POLITECNICO DI TORINO Repository ISTITUZIONALE

Facile and scalable synthesis of Cu2O-SnO2 catalyst for the photoelectrochemical CO2 conversion

Original

Facile and scalable synthesis of Cu2O-SnO2 catalyst for the photoelectrochemical CO2 conversion / Zoli, Maddalena; Roldán, Daniela; Guzmán, Hilmar; Hernández, Simelys; Castellino, Micaela; Chiodoni, Angelica; Bejtka, Katarzyna; Russo, Nunzio. - ELETTRONICO. - (2021). ((Intervento presentato al convegno 2021 VIRTUAL MRS SPRING MEETING & EXHIBIT tenutosi a Online nel April 17th 2021 - April 23th 2021.

Availability: This version is available at: 11583/2898472 since: 2021-05-06T16:08:02Z

Publisher: Materials Research Society

Published DOI:

Terms of use: openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)

Facile and scalable synthesis of Cu_2O-SnO_2 catalyst for the photoelectrochemical CO_2 conversion

Abstract Final ID: EN02.06.08

<u>Maddalena Zoli</u>^{a,b}, Daniela Roldán^a, Hilmar Guzmán^{a,b}, Simelys Hernández^{a,b}, Micaela Castellino,^a Angelica Chiodoni^b, Katarzyna Bejtka^b, Nunzio Russo^a

^a CREST group, Department of applied science and technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129, Turin, Italy ^b Center for Sustainable Future Technologies, IIT@Polito, Istituto Italiano di Tecnologia, Via Livorno, 60, 10144, Turin, Italy

email: maddalena.zoli@polito.it, simelys.hernandez@polito.it

Optimization of co-precipitation method for catalyst production

Motivation

Synthesis set-up

- The natural CO_2 sink cannot keep up with the constant **anthropic emission**
- A renewable and green approach to **CO**₂ **recovery** is increasingly necessary
- Ongoing development of a CO₂RR photo-electrocatalyst to convert CO₂ into useful chemicals or fuels

The catalyst: Cu₂O-SnO₂

p-n junction with:

 $Cu_2O \longrightarrow$ cheap, abundant, intrinsically p-type semiconductor, narrow band gap $(\sim 2 \text{ eV})$, suitable positioning of conduction and valence bands band-gap SnO₂ _____ n-type direct semiconductor, good electron mobility, intrinsic stability.

maddalena.zoli@polito.it

Photoactivity evidence

Preparation and deposition

- Fixed catalyst to Nafion (binder) ratio
- Ethanol studied as the best carrier because of its low boiling temperature
- Ultrasonic tip used to create the "ink"
- Deposition on porous conductive support: GDL (Gas Diffusion Layer), by airbrushing

Preparation Steps

• The current pattern follows the light switching on/off.

Optical Properties (UV-Vis)

maddalena.zoli@polito.it

MRS[®] Spring meeting & exhibit

Photo-electrocatalytic CO₂ reduction test

maddalena.zoli@polito.it

MRS® Spring meeting & exhibit

PEC CO₂ reduction products and future developments

Faradaic Efficiencies

Photoelectrochemical CO₂ reduction gas and liquid products analysis

- Products composition changes depending on the cell lighting
- The test carried out in light (right) produces less H₂ by a factor 3.7 and more C-compounds quantity (3.25 vs. 2.25 %).

Conclusions

- A simple, scalable and reproducible co-precipitation method for the synthesis of a Cu-Sn-based photoelectrocatalyst was developed.
- Cu₂O species were detected in both the powder and onto the prepared electrode.
- A constant **photocurrent contribution** (~18 µA cm⁻²) was achieved.
- Products composition varies depending on the light conditions.
- H_2 evolution reaction is **suppressed** by the Cu₂O-SnO₂ photo-electrocatalyst.

Future prospectives

- Improve the protection of the Cu(I) species, in order to maintain the catalyst photoactivity.
- Enhance the **light harvesting efficiency** and produce internal photovoltage for the CO_2RR , to expand the range of products and their Faradaic efficiencies

In the SunCoChem Project framework:

 Design of smart organometallic chromophores to be anchored onto the catalyst surface, playing the double role of CO₂ reduction co-catalyst and visible light absorber.

European Commission

European Union funding for Research & Innovatior

The research leading to these results has received funding from the European Union's Horizon 2020 Research and Innovation Action programme under the SunCoChem project (Grant Agreement No 862192).

maddalena.zoli@polito.it