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Abstract: The orientation of a magneto and inertial measurement unit (MIMU) is estimated by means
of sensor fusion algorithms (SFAs) thus enabling human motion tracking. However, despite several
SFAs implementations proposed over the last decades, there is still a lack of consensus about the best
performing SFAs and their accuracy. As suggested by recent literature, the filter parameters play a
central role in determining the orientation errors. The aim of this work is to analyze the accuracy
of ten SFAs while running under the best possible conditions (i.e., their parameter values are set
using the orientation reference) in nine experimental scenarios including three rotation rates and
three commercial products. The main finding is that parameter values must be specific for each SFA
according to the experimental scenario to avoid errors comparable to those obtained when the default
parameter values are used. Overall, when optimally tuned, no statistically significant differences are
observed among the different SFAs in all tested experimental scenarios and the absolute errors are
included between 3.8 deg and 7.1 deg. Increasing the rotation rate generally leads to a significant
performance worsening. Errors are also influenced by the MIMU commercial model. SFA MATLAB
implementations have been made available online.

Keywords: MIMU; orientation estimation; filter parameters; filter comparison; wearable sensors;
sensor fusion; human motion; Kalman filters; complementary filters; optimal parameters

1. Introduction

The accurate estimation of the orientation of a rigid body from the recordings of minia-
turized low-cost magneto-inertial measurement units (MIMUs) is still an open challenge
for the human movement analysis community. Errors affecting the orientation estimates
have a direct negative impact on the quality of estimated quantities in both angular and
linear kinematics, therefore limiting the full exploitation of inertial sensing in monitoring
daily-life physical activities, as well as in clinical and sports applications [1].

In its full configuration, a MIMU embeds a triaxial accelerometer which measures the
specific force (i.e., the vector difference between the coordinate and the gravity accelera-
tions), a triaxial gyroscope which measures the angular rate, and a triaxial magnetometer
which senses the local magnetic field (i.e., the vector sum between the Earth’s magnetic field
and the external magnetic fields created by ferromagnetic disturbances). The sensor fusion
approach aims at estimating the absolute orientation of the MIMU with respect to a global
coordinate system (GCS), usually defined to have a vertical axis aligned with the gravity
direction and one horizontal axis direction aligned with the Earth’s magnetic north, by
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exploiting the complementary characteristics of the signals recorded by the MIMU. The first
step consists in integrating the kinematics equation which links the angular rate with the
orientation change over time to obtain a first approximation of the orientation estimate. The
initial conditions for the integration can be obtained by an absolute orientation estimate by
using only the accelerometer and the magnetometer measurements in absence of motion [2].
However, the orientation estimated this way is prone to drift due to the integration of the
slow-varying bias affecting the gyroscope measurements [3]. To cope with this problem the
accelerometer and the magnetometer measurements are employed to correct the drift in
both roll and pitch angles (also jointly known as inclination) and yaw angle (also known as
declination or heading). Nonetheless, such correction shows some limitations. In fact, the
inclination estimated by the accelerometer is highly reliable only during static conditions
(i.e., when the coordinate acceleration is negligible and only the gravity direction is sensed).
Moreover, the heading resulting from the magnetometer measurements needs to be dealt
with care due to the presence of external magnetic fields. Researchers from different fields
such as navigation and biomechanics have proposed several sensor fusion implementa-
tions over the years, including machine and deep learning approaches, to provide accurate
orientation estimates using MIMUs [2–23]. The large majority of the published sensor
fusion algorithms (SFAs) can be grouped in two main classes: Kalman filters (KF) [24]
and complementary filters (CF). In the last decades, several formulations of both classes
have been proposed including different mathematical orientation representations (e.g.,
quaternion, rotation matrix, Euler angles etc.), different Kalman filter formulations (direct
or indirect, linear, extended, unscented, etc.), and different strategies to fuse the signal
information (algebraic or optimization) [15]. Despite the large number of studies aimed
at comparatively evaluating different sensor fusion algorithms [2,7–9,14–18,22,25–29] and
type of sensors (SFA inter-consistency) [30], contradictory results have been observed and
the literature is still inconclusive about the expected level of accuracy associated to the
MIMU orientation estimation.

Based on the existing body of literature, it is difficult to draw conclusions regarding the
“best” algorithm and filtering approach (e.g., CF or KF). Furthermore, errors appear to be
highly variable depending on the experimental scenario, commercial device, and algorithm,
thus making the generalization of the results impossible [18]. A way of looking at the body
of literature is to group studies proposing novel algorithms (“original algorithm studies”)
([2,7–9,14–18,22]) and studies focusing on the comparison of existing algorithms/software
packages without proposing new ones (“comparative studies”) ([25–28]). A summary
of the results in “comparative studies” and “original algorithm studies” are reported in
the Appendix A (Tables A1 and A2). As a general observation, the magnitude of the
errors reported in “comparative studies” are usually higher than those reported in the
“original algorithm studies”, up to one order of magnitude. For example, the errors
for Madgwick’s filter reported in the original study [9] amounted to about 1 deg, while
in [25,28], which involved more challenging experimental conditions, errors were greater
than 13 deg. Furthermore, the filter proposed by Guo et al., in [17] was compared with
the KF by Valenti et al. [13] for which the errors were twice as large than those reported
in the original article. These differences may be due to a number of reasons. First, in the
“comparative studies” the experimental conditions under which SFAs are tested are often
different from those employed in the original paper in terms of hardware, sensor noise,
rotation rates, accelerations magnitude, ferromagnetic disturbances, type of motion, etc.
In addition, when a new SFA is presented and its performance evaluated, the proponents
often know how to optimally tune the SFA for the specific operating conditions based
either on ground-truth knowledge or following a trial-and-error approach [31]. However,
when non-experts apply SFAs to different experimental datasets, or in specific human
movement applications, the SFA optimization can be difficult resulting in a performance
deterioration. It has often been observed that feeding the proper parameter values to
any SFA is crucial [22,27,32]. Several intrinsic and extrinsic factors affect the choice of the
parameter values, among them the most influencing are amplitude of motion, sensors
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noise specification, time required by the algorithm to reach convergence, and the amount
of ferromagnetic disturbances [31,33].

Based on the considerations above, it is evident that carrying out any “fair”, meaning-
ful and generalizable comparative evaluation among SFAs requires the SFAs parameters
to be properly tuned and used under identical experimental conditions (i.e., using the
same dataset).

The primary aim of this work is to perform a thorough comparative evaluation of the
accuracy of ten of the most popular SFAs proposed in the literature by considering experi-
mental data recorded by three commercial products (Xsens-MTx (Xsens, Enschede, The
Netherlands), APDM-Opal (APDM INC., Portland, OR, U.S.A.), and Shimmer-Shimmer3
(Shimmer Sensing, Dublin, Ireland)) and for three rotation rates (slow, medium, and fast
motions) using the orientation provided by a multi-camera stereo-photogrammetric system
(SP) as ground truth. For the sake of analysis generalizability, the SFAs performance is
assessed under optimal and default parameters tuning. In the optimal tuning configura-
tion, parameters are determined by minimizing the absolute orientation error with respect
to the gold standard for each experimental scenario, allowing for the assessment of the
filter performance under its best possible conditions. In addition, the errors obtained
using the default parameter values as defined by the SFA proponents were also computed
to highlight the impact of using non-tuned and generic parameter values for different
experimental scenarios. Computation time of the different SFAs was also evaluated.

To the best of our knowledge, this study is the most comprehensive study evaluating
a considerable number of SFAs under optimal filter parameter tuning condition and under
various experimental scenarios.

2. Materials and Methods
2.1. Optimal Working Conditions

To work properly, each SFA requires the tuning of a variable number of parameters [32].
In the present context, optimal working conditions refer to the parameter values providing
the lowest absolute average orientation error for a given experimental data recording
(i.e., they are specialized for each dataset) and hence the best achievable performance
(best case scenario). In other words, each parameter value of each SFA was optimally
tuned on each of the nine experimental scenarios (three rotation rates for three commercial
products). The selection of the optimal parameter values is performed relying on the gold
standard orientation. This strategy is implemented exclusively for comparative purposes
and may be replicated only with the aid of a reference orientation (e.g., SP system with
sub-millimeter accuracy).

2.2. Selected Algorithms

A total of ten SFAs, including five complementary filters and five Kalman filters were
selected among the most popular and performing ones: Mahony et al. 2008 [6] (MAH),
Madgiwck et al., 2011 [9] (MAD), Sabatini 2011 [34] (SAB), Valenti et al., 2015 [2] (VAC),
Ligorio and Sabatini 2015 [12] (LIG), Valenti et al., 2016 [13] (VAK), Seel et al., 2017 [16]
(SEL), Guo et al., 2017 [17] (GUO), MATLAB complementary filter R2020a (MCF) which is
the MathWorks implementation of VAC but with only two parameters, MATLAB Kalman
filter R2020a (MKF), which is the MathWorks implementation of the filter by Roetenberg
et al., 2005 [5,35]. The details for each SFA are reported in Table 1 including the total
number of parameters exposed.

As stated in the introduction, all the SFAs are based on the angular velocity integration
to obtain a first approximation of the orientation estimate. The differences are related to
how the accelerometer and magnetometer measurements are used to compensate for the
drift caused by the time integration of the angular velocity and to additional strategies
designed to deal with the linear acceleration and the ferromagnetic disturbances. In the
following, a short description of each filter is given.
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Table 1. Details of each Sensor Fusion Algorithm (SFA) considered. The # Params column reports the total number of
parameters of each SFA. The p1 and p2 report the description of the parameter tuned to detect the optimal values. a.u. =
arbitrary units.

CF # Params p1 Default p2 Default

MAH 2 kp—inverse gyroscope weight 1 rad/s ki—weight for online bias
estimation 0.3 rad/s

MAD 1 β—inverse gyroscope weight 0.1 rad/s / /

VAC 9 gmag—magnetometer weight 0.01 a.u. ath2—threshold for
accelerometer vector selection 0.2 a.u.

SEL 4 τacc—accelerometer time
constant 1 s τmag—magnetometer time

constant 3 s

MCF 2 gmag—magnetometer weight 0.01 a.u. / /

KF # Params p1 Default p2 Default

SAB 6 σgyr—inverse gyroscope
weight 0.007 rad/s ath—threshold for

accelerometer vector selection 40 mg

LIG 6 σgyr—inverse gyroscope
weight 1 rad/s

cb—Gauss-Markov parameter
of the prediction model to set

the variance of external
acceleration and

ferromagnetic disturbances

1 a.u.

VAK 3 σgyr—inverse gyroscope
weight 0.004 rad/s σacc—inverse accelerometer

weight 0.014 m/s2

GUO 3 σgyr—inverse gyroscope
weight 0.001 rad/s / /

MKF 8 σ2
gyr—inverse gyroscope

weight 9.14 × 10−5 (rad/s)2 / /

MAD is a CF in which the accelerometer and the magnetometer measurements are
fused by means of a gradient descent algorithm. For the magnetic readings, only the
horizontal projection is used to correct the orientation. The fusion process is governed by a
unique parameter. A low value of it gives more weight to the gyroscope measurements.
MAH is a CF which considers the discrepancy between the measured Earth’s fixed vector
(gravity and magnetic field) and their estimates obtained using the previous orientation.
This discrepancy (called error) is then weighted by a parameter and subtracted from
the gyroscope signal before its integration. As opposite to MAD the magnetic readings
influence both the attitude and heading. In neither filter is it possible to weigh differently
the accelerometer and the magnetometer contributions and no strategy is implemented
to compensate for the linear acceleration or the magnetic disturbances. SEL is a CF with
independent accelerometer-based inclination correction and magnetometer-based heading
correction. The latter is purely horizontal, which ensures that magnetic disturbances cannot
affect the inclination. The algorithm is parameterized via two correction constants for the
inclination and heading disagreements, one optional bias estimation parameter and an
adaptation factor that reduces the weight of the accelerometer readings during dynamic
motions. VAC is a CF which employs the accelerometer readings to correct the inclination
by comparing the actual and the observed gravity direction. The magnetometer readings
are then projected onto the horizontal plane and the angle between the observed magnetic
North and the estimated one is used to correct the heading. The two correction processes are
governed by two independent gains. VAC implements a linear two-thresholds method to
progressively reject the measurements whereas their magnitude exceeds the expected value
(i.e., 9.81 m/s2 and the local magnetic norm, respectively). MCF is the implementation of
VAC by MathWorks from Sensor Fusion and Tracking Toolbox.

VAK, LIG GUO, SAB, and MCF belong to the class of the KFs. As a general rule,
the weight given to the information provided by each of the three sensors is governed by
dedicated parameters. In particular, the higher is the value of these parameters the less
the information provided is trusted. For this reason, they are called “inverse weight”. A
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typical feature of the KF is the possibility to track the disturbances with the “state-vector
augmentation technique”. While on one hand it represents an advantage, on the other hand
each quantity tracked in the state vector must be weighted with dedicated parameters to
account for the uncertainty in their modelling and, above all, a large state vector dimension
may result in observability problem (i.e., the information contained in the output variables
is no longer sufficient to completely describe the system behavior).

VAK employs the same algebraic approach of VAC to correct the orientation, but
as opposite to VAC no thresholds are used to reject linear accelerations or ferromagnetic
disturbances which are instead employed in SAB. In addition, SAB allows the modelling
of the ferromagnetic disturbances, seen as a time-variant bias superimposed to the mag-
netometer readings. LIG consists of two KFs which separately estimate the inclination
and the heading, using the information provided by the gyroscope/accelerometer and
gyroscope/magnetometer, independently. The two pieces of information are then merged
by using an algebraic method. Linear accelerations and ferromagnetic disturbances are
modelled as a first order Gauss-Markov model. GUO is a KF explicitly designed to perform
fast. To this end, an algebraic approach which fuses the accelerometer and magnetometer
measurements for the orientation correction is adopted and no additional strategy to filter
out the linear accelerations and ferromagnetic disturbances is implemented. MKF is the
MathWorks implementation (Sensor Fusion and Tracking Toolbox) of the filter originally
proposed by Luinge et al. [4] and extended by Roetenberg et al. [5] which is also embedded
in the Xsens software. Differently from the other four KFs described, MKF is an indirect KF,
which means that it minimizes the uncertainty of the orientation error rather than of the
absolute orientation (direct formulation). In this filter, the inclination and heading errors are
separately computed by comparing the actual and the estimated directions of the gravity
and global magnetic field using the information provided by gyroscope/accelerometer and
gyroscope/magnetometer, respectively. These two orientation errors are then included in
the state vector to be minimized. MKF augments its state vector with the gyroscope bias,
acceleration errors (seen as the linear acceleration component in the accelerometer output)
and the ferromagnetic disturbances.

For each SFA, the optimal tuning involved a heuristic space search of the two most
important parameters (namely p1 and p2) when relevant. The decision to tune at most
two parameters was a compromise between the search space dimension and the related
computational time. As a general rule, considering that the gyroscope is the main source of
information in a sensor fusion framework, the parameter related to the weight given to
it was always tuned, when exposed by the SFA. All the remaining parameter values are
set to default. In fact, it has to be said that the accelerometer and magnetometer related
parameters should not be set based on the sensor noise only (i.e., electrical noise) because
in the strict sense it is not representative of real problems affecting the two sensors: the
linear accelerations and the ferromagnetic disturbances.

All the SFA codes have been made available on GitHub website (the link is reported
in “Data Availability Statement” section). All the implementations are written in MATLAB
code. All the details for each implementation are given in the code headers.

2.3. Experimental Setup

Considering that the performance of the SFAs could greatly vary due to the hardware
characteristics, in this study, three pairs of commercial MIMUs were considered: Xsens-
MTx, APDM-Opal, Shimmer-Shimmer3. The specifications for each model are reported
in Tables A3–A5 of Appendix B. A wooden board was used and the three MIMU pairs
were aligned as depicted in Figure 1. A T-square was employed to draw the lines which
ensured the accurate positioning of the MIMUs and the markers. The orthogonal tolerance
of the instrument is reflected in an alignment error lower than 0.2 deg. The MIMUs were
positioned at a relative distance of 50 mm. A total of eight reflective spherical markers
(diameter equal to 14 mm, minimum inter-distance of 85 mm) were located on the board
to provide the orientation reference whose trajectories were acquired by 12 infrared SP
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cameras (Vicon T20, VICON, Yarnton, UK; software: Nexus 2.7). The three central markers
were used to define the SP Local Coordinate System (LCS) aligned with the MIMUs LCS.
The additional five markers were exploited to strengthen the orientation estimation by
using the singular value decomposition (SVD) technique [36]. The board was placed over
an aluminum tripod (to limit the entity of the ferromagnetic disturbances) above a force
platform integrated with the SP and used to synchronize the two systems by means of
mechanical shocks.
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Figure 1. Board equipped with six magneto-inertial measurement units (MIMUs) (relevant local
coordinate system (LCS) in blue) and the eight reflective markers. The three central markers were
used to define the stereo-photogrammetric (SP) system LCS (in green). Board axes (in red) are
coincident with MIMUs and SP system LCSs. Reprinted with permission from ref. [31]. Copyright
2020 IEEE.

2.4. Experimental Protocol

Before starting the experiments, a ten-minute instrument warm-up was performed
to limit the temperature effects on the sensor readings. A first measure consisted of one-
minute static acquisition with the board lying horizontally on the tripod above the force
platform. This recording was used to compute the gyroscope bias which was subtracted
from the angular velocities’ readings. Afterwards, a dynamic recording was executed
to manually orient the board by covering the three rotational degrees of freedom. The
operator held the board at both ends and performed both single-axis and multiaxial
rotations (the acquisitions have been video-recorded and made available). At the end, the
board was placed back on the tripod for another minute. To allow the identification of
the synchronization points, two knocks were given to the board at the beginning and at
the end of the recording. The described protocol was repeated at three different angular
rate conditions. The RMS of the angular velocity of each recording was assessed during
the post processing and amounted at 120 deg/s for a total of 70 s (slow), 260 deg/s for a
total of 45 s (medium), and to 380 deg/s for a total of 30 s (fast). The temperature was kept
constant at about 20 ◦C.

All the acquisitions were conducted in a volume of approximately 1 m3 at a distance
greater than 1 m from the floor. For this reason, the ferromagnetic disturbances could
be neglected as also observed in the post processing by observing the almost constant
magnetometer norm (the maximum difference was limited to 1 µT).

The sampling frequency of the MIMU systems amounted to 100 Hz for Xsens (MT
Manager Version 1.7) and Shimmer (Consensys v.1.5.0), and to 128 Hz for OPAL (Motion
Studio Version 1.0.0.201712300). The calibrated data provided by each software were used
in this work. Optical data were recorded at 100 Hz. All the MIMU synchronized data
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and the SP orientation (computed as described in Section 2.5.1) together with the videos
recorded during the experiment have been uploaded as stated in the Data Availability
Statement section at the end of the manuscript [37].

2.5. Data Processing
2.5.1. SP Data Pre-Processing and Synchronization with MIMUs Signals

Data processing was entirely carried out in MATLAB R2020a (The MathWorks Inc.,
Natick, MA, USA), except for the optical data which were first processed in Nexus 2.7
following the suggestion by Bergamini et al. [25]. The synchronization was performed
in two steps: firstly, all data were delimited by means of the two force and acceleration
peaks recorded by the vertical axes of the SP force plate and of the MIMU accelerometer,
respectively. Afterward, a resampling of all the signals at 100 Hz was executed. To refine
the synchronization, all the MIMU data were aligned with those of SP by cross-correlating
the angular velocity recorded by each gyroscope and that estimated by the three central
markers as described in [38]. The LCS orientation was estimated with respect the GCS
of SP by means of SVD-based technique. The resulting gold standard orientation (qSPG

)
was expressed using quaternion. After trigonometry considerations (taking into account
the cluster size of the three central markers and that the marker position errors amounts
to about 0.1 mm [31,39]), it can be assumed that the errors affecting the gold-standard
orientation are limited to 0.5 deg.

2.5.2. Orientation Estimation and Error Computation under Optimal Conditions

The procedure used for the orientation estimation for each SFA is detailed below and
reported in the pseudocode (Algorithm 1). In the following, the procedure used to obtain
the set of orientations for a given SFA for each of the nine experimental scenarios is briefly
described. Quantities highlighted in bold are intended to be vectors or matrices.

An algebraic quaternion, obtained with only the accelerometer and magnetometer
measurements [2], was used to initialize the orientation of each MIMU to reduce the
convergence time. For each MIMU (A and B) the absolute orientation (qAG

and qBG
) was

computed separately for every combination of the values of the two parameters (stored in
p1vec and p2vec, respectively) from 0 to upper1 and from 0 to upper2, respectively. The only
exception is represented by ath2 of VAC whose lower limit was set to the value of the first
accelerometer threshold (a lower value would be meaningless). The values for upper1 and
upper2 were chosen to be large enough to ensure the exploration of all the relevant search
space. In other words, errors obtained for values of p1 and p2 set to upper1 and upper2,
respectively, are large. Figures in Appendix C display the values chosen for upper1 and
upper2 for each SFA. The number of points for each parameter interval (i.e., the length of
the p1vec and p2vec vectors) was different for each algorithm and it is a trade-off between
the search space dimension and the computational cost; on average about 360 solutions
(i.e., length (p1vec) × length (p2vec)) were explored for each SFA. Since the GCSs of the
MIMU and SP were not aligned on the horizontal plane, to enable a meaningful comparison
between the orientation obtained for the two systems, it was necessary to refer the latter to
a common GCS. To this end, it was possible to benefit from the accurate alignment of the
LCS of each system. Therefore, qAG

, qBG
, and qSPG

were separately referred to their initial
frame to obtain qA, qB, and qSP, respectively, as follows (the ⊗ and * operators represent
the product and complex conjugate operator in the quaternion algebra, respectively):

qA = qAG
(1)∗ ⊗ qAG

,
qB = qBG

(1) ∗ ⊗ qBG
,

qSP = qSPG
(1) ∗ ⊗ qSPG

.
(1)

The absolute orientation errors ∆qabs A and ∆qabs B were computed in the quaternion
form as follows:

∆qabs A = qA
∗ ⊗ qSP,

∆qabs B = qB
∗ ⊗ qSP.

(2)
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To obtain a compact representation of the errors and the relative difference, the
absolute rotation angle was computed from the scalar component of each quaternion
∆qabs A and ∆qabs B to obtain ∆θabs A and ∆θabs B, respectively. Then, the two absolute
error values ∆θabs A and ∆θabs B were averaged to obtain ∆θabs. Lastly, the RMS value of
∆θabs was computed only during the dynamic portions of the recording to obtain ep1, p2.
This procedure was repeated for each combination of p1vec and p2vec to populate the e
matrix which contains the absolute errors which were rounded to an accuracy of 0.1 deg.

Algorithm 1. Pseudocode to detail the orientation estimation process for each SFA.

for each pair of MIMUs (Xsens, APDM, and Shimmer)
for each angular rate condition (slow, medium, fast)

remove the static bias for each gyroscope
compute the starting orientation for each MIMU
initialize the matrix e (#rows = length(p1), #columns = length(p2))

for each value p2 belonging to p2vec between [0, upper2]
for each value p1 belonging to p1vec between [0, upper1]

compute the absolute orientation of each MIMU separately with the SFA under analysis to obtain
qAG

and qBG
refer qAG

and qBG
to the starting orientation to obtain qA and qB, as done in (1)

compute the absolute orientation error of qA and qB separately using the gold standard qSP to
obtain ∆qabs A and ∆qabs B, as done in (2)
convert ∆qabs A and ∆qabs B into angular rotation errors to obtain ∆θabs A and ∆θabs B
compute the average value between the two absolute errors to obtain ∆θabs
compute the RMS of ∆θabs considering only the dynamic parts of the recording to obtain ep1, p2
add ep1, p2 to the matrix e

end
end

find the optimal region of (p1vec, p2vec) which correspond to the range of e which includes its
minimum (eopt) + 0.5 deg to obtain popt_1 and popt_2
find the value of e which correspond to the default parameter values to obtain ede f

end
end

2.6. Data Analysis

The evaluation of the algorithms’ performance followed the steps described in the
following. The first step consisted in identifying the optimal regions and the corresponding
errors for each SFA and for each experimental scenario (i.e., 90 errors in total, 10 SFAs × 3
rotations rates × 3 commercial products). The absolute orientation errors were also com-
puted for each SFA and for each scenario using the default parameter values listed in
Table 1 (i.e., 90 errors) which were provided by the authors in their papers or in the original
implementations of their SFAs. Then, the influence of the following factors on the absolute
orientation accuracy was analyzed:

• SFA analytical formulation
• rotation rate magnitude
• different commercial products.

To this extent, a statistical analysis was performed by aggregating data according to
the influencing factor under inspection.

Finally, an analysis of the computation time of each SFA was performed by measuring
the amount of time needed by each SFA to perform a single orientation update iteration
(i.e., a single time step).

2.6.1. Identification of the Optimal Regions and the Corresponding Errors

The optimal region, for each scenario, is defined as the combination of p1 and p2 which
corresponds to the minimum of absolute orientation error.

For each scenario, the following quantities were determined:
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• Minimum absolute orientation error which corresponds to the selection of the optimal
parameter values: eopt = min(e(p1, p2)), where e is the matrix of the average errors
between the two MIMUs of dimensions equal to [length(p1), length(p2)].

• Optimal parameter region is defined as the range of parameter values for which
the relevant orientation errors are equal to the minimum error plus 0.5 deg (i.e.,
the SP uncertainty band, as stated in Section 2.5.1). These regions are defined as:{

popt1
, popt2

}
=
{
(p1, p2) | e ≤ eopt + 0.5 deg

}
. An example of optimal region is

illustrated in Figure 2 for the VAK filter. When only one parameter was tuned (MAD,
VAC, GUO, MKF) e was a vector and the optimal region degenerated into a 1D interval.
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2.6.2. Identification of the Default Errors

The absolute error corresponding to the default values of
(

p1DEF , p2DEF

)
was obtained

as: eDEF = e(p1_DEF, p2_DEF).

2.6.3. Statistical Analysis to Evaluate the Influence of the SFAs and of the
Experimental Factors

To evaluate the influence of the different factors on the 90 values of eopt were aggre-
gated as explained in the following Table 2:

Table 2. Statistical analysis plan to evaluate the influence of SFAs, rotation rate, and commercial product on the errors.

Influencing Factor Number of Distributions Number of Values for Each Distribution

SFA 10 (one for each SFA) 9 (=3 rotation rates × 3 commercial products)

Rotation rate 3 (one for each rotation rate) 30 (=10 SFAs × 3 commercial products)

Commercial product 3 (one for each commercial product) 30 (=10 SFAs × 3 rotation rates)
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For each influencing factor, the normality of each distribution was tested with a
Shapiro-Wilk’s test suitable for small sample size. Since it turned out that the distributions
were not normal, the nonparametric Friedman’s test was applied to assess whether sig-
nificant differences existed among the error distributions. When the null hypothesis was
rejected, post-hoc multiple comparison tests were applied to perform pairwise comparisons.
In particular, to test the SFA influence, the Tukey’s honest significant difference criterion
was used since it is less strict than Bonferroni having 10 distributions [40]. Bonferroni’s
correction was instead used to perform pairwise comparisons when testing the rotation
rate and commercial product effects.

2.6.4. Computation Time of the Different SFAs

The average execution time for a single iteration of each SFA is measured for an Intel®

Core™ i7-10510U CPU @ 1.80 GHz (Intel ©, Santa Clara, CA, USA)—Microsoft™ Windows
10 (Microsoft ©, Redmond, WA, USA) when processing a dataset of 25386 samples without
executing any other programs.

3. Results
3.1. Optimal and Default Errors

The minimum absolute error (eopt) and the errors corresponding to default parameter
values (ede f ) are reported in Table 3 for each SFA and for each experimental scenario.

Table 3. The Optimal Errors Are Reported with the Absolute Errors Obtained Using the Default
Parameter Values.

CF eopt edef KF eopt edef

Xsens

Slow

MAH

2.5 4.2

SAB

2.2 67.9

Medium 2.4 11.9 2.1 96.6

Fast 4.0 13.0 2.4 53.9

APDM

Slow 3.8 3.9 5.0 77.5

Medium 4.8 17.7 5.7 62.6

Fast 8.2 12.3 8.3 9.9

Shimmer

Slow 3.4 5.9 4.5 71.1

Medium 4.6 38.2 4.9 14.5

Fast 7.6 17.0 8.5 30.0

Xsens

Slow

MAD

2.7 4.7

LIG

1.9 3.7

Medium 2.5 5.2 2.0 3.9

Fast 4.0 6.8 2.9 4.8

APDM

Slow 3.8 4.1 3.6 3.6

Medium 4.6 4.6 4.9 5.0

Fast 8.1 8.2 4.6 4.6

Shimmer

Slow 3.9 4.3 4.4 4.4

Medium 4.9 5.2 4.0 4.2

Fast 8.8 8.9 6.3 6.5

Xsens

Slow

VAC

4.0 4.1

VAK

1.2 22.3

Medium 5.0 5.9 1.6 21.4

Fast 7.2 10.0 2.5 72.8
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Table 3. Cont.

CF eopt edef KF eopt edef

APDM

Slow 3.5 3.6 3.6 29.6

Medium 6.1 11.8 6.0 30.4

Fast 8.3 15.1 9.2 81.9

Shimmer

Slow 3.8 3.8 4.0 32.6

Medium 10.2 19.2 4.4 48.8

Fast 11.5 23.6 8.2 100.1

Xsens

Slow

SEL

3.1 4.0

GUO

2.3 3.7

Medium 2.5 4.6 2.3 4.9

Fast 5.1 6.7 5.7 10.6

APDM

Slow 3.7 3.8 4.2 4.5

Medium 7.1 7.3 5.1 5.3

Fast 8.0 8.8 9.4 12.0

Shimmer

Slow 3.4 3.5 4.0 4.0

Medium 5.0 8.4 5.1 5.7

Fast 9.4 11.8 13.7 16.7

Xsens

Slow

MCF

3.3 4.5

MKF

4.2 4.9

Medium 6.1 6.2 4.8 8.7

Fast 6.6 7.8 6.7 10.9

APDM

Slow 3.8 4.2 3.6 4.8

Medium 12.3 12.3 5.3 14.3

Fast 7.9 9.3 7.2 10.7

Shimmer

Slow 5.0 5.2 3.9 5.8

Medium 10.0 10.1 8.4 45.2

Fast 8.6 12.0 9.9 19.0
All the unit are in degrees.

3.2. Optimal Regions

The optimal regions for each experimental scenario for each SFA are reported in the
figures in Appendix C for sake of completeness. Figure 2 provides an example of the
optimal regions determined for each of the nine experimental scenarios in the case of VAK.
In more detail, the optimal region identified by popt_1 and popt_2 is represented with a
different color for each scenario.

3.3. Influence of the Experimental Factors on the Absolute Accuracy
3.3.1. Influence of the Specific SFA (3 Rotation Rates × 3 Commercial Products)

Mean ± STD of the eopt values obtained by each SFA are listed in ascending order in
Table 4.

Table 4. The Mean ± STD of the Errors for Each SFA for Optimal Parameter Values Selection.

LIG VAK MAH MAD SAB SEL GUO MKF VAC MCF

eopt 3.8 ± 1.4 4.5 ± 2.8 4.6 ± 2.1 4.8 ± 2.2 4.8 ± 2.4 5.3 ± 2.4 5.8 ± 3.7 6.0 ± 2.2 6.6 ± 2.9 7.1 ± 2.9

All units are in degrees.
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As evident from Table 3, in many conditions the use of the default parameters (listed
in Table 1) does not guarantee for low values of ede f for each SFA. For this reason, the
analyses performed in the following sections to investigate the influence of the rotation rate
and the commercial product were limited to eopt distributions (it would be meaningless for
those of ede f ).

The Shapiro-Wilk test, (α = 0.05) revealed that not all the eopt distributions were normal
(p < 0.05). The small p-value (0.0035) resulting from the Friedman’s test cast doubts on
the validity of the null hypothesis. A multiple comparison test with Tukey’s correction
(α = 0.05) revealed that no statistically significant differences existed among the 10 SFAs
under optimal working conditions.

3.3.2. Influence of the Rotation Rate (10 SFA × 3 Commercial Products)

Optimal distributions are represented in Figure 3 for slow, medium, and fast rotation
rates. In addition, the mean ± STD errors for each rotation rate scenario are reported in
Table 5.
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Figure 3. Rotation rate effect: slow, medium, and fast eopt distributions (10 SFAs × 3 commercial
products). It is possible to assess that errors obtained at the fast rotation rate are worse than those at
slow rotation rate and the three distributions statistically differ across all of them.

Table 5. Mean ± STD Errors for Each Rotation Rate Scenario.

(deg) Slow Medium Fast

eopt 3.5 ± 0.9 5.2 ± 2.5 7.3 ± 2.6

The Shapiro-Wilk test, (α = 0.05) revealed that not all distributions were normal
(p < 0.05). The small p-value (<1 × 10−9) resulting from the Friedman’s test cast doubts on
the validity of the null hypothesis. A multiple comparison test with Bonferroni’s correc-
tion (α = 0.05) revealed a statistically significant difference among the three distributions
(Table 6).



Sensors 2021, 21, 2543 13 of 25

Table 6. Results of Friedman’s Test with Bonferroni’s Correction to Investigate the Differences among
the Three Rotation Rate Conditions.

Scenario Optimal Conditions

Slow vs. fast Significantly different (p < 1× 10−4)

Slow vs. medium Significantly different (p < 1× 10−3)

Fast vs. medium Significantly different (p = 0.013)

3.3.3. Influence of the Commercial Product (10 SFA × 3 Rotation Rates)

Noise description for each sensor of each MIMU and gyroscope bias were reported in
Tables A4 and A5, respectively (Appendix B) [41].

Optimal distributions are represented in Figure 4 for Xsens, APDM, and Shimmer
commercial products. In addition, the mean ± STD errors for each commercial product
scenario are reported in Table 7.
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Figure 4. Commercial product effect: Xsens, APDM, and Shimmer eopt distributions (10 SFAs × 3
rotation rates). It is possible to assess that APDM and Shimmer distributions statistically differ from
that of Xsens.

Table 7. Mean ± STD Errors for Each Commercial Product Scenario.

(deg) Xsens-MTx APDM-Opal Shimmer-Shimmer 3

eopt 3.5 ± 1.7 6.0 ± 2.3 6.5 ± 2.8

The Shapiro-Wilk test, (α = 0.05) revealed that not all the distributions were normal
(p < 0.01). The small p-value (<1 × 10−7) resulting from the Friedman’s test cast doubts on
the validity of the null hypothesis. A multiple comparison test with Bonferroni’s correc-
tion (α = 0.05) revealed a statistically significant difference among the three distributions
(Table 8).

Table 8. Results of Friedman’s Test with Bonferroni’s Correction to Investigate the Differences among
the Three Commercial Product Conditions.

Scenario Optimal Conditions

Xsens vs. APDM Significantly different (p < 1× 10−5)

Xsens vs. Shimmer Significantly different (p < 1× 10−6)

APDM vs. Shimmer Not significantly different (p = 1)
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3.4. Computation Time of the Different SFAs

In Figure 5, the average execution time of each SFA is reported for a single iteration.

Sensors 2021, 21, 2543 14 of 25 
 

 

3.4. Computation Time of the Different SFAs 
In Figure 5, the average execution time of each SFA is reported for a single iteration. 

 
Figure 5. Execution time needed for a single update step by each SFA. 

4. Discussion 
4.1. The Importance of Properly Tuning Each SFA 

Results from the present study have confirmed that the selection of appropriate pa-
rameter values plays a fundamental role in determining the level of orientation accuracy 
and that parameters must be tuned differently based on the experimental scenario [15,27,31], 
thus enabling the best possible performance. 

We found that each SFA exhibits the optimal performance only for a limited interval 
of parameter values. If the parameter values are optimized for a specific experimental 
scenario, the same values can lead to large errors when varying the experimental condi-
tions; the only exception is represented by the MKF with a common intersection between 

 = [0.0125, 0.0275] (rad/s)2. This evidence can be also graphically observed in the fig-
ures in Appendix C, in fact for all algorithms but MKF there is not a common intersection 
among the optimal regions when varying the experimental scenario. The above-men-
tioned figures also prove that for some SFAs (e.g., SAB), the specific tuning for each ex-
perimental scenario is particularly critical since the overlapping among the optimal re-
gions is very limited. At the same time the errors obtained using the default parameter 
values ( ) highlight the inadequacy to estimate the absolute orientation with the same 
parameter values for a given SFA under different experimental scenarios. These findings 
provide a further justification of the different level of accuracy reported for the different 
SFAs in previous studies which entailed the comparison among filters optimally tuned 
and filters fed with the default or non-optimal parameters (e.g., [14,16]). It is clear that any 
comparison carried out without a common strategy to tune the SFA parameter values 
would be lacking generality. In fact, for some algorithms  can greater than 100 deg 
(see Table 3). It is worth pointing out that the optimal errors reported in Table 3 can be 
considered the lower bound for those SFAs under similar experimental conditions. Lower 
errors can be only obtained under less challenging scenarios and/or using higher perform-
ing MIMUs. 

As already mentioned, the optimal parameter tuning requires the orientation reference 
to be available (e.g., a SP system). Since the MIMUs are conceived to be used also outside 
the laboratory, the proposed approach is not always feasible and there is the need to search 
for alternative strategies for the selection of reasonable parameter values without using 
any orientation reference. To the best of our knowledge, the procedure described in [31] 

Figure 5. Execution time needed for a single update step by each SFA.

4. Discussion
4.1. The Importance of Properly Tuning Each SFA

Results from the present study have confirmed that the selection of appropriate param-
eter values plays a fundamental role in determining the level of orientation accuracy and
that parameters must be tuned differently based on the experimental scenario [15,27,31],
thus enabling the best possible performance.

We found that each SFA exhibits the optimal performance only for a limited interval
of parameter values. If the parameter values are optimized for a specific experimental
scenario, the same values can lead to large errors when varying the experimental condi-
tions; the only exception is represented by the MKF with a common intersection between
σ2

gyr = [0.0125, 0.0275] (rad/s)2. This evidence can be also graphically observed in the fig-
ures in Appendix C, in fact for all algorithms but MKF there is not a common intersection
among the optimal regions when varying the experimental scenario. The above-mentioned
figures also prove that for some SFAs (e.g., SAB), the specific tuning for each experimental
scenario is particularly critical since the overlapping among the optimal regions is very
limited. At the same time the errors obtained using the default parameter values (ede f )
highlight the inadequacy to estimate the absolute orientation with the same parameter
values for a given SFA under different experimental scenarios. These findings provide
a further justification of the different level of accuracy reported for the different SFAs in
previous studies which entailed the comparison among filters optimally tuned and filters
fed with the default or non-optimal parameters (e.g., [14,16]). It is clear that any comparison
carried out without a common strategy to tune the SFA parameter values would be lacking
generality. In fact, for some algorithms ede f can greater than 100 deg (see Table 3). It is
worth pointing out that the optimal errors reported in Table 3 can be considered the lower
bound for those SFAs under similar experimental conditions. Lower errors can be only
obtained under less challenging scenarios and/or using higher performing MIMUs.

As already mentioned, the optimal parameter tuning requires the orientation reference
to be available (e.g., a SP system). Since the MIMUs are conceived to be used also outside
the laboratory, the proposed approach is not always feasible and there is the need to search
for alternative strategies for the selection of reasonable parameter values without using
any orientation reference. To the best of our knowledge, the procedure described in [31] is
the only one which meets this requirement by exploiting the fact that two MIMUs aligned
on a rigid body must have a null orientation difference during any movement.



Sensors 2021, 21, 2543 15 of 25

4.2. Influence of the SFA and of the Experimental Factors on the Absolute Accuracy

The influence of the specific SFA and the filtering class (CF or KF) on the orientation
accuracy has been widely investigated by several authors (e.g., [7,25]). We found, over
SFAs, errors ranging from 3.8 deg to a maximum of 7.1 deg, but no statistically significant
differences. This suggests that, based on the present study, it is not possible to identify
the best performing SFA and that a proper fine tuning of the parameter values can be
the key point to obtain a reasonable absolute accuracy, regardless of the filtering class
or the total number of parameters exposed by the SFAs. In fact, it is possible to observe
from Tables 1 and 3 that a larger number of parameters does not necessarily guarantee
for a better accuracy with respect to a SFA with only one parameter to be set. This can be
explained by the fact that, ideally, the several sources of errors can be better modelled by
filters with a large number of parameters. On the other hand, their tuning is more difficult
since the final orientation estimate is strongly influence by the mutual influence of the
parameters. Among the ten tested SFAs, LIG exhibited the lowest average errors while
VAC and MCF the highest being the average differences under 0.5 deg (this is expected
since they are the implementations of the same filter described in [2]). It has to be said
that this experimental design was not conceived to enhance small differences across the
performance of ten algorithms due to the weak statistical power. If of interest, several
repetitions for each experimental scenario would need to be collected.

Results showed that even under optimal parameter tuning orientation accuracy is
strongly influenced by the experimental factors considered.

The influence of the rotation rate magnitude has been recognized by previous works
([26,27,33,42]) in which accuracy worsening was observed when the rotation rate increased,
however few SFAs were tested. In general, higher values of rotation rate are associated with
higher linear accelerations (except when the MIMU is coincident with the center of rotation),
which are directly reflected on the specific force recorded by the accelerometer. Since the
accelerometer aids the sensor fusion process by providing the gravity direction information
to compensate for the inclination drift, when the gravity recording is corrupted by high
values of linear acceleration then the accelerometer contribution becomes detrimental.
Many algorithms cope with this problem by rejecting the accelerometer information when
the magnitude of its measures overcome a certain threshold. However, as highlighted by
Fan et al., in [18], despite the simplicity of this strategy that can be adopted by both CF
and KF classes, the main drawback is the choice of the threshold value and the resulting
orientation instability for accelerometer values close to the threshold. Observing the results
in Table 5, the effect of the rotation rate is confirmed also for all the SFAs analyzed: errors
obtained at the fast rotation rate are worse than those at slow rotation rate and the three
distributions statistically differ across all of them (Figure 3). In particular, the performance
worsens of 3.8 ± 2.1 deg on average. The minimum worsening amounts to 0.2 deg for
SAB-Xsens and the maximum to 9.7 deg for GUO-Shimmer.

Finally, it is known that the hardware components embedded in the commercial prod-
ucts, although sharing similar specifications (measurement ranges, sensitivity, resolution,
etc.) exhibit different noise levels both in terms of STD and offset and bias instability,
which in turns influence the estimation accuracy [26,33,42]. In particular, the most critical
factor when estimating the orientation is the slow-varying bias affecting the gyroscopes.
Tables A3 and A4 reported in the Appendix B show the measured noise levels for differ-
ent commercial products and the difference between the gyroscope bias computed at the
beginning and at the end of the recordings. The differences between the noise levels of
two MIMUs of the same commercial product are evident. Obviously, when considering
different commercial products, the differences are even higher. Moreover, the bias of the
gyroscopes changed during the same recordings of a few minutes. The problem of a slow
varying bias is one of the major problems to address when estimating orientation since the
angular velocity is the main source of information in a sensor fusion process. This may
partially explain the significant difference found in Table 8 and shown in Figure 4 between
Xsens and APDM for which the bias changes are up to two orders of magnitude higher.
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However, the exact mechanism with which the noise level is reflected on the absolute
accuracy is still not completely clear due to the high number of variables involved in the
sensor fusion process. It is worth highlighting, as a limitation, that the different locations
of the MIMUs on the board, which lead to different acceleration magnitudes, can have a
minor and limited influence on the results. In fact, as shown in Figure 4, the medians of
the APDM and Shimmer distributions are extremely similar. Overall, Xsens showed the
smallest average errors of 3.5 deg, while Shimmer the highest of 6.5 deg.

4.3. Computation Time of the SFAs

Depending on the specific application, the computation time required by each SFA to
compute the orientation may be crucial. In those applications providing feedback to the
patient such as the tele-rehabilitation and neuroprosthesis systems, the “near” real-time
estimation is a fundamental requirement [43].

It is observed that most tested CFs are faster than the KFs. The two exceptions are GUO
(a KF explicitly designed by the authors to perform fast), which resulted to be the second
fastest and MCF (a CF), which is the MATLAB implementation of Valenti 2015 (VAC). MCF
is more than 32 times slower than VAC, despite the mathematical formulation being the
same. This aspect has been analyzed through the MATLAB profiler and it emerged that
the quaternion library used by MATLAB (more specifically the creation of a quaternion
object) is the limiting factor. The same applies to MKF (the MathWorks implementation
of [5] embedded in the “Sensor Fusion and Tracking Toolbox”) which is the slowest KF. The
higher computation time of Kalman filters can be due to the matrix operations involved
in the mathematical implementation including multiplications and inversions. Finally, a
monotonic relationship between the dimension of the state vector and the time required
to complete an iteration can be observed. This is justified by the fact that an increase in
the state vector dimension involves matrices of higher dimensions (e.g., state transition,
process and measurement covariance matrices, etc.) with a consequent increase of the
computational burden. It has to be said that not all the MATLAB implementations were
optimized by the authors to perform fast. The same implementations written in another
programming languages such as C/C++ could be executed much faster.

5. Conclusions

In this study the two most influencing parameters were identified and optimally tuned
for each SFA, thus obtaining the corresponding errors, which are indicative of the best
possible performance under each tested experimental scenario. Moreover, as suggested
by recent literature [15,27,31,44,45], this study confirms that the selection of the value of
each parameter is crucial to obtain a satisfying performance of each SFA despite its filtering
class or mathematical formulation. The use of fixed parameter values may be not suitable
for every scenario since, in general, the optimal value regions do not intersect. The authors
stress the importance of comparing the performance of the different SFAs only when all of
them are run under the same working conditions and suggest all future works to follow
this recommendation. This study also analyzes how accuracy is influenced by the SFA, the
rotation rate, and the commercial product.

An important finding is that all methods exhibited errors within a range of 3.3 deg
(from 3.8 deg to 7.1 deg). Therefore, it is difficult to rank the ten implemented SFAs, and it is
not possible to identify the best performing SFA since no statistically significant differences
were found.

Errors at high rotation rate are statistically different from those obtained at low rotation
rate. On average, the lowest errors associated with a slow movement are expected to be
about 3.5 deg and they could increase up to 7.3 deg when the rotation rate reaches an RMS
value of about 380 deg/s. The errors are also influenced by the model of the commercial
product. Xsens provided the lowest average errors (3.5 deg) and statistically different with
respect to APDM (6.0 deg), and Shimmer (6.5 deg).
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Finally, complementary filters were found to be faster than Kalman filters. This can
be substantiated by the mathematical implementation of the filters. Two exceptions were
observed: GUO (a KF explicitly designed by the authors to perform fast) and MCF (the
MATLAB CF). In addition, an increase of the state vector dimension is monotonically
reflected on the time required for each iteration to estimate the orientation.

In conclusion, this study shows the importance of equally tuning the parameter values
for each SFA in order to enable a meaningful comparison among the different algorithms.
In addition, performances are strongly influenced by the experimental conditions. It has
to be pointed out that while this contribution, for the best of our knowledge, is the most
extensive so far (10 SFAs × 3 motion intensities × 3 commercial products) there are many
relevant aspects that are also worth considering when evaluating the accuracy of SFAs,
such as the effect of translations, long uninterrupted motion phases, and the influence of
magnetic disturbances. The proposal of a complete and standard benchmark to test the
SFAs under different experimental scenarios would be beneficial for any future comparison.
As pointed out by Nazarahari and Rouhani [29] there is still the lack of a shared protocol
and the movement analysis community should move in this direction.
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Glossary
The main acronyms and definitions are summarized below for reader convenience:

CF complementary filter
GCS global coordinate system
KF Kalman filter
LCS local coordinate system
MIMU magneto-inertial measurement unit
RMS root mean square
SFA sensor fusion algorithm
SP stereo-photogrammetric system
STD standard deviation

Absolute orientation
the orientation of the local coordinate system (LCS) of a system
with respect to its GCS

www.imi.europa.eu
https://github.com/marcocaruso/sensor_fusion_algorithm_codes
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Absolute orientation error

the difference between the orientation of the LCS of a
magneto-inertial measurement unit (MIMU) computed by a sensor
fusion algorithm (SFA) and its actual orientation computed by the
optical reference (SP) and expressed by the angle given by the
axis-angle convention

ede f
absolute orientation error corresponding to the selection of the
default parameter values

eopt
minimum absolute orientation error which corresponds to the
selection of the optimal parameter values

Optimal parameter region
the range of parameter values for which the orientation errors are
equal to eopt plus 0.5 deg

Appendix A

In this Appendix are shown the results of the “original algorithm studies” (Table A1)
and the “comparative studies” (Table A2).

Table A1. Results of the Original Algorithm Studies. All the Error Units Are in Degrees.

First Author SFA(s)
Employed

MIMU(s)
Employed Experimental Protocol Standard Declared Errors

Picerno 2011 [30] Xsens filter (KF) 9 Xsens MTw

MIMUs were aligned on a
rigid body which was
oriented in 12 different
poses. Only the static

orientation was considered.

none

Differences were up to
11.4 for yaw angle (in

an ideal case they
should be null).

Bergamini 2014 [25] Madgwick [9] (CF)
Sabatini [34] (KF) 1 APDM-Opal

Manual tasks (slow
velocities, short time, and

small capture volume).
Locomotion task (larger
capture volume, three

minutes, no static phases).

SP

RMS errors were
similar for CF and KF:

from 5.5 (manual) to 21
(locomotion) tasks.

Lebel 2015 [26]

Xsens filter (KF)
APDM filter (KF)
Inertial Labs filter

(CF)

4 Xsens-MTx
4 APDM-Opal

4 Inertial
Labs-Osv3

MIMUs attached to a
gimbal.

Rotation of the gimbal axes
to obtain both planar (2D)

and 3D motions at
quasi-constant low and

high rotation rates (90 dps
and 180 dps) for 120 s.

SP

Mean errors increased
up to 7 when the

rotation rate increased,
although this was less
evident for Xsens filter.

Ricci 2016 [27] APDM filter (KF)
Tian [46] (CF) 6 APDM-Opal

MIMUs attached to a robot
arm Static (different

orientations)
Dynamic (sinusoidal

rotations around MIMU
axis, the RMS of the

angular velocity ranged
from 2.1 dps to 150 dps).

Robot angles

In static the maximum
errors amounted to 1
for CF and 1.6 for KF.
In the dynamic trials,
the KF exhibited the

best performance.
Errors increased when
the velocity increased.

Ludwig 2018 [28]
Madgwick [9] (CF)

Mahony [6] (CF)
Marins [47] (KF)

1 embedded on a
quadcopter

The quadrotor flew to
perform both loop and

random sequences within
the volume capture
(1m × 1m × 1m).

SP

RMS errors amounted
to 11, 13, and 13.3 for
Mahony, Madgwick

and Marius,
respectively.
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Table A2. Results of the “Comparative Studies”. All the Error Units Are in Degrees.

First Author SFA(s)
Employed

MIMU(s)
Employed

Experimental
Protocol Standard Declared Errors

Young 2009 [7] Proposed CF
Yun [48] (KF) 1 Orient

Gently movements
by hand (20 s).

Walking with MIMU
on the lower leg (five

trials, 30 s each).

SP

RMS inclination (and
yaw) errors. Gently
movements: 3.2 (9.6)
for CF and 5.4 deg

(10.1) for KF. Walking:
4 deg (10.9) for CF and

11.9 (31.8) for KF.

Fourati 2014 [8] Proposed CF
Xsens filter (KF)

1 Xsens-Mti
1 Xsens-MTi-G

Manual (3 straight
translations along

each MIMU axis and
a free 3 D motion).

none

Average inclination
(and yaw) difference

between the estimates
of the CF and KF

ranged between [1–3]
([2–5]).

Madgwick [9] Proposed CF
Xsens filter (KF) 1 Xsens-MTx

Static.
Dynamic (manual

motions).
SP

RMS errors in dynamic
amounted to 1.1 for the

proposed and 1.3 for
KF.

Valenti 2015 [2]
Proposed CF

Sabatini [34] (KF)
Madgwick [9] (CF)

PhidgetSpatial 3/3/3
embedded in a

quadrotor

The vehicle flew in a
volume of 10 m × 10
m × 10 m to perform

loop trajectories.

SP

RMS inclination (and
yaw) errors amounted
to 1.7 (16.6), 2.5 (20.3),

and 3 (76.2) for the
proposed CF, the KF,

and the CF by
Madgwick.

Marantos 2016 [14]
Proposed CF

St iNEMO filter (KF)
Mahony [6] (CF)

Designed

MIMU mounted on a
gimbal which was

subjected to a
combined motion in

all axes including
strong acceleration
and ferromagnetic

disturbances.

Gimbal encoders

Mean inclination (and
yaw) errors amounted
to 1.0 (2.5), 5.5 (10.5),
and 4.9 (11.5) for the
proposed CF, the CF

from Mahony and KF.

Olivares 2016 [15]
Two proposed KFs

(optimal approach vs.
algebraic solution)

1 Wagyromag
(designed)

MIMU mounted on a
device moved at 3
speeds including
high accelerations

and magnetic
disturbances.

Potentiometer—
mounted on the

hinge.

Mean RMS errors: 1.5
for KF with optimal
approach and 2.1 for

KF with algebraic
solution.

Seel 2017 [16] Proposed CF
Madgwick [9] (CF) none Simulated magnetic

field environment.
Synthetic

ground-truth.

Inclination errors for
Madgwick CF were

higher than 4.

Guo 2017 [17]

Proposed KF
Fourati 2014 [8] (CF)
Marantos 2016 [14]

(CF)
Valenti 2016 [2] (KF)

1 MicroStrain 3DM-
GX3-25

Random movements
carried out by hand.

Provided by the
proprietary

algorithm (not
properly a gold

standard).

Mean inclination (and
yaw) errors amounted
to 0.1 (0.1), 0.2 (0.7), 1.3
(0.6), and 2.2 (3.7) for
the proposed KF, the
CF by Fourati, the CF
by Marantos, and the

KF by Valenti.

Fan 2018 [18]
Basic proposed CF

Finite-state proposed
CF

1 Xsens-MTw

Fast MIMU
movement up and
down (range of 60
cm) close to a big

ferromagnetic box.

SP

RMS inclination (and
yaw) errors 6 (7) and 1

(1) for basic CF and
finite-state CF during

large acceleration. RMS
Yaw errors 7 and 1 for

basic CF and
finite-state CF during

magnetic disturbances.

Weber 2020 [22]
Proposed

neural-network
See1 2017 [16] (CF)

1 Myon AG-aktos-t

Roto-translation
movements at

different speeds
including pauses.

SP
RMS errors equal to 1.4
for the neural network
and to 2.8 for the CF.
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Appendix B

This appendix provides a list of the characteristics of the MIMUs considered in the
paper. Table A4 reports the noise standard deviation of the sensors of each unit computed
over one minute of static acquisition.

Table A3. Sensor STD Computed during One Minute of Static Acquisition.

STD
Accelerometer (mg) Gyroscope (deg/s) Magnetometer (µT)

x y z x y z x y z

Xsens-MTx #1 0.86 0.80 0.85 0.38 0.39 0.37 0.06 0.04 0.04
Xsens-MTX #2 0.82 0.86 0.80 0.44 0.40 0.40 0.05 0.06 0.06

APDM-OPAL #1 0.38 0.33 0.38 0.16 0.23 0.11 0.26 0.23 0.20
APDM-OPAL #2 0.34 0.32 0.35 0.16 0.27 0.19 0.26 0.25 0.20

Shimmer-Shimmer 3 #1 1.06 0.97 1.26 0.09 0.08 0.09 0.84 0.84 0.69
Shimmer-Shimmer 3 #2 1.12 1.09 1.29 0.06 0.06 0.06 0.97 0.97 0.58

#1 and #2 denote the two units of the same commercial product.

Table A3 highlights the differences among the measured noise levels for the sensors
embedded in the commercial products under analysis. As expected, the differences are
higher [49] when considering sensors from different commercial products. However, by
observing the noise values of two units of the same model it is worth noting that they are
not exactly the same.

The values for each gyroscope bias computed in the static parts at the beginning and
at the end of each recording are listed in Table A4 to appreciate their changes. In particular,
for each MIMU and for each recording, the values computed at the beginning (before) and
their difference (diff ) with respect to the end are reported.

Table A4. Sensor Gyroscope Biases during the First 60 s of Static Acquisition before the Movements (before) and Difference
(diff ) with the Bias Record at the End of Experiments.

Gyroscope Bias (deg/s)

Slow Medium Fast
x y z x y z x y z

Xsens-MTx #1
before −0.24 −1.70 −0.32 −0.26 −1.70 −0.33 −0.25 −1.69 −0.33
diff 0.00 −0.05 0.00 −0.01 0.00 −0.02 −0.01 −0.01 −0.02

Xsens-MTX #2
before −0.26 0.76 0.42 −0.26 0.76 0.43 −0.28 0.74 0.41
diff 0.01 0.01 0.02 0.03 0.00 0.03 −0.01 −0.02 −0.02

APDM-OPAL #1
before 0.78 −0.57 0.34 0.59 −0.80 0.36 0.74 −0.78 0.37

diff 0.08 0.04 −0.02 −0.12 −0.02 0.00 −0.02 0.12 −0.01

APDM-OPAL #2
before −1.10 −0.06 −0.71 −1.20 −0.05 −0.48 −1.11 0.17 −0.48
diff 0.07 0.01 −0.03 −0.17 −0.17 −0.05 −0.09 −0.03 −0.10

Shimmer-Shimmer 3 #1
before −0.03 −0.06 −0.01 −0.02 −0.05 0.01 −0.03 −0.07 0.02
diff −0.01 −0.03 0.00 −0.01 0.00 0.00 0.00 −0.01 0.00

Shimmer-Shimmer 3 #2
before −0.06 −0.03 0.09 −0.06 −0.03 0.08 −0.06 −0.05 0.10
diff −0.01 −0.03 0.01 −0.01 −0.03 0.01 −0.01 −0.03 0.03

#1 and #2 denote the two units of the same commercial product.

By observing Table A4, the first conclusion that can be drawn is that the biases are
not constant within the same recording even after less than one minute and the maximum
change arose to 0.17 deg/s.

It is worth highlighting that, despite a proper characterization of the bias instability
can be only obtained by the analysis of the Allan variance over a long time recording [50,51],
the values reported in Table A4 give an overview of the severity of the gyroscope bias
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variation during the same logging. As evident from the literature, several efforts have
been done to try to estimate the bias online (e.g., [6,9,16,35]). In fact, the problem of a
slow-varying bias is one the major when estimating the orientation since its variations are
very difficult to be predicted and modelled.

Finally, Table A5 lists the measurement characteristics of each sensor embedded in the
employed MIMUs.

Table A5. Sensor Specifications. Reprinted with permission from ref. [31]. Copyright 2020 IEEE.

Range A/D Resolution Alignment Error

Xsens-MTx

Accelerometer ±50 m/s2 16 bits 0.1 deg

Gyroscope ±1200 deg/s 16 bits 0.1 deg

Magnetometer ±75 µT 16 bits 0.1 deg

APDM-OPAL

Accelerometer ±16 m/s2 14 bits

Gyroscope ±2000 deg/s 16 bits

Magnetometer ±800 µT 12 bits

Shimmer-Shimmer3

Accelerometer ±16 m/s2 16 bits

Gyroscope ±2000 deg/s 16 bits

Magnetometer ±400 µT 16 bits

Appendix C

In this appendix the optimal regions are reported for each SFA. When only one
parameter was tuned (MAD, MCF, GUO, MKF) the bidimensional regions degenerated
into a mono-dimensional interval.

Sensors 2021, 21, 2543 21 of 25 
 

 

Shimmer-Shimmer 3 #2 
before –0.06 –0.03 0.09 –0.06 –0.03 0.08 –0.06 –0.05 0.10 

diff –0.01 –0.03 0.01 –0.01 –0.03 0.01 –0.01 –0.03 0.03 
#1 and #2 denote the two units of the same commercial product. 

By observing Table A4, the first conclusion that can be drawn is that the biases are 
not constant within the same recording even after less than one minute and the maximum 
change arose to 0.17 deg/s. 

It is worth highlighting that, despite a proper characterization of the bias instability 
can be only obtained by the analysis of the Allan variance over a long time recording [50,51], 
the values reported in Table A4 give an overview of the severity of the gyroscope bias 
variation during the same logging. As evident from the literature, several efforts have 
been done to try to estimate the bias online (e.g., [6,9,16,35]). In fact, the problem of a slow-
varying bias is one the major when estimating the orientation since its variations are very 
difficult to be predicted and modelled. 

Finally, Table A5 lists the measurement characteristics of each sensor embedded in 
the employed MIMUs. 

Table A5. Sensor Specifications. Reprinted with permission from ref. [31]. Copyright 2020 IEEE. 

 Range A/D Resolution Alignment Error 
Xsens-MTx 

Accelerometer ±50 m/s2 16 bits 0.1 deg 
Gyroscope ±1200 deg/s 16 bits 0.1 deg 

Magnetometer ±75 µT 16 bits 0.1 deg 
APDM-OPAL 

Accelerometer ±16 m/s2 14 bits  
Gyroscope ±2000 deg/s 16 bits  

Magnetometer ±800 µT 12 bits  
Shimmer-Shimmer3 

Accelerometer ±16 m/s2 16 bits  
Gyroscope ±2000 deg/s 16 bits  

Magnetometer ±400 µT 16 bits  

Appendix C 
In this appendix the optimal regions are reported for each SFA. When only one pa-

rameter was tuned (MAD, MCF, GUO, MKF) the bidimensional regions degenerated into 
a mono-dimensional interval. 

  
(a) (b) 

Figure A1. Cont.



Sensors 2021, 21, 2543 22 of 25Sensors 2021, 21, 2543 22 of 25 
 

 

 

 
(c) (d) 

  
(e) (f) 

Figure A1. Cont.



Sensors 2021, 21, 2543 23 of 25Sensors 2021, 21, 2543 23 of 25 
 

 

 

 

(g) (h) 

  
(i) (j) 
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