Facile and scalable synthesis of Cu2O-SnO2 catalyst for the photoelectrochemical CO2 conversion

Original
Facile and scalable synthesis of Cu2O-SnO2 catalyst for the photoelectrochemical CO2 conversion / Zoli, Maddalena; Roldán, Daniela; Guzmán, Hilmar; Hernández, Simelys; Castellino, Micaela; Chiodoni, Angelica; Bejtka, Katarzyna; Russo, Nunzio. - ELETTRONICO. - (2021). ((Intervento presentato al convegno 2021 VIRTUAL MRS SPRING MEETING & EXHIBIT tenutosi a Online nel April 17th 2021 - April 23th 2021.

Availability:
This version is available at: 11583/2898472 since: 2021-05-06T16:08:02Z

Publisher:
Materials Research Society

Published
DOI:

Terms of use:
openAccess
This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

(Article begins on next page)
Facile and scalable synthesis of Cu$_2$O-SnO$_2$ catalyst for the photoelectrochemical CO$_2$ conversion

Abstract Final ID: EN02.06.08

Maddalena Zolia,b, Daniela Roldána, Hilmar Guzmána,b, Simelys Hernándeza,b, Micaela Castellinoa, Angelica Chiodonib, Katarzyna Bejtkab, Nunzio Russoa

a CREST group, Department of applied science and technology (DISAT), Politecnico di Torino, C.so Duca degli Abruzzi, 24, 10129, Turin, Italy

b Center for Sustainable Future Technologies, IIT@Polito, Istituto Italiano di Tecnologia, Via Livorno, 60, 10144, Turin, Italy

email: maddalena.zoli@polito.it, simelys.hernandez@polito.it
Optimization of co-precipitation method for catalyst production

Motivation

- The natural CO$_2$ sink cannot keep up with the constant *anthropic emission*
- A renewable and green approach to CO$_2$ recovery is increasingly necessary
- Ongoing development of a CO$_2$RR *photo-electrocatalyst* to convert CO$_2$ into useful chemicals or fuels

The catalyst: Cu$_2$O-SnO$_2$

p-n junction with:

Cu$_2$O cheap, abundant, intrinsically *p*-type semiconductor, narrow band gap (~2 eV), suitable positioning of conduction and valence bands

SnO$_2$ *n*-type direct band-gap semiconductor, good electron mobility, intrinsic stability.

Synthesis set-up

- Ultra-sound assisted
- pH, T, stirring control
- Clean-up procedure optimization
- Reproducibility tests

Catalyst Characterization

- **XPS**

 Auger Parameter

 $h\nu - Cu LMM$

 \(Cu_{2p_2/3} \)

 \(= 1849.4 \, eV \)

<table>
<thead>
<tr>
<th>Element</th>
<th>Cu</th>
<th>Sn</th>
<th>O</th>
<th>Cl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atomic %</td>
<td>10.44 ± 0.86</td>
<td>11.01 ± 0.24</td>
<td>41.10 ± 2.13</td>
<td>0.85 ± 0.59</td>
</tr>
</tbody>
</table>

 Resulting oxidation states abundance

 Cu(II) 57 %

 Cu(0)+Cu(I) 43 %

maddalena.zoli@polito.it

MRS® Spring meeting & exhibit

EN02.06.08
Electrodes development

Preparation and deposition

- **Fixed** catalyst to Nafion (binder) ratio
- **Ethanol** studied as the best carrier because of its low boiling temperature
- Ultrasonic tip used to create the “ink”
- Deposition on porous conductive support: GDL (Gas Diffusion Layer), by **airbrushing**

Photoactivity evidence

Linear Sweep Voltammetry (LSV)
(the inset illustrates a zoomed frame of the curve)

- The current pattern follows the light switching on/off.

Optical Properties (UV-Vis)

- **Kubelka-Munk function**
- **Tauc plot**
- **E_g = 2.5 eV**

Preparation Steps

maddalena.zoli@polito.it

MRS® Spring meeting & exhibit EN02.06.08
Photo-electrocatalytic CO₂ reduction test

Photo-electrocatalytic CO₂ reduction set-up

XRD Spectra

Photocurrent contribution

Photoelectrochemical performance (J vs. time) of Cu₂OSnO₂ photocathode towards CO₂ reduction driven under simulated solar irradiation in a CO₂-saturated 0.1M KHCO₃ solution at 0.50V vs. RHE

- Grey line: current evolution
- Red points: photocurrent contribution, average value \(-18.75 \, \mu A \, cm^{-2}\)

maddalena.zoli@polito.it

MRS® Spring meeting & exhibit

EN02.06.08
PEC CO₂ reduction products and future developments

Faradaic Efficiencies

Photoelectrochemical CO₂ reduction gas and liquid products analysis

- Products composition changes depending on the cell lighting
- The test carried out in light (right) produces less H₂ by a factor 3.7 and more C-compounds quantity (3.25 vs. 2.25 %).

Future perspectives

- Improve the protection of the Cu(I) species, in order to maintain the catalyst photoactivity.
- Enhance the light harvesting efficiency and produce internal photovoltage for the CO₂RR, to expand the range of products and their Faradaic efficiencies.

Conclusions

- A simple, scalable and reproducible co-precipitation method for the synthesis of a Cu-Sn-based photoelectrocatalyst was developed.
- Cu₂O species were detected in both the powder and onto the prepared electrode.
- A constant photocurrent contribution (~18 μA cm⁻²) was achieved.
- Products composition varies depending on the light conditions.
- H₂ evolution reaction is suppressed by the Cu₂O-SnO₂ photo-electrocatalyst.

In the SunCoChem Project framework:

- Design of smart organometallic chromophores to be anchored onto the catalyst surface, playing the double role of CO₂ reduction co-catalyst and visible light absorber.

The research leading to these results has received funding from the European Union’s Horizon 2020 Research and Innovation Action programme under the SunCoChem project (Grant Agreement No 862192).

maddalena.zoli@polito.it

MRS® Spring meeting & exhibit

EN02.06.08