We prove that lim,_, .o Mp(n) exists, and we provide some formulas for

1t.

1 Introduction

Let a = (ag,a1,...,a,-1) be a list of n real numbers. The classical Vandermonde matriz
V(a) is defined as follows:

1 a  a} ag™!
1 a & a?!
V(a) = : : :
2 n—1
1 apn—1 a;_, a,_1

As is well-known, the Vandermonde matrix V'(a) is invertible if and only if the a; are pairwise
distinct [3]. Formulas for the inverse V' (a) (when it exists) have been known at least since
1958 [5].

*C. Sanna is a member GNSAGA of the INdAM and of CrypTO, the Group of Cryptography and Number
Theory of Politecnico di Torino.
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In what follows, n is a positive integer and b > 1 is a fixed real number. Let us define
the entries ¢; j , by

[Cigmlosijen = V(07,0707 ., 0" )7, (1)
and let My(n) = maxo<;j<n |Cijn|, the maximum of the absolute values of the entries of
V(1,b,0%,...,0" 1)~ The size of the entries of inverses of Vandermonde matrices have

been studied for a long time (e.g., [1]). Recently, in a paper by the first two authors
and Daniel Kane [2], we needed to estimate Msy(n), and we proved that My(n) < 34.
In fact, even more is true: the limit lim,_,., Ms(n) exists and equals 3 ][], (1 + ﬁ) =
5.19411992918 - - - . In this paper, we generalize this result, replacing 2 with any real number
greater than 1.

Our main results are as follows:

Theorem 1. Let b > 1 and ng = [logy(1 + 3)]. Then |¢;jn| < |Cngnom| fori,j > ng. Hence
My(n) € {|cijnl + 0<14,7 <mnp}.

Theorem 2. Let b > 7 = (1++/5)/2 and n > 2. Then My(n) € {|cooml;|c1.1n]}-

Theorem 3. For all real b > 1 the limit lim,,_,o, My(n) exists.

2 Preliminaries

For every real number z, and for all integers 0 < 7,7 < n, let us define the power sum

Conla) = S
0<h1 < <h;i<n
h17~"7h7l7£j
The following lemma will be useful in later arguments.

Lemma 4. Let i,j,n be integers with 0 <1 <n, 0 < j<n—1, and let x be a positive real
number.

(a) If x > 1, then 0;;,(z) > 0 j1+1.0(2).

(b) If v <1, then 0;;,(z) < 0 j11.0(x).

Proof. We have

hit+h; _ hit-+h;

Oijr1n(T) = Oijn(T) = T T :

(h1,..,hi)ESi jin (h1,.,hi)E€T 5

where

Si’j’niz{0§h1<"'<hi<nIjE{hl,...,hi},j+1¢{hl,...,hi}}



and

E,j7n32{0§h1<"'<hi<nZj¢{h1,...,hi},j—|—1E{hl,...,hi}}.

Now there is a bijection S; ;,, — T}, given by
(h/la RN hz) — (h17 cee hiofl, hio + 1, hi0+1’ R ]’LZ),

where i is the unique integer such that h;, = j. Hence, it follows easily that o, ;,(x) >
Ji,j+1,n(x) for x > 1, and O'i,j,n(ﬁf) < Ji,j+1,n(-r) for x < 1. ]

Lemma 5. Let i, j,n be integers with 0 < 1,7 <n, and let x be a nonzero real number. Then

On—i—1jn(T) (@)
nn—1)j2—;  ZignlT )

Proof. Note that the subsets A of {0,1,...,n — 1} — {j} of cardinality n —i — 1 are in
one-to-one correspondence with the subsets A’ of cardinality i. The correspondence is given
by the complement A — A" = {0,1,...,n — 1} — {j} — A. In particular, we have

Z a= Z k— Z a= -7 - Z a.
acA ke{0,1,...n}—{j} ac A’ ac A

As a consequence, we get that

Un—i—l,]n E T 2aca _xn(n 1)/2—j E r~ Daea @ — n(n 1)/2— ]0-7,,], (xfl)7

as claimed. n

Recall the following formula for the entries of the inverse of a Vandermonde matrix (see,
e.g., [4, §1.2.3, Exercise 40)).

Lemma 6. Let ay,...,a, 1 be pairwise distinct real numbers. If V(ag,ay,...,a, 1) =

d; ;lo<ij<n then

X — a;
d’nfl,anil + dn727an72 + ct + do’jXO — H ' .

0<icn %3 T i
i#£]
For 0 <4,j < n define
Tjn = H ) —b"|.
0<h<n
hts
We now obtain a relationship between the entries of V(°,0,... 6" 1)~! and 0, ;, and

7Tj7n'



Lemma 7. Let V(bo, bl, c 7bn71)71 = [Ci,j,n]OSi,j<n- Then
On—i—1,,
|Cijn] = ———
Tjn
for 0 <1,5 <n.

Proof. By Lemma 6, we have

X |
I 57— = 2 cunX"
0<h<n 0<i<n
Wi

which in turn, by Vieta’s formulas, gives

Cn—i—1,jn = (—1)° H - i m Z pltthi

0<h<n 0<h1< - <h;<n
h#j hi,...;hi#j

for 0 < i < n. The result now follows by the definitions of ¢ and 7.

Next, we obtain some inequalities for 7.
Lemma 8. Define ng = [log,(1+ 1)]. Then

Tjn S Ti+1mn fOT No S] <n.

Proof. For 0 < j <n —1, we have
n+j—1 bn72

| | b
= [[ W =0 =0 [ W =" =

0<h<n 0<h<n
h#j+1 h—1#j
A quick computation shows that the following inequalities are equivalent:
bn+j—1 _ bn—2 ) bn—l + bn—2
_—>1 = V> —
=1 _pi = L N |

Let ng be the minimum positive integer such that 5" > 1+ ;. Then ng = [log,(1 + )]

Hence, for ng < j < n, we have

so that
Tjim < Mig1n forng < j < n.

Finally, we have the easy
Lemma 9. For 0 <1i,j <n we have ¢; j, = Cj;n-

Proof. V(b°,b',...,b"7!) is a symmetric matrix, so its inverse is also.

4
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3 Proof of Theorem 1

Proof. Suppose i, j > ng. Then

On—i—1,jn
|Cijn| = == (by (2))

7Tj7n

< nithnon (y Lemma 4 (a))
7Tj7'n,

< Znlm by Lemma )
7Tn0,n

= |Cingn| (by (2)),

and so we get

|Cigm| < |Cimounl-
But

Cing,n — Cno,i,n

by Lemma 9. Make the substitutions ng for ¢ and ¢ for j in (5) to get

|Cn0,i,n| < |Cn0,no,n|'

The result now follows by combining Eqs. (5), (6), and (7).

4 Proof of Theorem 2

Proof. Since b > 7, it follows that b > 1+ 1/b. Hence in Theorem 1 we can take ny = 1, and
this gives My(n) € {|co0nls |c1.0nls [C01n]s |c110]}. However, by explicit calculation, we have

Ontim = bn(n—l)/2—1
Opn—21n = bn(nfl)/Z—l + Z bia
(n—1)(n—2)/2—1<i<n(n—1)/2-3
so that
On—1,1,n S On—21,n-
Hence
100 = |co1n| (by Lemma 9)
On—1,1,n
= TnoLln (y (2
=L by (2)

< In2ln (y (8))

T1,n

= leraml  (by (2)),

and the result follows.



5 Proof of Theorem 3

Proof. We have

. :Un—i—l,j,n
il = =
O'nfifl,j,n(b)

 Tlo<hen [b — 0]
hitj

Un—i—l,j,n(b)

 losnen (8- [p9=" = 1])
h#j
_ Un—i—l,j,n<b) . 1
bn(n—l)/Z—j H0§h<n |bj—h _ 1|
Rt
1

= 0ijn b_l : )
s5J» ( )H0§h<n |b]_h _ 1|
h#j

where we used Lemma 5.
For x < 1 define

1
Oijee(t) = Y

0<hy <--<h;<oo

hi,...hi#j
with the convention g j () := 1.
Hence the limits
big = lm el
= lim o;;,(b7%) !
n——+o0 LI H0§h<n |bj_h — 1|
h#j

oo bith —1 1—bi—h

0<h<y j<h<n
1 1

I o -1

o nl—lglooaw’n(b ) H b -1 H 1—-bt
1<s<y 1<t<n—j

1 1 1
1<s<j t>1

exist and are finite.
From Theorem 1 we see that

lim My(n)= max lm |¢;,|= max £,
n—+o0 0<i<j<ng n—+oo 7’ 0<i<j<ng '
and the proof is complete. O



From this theorem we can explicitly compute lim,,,  My(n) for b > 7.
Corollary 10. Let a=2.324717957 be the real zero of the polynomial X3 — 3X? +2X — 1.
(a) If b > a, then lim, oo My(n) = [[,51(1 =07")7".
(b) If 7 <b < a, then lim, o My(n) = L] (1 - b7) L,

Proof. From Theorem 2 we know that for b > 7 we have lim,, o, My(n) € {loo,¢11}. Now
an easy calculation based on (9) shows that

boo =[x =07

t>1
b2 —b+1
:—”1_ —t)—1

b b(b— 1) (1=67)

t>1

By solving the equation Z?;ffg% = 1, we see that for b > o we have {yy > ¢;;, while if

7 < b < a we have {;; > {yo. This proves both parts of the claim. O

Remark 11. The quantity My(n) converges rather slowly to its limit when b is close to 1.
The following table gives some numerical estimates for M(n).

b lim,, o0 My(n)

3 1.785312341998534190367486
o = 2.3247 | 2.4862447382651613433

2 5.194119929182595417
7= 1.61803 | 26.788216012030303413

1.5 67.3672156

1.4 282.398

1.3 3069.44

1.2 422349.8

6 Final remarks

We close with a conjecture we have been unable to prove.

Conjecture 12. Let b > 1 and ng = [log,(1+7)]. Then, for all sufficiently large n, we have
My(n) = |ci;in| for some i, 0 < i < ny.
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