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Abstract 12 

The paper presents an enhancement in Refined Zigzag Theory (RZT) for the analysis of multilayered composite 13 

plates. In standard RZT, the zigzag functions cannot predict the coupling effect of in-plane displacements for anisotropic 14 

multilayered plates, such as angle-ply laminates. From a computational point of view, this undesirable effect leads to a 15 

singular stiffness matrix. In this work, the local kinematic field of RZT is enhanced with the other two zigzag functions 16 

that allow the coupling effect. In order to assess the accuracy of these new zigzag functions for RZT, results obtained 17 

from bending of angle-ply laminated plates are compared to the three-dimensional exact elasticity solutions and other 18 

plate models used in the open literature. The numerical results highlight that the enhanced zigzag functions extend the 19 

range of applicability of RZT to the study of general angle-ply multilayered structures, maintaining the same seven 20 

kinematic unknowns of standard RZT. 21 
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1. Introduction  36 

 37 

In the last decades, multilayered composite and sandwich structures have been increasingly used in aerospace, 38 

marine, military, civil, and automotive industries due to their excellent high specific strength and stiffness, good fatigue 39 

behavior, and damping characteristics. On the other hand, their transverse shear deformability and through-the-thickness 40 

anisotropy demand for accurate computational models to reliably predict their structural response at affordable 41 

computational costs. 42 

In order to obtain a solution for the largest number of structural plate problems, the axiomatic displacement-43 

based theories are widely considered.  Such models can be divided into two macro-areas: the Equivalent Single Layer 44 

(ESL) theories and the Layer-Wise (LW) theories. The interested reader is referred, among the others, to Refs. [1,2]. 45 

Simply stated, the former assumes a through-the-thickness distribution of the displacement field along with the entire 46 

laminate thickness. In the latter, the displacement field is assumed independent for each layer, and it is possible to ensure 47 

the continuity of transverse stresses at the interfaces (a condition that cannot be obtained directly in ESL theories). Among 48 

the ESL theories, the Classical Laminate Theory (CLT), the First Order Shear deformation Theory (FSDT), the Reddy’s 49 

Third Order Shear deformation Theory (TSDT) should be cited. Depending on the plate aspect ratio, these theories are 50 

more or less accurate to predict general quantities such as transverse displacements, fundamental frequencies, buckling 51 

loads, but generally are not accurate to predict local quantities (in-plane displacements, strain and stresses distributions). 52 

On the other hand, LW theories accurately predict the previous global and local quantities, but the computational cost 53 

becomes prohibitive for plates with several layers. 54 

The Zig-Zag Theories represent a good compromise between the reduced number of unknown variables of ESL 55 

and the good accuracy LW theories. In such models, the kinematic field is a superposition of a coarse and a finer 56 

distribution of in-plane displacement. The accuracy of displacements and in-plane stresses are improved by the zigzag 57 

functions, typically piecewise linear. This enhancement leads to having a fixed number of unknown variables while 58 

maintaining a good accuracy in thickness-wise distributions of in-plane displacements and stresses typically of a 59 

multilayered plate. Many researchers have put their efforts in this field, typically starting from an assumed shear stress 60 

field, among which Whitney [3] is worth mentioning. Other significative works are those represented by Murakami [4], 61 

Di Sciuva [5] and Cho and Parmerter [6], who assumed a zigzag contribution directly superimposed in the kinematic field 62 

to study general laminates. Moreover, recently Loredo and co-workers [7,8], formulated a family of improved theories 63 

with a set of transverse shear warping functions to study the behaviour of general laminates. It is worthy to note that such 64 

functions are very accurate since they satisfy exactly the 𝐶௭
଴ requirements. On the other hand, if the form of warping shear 65 
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functions is assumed a-priori in the kinematic field, the continuity of displacements and transverse shear stresses have to 66 

be enforced a-posteriori at layer interfaces. 67 

Recently, Tessler and co-workers formulated an accurate refined theory, here named standard Refined Zigzag 68 

Theory (RZT),  for the analysis of multilayered composite and sandwich structures [9]. In Tessler et al. [10], it has been 69 

shown that standard RZT is also capable of investigating, with an appropriate methodology, the behaviour of 70 

homogeneous plates. Gherlone [11] deeply investigated the role of zigzag functions in the ESL refinement to analyse 71 

multilayered composite and sandwich beams. Iurlaro et al. [12] have improved the linear RZT model with cubic zigzag 72 

function to analyse thick multilayered beams. An interesting aspect is that standard RZT requires only C0 continuity in 73 

finite element formulation, and this makes this theory very attractive from a computational point of view.  74 

Recently, Kreja and Sabik [13] have compared some zigzag models to analyse laminated multilayered plates, 75 

highlighting a drawback of standard RZT. Due to the kinematic field's assumptions in standard RZT, it is impossible to 76 

study multilayered angle-ply plates in which two adjacent laminae have alternating orientations, but the same absolute 77 

value. In such cases, the slope of zigzag functions is constant for each layer and, in order to satisfy the null value for these 78 

functions at the external surfaces, it results that they are constant and null through-the-thickness. Thus, the local 79 

displacement field is null, although it has been considered a multilayered structures, and from a computational point of 80 

view, this leads to a singular stiffness matrix. No other investigations on angle-ply or general laminated plate using 81 

standard RZT are present in literature.   82 

Following the generalization of Di Sciuva’s zigzag model [14] and taking into account the drawback of standard 83 

RZT to study angle-ply laminates, the purpose of this work is to enhance the standard Refined Zigzag Theory in order to 84 

allow the analysis of more general anisotropic multilayered laminates and sandwich plates. 85 

 86 

2. Enhanced Refined Zigzag Theory 87 

 88 

2.1 Geometrical preliminaries 89 

We consider a multilayered flat rectangular plate made of a finite number N of perfectly bonded layers. V is the volume 90 

of the plate, h the thickness; a1 and a2  are the length and width, respectively. The points of the plate are referred to an 91 

orthogonal Cartesian coordinate system defined by the vector    ( 1,2,3)ix iX  . The vector    ( 1,2)xx     92 

represents the set of in-plane coordinates on the reference plane Ω, here chosen to be the middle plane of the plate, and 93 

𝑥ଷ being the coordinate normal to the reference plane, so that 𝑥ଷ is defined in the range  𝑥ଷ ∈ ቂ−
௛

ଶ
, +

௛

ଶ
ቃ . The origin of 94 

the reference frame is fixed so 𝑥ଵ ∈ [0, +𝑎ଵ] and 𝑥ଶ ∈ [0, +𝑎ଶ]. The thickness of each layer, as well as of the whole plate, 95 
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is assumed to be constant, and the material of each layer is assumed to be elastic orthotropic with a plane of elastic 96 

symmetry parallel to the reference surface and whose principal orthotropy directions are arbitrarily oriented with respect 97 

to the in-plane reference frame.  98 

If not otherwise stated in the paper, the superscript (k) is used to indicate quantities corresponding to the kth layer 99 

(k=1,…,N), whereas the notation ( )(.) k  (k=1,…,N-1) stands for (.) valued for 3 ( )kx z , i.e., at the kth interface (k=1,…,N-100 

1) between the kth and the (k+1)th layer. Also, we use the subscript (B) and (T) to indicate the bottom and top surfaces, 101 

respectively, of the single-layer/whole plate; specifically,  (1)
(B) (B)z z  and ( )

(T) (T)
Nz z denote the coordinates of the bottom 102 

and top surfaces of the whole plate; thus, (T) (B) ( ) (0)Nh z z z z    is the plate thickness and 103 

( ) ( ) ( )
( ) ( 1) (T) (B)=  ( 1,2,..., )k k k
k kh z z z z k N    , the thickness of the kth layer. 104 

The symbol ,

( )
( ) i

ix




  refers to the derivative of the function ( )  with respect to the coordinate ix , i.e., ,

( )
( ) .i

ix



   105 

In the paper, if not otherwise specified, the Einsteinian summation convention over repeated indices is adopted, with 106 

Latin indices ranging from 1 to 3, and Greek indices ranging from 1 to 2. 107 

 108 

2.2 Kinematics  109 

As usual in the axiomatic theories of plates and shells, the thickness-wise distribution of the 3-D displacement field is 110 

assumed a-priori. Specifically, in the enhanced RZT, following the standard RZT, the in-plane kinematics is based on the 111 

superposition of a global (G) first-order kinematics (which is continuous with its first derivatives with respect to the 𝑥ଷ-112 

coordinate) and a local (L) layer-wise correction of the in-plane displacements (which is continuous and piecewise linear 113 

with respect to 𝑥ଷ, but with jumps in the first derivative at the interface between adjacent layers), while the transverse 114 

deflection is assumed to be uniform along with the thickness. Thus, 115 

 3
( ) ( )

3) ) );   ) )( ( ( ( (k G L ku u  u X u X u X X x     (1) 116 

where 117 

 
( )

3
( )

3) ) );   ) ( )( (( ( ( )G L k kx x  u X u x x u X xθ     (2) 118 

 

( )

( ) 1 1

22 2

1(( (
( ;  ( ;

)
 (

((

))
) ) )

)) )(

k

k u u

u u




        
     
        

  
xx

u u x x
xxX

X
X θ




 (3) 119 

 3

2

( ) ( )
1( ) 11 3 12

3 ( ) )
2

(
221 3 3

( )( ) ( )
( ) ;  ( )

( )( ) ( )

k k
k

k k

x x
x

x x

 
 
 
 
 

 
  
 

x
x

x
   (4) 120 
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In Eq. (2), )(u x  and )(θ x are the global in-plane displacements and rotations of the normal to the reference plane about 121 

the positive 2x  and the negative 1x  directions, respectively; )(ψ x  denotes the matrix of the unknown spatial amplitudes 122 

of the ( )
3( )k x  zigzag functions, these last being assumed piecewise linear functions through-the-thickness, vanishing 123 

on the top and bottom surfaces of the plate1. Moreover, 3 )(u x is the transverse deflection, assumed to be constant along 124 

with the plate thickness. 125 

2.3 Stress-strain relations 126 

As usual in plate theory, a plane stress state is assumed, i.e., 𝜎෤ଷଷ = 0. According to this assumption, the reduced local 127 

elastic Hookean constitutive equations read 128 

 ( ) ( ) ( ) ( ) ( ) ( );    k k k k k k
p p p t t t Q Qσε γσ    (5) 129 

In Eq. (5), 130 

 ( ) ( )( ) ( )
p 11 22 12 t 13 23,    

k k Tk T k           σ σ        (6) 131 

are the in-plane and transverse shear stresses, respectively; 132 

 
( ) ( )( ) ( )

p 11 22 12 12 t 13 232 ;  
k T k Tk T k T             ε γ       (7) 133 

are the in-plane and transverse shear strains, and 134 

 

( )

( )11 12 16

( ) ( ) 44 45
p 12 22 26 t

45 55
16 26 66

,    

k

k

k k

Q Q Q
Q Q

Q Q Q
Q Q

Q Q Q

 
  

    
  

 

Q Q  (8) 135 

In Eq.(8), 
( )k
ijQ (i,j=1,2,6) denote the transformed plane stress elastic reduced stiffness coefficients; 

( )k
ijQ (i,j=4,5) denote 136 

the transformed transverse shear elastic stiffness coefficients. 137 

Using the linear strain-displacement relations and by taking into account the assumed kinematics, we obtain 138 
 139 

 ( ) (m) (b) ( ) ( ) ( ) (0) ( ) (0) ( )
p 3 3 ,3( ) ;           k k k k k

tx x       ε ε ε Φ ε γ γ ψ γ β ψ   (9) 140 

where 141 

 1,1 2,2 1,
(

2 2,1 1,1 2,2 1,2 2
(m)

1
b

,
),   T Tu u u u             ε ε  (10) 142 

 
11 12

( ) ( )
3 22 21

21 12

1,1 ( ) ( )

2,2

(
11 2

( ) ( )

1,2 ( ) ( ) ) (
2

)

2,1

0 0

,   ( ) 0 0kk

k k

k

k k k k

x


 


 


   



 
  
      

   
   

ε Φ  (11) 143 

 
(0 )

1(0 ) ( ) ( )1
3 ,3(0 )

2 ,2

3,1

3 2

 ,   k k
u

u
u







                  
θ βγ   (12) 144 

 
1 Note that, contrary to standard RZT, 

( )
3( )k x now is not diagonal, due to the off-diagonal (coupling) terms. 
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Note that in the general case of a multilayered plate the through-the-thickness distribution of the transverse shear stresses 145 

are piecewise-constant with jumps at the interfaces. 146 

2.4 Derivation of the enhanced zigzag functions 147 

The enhanced zigzag functions' derivation follows the same path as that adopted in standard RZT [9,11]. So, for the sake 148 

of brevity, the intermediate passages are not shown here. We introduce the auxiliary strain measure vector, 149 

 
(0)( ) ( ) ( ) x x x    (13) 150 

and rewrite the transverse shear stresses as follows  151 

 
( ) d( ) c( )
t t t
k k k+      (14) 152 

with (I stands for the identity matrix) 153 

  d( ) ( ) c( ) ( ) ( )
t t t t( );   k k k k k  Q x Q I β      (15) 154 

Enforcing the continuity conditions on c( )
t

k  at the interface k, i.e.,    c( ) ( ) c( 1) ( 1)
t (T ) t ( B)

k k k kz z    , and remembering that 155 

within each layer,  ( ) ( )
t
k kQ βI  is constant, yields 156 

    ( ) ( ) ( 1) ( 1)
t t
k k k k    Q I β Q I β G    (16) 157 

where G is a (2x2) matrix whose entries are independent of the layer; they are zigzag weighted-average transverse shear 158 

moduli of the whole plate. Solving Eq. (16) for 
( )kβ  yields the expression for the thickness-wise derivative of the zigzag 159 

function in the enhanced RZT,  160 

 
1( ) ( ) ( )

t t
k k k

   β Q G I S G I  (17) 161 

where 
1( ) ( )

t t
k k 

S Q is the (2x2) symmetric matrix of the transverse shear compliance coefficients of the kth layer. 162 

Integrating Eq. (17) over the thickness and by enforcing the condition that the local contribution is zero on the top and 163 

bottom surfaces of the whole plate, yields 164 

 

1 1

( ) ( ) ( ) ( ) ( )
(T) (B) (T) (B) t t

1 1

( ) ( )
N N

k k k k k

k k

z z z z h h
 

 

         
   
 G S S  (18) 165 

Substituting Eq. (18) into Eq. (17) and integrating over the thickness, yields 166 

  ( ) ( ) ( ) ( ) ( ) ( ) ( )
3 (B) 3 (B) t (B) 3 (T)( ) ( ) ( )     ( )k k k k k k kx z x z z x z     S G I   (19) 167 

with 168 

 
1 1

( ) ( ) ( ) ( )
(B) (B) (T) (B) (B)

1 1

 ( )     2,3,...,   
k k

k q q q

q q

z z z z z h k N
 

 

        (20) 169 

It is easy to show that Eq. (19) can be cast in the following recursive formula 170 



JAM-20-1667 Sorrenti 7 

 
   

 

( ) ( ) ( ) ( ) ( )
3 3 (B) t t t

1

( ) ( ) ( ) ( )
3 (B)

1

( ) ( )   

            ( )              ( 1,..., )

k
k k q q k

q

k
k q q k

q

x x z h

x z h k N





    

    



β

S G I S S G

β β


  (21) 171 

At this point, the expression for 
( )kβ  matrix, as given by Eq. (17), can be used in Eq. (9) to obtain the through-the-172 

thickness transverse shear strain distributions, i.e. ( )k
tγ . This allows to compute the transverse shear stresses using Eq. (5) 173 

and Eq. (9) in terms of the kinematic unknowns. 174 

2.5 Equilibrium equations and boundary conditions 175 

The principle of virtual work is used herein to derive the equilibrium equations and the variationally consistent 176 

boundary conditions. The principle can be stated as follows (here δ stands for the variational operator) 177 

 int ex 0W W    (22) 178 

where  179 

 
( ) ( )

int   k T kW d 


  σ ε   (23) 180 

is the virtual variation of the internal work given by the stresses ( )kσ , and 181 

 (0)
ex 3 3W p u d 


   (24) 182 

is the virtual variation of the work done by the applied loads. It is assumed that only the transverse load 3p  is acting on 183 

the plate.  Moreover,
( ) ( )
3 (T)

( 1) ( )
3 (B)

3 3
1 1

( ) ( )
k k

k k

N Nx z

x z
k k

dx dx


 

       . Substitution of Eq. (5) into Eq. (23), yields  184 

  int p p t
T TW d 



   R ε R   (25) 185 

where 186 

 ( ) ( )
p t;   T T T T T T T        R N M M R T T  (26) 187 

In Eq. (26) the following force and moment stress resultants for unit length have been introduced 188 

    

( )
11

11 11 ( )
( ) ( )T ( )22

22 22 3 p( )
12

12 12 ( )
21

, , , , 1, , k k

M

M
x

M

M










 
 
 

  
     
             
             

N M M Φ σ  (27) 189 

    
( )

( ) ( ) ( )1 1
,3( )

2 2

, , 1, k k
t

T T

T T


                    
T T σ




  (28) 190 
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The plate constitutive relations of enhanced RZT are derived by using Eq. (5) into the Eqs. (27)-(28), and integrating over 191 

the plate thickness. It results in 192 

 

( ) (m)

( ) (0)
( ) (b) t t

( ) ( ) ( )
( ) ( ( ) ( ) ( ) t t

;  
T

T T





  

    

    
                                   

N A B A ε
T A B γ

M B D B ε
T B D

M A B D ε


 (29) 193 

where 194 

 
     
   

( ) 2 ( ) ( ) ( ) ( )T ( ) ( )
p 3 3 3 p

( ) ( ) ( ) ( ) ( )T ( )
t t t ,3 t ,3 t ,3

, , (1, , ) ,  , , 1, ,

, 1, ,    

k k k k

k k k k

x x x  

 

 

 

A B D Q A B D Φ Q Φ

A B Q D Q  
 (30) 195 

Substituting Eqs.(9), (24) and (25) into the principle of virtual work (Eq. (22)), after a tedious, but straightforward, 196 

integration by parts, rearranging the various contributions and setting equal to zero the coefficients of the virtual variations 197 

of the generalized coordinates in domain and boundary integrals, yields the following variationally consistent equilibrium 198 

equations in terms of the stress resultants (Rp, Rt):  199 

 
, ,

( ) ( )
3 , 3 ,

   )   0 ;     )   0

)     ;     )   0

u N M T

u T p M T

      

 
     

 

 

  

   
 (31) 200 

along with the variationally consistent boundary conditions. With reference to a rectangular plate of dimensions 𝑎ଵ and 201 

𝑎ଶ along the edges parallel to the 𝑥ଵ and 𝑥ଶ-axes, here below, we have listed the boundary conditions (BCs) used in the 202 

numerical analysis: 203 

Anti-symmetric angle-ply simply supported on all edges, read 204 

@ 𝑥ଵ = 0, 𝑎ଵ:                ( )
1 3 12 11 11 0u u N M M       205 

@ 𝑥ଶ = 0, 𝑎ଶ:                ( )
2 3 12 22 22 0u u N M M       206 

Symmetric angle-ply simply supported on two opposite edges and infinite length in x2 direction, read 207 

@ 𝑥ଵ = 0, 𝑎ଵ:                ( ) ( )
3 12 11 1 1211 2 11 0u N N M M M M         208 

Using the constitutive relations (i.e. Eqs. (29)), both the equilibrium equations and the boundary conditions can be given 209 

in terms of the generalized displacements. For the sake of brevity, they are not given here. 210 

3. Numerical Analysis 211 

In order to assess the accuracy of enhanced RZT with the new set of zigzag functions (en-RZT), some numerical tests 212 

have been carried out. The numerical investigation has been performed on general laminated plates for which the three-213 

dimensional solutions are available in the open literature. The results from 3D solutions obtained using analytic 214 

approaches are labelled in the following part of the paper as “3D”. The equilibrium equations and consistent boundary 215 

conditions of the en-RZT model, for the numerical examples here investigated, are solved using the Navier-type solution 216 

with the appropriate trigonometric expansions [9]. The following material properties are assumed for each layer: 217 
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 25    0.5    0.2    0.25/ / /L T LT T TT T LT TTE GE EG E        218 

where L and T are longitudinal and transverse directions of the fibres, respectively. 219 

In the first numerical example, an antisymmetric two-layered angle-ply (a1/a2=1) laminate (L1) is considered. Each layer 220 

has the same thickness, and it is simply supported on all the edges and subjected to a bi-sinusoidal transverse pressure. In 221 

the second numerical example, a symmetric three-layered angle-ply laminate (L2) is considered under cylindrical bending 222 

conditions and simply supported boundary conditions. The laminate L2 has ply thickness  (0.25/0.5/0.25) and lamina 223 

orientations (30°/-30°/30°).  224 

 225 

3.1 Enhanced zigzag functions 226 

A brief comparison between standard and enhanced zigzag functions has been made for the angle-ply laminate L1. In 227 

Figure 1, the corresponding four zigzag functions are displayed for the angle-ply laminate with (-15°/15°) lamination 228 

angles. Clearly, in standard RZT, the zigzag functions 𝜙ଵଶ and 𝜙ଶଵ are not considered since there is no coupling effect. 229 

In the enhanced model, 𝜙ଵଵ and 𝜙ଶଶ are still not present for this type of lamination scheme, but the model is now capable 230 

of predicting the zigzag coupling functions 𝜙ଵଶ and 𝜙ଶଵ. It can be noted, for cross-ply laminated and sandwich plates, the 231 

standard zigzag functions are fully recovered using this model. Another important aspect of this improved model is to 232 

have solved the problem of singularity due to zero zigzag functions, typical of the classical one. 233 

 234 
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 235 
Figure 1 - Zigzag functions for standard and enhanced RZT, anti-symmetric angle-ply (L1). 236 

 237 

3.2 Static analysis 238 

 Problem 1 – Simply supported plates under bi-sinusoidal transverse load 239 

In this section, a static analysis of general composite laminated plates is made to assess the computational improvements 240 

of en-RZT. Since, for a cross-ply multilayered plate, the present procedure yields the same zigzag functions of standard 241 

RZT, we focus the attention on the analysis of anisotropic plates, such as angle-ply plates. 242 

In this first numerical assessment, we consider the two-layered angle-ply (-θ/θ) plate (L1), simply supported and subjected 243 

to a bi-sinusoidal transverse pressure 1
3 1 2 0

1

2

2

sin c( , os)p
x x

x x p
a a

 
            


 

, with various lamination angle. For this case, 244 

the exact 3D solution is available in literature, Ref. [15]. The trigonometric expansions that satisfy the equilibrium 245 

equations and the simply supported boundary conditions are: 246 

 
       
   

       

1 1 1 1 1

3 3 1 1

1
1 1 1

1
2

2 2 2 2 1 2 2

2 2

1 2 2
1 2 2 2

2 21

sin / cos / ;      cos / sin / ;

sin / sin / ;

cos / sin / ;      sin / cos /

u x x x x

x x

U a a u U a a

a

x ax x x

u U a

a a a

   

 

 
   

 


 



       
        

    



 

 247 

Table 1 – Non-dimensional maximum deflections 4
0 1

3

3100 TE hu
p a

 
 
 

 of simply supported two-layered angle-ply plates 248 

(L1) under bi-sinusoidal transverse pressure 249 

 a1/h=4 - a1/a2=1 a1/h=10 - a1/a2=1 a1/h=4 - a1/a2=1/3 

θ [°] 3D [15] Present 3D [15] Present 3D [15] Present 

15 1.7059 1.6054 0.8027 0.7821 2.4903 2.3578 
30 1.7297 1.6358 0.8568 0.8388 3.4118 3.2606 

45 1.6887 1.5926 0.8250 0.8068 4.7596 4.5650 
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As shown in Table 1, en-RZT provides very accurate results for both thick and moderately thick plates. The percent errors 250 

between the en-RZT results and 3D-exact are not higher than 6% for thick and 3% for moderately thick plates.  251 

 Problem 2 - Cylindrical bending under sinusoidal load 252 

To further assess the accuracy of en-RZT, especially in through-the-thickness distributions of local quantities, the problem 253 

of cylindrical bending is here considered. A three-layered symmetric angle-ply laminate (L2) is studied. The plate is of 254 

infinite length in the x2 directions and uniformly supported along the edges. Thus in the equilibrium equations (31) and 255 

in the constitutive-plate relations (29) the derivatives with respect to x2 are neglected. The plate is loaded by a sinusoidal 256 

transverse load of intensity  3 1 0 1 1( ) sin /p xx p a . The trigonometric expansions that satisfy the reduced equilibrium 257 

equations and consistent boundary conditions read 258 

 
 

     
3 3 1 1

1 2 1 2 1 2 1 2 1 2 1 2 1 1

sin / ;

, , , , , , , , , , cos /

xu

x

U a

u u U U a



     



  
 259 

The three-dimensional elasticity solution has been obtained using the procedures developed by Pagano [16] for laminated 260 

plates in cylindrical bending. The FSDT solution here implemented uses only shear correction factor 2 2
1 2 5 / 6k k  . 261 

The results for transverse shear stress distributions computed using FSDT, linear zigzag theory [5] (ZZT) and en-RZT 262 

are evaluated by integrating the 3D local equilibrium equations. 263 

Figure 2 shows the through-the-thickness distributions of in-plane and transverse displacements and stresses of thick 264 

(a1/h=4) angle-ply laminate (L2). The total transverse load is equally divided into two transverse loads applied on top 265 

and bottom external surfaces in the three-dimensional solution.    266 

 267 
 268 

 269 
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 270 

 271 
  272 

Figure 2 – Cylindrical bending of symmetric angle-ply laminate (L2), under sinusoidal transverse pressure (a1/h=4). In 273 
figures 2d) and 2e), the values are computed using the integration of local equilibrium equations. 274 

 275 

From Figure 2, the transverse displacement obtained using en-RZT is the only one close to the exact three-dimensional 276 

solution. Moreover, the in-plane displacement distributions obtained using en-RZT are in good agreement with the 3D 277 

Pagano’s solution, the other theories being less accurate. It is clear from Figure 2 that FSDT is unable to predict the correct 278 

distributions of in-plane displacements and stresses. Furthermore, the enhanced method to obtain the zigzag functions of 279 

RZT allows predicting with more accuracy the local quantities compared to the ZZT.  280 

4. Conclusions 281 

An enhancement of Refined Zigzag Theory (en-RZT) is presented to study multilayered anisotropic composite plates. 282 

The enhanced local displacement field with a new set of zigzag functions allows introducing the coupling effect between 283 

the two in-plane displacements. Maintaining the same seven kinematic unknowns of standard RZT, the same partial 284 

continuity of the transverse shear stresses at the interfaces has been used to formulate this new set of functions. The 285 

resulting enhanced zigzag functions have the same property as those obtained in standard RZT, i.e. null value at the top 286 

and bottom plate surfaces. It has also been shown that this procedure is a generalisation of the zigzag functions used in 287 
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standard RZT. When symmetric/unsymmetric cross-ply multilayered plates are considered, the resulting enhanced zigzag 288 

functions are exactly the same as standard RZT. Moreover, this enhancement allows considering the a-priori neglected 289 

coupling effect in the partially transverse shear stress continuity formulated in standard RZT.  290 

The investigated static problems show the improvements that the new functions have been introduced in RZT. Firstly, the 291 

possibility to study symmetric and anti-symmetric angle-ply multilayered plates, in which the same absolute value for the 292 

lamination angle is used for all layers. In fact, using standard RZT, it is not possible to compute a solution without 293 

changing the lamination angle for these kinds of plates. From the presented results, en-RZT is accurate enough to predict 294 

the maximum transverse displacement if compared with three-dimensional results. Moreover, the through-the-thickness 295 

quantities, such as in-plane displacements and stresses distributions, are closer to the exact three-dimensional solution 296 

than the other investigated theories. 297 

Furthermore, en-RZT has the same computational advantage as standard RZT since it requires only C0 continuity, while 298 

the TSDT requires C1 continuity and fails in predicting the transverse shear stress at the clamped edge. In this sense, en-299 

RZT does not fail in this drawback, and it has significant advantages in studying anisotropic multilayered structures. 300 

Moreover, the en-RZT still not require any shear correction factor. 301 

In conclusion, this work shows the superior capability of the en-RZT to predict both global and local quantities accurately 302 

for anisotropic multilayered plates, specifically angle-ply lamination, for which the standard RZT fails. It is concluded 303 

that en-RZT could be used to study a wide range of generally laminated structures without increasing the model 304 

complexity. Finally, a further generalisation of RZT can be achieved by improving the local/global displacement fields 305 

increasing the accuracy to consider the nonlinear thickness-wise distributions of the three-dimensional solutions.  306 
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Table captions  345 
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Non-dimensional maximum deflections 

4
0 1

3

3100 TE hu
p a

 
 
 

 of simply supported two-layered 

angle-ply plates (L1) under bi-sinusoidal transverse 
pressure 

 346 

  347 



JAM-20-1667 Sorrenti 16 

Figure captions  348 

Figure 1 
Zigzag functions for standard and enhanced RZT, anti-

symmetric angle-ply (L1). 

Figure 2 

Cylindrical bending of symmetric angle-ply laminate 
(L2), under sinusoidal transverse pressure (a1/h=4). In 
figures 2d) and 2e), the values are computed using the 

integration of local equilibrium equations. 
 349 


