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Abstract

In this work we developed an open-source work-flow for the construction of

data-driven models from a wide Computational Fluid Dynamics (CFD) simula-

tions campaign. We focused on the prediction of the permeability of bidimen-

sional porous media models, and their effectiveness in filtration of a transported

colloidal species. CFD simulations are performed with OpenFOAM, where the

colloid transport is solved by the advection-diffusion equation. A campaign of

two thousands simulations was performed on a HPC cluster, the permeability

is calculated from the simulations with Darcy’s law and the filtration (i.e. de-

position) rate is evaluated by an appropriate upscaled parameter. Finally a

dataset connecting the input features of the simulations with their results is

constructed for the training of neural networks, executed on the open-source

machine learning platform Tensorflow (integrated with Python library Keras).

The predictive performance of the data-driven model is then compared with the

CFD simulations results and with traditional analytical correlations.
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1. Introduction

The transport of colloids in porous media, such as engineered nanomaterials,

viruses, bacteria and fine powders, is a field of research that involves many dif-

ferent applications, from process engineering to environmental engineering and

medical sciences [1]. The comprehension of this phenomenon is important, for

example, for particle filtration [2, 3, 4], for the recovery of valuable colloidal ma-

terials [5, 6, 7], for catalytic processes carried in porous beds [8, 9, 10, 11, 12], for

the removal of airborne colloids through air filtration in industrial and consumer

services [13, 14], for the prediction of contamination of soils by pathogenic bio-

logical material [15, 16, 17] and for water and waste-water treatment [18, 19, 20].

In relation to the last application proposed, the injection of colloidal nanoscale

zerovalent iron (NZVI) is a valuable technology for the remediation of contam-

inated aquifer systems [21, 22]. In our work we focused particularly on some of

the above-mentioned applications.

The mathematical modeling of flow and transport of colloids through porous

media is scientifically interesting and is needed for making predictions (for ex-

ample, the filtration performance of a certain medium) and for optimization

purposes. In order to obtain practically employable porous media models at

the process scale (i.e. macroscopic case), it is necessary to avoid the simultane-

ous full characterization at the microscopic level. The relevant phenomena are

thus first investigated in detail, and appropriate sub-models are subsequently

extracted by means of volume averaging and homogenization techniques. In

this work we focused on filtration by deposition of colloids on the grains of the

porous medium due to Brownian motion regulated transport. Computational

fluid dynamics (CFD) simulations can be performed in order to solve the main

transport equations resulting in detailed models of the phenomena considered

for the proposed geometries [23, 24].

CFD simulations were proposed for filtration applications, such as filtration

in fibrous media [25, 26, 27] and particulate filters [28, 29], reactors modeling

[30, 31, 32, 33, 34] and for colloids deposition in bidimensional [35, 36] and three
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dimensional porous media [37], just to cite a few examples.

CFD simulations are usually computationally expensive and time consuming,

this is the reason why the realization of data-driven models could be a valid

surrogate of traditional physics-based models, in fact, they are able to speedily

predict an output, after an appropriate training procedure. Machine Learning

(ML) algorithms are able to grasp the relations that intervene between the input

features for the prediction of output parameters. The gain in velocity of these

models may be exploited in multiscale modeling, in-line control and parameters

optimization for efficient design; developing adequate ML surrogate models is

therefore a key part in the construction of effective and interoperable modelling

workflows, an ever more important objective in the development of workflow

management systems [38]. Specifically CFD simulations can be employed for the

creation of the dataset aimed to the training of ML algorithms, i.e. establishing

the “ground truth” of the data-driven model.

In the last decade ML algorithms spread in the scientific research thanks to

the ability to find connections between data points that can be hardly evaluated

by first-principle methods: in this way the data can be processed at higher

velocity and useful informations can be extracted from them [39, 40, 41, 42, 43].

Modern ML tools can be used to improve and speed-up the relation of relevant

parameters in first-principle methods such as molecular dynamics simulations

[44, 45, 46]. In particular, artificial neural networks (ANN) are one of the most

well-known ML tool, experiencing constant improvement and use in industry

[47, 48, 49, 50].

Data-driven models have been coupled with CFD models for the prediction

of fluid dynamics properties [51, 52, 53] and for the optimization of devices, for

example separators [54, 55] and chemical reactors [56, 57, 58, 59]. In the case

of porous media the random nature of the geometries led to the application of

neural networks for the prediction of geometrical parameters: especially coupled

with Lattice Boltzmann methods for the prediction of the permeability [60,

61, 62]. CFD finite volumes methods coupled with ML algorithms have not

been deeply explored yet and the prediction of a wide number of fluid dynamic
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parameters is an open field of research.

Thus, in this paper we propose an open-source workflow for the prediction

of the permeability of bidimensional models of porous media together with their

filtration performance with respect to a transported colloid (by its deposition

on the porous medium surface). The construction of data-driven models for the

prediction of the filtration performance is a new and innovative result that has

never been proposed before. The methodology adopted can be summarized as

follows: as a first step the CFD model is set up, then some geometric parameters

and operating conditions are chosen as features and a thousand simulations are

performed with those features ranging in established boundaries. After the per-

meability and the deposition rate are calculated for every simulation, a dataset is

created: each simulation is expressed as a sample composed of the input features

and the corresponding results. The neural network is trained with a portion of

the dataset and the performance is evaluated on the remaining part (following

the usual split between training and testing/validation datasets). Finally the

neural network predictive efficacy of the permeability and the deposition rate is

compared with some traditional analytical correlations that link those outputs

with the chosen input features.

The CFD simulations are performed with the open-source toolbox OpenFOAM

6 on a HPC cluster. The simulations setup and the dataset creation has been

managed with Python 2.7 and the neural network models have been created,

trained and tested with the open-source ML framework Tensorflow, together

with the Python library Keras.

2. Methods

2.1. Governing equations: physics-based models

The physics-based model is realized by solving the appropriate transport

equations via the setup of CFD simulations. Indeed, the first thing to be noted

is that the continuum hypothesis for the fluid is valid as the length scale of the

porous media is in the order of hundreds of µm. First the continuity equation,
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Eq. (1), and the Navier-Stokes equation, Eq. (2), are solved under the hypothe-

sis of incompressible fluid and constant density in order to estimate the pressure

and velocity fields:
∂Ui

∂xi
= 0, (1)

∂Ui

∂t
+ Uj

∂Ui

∂xj
= −1

ρ

∂p

∂xi
+ ν

∂2Ui

∂x2j
, (2)

where Ui is the ith component of the velocity, p is the pressure, ρ is the fluid den-

sity and ν is the kinematic viscosity. As well-known, when Eq. (2) is normalized

and made dimensionless the Reynolds number (Re) appears.

The transport of the colloid is modeled with the continuum approach, being

the particles size four orders of magnitude smaller than the solid grains, and

Fick’s law is considered valid for the description of the diffusive flux because the

colloid concentration in the fluid is low. As mentioned, in this study we con-

sider the practical application of fixed dimension colloidal particles injection in

water-saturated porous media. As such, considering particle density lower than

1000 kg m−3, and particle size smaller than 1 µm, the resulting Stokes number

is lower than unity for all the operating conditions here described. Because of

this, the particles are assumed to move together with the fluid at the same ve-

locity, and the colloid diffusion coefficient is considered constant in space; this

assumption still holds close to the solid grains surface as the interactions due

to attractive London forces are counterbalanced by hydrodynamic retardation

effects [35, 63, 64]. Therefore the advection diffusion equation, Eq. (3), is solved

for the evaluation of the concentration field:

∂C

∂t
+ Uj

∂C

∂xj
=

∂

∂xj

(
D ∂C
∂xj

)
. (3)

where C is the colloid concentration and D is the diffusion coefficient of the

colloid, that is estimated by the Einstein equation:

D =
kBT

3πµdP
, (4)
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where kB is the Boltzmann constant, T is the temperature, µ is the dynamic

viscosity of the fluid, and dP is the dimension of the colloid particles. When

Eq. (3) is normalized and made dimensionless the Pèclet number (Pe = Re Sc)

appears. As we want to study a filtration process in its early stages (so called

“clean-bed” filtration), an instantaneous reaction on the surface of the solid

grains was considered, and implemented as described in the next section.

The solution of these macroscopic equations, Eqs. (1)-(3), leads to the fields

mentioned before, which it is advisable to transform in more practically em-

ployable upscaled parameters. The flow field data is exploited for the evaluation

of the permeability, k, that characterizes flow in saturated porous media and is

calculated with the Darcy equation:

∆P

L
=
µ

k
q, (5)

where ∆P is the pressure drop across the medium, L is the length of the medium

in the direction of the fluid flow and q is the superficial velocity of the fluid.

The Darcy equation is valid for very small values of the superficial velocity,

i.e. laminar regime and Reynolds number lower than unity (Re � 1). The

colloid concentration field is instead employed for the estimation of an averaged

deposition rate, Kd, which was derived by volume averaging of the advection-

diffusion equation in steady state conditions and under the hypothesis that the

overall source term can be expressed as the product of a macroscopic effective

term and the average concentration (or in other words, by a first-order reaction),

as it was derived in [65], leading to:

Kd =
F in
tot − F out

tot

〈C〉V
, (6)

where Ftot is the total flux (advective and diffusive) in the inlet and in the

outlet, 〈C〉 is the volume average concentration of the colloid, V is the total

volume of the medium.
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2.2. Neural networks: data-driven models

Artificial neural networks are machine learning algorithms suited for multi-

variable non-linear problems. The design of an appropriate architecture is a key

point in the construction of the algorithm; generally it consists of an input layer,

with a number of neurons equal to the number of inputs, one or more hidden

layers, with a selected number of neurons, and an output layer, consisting of

one single neuron in the case of regression problems. The input layer neurons

collect the values of the input variables and send each of them to each neuron of

the hidden layer, every neuron multiplies the input values by the weight, wi,j ,

sums them and applies an activation function, as it is expressed in Eq. (7) for

a generic neuron j. The output of each neuron is transferred as new input to

the neurons in the next layer:

y
(k)
j = f

(
bk−1 +

mk−1∑
i=1

w
(k)
i,j y

(k−1)
i

)
, (7)

where yj is the output of the jth neuron of the kth layer, mk−1 is the number of

neurons in the previous layer, wk
i,j is the weight associated to the ith neuron of

the previous layer, bk−1 is the bias of the previous layer and f is the activation

function. One of the most common activation functions is the Rectified Linear

Unit (ReLU):

ReLU(z) = max(0, z) (8)

These kinds of feed-forward neural networks are trained by the backpropagation

method, that is an iterative optimization algorithm able to adjusts the weights

in order to minimize the error, usually defined as mean square error (MSE):

MSE =
1

n

n∑
i=1

(
ŷi − y(kout)

i

)2
(9)

where n is the number of samples used during training and ŷi is the true output.

For each iteration (t) weights and biases are updated in the steepest descending
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direction of the MSE function, i.e. the gradient of the MSE:

w
(k)
i,j (t+ 1) = w

(k)
i,j (t)− λ∂MSE

∂w
(k)
i,j

(10)

where λ is the learning rate. The hyper-parameter tuning is a central issue in

the creation of the data driven model: it is necessary to find out the best value

of learning rate, number of hidden layers, number of neurons per layer and the

best optimizer for the optimal performance of the model. The training of the

ANN is performed on a certain percentage of the entire dataset, the 90 % in

this work, the training set, the remaining part is the test set and is exploited

for the evaluation of the performance of the model. The training stops when a

fixed number of settled epochs is reached or when the MSE decreases below an

established threshold.

2.3. Computational details

The workflow for the application of machine learning methods, i.e. ANN,

for the prediction of fluid dynamics properties consists in three main steps. At

first the construction of the CFD model, in particular the setup of the geometry

and of the spatial discretization, the choice of the most appropriate solvers

and boundary conditions for the resolution of Eqs. (1)-(3). Then the main

operating conditions and geometry parameters are selected as predictors and

a range of variation of those is established, subsequently a selected number of

simulations chosen inside that range are performed. The results are than used

for the calculation of the fluid dynamics properties chosen as objective of the

modeling, i.e. Eqs. (5)-(6). Hence the dataset is created and it is employed for

the training of the data driven model.

2.3.1. CFD model setup

We considered a simplified bi-dimensional model for a porous medium, rep-

resented by a square area containing non-overlapping circles placed randomly

in order to obtain a geometry which is periodic in the direction orthogonal to
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the main flow direction, i.e. the circles that cross the upper boundary are com-

pleted in the lower part of the domain, and viceversa; this is shown in Figure 1.

Both monodisperse, Figure 1(a), and polydisperse, Figure 1(b), grain diameter

distributions are considered. The dimension of the computational domain, as

the number of grains, is established as a result of a representative elementary

volume (REV) study, required for the evaluation of the minimum number of

grains to whom a certain property uniquely correspond: the porosity, in this

study [66, 67]. A wide field is created, then areas with an increasing number

of grains are considered and the porosity is calculated. As Figure 2(a) shows,

we can consider a REV constituted by 100 elements in the monodisperse case

and 150 for the polydisperse one, Figure 2(b). The spatial discretization is set

imposing a minimum number of cells per diameter. In case of monodisperse

distributions 20 cells per diameter, in case of polydisperse distributions 10 cells

per minimum diameter of the distribution, corresponding to 30 cells per mean

diameter, Table (1). Grid independence studies for analogous phyisical systems

can be found in our previous works [35, 37]. The geometry and the mesh are

constructed with the mesh generators blockMesh and snappyHexMesh.

The system is considered isothermal at temperature equal to 298 K, the fluid

is Newtonian with density equal to 997 kg m−3 and kinematic viscosity equal

to 0.89 ×10−6 m2 s−1, equal to pure water viscosity at ambient temperature.

The fluid flows in laminar conditions, in fact, the Reynolds number does not

exceed 0.015, so no turbulence models are required in the simulations. The

gravity is not considered in this model. The solver simpleFoam is employed for

the resolution of Eqs. (1-2). The boundary conditions set on the grains surface

are no-slip condition for velocity, and zero gradient of pressure; on the upper

and lower boundaries a cyclic boundary condition is set. A constant pressure

at the inlet (the left boundary on Figure 1) and a null pressure at the outlet

(the right boundary on Figure 1) are imposed, as to obtain a fully developed

velocity profile entering the porous medium.

The colloid transport is modeled as a scalar transport of the normalized

particle concentration C, thus the scalarTransportFoam solver is employed
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for the resolution of Eq. (3) in steady state conditions. A normalized inlet

concentration equal to 1 and a zero gradient of the concentration are imposed

as boundary conditions at the inlet and at the outlet of the porous medium

respectively; a cyclic boundary condition is set at the upper and lower bound-

aries. On the grains surface a null concentration is imposed, representing the

clean-bed filtration described earlier.

The convergence criteria on the residuals are settled as follows: 10−6 for the

pressure, 10−5 for the velocity, 10−6 for the scalar. Concerning the discretization

schemes, for the flow field evaluation they are the default second order schemes

suggested by OpenFOAM 6, for the concentration field evaluation the default

schemes have been changed into limited second order discretization schemes to

force the concentration to range between 0 and 1.

Figure 1: Sample of geometries considered in the simulation of flow and transport in porous
media. Left: monodisperse geometry; right: polydisperse geometry.

2.3.2. Dataset creation

In order to produce an adequate number of samples for the training of a

neural network it is necessary to automate the resolution of a large number of

simulations. To that end Python scripts are realized for the automatic setup of

the simulations, for checking their successful output and for the extraction of

the results. The simulations are performed on a HPC cluster equipped with 29

nodes with CPU 2x Intel Xeon E5-2680 v3 2.50 GHz 12 cores. The realization

of the CFD model presented in the previous paragraph allows the creation of
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Figure 2: Representative elementary volume (REV) study: evaluation of the porosity as a
function of the number of grains considered in the computational domain. Left: monodisperse
geometry; right: polydisperse geometry.

a simulation template employed for the setup of all the other simulations that

differ for selected parameters. Those are operating conditions and geometric pa-

rameters, in particular: the inlet pressure of the fluid, p, the size of the colloidal

particles, dc, the diameter of the grains, dg, the porosity of the medium, ε and,

just for the polydisperse geometry cases, the standard deviation of the grain

diameter distribution, σ. In Table 1 the ranges of variation of those parameters

are resumed. The simulations are set up with a random combination of the pa-

rameters whose values are uniformly extracted from the ranges of Table 1.The

parameters are selected randomly, and not systematically, for each simulation

in order to explore in the dataset the effect of a combination of parameters as

wide as possible and reduce the bias in the model.

Every simulation’s computational domain dimension is the same and the

number of grains, i.e. the circles, is chosen as to guarantee the geometric pa-

rameters assigned, and to guarantee a suitable REV in the case of both largest

porosity and grain diameter, thus having a valid REV for every other simulation.

One thousand simulations are performed for both the monodisperse and

polydisperse cases, the total number of samples available for the training of the

data-driven model is 962 for the first case and 996 for the second case. Less than

the 4% is lost because some simulations did not reach the convergence criteria

established for the CFD model.
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Parameter Range of variation

p 0.0836 - 0.50 Pa
dg 100 - 200 µm
σ 0.1 - 0.3 (-)
ε 0.5 - 0.65 (-)
dc 30 - 100 nm

Table 1: Range of variation of the parameters selected as predictors for the setup of the
simulations.

2.3.3. Neural network setup

The data-driven models constructed in this work are trained with the dataset

created as it is described in the previous paragraph. The porosity of the porous

medium, the mean grain diameter and the standard deviation of the grain dis-

tribution, for just the polydisperse case, are the predictors for the evaluation

of the permeability of the medium, calculated by the Darcy equation, Eq.(5).

The geometric parameters, the inlet pressure of the fluid, and the colloid di-

mension are the predictors for the evaluation of the deposition rate, Eq. (6).

Every sample fed to the neural network training algorithm is the result of a

CFD simulation performed with a different set of these predictors.

The neural network is trained with the Adam optimizer until the maxi-

mum number of epochs is reached, 20000, or when the MSE on the test set

remains unchanged for a number of epochs equal to 1500. Different learn-

ing rates were employed in order to evaluate the value corresponding to the

best performance of the ANN, in particular the following values of λ were

tested: 10−1, 10−2, 10−3, 10−4, 10−5. Different architectures of the ANN were

also tested, starting from a shallow network composed by a single hidden layer

with 32 neurons, then hidden layers are added with an increasing number of

neurons: 64, 128, 256. In APPENDIX A it is possible to find the detailed

description of the script we developed for the implementation of the neural

networks model.

The performance of the model is evaluated on the test set of the dataset,

for every sample of this set the relative error between the CFD result and the
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model prediction is calculated, Eq. (11). Then, the average error of the neural

network is calculated as the average of the error on each sample, the different

architectures and learning rate tested are compared on the basis of the average

error, the maximum error and the standard deviation of the error on the test

set.

Error =
ŷ − y(CFD)

y(CFD)
. (11)

The hyper-parameters evaluated in this study are the learning rate and the

neural network architecture, the best combination of the two for each result (per-

meability of the medium and deposition rate of the colloid) and for each system

(monodispersed and polydisperse grain diameter distribution) is researched re-

sulting in four different ANNs. The choice is made based on the lowest average

relative error on the test set. In Figure 3 the average relative error as a func-

tion of the learning rate for the four different architectures is reported. For the

prediction of the permeability of the porous medium in the monodisperse case

the learning rate is chosen equal to 10−1 and the architecture of the ANN is

{32 64}, i.e. two hidden layers with respectively 32 and 64 neurons. For the

prediction of the permeability of the porous medium in the polydisperse case

the learning rate is chosen equal to 10−3 and the architecture of the ANN is

{32}, i.e. one hidden layer with 32 neurons. For the prediction of the deposition

rate of the colloid in the monodisperse case the learning rate is chosen equal to

10−2 and the architecture of the ANN is {32 64 128}, i.e. two hidden layers

with respectively 32, 64 and 128 neurons. For the prediction of the deposition

rate of the colloid in the polydisperse case the learning rate is chosen equal to

10−2 and the architecture of the ANN is {32 64}, i.e. two hidden layers with

respectively 32 and 64 neurons.

3. Results and discussion

In this section the results of the CFD simulations are presented and both an-

alytical and data-driven models are proposed for the prediction of the upscaled

parameters described before, namely permeability k and reaction rate Kd.
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Figure 3: Hyperparameter tuning of the neural network: mean relative error on the test
set as a function of the learning rate (10−1, 10−2, 10−3, 10−4, 10−5) and of the network
architecture ({32} in red, {32, 64} in blue, {32, 64, 128} in green, {32, 64, 128, 256} in black,
refer to the end of section 2 for the bracket nomenclature). Top: error on the prediction of
permeability; bottom: error on the prediction of deposition rate; left: monodisperse grains;
right: polydisperse grains.

3.1. Flow field results

∆Pρ

G2
0

dg
L

ε3

(1− ε)
= 150

1− ε
(dgG0)/µ

+ 1.75, (12)

where G0 is the mass flux, G0 = ρq. The inertial term of the Ergun equation in

the cases of this work is negligible since all the samples fall in laminar regime.

The results obtained from the simulations are not completely in agreement with

the equation because the geometries are bi-dimensional whereas Ergun’s equa-

tion is valid for three-dimensional packed beds. Similar results were obtained

in our past work [35] for a smaller number of simulations performed. The poly-

disperse geometries, referring to the polydisperse grains, deviate less from the
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theoretical equation compared to monodisperse ones, moreover the higher is

the standard deviation of the grain diameter distribution the lower is this de-

viation, Figure 4(b). This behavior can be explained considering that the most

likely bi-dimensional description of a monodisperse 3D porous medium is a 2D

polydisperse geometry. In fact, if we imagine to cut with a surface a three-

dimensional sphere arrangement in the flow direction we obtain circles with

different diameter and most of them will not be in contact. Two contour plots

for a qualitative description of the flow field are presented in Figure 5, where

the fluid flows from left to right and it is possible to appreciate the presence of

the periodic boundary conditions on the upper and lower boundaries.

The permeability is the first upscaled parameter we have approached for

testing the workflow proposed in the previous section. It is a well known de-

scriptor of a porous medium from the geometrical point of view, and in our case

it is calculated by comparing the results of the CFD simulations with Darcy’s

law, Eq. (5). The Kozeny equation, k = Ck
ε3

(1−ε)2M2
s

where Ms is the specific

surface of the porous medium (m2/m3), instead is an expression for the per-

meability that depends just on geometrical parameters: it is exploited as an

analytical model to compare with the results of the data-driven model. The

Kozeny constant is evaluated by fitting of the CFD results, Figure 6, resulting

in Ck equal to 0.084 for both monodisperse and polydisperse geometries. The

average error associated to the prediction of the permeability by the Kozeny

equation, calculated according to Eq. (11), is equal to 10.1% for monodisperse

geometries and 8.2% for polydisperse geometries. The error linked to the poly-

disperse geometries is lower than in the monodisperse case, even in this case this

behavior is amenable to the most likely 3D approximation of the first ones. The

specific surface has been evaluated in an analytical way starting from the radii

of the grains and the dimensions of the geometries, we proved that the quality

of the predictions of the Kozeny law does not change if the specific surface is

evaluated from the meshed geometry.

The performance of the optimized neural networks, Figures 3(a) and 3(b),

is shown in the parity diagrams of Figure 7, where the results of the CFD
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monodisperse geometries polydisperse geometries
k Kd k Kd

Average error 5.52% 3.24% 4.92% 2.69%
Maximum error 25.85% 10.35% 20.03% 11.99%

Standard deviation 4.43% 2.44% 3.48% 2.49%

Table 2: Performance of the neural networks.

simulations and the result of the model are compared. In Table 2 the average

error, the maximum error and the standard deviation of the error are reported.

The neural networks are able to predict the permeability with an average error

of 5.5% and 4.92% respectively for monodisperse and polydisperse geometries,

instead the Kozeny equation results in errors of 10.1% and 8.2% respectively,

so the neural networks perform better with average errors about 40% lower

than the traditional correlation for the geometries proposed and for the range

of operating conditions explored in this work.

Figure 4: Comparison of CFD results (black points) with Ergun’s equation (red line). Left:
monodisperse geometry; right: polydisperse geometry with σ (i.e. standard deviation in
diameter distribution) between 0.1 and 0.15 in green, between 0.15 and 0.25 in blue, between
0.25 and 0.3 in red.

3.2. Transport field results

After having obtained the flow field results, the particle deposition simula-

tions are performed as described before. In Figure 8 two contour plots of the

concentration at the steady state are reported. The two cases proposed differ
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Figure 5: Contour plot of the fluid velocity (ms−1), from left to right. Left: monodisperse
grain distribution geometry (Re = 0.0071); right: polydisperse grain distribution geometry
(Re = 0.0021).

Figure 6: Evaluation of the Kozeny coefficient through linear regression. Left: monodisperse
geometry; right: polydisperse geometry.

for the geometry and for the Pèclet number, defined as:

(Pe) =
qdg
D
. (13)

So at high Pèclet numbers the convective term prevails on the diffusive one

and as a consequence the filtering performance of the porous medium decreases,

as it is apparent comparing Figure 8(a) with Figure 8(b). The time required

for the resolution of each CFD simulation, considering both simpleFoam and

scalarTransportFoam solvers, is 1.2 hours in the case of monodisperse grains
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Figure 7: Parity diagrams of the permeability prediction on the test set for the optimal
neural networks trained with the best hyperparameters. Left: monodisperse geometry; right:
polydisperse geometry.

geometries and 4 hours in the case of polydisperse grains geometries, which have

an higher number of cells.

The data-driven model we designed is aimed to the prediction of the depo-

sition rate, Kd, as defined in the previous section, Eq. (6). From the literature

[65] we know that this upscaled parameter is correlated to the Pèclet number

through the Damköhler number, which in this work we define as follows:

Da =
KdL

q
. (14)

The classic upscaled parameter for the evaluation of the filtration performance

is the deposition efficiency η, whose best adimensional descriptor1 is the Pèclet

number [2, 68, 69]; while in this work we have chosen to employ the more reliable

macroscale parameter Kd (as explained in [65], the same functional dependence

holds. Thus we consider a relationship of the form:

Da = APeB , (15)

The values of parameters A and B obtained from the best fit of the results

1if one considers only Brownian diffusion, as it is the case in this work
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dataset, Figure 9, the following values are obtained: A = 6.394×109, B = -0.928

for the monodisperse geometry, A = 7.413×109, B = -0.973 for the polydisperse

geometry. The average error of the prediction is equal to 12.2% for the first case

and 11.9% for the second case.

The performance of the optimized neural networks, Figure 3(c) and 3(d),

is evaluated in the parity diagrams of Figure 10 where all the predictions on

the test set samples are reported: the average error is equal to 3.24% for the

monodisperse case and 2.69% for the polydisperse case. In Table 2 more details

on the data-driven models accuracy are reported. Even in this case the data-

driven model is able to better predict the deposition efficiency with respect to

the classical relationship structured on dimensionless number dependency. In

the limit of the cases explored in the current dataset, the error associated to

the predictions is one order of magnitude lower than the one correlated to the

analytical correlation, Eq. 15. The neural networks training process took about

4 minutes and the trained model is able to predict almost instantly its output.

Figure 8: Contour plot of the normalized concentration. Left: Monodisperse grain distribution
geometry (Pe = 990.0); right: Polydisperse grain distribution geometry (Pe = 252.5).

4. Conclusions

In this work we successfully developed an open-source workflow for the real-

ization of a dataset starting from a campaign of CFD simulations aimed to the
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Figure 9: Evaluation of the correlation between the Damköhler number and the Pèclet number.
Left: monodisperse geometry; right: polydisperse geometry.

Figure 10: Parity diagrams of the deposition rate prediction on the test set for the optimal
neural networks trained with the best hyperparameters. Left: monodisperse geometry; right:
polydisperse geometry.

training of neural networks for the prediction of fluid dynamics quantities. Neu-

ral networks have been employed to predict the permeability and the deposition

rate for the investigated cases. In conclusion:

• The average error on the test set for the permeability it is lower than 6%

and for the deposition rate, which has never been predicted with machine

learning tools before, is lower than 3.5% for both geometrical models;

• The networks allow the comprehension of the relations between parame-

ters, and they also provide more accurate predictions of the permeability

and the deposition rate compared to traditional analytical expressions,
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with average errors lower than 40% in the range of operating conditions

explored in this work;

• The data-driven models, once trained, can instantaneously give a satisfac-

torily accurate output, while a CFD simulation requires a certain amount

of computational time. In our case each CFD simulation requires from

one to four hours to be solved and the training takes four minutes. The

increase in the predictive velocity can be exploited in multiscale modeling,

in-line control and optimization problems;

ML algorithms, in particular neural networks, are promising tools in mod-

eling advancement of intrinsically random problems as porous media are. To

enhance the predictive accuracy new elaborated input features could be em-

ployed, such as the tortuosity and the pore size distribution, paying attention

to the choice of parameters that can be experimentally evaluated. To avoid

the arduous selection of parameters representing the randomness of the media,

another way to solve the problem is to submit the entire geometry as training

input for the neural network: in this way the algorithm itself could select the

most important features in the image. In this case more sophisticated tech-

niques must be used, such as convolutional neural networks, which will be our

next research focus.

APPENDIX A - Neural network model

The neural network model has been setup as follows. At first the dataset is

imported, then it is scaled between -1 and 1 using the MinMaxScaler function

of the Scikit-learn library of Python. The scaled dataset is divided into the

training and test set with a split of 90%. The architecture of the neural network

is setup with Keras as a sequential model, where Dense layers are added. The

loss function employed during the training is the mean square error, the Adam

optimizer is used and a batch size of 50 is settled. The ModelCheckpoint

and EarlyStopping callbacks of Keras are used for the control of the training

process. The code can be found in the supplementary material.
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