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Abstract

The recent development of the Structural Health Monitoring (SHM) framework has required the simul-

taneous development of the tools fundamentals for its realization. The shape sensing methods and the loads

identification ones have established themselves as crucial tools for the monitoring of aerospace structures.

The two families of methods have been developed separately, although the possibility to achieve the knowl-

edge of the displacement field and of the external loads together can enable a further progress in the SHM.

In this paper, an integrated approach to simultaneously preform loads identification and shape sensing from

discrete strain measurements is proposed. The methods is based on a two-steps process. The first step

involves the identification of continuously distributed and concentrated external loads from discrete strain

measurements. This step is achieved by discretizing the loads with Finite Elements (FE) and by computing

the coefficients of influence between the nodal values of the loads and the discrete strain measurements. The

second step reduces the shape sensing inverse problem to a simple direct Finite Element Analysis. The loads

identified in the previous step are applied to a refined FE model of the structure and the displacement field

is easily obtained through a direct FE analysis. This investigation proves that the two-steps method can

accurately identify the loads and the displacement field of a wing box subject to an aerodynamic pressure

distribution and a set of concentrated forces, when a sufficient number of strain information is available.

When the number of discrete strain measurements decreases or the strains are affected by measurement

error, the loads are poorly predicted but the method is still capable of an extremely accurate displacements

reconstruction.

Keywords: Loads reconstruction; Shape sensing; Loads identification; Structural Health Monitoring; Wing

box; Strain measurements
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1 Introduction

Structural Health Monitoring (SHM) is witnessing a rapid development during the last decades and it is re-

markably establishing itself as a key technology for the maintenance and design of modern aircraft. Within

the SHM framework, two technologies have attracted considerable attention as crucial tools for the realization

of an effective structural monitoring system: the external loads identification methods and the shape sensing

methods. These two families of methods are designed to compute the external loads and the displacement field

of a structure from discrete strain measurements. The monitoring of external loads and the shape sensing are a

fundamental tool for the predictive maintenance operations of aerospace structures. The in-flight knowledge of

the external loads could provide the in-flight load spectra, a fundamental input to the prediction models used

for the estimation of the structure’s remaining useful life [1]. Moreover, the monitoring of loads could supply

information about the health status of the structures through the detection of changes in the load paths caused

by presence of damages [2]. The same approach can be used for the shape sensing. As proven in [3, 4], it is

possible to detect damages in a structure by finding anomalies in the displacement and strain fields trough

shape sensing. Differences in the strain signals from damaged and undamaged helicopter blades have also been

used for the same purpose in [5]. Furthermore, the knowledge of the in-flight load conditions and displacements

is fundamental for the design of innovative smart structures that, thanks to their morphing capabilities, could

optimize their shape to obtain load alleviation [6] and to improve the aerodynamic efficiency of the control

surfaces [7]. In addition, structures that carry antennas could improve the performance of their communication

systems using the deformation data to improve their on-orbit shape estimation.

The constant progress of these techniques has been pushed by the simultaneous improvement achieved in

the field of the strain sensing technology. The development of strain sensing systems based on optical fibers has

allowed the easy and reliable sensing of a large numbers of discrete strains, that were not conceivable with the

traditional strain gauges. Recently, the use of fiber optics distributed strain sensing systems [8, 9] has further

increase the amount of information that can be provided to the aforementioned strain-based methods.

The loads identification research is mainly focused on the reconstruction of the pressure distribution resulting

from a continuously distributed aerodynamic load. Shkarayev et al. [10] developed a method based on the

parametric approximation of the aerodynamic loading. This method requires the formulation of the unknown

pressure distribution as a linear combination of known pressure distributions multiplied by unknown coefficients.

The coefficients are computed by studying the strain fields caused by each known pressure distribution and by

fitting, in a least-square sense, the linear combination of these strain fields to the discrete measured strains. The

method proved to be really accurate on the identification of two pressure distributions on a rectangular wing

box, but it requires the a priori definition of a pressure distribution function as close as possible to the actually

applied one. Following the same approach, Cameron et al. extended the method by adopting single Fourier

cosine terms [11] and double Fourier series [12] to parameterize different two-variables pressure distributions

over a square plate.

In [13], Airoldi et al. parameterized the complex external loads acting on a composite spar with a set of
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concentrated loads. They used a least-square approach to identify the parameterized load set from discrete

strains. They also used the reconstructed load to carry on a direct FEM analysis for the evaluation of the

strain and of the displacement field. The study proved that, also in the case where the parameterized loads

were poorly identified, the strain field could be accurately reconstructed. The main focus of the paper was on

the accuracy of the reconstructed strains distribution and on how the strain sensors could be distributed on the

structure.

In [1], Nakamura et al. proposed a pressure distribution identification technique based on the discretization

of the pressure field with Finite Elements. Triangular elements are used to discretize the spatial domain of flat

wing-shaped plate, where the pressure is applied. The pressure field is interpolated from its unknown nodal

values using spatial shape functions. The unknown nodal values of the pressure are computed by fitting the

strain field caused by each nodal value of the pressure to the discrete measured strains. This method does

not need any a priori knowledge of the form of the unknown pressure distribution. In fact, when the method

has been compared to a Neural Network based approach in [14], it has proven to be more effective when

the unknown pressure form was different from the ones that the network was trained with. Neural Networks

were also successfully adopted for the prediction of discrete external loads applied on the vertical tail of the

F/A-18 [15] and on a wing rib [16].

Different families of shape sensing methods have been developed and widely applied on a large number of

structural problems: methods based on the numerical integration of the strain measurements and the Bernoulli-

Euler beam theory [17–19], methods based on the use of the modal shapes and the modal strain shapes [20–22]

and method based on an inverse formulation of the Finite Element Method (FEM). A detailed review of the

existing shape sensing methods can be found in [23]. The inverse Finite Element Method (iFEM), firstly

developed in [24], has emerged as one of the most promising and widespread shape sensing method in literature.

It is based on the finite element discretization of a structural domain and on the consequent formulation of

the strain field in terms of the nodal values of the displacements and of the derivatives of the element’s shape

functions. The unknowns of the problem, the nodal displacements, are computed minimizing the error between

the strains expressed in terms of the nodal displacements and the actually measured strains. The method has

been successfully applied to beams and truss structures [25,26] and to flat, curved and thin walled plates [27–32].

In particular, in [33] it has been compared with other shape sensing methods and has proven to be the most

accurate in the reconstruction of the deformed shape of a composite wing box.

In this work, a two-steps integrated approach for the simultaneous identification of the external loads and

of the displacement field from discrete strain measurements is proposed and numerically implemented on a

3D aluminum swept wing box. The first step concerns the computation of the external loads. The proposed

procedure extends the method introduced in [1] with the use of quadratic elements for the computation of

the pressure field. Moreover, a load case consisting of concentrated forces is also considered as in [13]. The

second step focuses on the reconstruction of the displacement field induced by the two load cases. Thanks

to the proposed procedure, the shape sensing is reduced to a simple direct problem. The identified external

loads are applied to a detailed FE model of the wing box and, by performing a standard direct FEM analysis,
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the displacement field is easily computed. The results of the shape sensing step are compared with the ones

obtained with the iFEM. A study on the influence of the number of measured strains and of measurement error

on the accuracy of the integrated approach is also performed. The two-step approach is based on the work by

Airoldi et al. [13] while introducing some novelties: (i) the load identification step is extended to distributed

loads and (ii) a more detailed accuracy investigation is performed on the reconstructed displacement field. The

two-steps method is able to accurately identify the external loads and the relative deformed shape of the wing

box when a sufficient amount of strain information is available. When the number of strain measurements

decreases the method loses accuracy in the identification of the loads, but it is still capable of an impressive

accuracy in the in the reconstruction of the deformed shape. The method is capable of remarkable accuracy in

the reconstruction of the displacement field when measurement error is present, if the Tikhonov regularization

is adopted to smooth the ill-posedness of the problem.

The paper is structured as follows. In Section 2 the load identification method adopted in this paper is

described. In Section 3 the proposed two-steps approach for the shape sensing is introduced in detail. In

Section 4 the case study is described and the wing box and the simulation models are introduced. The load

cases and the induced deformed shapes, object of the reconstructions, are also presented. In Section 5 the two-

steps procedure, as adopted in this work, and the final results are presented and commentated. Finally, the

concluding remarks are discussed in Section 6.

2 External loads identification

The load identification method firstly developed by Nakamura et al. [1] is able to reconstruct the pressure

continuously distributed on a x-y plane from discrete strain measurements. The method is based on the

interpolation of the pressure distribution through finite elements. As for the classical FEM, the structural

domain, where the pressure is applied, is discretized using Finite Elements. Within the element, the pressure

distribution is interpolated from the nodal values of the pressure using shape functions. Mathematically, it can

be formulated as follows:

pe(x, y) =

n∑
i=1

Ne
i (x, y) pei (1)

where pe(x, y) is the pressure distribution over the element’s x-y plane, Ne
i (x, y) are the shape functions depen-

dent from the chosen element formulation, n is the number of nodes of the element and pei are the nodal values

of the pressure.

If the domain is discretized with a mesh of pressure elements, the global Ni(x, y) shape functions, related to

the global mp nodes of the pressure mesh, can be computed by means of the assembly procedure adopted by

the standard FEM. Consequently, the pressure distribution over the entire domain, p(x, y), can be expressed as
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follows:

p(x, y) =

mp∑
i=1

Ni(x, y) pi (2)

where pi is the nodal value in the i-th node of the mesh.

Therefore, in analogy with the classical structural FEM problem, in this case, the degrees of freedom (DOFs)

of the system, that represents the unknowns of the problem, are the nodal values of the pressure, pi. Once these

values are computed, the full pressure distribution can be derived using an interpolation through the selected

shape functions.

Since the objective of the method is to reconstruct the pressure distribution from discrete strain measure-

ments, it is necessary to find a relation between the discrete strain measurements and the unknown nodal values

of the pressure. If the hypothesis of linear elasticity is considered, the j-th measured strain component, εmj , can

be expressed as the superposition of the εmji strains induced by the mp nodal pressures, pi. Moreover, in the

linear elastic regime, the i-th strain contribution, εmji , induced by the i-th pi will be linearly proportional to the

i-th nodal pressure itself. These considerations lead to the following formulation of the j-th strain component:

εmj =

mp∑
i=1

εmji =

mp∑
i=1

sji pi (3)

where sji is the i-th unknown coefficient of linear combination that relates the j-th strain component to the

i-th nodal values of the pressure. When ms measured strain components are available, the Eq. 3, expressed in

matrix form, becomes:

{εm}ms×1 = [s]ms×mp
{p}mp×1 (4)

The matrix [s]ms×mp
can be easily computed through the iterative resolution of a direct FE problem. The

i-th column of the matrix is computed by imposing that pi = 1 and pk = 0 (k 6= i) in Eq. 2. The resulting

pressure field is then applied to a FE model of the structure and the desired strain components are measured.

Iterating the procedure to the mp columns, allows the computation of the entire matrix. The application of

this procedure requires the construction of an accurate FE model of the structure. Therefore, the geometry, the

material properties and the constraints of the structure have to be known. No constraints need to be imposed on

the relative positioning of the elements and nodes of the pressure mesh and of the refined one. More in general,

the two meshes’ characteristics can be very different from each other, as long as they share the discretization

of one portion or of the entire structural domain. It is only necessary to be able to map the locations of the

nodes, belonging to the refined mesh, to the elements of the pressure mesh, in order to compute the values

of the pressure at these locations. The practical application of this procedure will be described in details in
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Section 5.1.

Once the [s] matrix is built, the expression of the nodal pressures as a function of the measured strain is

easily obtained by inverting Eq. 4. Since in practical applications ms 6= mp, the inversion of [s] is obtained by

means of Moore-Penrose pseudo inverse matrix formulation, [s+]:

{p} = [s+]{εm} (5)

By substituting the actually measured values of the strains into {εm}, the expression gives the nodal values of

the pressure that best fit the actually applied pressure distribution that induced the measured strains. These

nodal values of the pressure can then be used to reconstruct the full pressure field by substituting them into

Eq. 2.

The same principles can be adopted for the identification of concentrated loads. In this case, the formulation

does not need an interpolation of the nodal values of the load within the elements. The investigated loads are

concentrated at a given location, therefore, they do not need to be expanded to any spacial domain. In the

same linear elastic conditions assumed before, the j-th strain component, εmj , induced by the i-th concentrated

load, Fi, is linearly proportional to the load value. Moreover, if mf concentrated forces are present, the strain

component can be expressed as a superposition of the strains induced by each concentrated load. In analogy to

Eq. 4, the vector of measured strains, can be expressed as follows:

{εm}ms×1 = [sf ]ms×mf
{F}mf×1 (6)

where [sf ]ms×mf
is the matrix of the coefficients of influence between the strains and the concentrated loads.

The i-th column of the matrix is computed by imposing that Fi = 1 and Fk = 0 (k 6= i) and measuring

the induced ms strain components. The pseudo-inversion of [sf ] allows the computation of the vector of the

concentrated forces that induced the actually measured strains:

{F} = [s+f ]{εm} (7)

3 Shape sensing

Shape sensing is a family of methods that allow the reconstruction of the displacement field from discrete strain

measurements. In this section, a novel methodology that exploits the load identification as a tool for the shape

sensing, is introduced.

In structural analysis, the direct problem aims to compute the displacement field, and from it the stress

and strain field of a structure, when the structure’s geometry, material properties, constraints and external
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loads are known. The direct problem is usually solved by the application of the FEM. It is mathematically

well-conditioned, that is, small perturbations in the inputs produce small perturbations in the outputs [34]. On

the other hand, the shape sensing and the external loads identification are inverse problems and are often more

difficult to solve. They are mathematically ill-posed and small perturbations in the inputs generally produce

greater perturbations in the outputs [34]. In the previous section, a solution for the loads identification inverse

problem has been presented. The objective of the proposed method is to use the results of the loads identification

for the formulation of the shape sensing problem so that it could be reduced to a direct structural problem. By

doing this, the resolution of only one inverse problem leads to the easy resolution of the other.

The method is based on a two step process. In the first step, the inverse problem of inferring the external load

from discrete strain measurements is solved with the method described in Section 2. As highlighted before, this

step requires the construction of a detailed FE model. Once the external loads are computed, in the second step,

they can be applied to the detailed FE model to perform a direct structural analysis and thus used to compute

the full displacement field of the structure, easily solving the shape sensing problem. This method allows the

integration of the two structural health monitoring tools in a unique procedure, as illustrated in the scheme in

Fig. 1, where the fist step is depicted in green color and the second step is depicted in orange color. Although

the procedure can appear complex and computationally expensive, it is not and the real-time computation of

the loads and the displacement field can be achieved by the method. In fact, once the models and the sensors

configuration are established, the computationally expensive procedures, such as the computation of the [s+]

or [s+f ] and the inversion of the stiffness matrix ([K]), relative to the direct FEM problem, are performed only

one time and do not vary if the components of the vector of measured strains ({εm}) change. Therefore, every

different vector of measured strains is simply multiplied by [s+] or [s+f ] to derive {p} or {F}, that are, in turn,

multiplied by [K−1] to compute the displacements. In practice, the whole procedure of computing the loads

and the displacements is reduced to two simple and fast to compute matrices multiplications.

𝜀𝑚

Structural FE 

model:

• Constraints

• Material 

properties

• Geometry

Pressure FE 

model:

• Constraints

• Geometry

𝑠𝑓

𝑠

FEM 

𝐹 = 𝑠𝑓
+ 𝜀𝑚

𝑝 = 𝑠+ 𝜀𝑚 𝑝(𝑥, 𝑦)

𝐹

Loads identification

FE 

interpolation

Inputs Shape sensing

Displacement 

field

Figure 1: Loads identification and shape sensing integrated process - The inputs of the process are highlighted
in blue. The load identification step is highlighted in green and the shape sensing step is highlighted in orange.
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Besides the proposed method, several shape sensing techniques have been studied and compared in literature.

These include the inverse Finite Element Method, that has emerged as one of the most promising one. Moreover,

in [33], it has been proven that the method is particularly suitable, when compared to other methods, for the

shape sensing of a wing box. Therefore, in this work, the iFEM is used as the reference shape sensing method

to evaluate and compare the accuracy of the proposed approach. The detailed iFEM formulation adopted

throughout the paper is the same described in [33].

4 Case study

The scope of this work is to identify the external loads and the displacement field of a wing box. In the following

section the geometry, the materials, the load cases and the numerical models that define the analyzed wing box

are presented.

4.1 Geometry and materials

The wing box object of the study is illustrated in Figure 2. The box is composed of two swept panels. The

panels are connected to the two spars by four stiffeners and are reinforced by two stringers, one on each panel.

Overall, the entire wing box is divided into seven bays by six rectangular ribs plus the tip section’s one. The

four stiffeners and the two stringers have a constant section along the wing span. The detailed geometry of each

component is described in Figure 2. The root section of the wing box is clamped. In Figure 2, the reference

coordinate frame, identified by the axis x,y and z, is also illustrated.

The wing box components are made of two different Aluminum alloys. The panels, the spars and the ribs

are made of a 7075 Aluminum alloy, while the stiffeners and the stringers are made of a 6060 Aluminum alloy.

The mechanical properties of the two alloys are presented in Table 1.

Table 1: Aluminum alloys mechanical properties.

Alloy E [GPa] ν G [GPa]

6060 66 0.33 24.8

7075 72 0.32 27.2
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Figure 2: Wing box geometry - In the figure, the panel and the spars are indicated by 1O, the stiffeners that
connect the skin panels to the spars are indicated by 2O, the stringers are indicated by 3O and the ribs are
indicated by 4O. All dimensions are expressed in [mm].

4.2 Load cases

This study focuses on the identification of the external loads and the displacements induced by them on the

previously described wing box. In particular, two load cases and the relative deformed shapes, are investigated.

These load cases have been chosen in order to cover the two kinds of loads whose identification process has been

described in Section 2. Therefore, the first load case (Load Case 1) is constituted by a pressure distribution,

intended to simulate an aerodynamic pressure distribution, and the second one (Load Case 2) by a set of

concentrated forces, intended to simulate the presence of a pod on the wing tip.

The considered pressure distribution has been applied on the upper panel of the box and can be observed

in Figure 3. The distribution is a multiplication of a cubic polynomial function of x and a quadratic one of y.

The structural domain, where the distribution is defined, and the relative x and y coordinates are illustrated

in Figure 2a. The chosen distribution is aimed to be representative of an aerodynamic pressure that, along

the wing span direction, has a maximum at the root section and vanishes at the tip section. Along the chord

direction, it vanishes at the leading and treadling edge and has a maximum at one-third of the chord. As a

9



consequence, mathematically, the polynomial function of y is constructed imposing that the function vanishes

at the tip section, it has a maximum at the root section and this maximum is equal to 1. The cubic polynomial

of x is defined by imposing that it vanishes at the trailing and leading edges, it has a maximum at one third

of the chord and this maximum is equal to 1. The mathematical expression of the pressure distribution p(x, y)

and of the aforementioned conditions can be found in Appendix A. The deformed shape of the wing box, when

subjected to the pressure distribution, is reported in Figure 4.

Figure 3: Load Case 1 on the refined FE model - The figure shows the pressure distribution applied on the
refined FE model of the wing box. The pressure is expressed in [N/mm2]

Figure 4: Deformed shape for the Load Case 1 - The figure shows the refined Fe model of the wing box
deformed under the pressure distribution of the Load Case 1. The color bar refers to the magnitude (in mm)
of the resultant displacements.
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The second load case (Load Case 2) is constituted by a distributed load applied on the upper side of the

tip rib. The load distribution is constant along the chord, is directed along the negative direction of z and has

a constant value of 100 N/mm. This Load Case is designed to simulate the presence of a pod mounted on the

wing tip. The discretization of this load in a finite element model is obtained by reducing the distributed load

to concentrated forces applied in the nodes. The finite element representation of the distributed load, by means

of nodal forces, is illustrated in Figure 5. These nodal forces represents the unknowns of the load identification

problem for the second load case. The wing box, deformed under the loads of the second load case, is presented

in Figure 6.

𝐹2

𝐹3𝐹1 𝐹10
𝐹9

𝐹4−8
𝐹11

𝐹12−16
𝐹17

𝐹18

𝐹19

𝑥

Figure 5: Load Case 2 - The figure shows the distributed load applied on the wing tip section, discretized to
nodal forces according to the FEM. The value of the nodal forces are reported in Table 2.

Figure 6: Deformed shape for the Load Case 2 - The figure shows the refined FE model of the wing box deformed
under the distributed load of the Load Case 2. The color bar refers to the magnitude (in mm) of the resultant
displacements.

In conclusion, the two load cases, object of the load identification in the next sections, are summarized in

Table 2 and the deformed shapes, object of the shape sensing investigation, are reported in Figures 4 and 6.

Table 2: Load Cases.
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Load Case Loads Constraints

Load case 1 p(x, y) = (axx
3 + bxx

2 + cxx+ dx) · (ayy2 + byy + cy) Clamped root section

Load case 2
F1 = F19 = 749N ; F2 = F18 = 1, 499N ; F3 = F17 = 937N ;

F4−8 = F12−16 = 375N ; F9 = F11 = 562N ; F10 = 749N
Clamped root section

4.3 Models

The application of the load identification method and of the novel shape sensing technique requires the definition

of a detailed FE model of the structure. Moreover, since the nature of this study is numerical, this model will

be also used to simulate the real behavior of the wing box and, consequently, used to generate the input strains

for the application of the methods and the reference displacements for the evaluation of the accuracy of the

shape sensing. The refined model is the one that appears in the Figures 3, 4 and 6. It is presented in details in

Figure 7b. It is constituted of 9,792 CQUAD4 NASTRAN® elements and of 7,129 nodes.

For the definition of the discrete pressure field, a coarser mesh to interpolate the nodal values of the pressure

and the definition of the elements’ formulation for the pressure discretization is needed. In the previous section,

the pressure field of the Load Case 1 has been described. It is applied on the top panel of the box. Since the

pressure is only defined there, the domain that needs to be discretized for the interpolation of the pressure is only

the upper panel of the wing box. Differently from the previous application [1], where triangular elements were

selected, in this case, the pressure field is discretized using quadrilateral elements. Within each quadrilateral

element, the pressure is interpolated from its four nodal values using the standard bilinear shape functions, as

described in [35]. It means that in Eq. 1 n = 4 and Ne
i = (1+χiχ)(1+ηiη), where χ and η are the quadrilateral

isoparametric coordinates and the subscript i denotes the computation relative to the i-th node. The pressure

mesh is composed of 405 so formulated quad elements and of 460 nodes. It is illustrated in Figure 7a, where

only the upper panel mesh, shown in red, is the one relative to the pressure.

A third model is also necessary for the application of the iFEM that is used as a benchmark for the

evaluation of the accuracy of the shape sensing. The inverse FE mesh is illustrated in red and black in Figure

7a. For simplicity, the iFEM mesh is constructed so that the upper panel discretization is the same used for the

pressure mesh. The model is built with 1818 iQS4 quadrilateral elements, whose formulation is the one adopted

in [33]. This formulation requires the attribution of the strain measurements to the centroid of the elements.

Consequently, the model is made so that the centroid of each inverse element has a correspondent node in the

detailed structural FE model. This allows the easy attribution of the strains coming from the detailed model

to the centroids of the iQS4 elements.
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(a) iFEM/Pressure mesh

(b) Refined mesh

Figure 7: Models - In panel a, the elements whose contours are shown in red belong to the iFEM mesh and the
pressure mesh. The elements whose contours are shown in black belong to the iFEM mesh only. In panel b, the
refined mesh is presented.

5 Numerical simulations

In the following, the novelties introduced in this work, represented by the use of the quadrilateral elements for the

pressure mesh and by the novel two-steps procedure for the computation of the displacements of the structure,

are implemented on the numerical analysis of the test case described in Section 4. The detailed description

of the procedure and of the evaluation criteria is provided. The influence of the sensors configuration on the

accuracy of the new method is also presented in the following.

13



5.1 Matrices computation

The two-steps procedure begins with the computation of the [s] and [sf ] matrices, necessary for the application

of the load identification step. In this work, a detailed study on the influence of the sensors configurations has

been considered and will be described in Section 5.2. To compute the matrices mentioned above it is necessary

to define all the possible locations and strain components that can be selected to create the specific sensors

configurations that will be effectively used in the application of the method. The possible strains configurations

chosen for this application have been inspired by the use of strain sensing systems based on optical fibers.

This technology is in continuous development and it is establishing itself as one of the most effective for SHM

applications. Consequently, the eligible strain measurements positions are located along lines running from the

root section to the tip section and passing through the centroid of the iFEM mesh’s elements. That allows the

easy application of this method and, as mentioned before, the easy computation of the strains from the refined

FE model, since these locations have a correspondent node in the model. According to the sensing possibilities

of the optical-fiber-based sensors, the strains are measured along the sensing lines’ directions. The sensing lines

are distributed over the box as illustrated in Figure 8. As it is shown, 9 sensing line for each panel and 6 for

each spar are selected, accounting for a total of 30 lines. For each line 45 measurement location are considered.

A total of 1,350 strain components along the sensing lines represent the space of the possible strain components.

All the considered strain components are measured on the external surface of the box. This implies that, for

the iFEM formulation, the measured strain is considered constant through the thickness of the shell element.

(a) Upper/Lower panels

(b) Front/Rear spar

Figure 8: Sensing lines - In the figure, the sensing lines are showed only for one panel and one spar. The same
configurations should be considered for the other components.

Once the space of the measured strains is defined, it is easy to compute the [s] and [sf ] matrices. The i-th
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column of the [s] matrix is computed by imposing that the p relative to the i-th node of the pressure mesh is

equal to 1 and the other ones are equal to 0. The pressure field, interpolated through the shape functions, can

be evaluated in every point of the pressure elements that pertain to the i-th node. In particular, it is necessary

to compute the pressure values at the points, within the elements, where nodes of the refined FE model are

located. This can be done by mapping these nodes to the elements’ natural coordinates [36] and by computing

the values of the pressures at these locations. The obtained nodal values of the pressure are then applied to the

refined FE model and the induced 1,350 selected strains are computed. This process has to be repeated for all

the 460 nodes of the pressure mesh, thus obtaining a 1, 350× 460 matrix. The same procedure can be adopted

for the computation of the [sf ] matrix. The only difference is that the unit load for the computation of the i-th

column of the matrix does not have to be expanded to the whole domain and it can be directly applied to the

i-th node of the refined model. In this case, since 19 unknown vertical forces are present, the [sf ] is a 1, 350×19

matrix.

5.2 Sensors optimization

Selecting the strain measurements that are actually used as an input to compute the external loads is translated

mathematically in selecting the rows of the [s] or [sf ] matrix that correspond to the measured strain components.

The substitution of the measured strains components into εm in Eqs. 5 and 7 completes the process. The

procedure, as described here, allows the fast computation of the external loads for different strain sensors

configurations. In fact, the computationally expensive procedure of populating the matrices is only performed

once.

In this paper, the influence of the number of strain measurements on the accuracy of the loads identification

and the shape sensing technique is investigated. Therefore, the effect of selecting a different number of sensing

lines from the ones depicted in Figure 8 is studied. For each load case, 10 configurations with a varying number

of sensing lines increased from 1 to 10 are considered, i.e. the configuration 1 considers 1 sensing line, the

configuration 2 considers 2 sensing lines and so on. This implies that the [s] and [sf ] matrices are constituted

of a varying number of rows, according to the number of selected lines. Therefore the two matrices present the

following structure [45, 450] × 460 and [45, 450] × 19 respectively, with the number of rows varying from 45 to

450.

Each configuration is optimized so that the accuracy of the external load identification is the best that can

be obtained with the correspondent finite number of sensing lines. More in details, the optimization is obtained

by means of a Genetic Algorithm whose objective is to minimize the root mean square percent error (%ERMS)

between the computed nodal value of the load and the actually applied one. The expression of the %ERMS

for a generic quantity, g, is:

%ERMSg = 100×

√√√√1

k

k∑
i=1

(
gi − grefi

grefmax

)2

(8)
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where k is the number of nodes where the quantity is computed, gi is the reconstructed quantity in the i-th

node, grefi is the reference value of the quantity in the i-th node and grefmax is the maximum value of the reference

quantity. For the optimization of Load case 1 g = p, on the other hand, for Load case 2, g = F .

The optimization generates 10 optimal sensors configurations and the respective 10 identified external loads

for each load case. These identified loads are used, in the second step of the process (Figure 1), as the external

loads to be applied on the refined FE model to obtain the deformed shape of the wing box through direct FEM

analysis. The accuracy of this shape sensing results is evaluated with the same expression in Eq. 8 using g = w,

where w is the displacement along the z axis. This displacement is chosen because it is the most relevant in the

wing box deformation.

The sensors configurations are also optimized for the iFEM, in order to compare the novel shape sensing

method with the best results from the chosen reference one. The exactly same approach is used and 10

optimized sensors configurations are obtained using a Genetic algorithm having as objective the minimization

of the %ERMSw. The optimization for the two-steps approach and for the iFEM are carried on separately.

Therefore, the optimal sensors configurations may be different for each method.

5.3 Results

5.3.1 From Tria to Quad

The first step of the analysis has been the evaluation of the accuracy in the pressure field reconstruction of

the introduced quadrilateral element. Therefore, the reconstruction of the pressure field from the Load case

1, discretized with the quad mesh illustrated in Figure 7a, has been compared with the reconstruction of the

pressure field, discretized using four triangular meshes, with varying characteristics in terms of the number of

DOFs and of the regularity of the mesh.
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(a) Tria 1 (Nodes = 460) (b) Tria 2 (Nodes = 434)

(c) Tria 3 (Nodes = 430) (d) Tria 4 (Nodes = 468)

Figure 9: Triangular meshes - In the figure are illustrated the four triangular meshes used to evaluate the
accuracy of the newly introduced quad element.

The Tria 1 mesh, showed in Figure 9a, has been obtained splitting the elements of the quad mesh along

one diagonal and, consequently, presents the same number of nodes and unknown nodal values of the pressure

(460) of the quad mesh. The Tria 2 mesh (Figure 9b), on the other hand, has been constructed splitting the

quadrilateral elements of a different mesh along both diagonals. It has a slightly lower number of nodes (434).

Finally, the Tria 3 (Figure 9c) and Tria 4 (Figure 9d) meshes are obtained by meshing the structural domain

with a varying number of elements. In this phase, the whole set of 1, 350 axial strain sensors described in Section

5.1 has been used in order to compare the absolute accuracy, not influenced by the sensors configuration.

Table 3: Quadrilateral and triangular meshes comparison .

Mesh #nodes %ERMSp %Diff

Quad 460 0.732 -

Tria 1 460 0.768 +4.9%

Tria 2 434 2.564 +250.3%

Tria 3 430 0.984 +34.4%

Tria 4 464 1.021 +39.5%

In Table 3, the %ERMSp obtained using the full set of axial strains and the four different meshes are reported.

The values of the %ERMSp show that the introduction of the quadrilateral elements is able to reduce the error,

and consequently increase the accuracy, by 4.9% with respect to the triangular mesh with the same number

of DOFs and a similar meshing scheme. Moreover, the results obtained for Tria 2, Tria 3 and Tria 4 show

that the introduction of different meshing schemes and different numbers of DOFs does not allow the triangular
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elements to reach the accuracy of the quadrilateral ones, on the contrary, it exhibits a negative effect.

5.3.2 Load Case 1

The results of the sensors optimization for the reconstruction of the pressure distribution of the Load case 1

are reported in Figure 10. The 10 optimized sensors configurations, obtained for a varying number of sensing

lines from 1 to 10, are shown. Using only one sensing line, a value of 16.05% of the %ERMSp is obtained.

This value decreases rapidly when increasing the number of lines from 2 to 7 where it reaches a value of 1.65%.

A further increase in the amount of strain information provided to the method does not result in a significant

increase in the accuracy of the reconstruction. In fact, the best result, obtained with 10 sensing lines, is slightly

better than the one obtained with 7, giving an %ERMSp value of 1.24%. The same trend in the accuracy

of the reconstructions can be observed in Figure 12 and 13. Figure 12 shows the reconstructed pressure field

for the optimized sensors configurations with 1 and 7 sensing lines. The comparison of the reconstructions

with the reference pressure distribution (Figure 3) reveals the different level of accuracy reached with the two

configurations. The more detailed analysis in Figure 13 shows the reconstruction of the pressure along the wing

span for the sensors configurations with 1, 3, 5 and 7 sensing lines. The reconstructions are obtained along the

line of nodes, from the pressure mesh, closest to points located at one-third of the chords.

Figure 10: Pressure field reconstruction of Load Case 1 - The %ERMSp for the best sensors configuration, with
the number of sensing lines varying from 1 to 10, are reported.

The shape sensing step is obtained applying the reconstructed pressure fields to the refined FE model and by

performing a standard FEM analysis. The %ERMSw obtained for this shape sensing step are shown in Figure

11a. They can be compared with the results obtained by the iFEM on the same problem. In Figure 11b, the

%ERMSw, obtained with the iFEM for the 10 optimized sensors configurations, are reported. The comparison

points out the extreme level of accuracy of the two-steps method. Although the two methods show the same

trend with respect to the variation in the number of sensing lines, the two-steps method is able to reach an

%ERMSw that is, in the worst case, equal to 0.19% and in the best one 2.64×10−4%. The iFEM’s best result,

on the other hand, is worst than every two-steps’ one, reaching a minimum %ERMSw value of 6.61%. The

maximum one, considering only one sensing line, is equal to 38.80%. In addition, these results are supported

by Figure 14. The figure shows the reconstructed deflection along the same line of nodes adopted in Figure

13. The deflections, obtained with the iFEM and with the two-steps method, are compared with the reference

18



vertical displacements obtained by the refined FE analysis. The iFEM results are reported for the configuration

with 10 sensing line, whereas for the two-steps method the results are reported for the configurations with 1,

3, 5, and 7 lines. Nonetheless, the deflections of the two-steps method are superimposed to the reference one

for every sensors configurations and are significantly more accurate than the iFEM one. Only the configuration

with 1 sensing line presents a slight deviation from the reference close to the root section of the wing.

It is important to notice that the two-steps procedure is able to accurately reconstruct the deformed shape

of the wing box even when the pressure field is not accurately reconstructed. The configuration with only one

sensing line shows a considerable discrepancy between the reconstructed pressure field and the actually applied

one (Figures 12a and 13a). Nevertheless, the method is able of an accurate shape sensing also with only one

sensing line. This aspect will be examined more in deep when analyzing the results of the second load case.

In Figure 15, the optimal sensors configuration for the two-steps method, using 7 sensing lines, and for the

iFEM, using 10 sensing lines, are reported. The configurations show that the optimization selected only sensors

on the panels for the two-steps method, whereas only sensors on the spars for the iFEM.

(a) Two-steps shape sensing results (b) iFEM shape sensing results

Figure 11: Shape sensing for Load Case 1 - The %ERMSw for the best sensors configuration, with the number
of sensing lines varying from 1 to 10, are reported for the two-steps method (a) and the iFEM (b).
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(a) 1 sensing line

(b) 7 sensing lines

Figure 12: Pressure field reconstructions for Load Case 1.
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(a) 1 sensing line (b) 3 sensing lines

(c) 5 sensing lines (d) 7 sensing lines

Figure 13: Pressure reconstruction along the wing span for Load Case 1.

Figure 14: Vertical deflection along the wing span for Load Case 1.
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(a) two-steps method.

(b) iFEM

Figure 15: Optimal sensors configurations for Load case 1 - The figures show the optimal sensors configurations
for the two-steps method (a) and the iFEM (b). In the legends, Upper and Lower refer to sensors located on
the upper or lower panel, whereas Upper/lower refers to sensors located on both panels. Front and Rear refers
to sensors that are located on the front or the rear spar, whereas Front/Rear refers to sensors located on both
spars.

5.3.3 Load Case 2

The results of the identification of the nodal forces of the Load Case 2 are reported in Figure 16. The %ERMSf

has a worst maximum value of 50.10%, when only one line of sensors is available. If the number of sensing

lines is increased to 2, the result does not improve, therefore the same result of the previous configuration is

considered as the best. Improving the number of lines from 3 to 10 continuously improves the accuracy of

the forces identification, reaching a significant precision for 7 (%ERMSf = 0.49%), 8 (%ERMSf = 0.11%), 9

(%ERMSf = 0.060%) and 10 (%ERMSf = 0.034%) lines of sensors. The identification of the nodal values of

the force for the configurations with 1, 3, 5 and 7 sensing lines along the wing tip chord are reported in Figure

18.
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Figure 16: Nodal forces identification of Load Case 2 - The %ERMSp for the best sensors configuration, with
the number of sensing lines varying from 1 to 10, are reported.

The shape sensing step, in this case, is performed applying the identified values of the nodal forces to the

refined model of the wing box. The results, in terms of the %ERMSw and the number of optimized sensing

lines, are illustrated in Figure 17a. The application of the iFEM to the deformation of this load case produces

the values of the %ERMSw reported in Figure 17b. In this application, the iFEM proves to be more accurate

than in the previous load case. Nonetheless, the two-steps approach also shows more accurate predictions of

the vertical displacements. Therefore, as for the previous load case, also for this one, the novel approach is

consistently more precise and it achieves impressive results also for the case with only one sensing line. The

iFEM is capable of reaching an %ERMSw of 2.75% selecting 4 sensing lines. Increasing the number of lines

does not give beneficial effects on the overall shape reconstruction. Consequently, the 4 lines configuration has

been considered the best also for the configurations with more senors. When reducing the number of strain

information, the iFEM still shows acceptable capabilities for the 2 lines configuration, where the %ERMSw

value is 4.10%. A further reduction in the number of strains causes a considerable rise in the value of the error,

that reaches 31.5%. The two-steps technique sees a constant decreasing in the quality of the shape sensing

with the decrease in the number of sensing lines too. Nevertheless, the values of the %ERMSw are comprised

between 4.13 × 10−6%, when 10 line are selected, and 0.015%, when 1 line is selected, thus resulting in an

impressive accuracy for all the sensors configurations. The impressive accuracy can be noted in Figure 19 as

well. The vertical displacements along the wing tip chord of the reference solution are reported together with the

one reconstructed with the two-steps method and with the iFEM. There is no visible deviation of the two-steps

solutions from the reference one for the four different sensors configurations, with 1, 3, 5 and 7 sensing lines.

On the other hand, the iFEM results, using 4 sensing lines, show an almost constant offset in the reconstruction

of the vertical displacement along the chord.

In Figure 20, the optimal sensors configurations for the two-steps method, using 7 sensing lines and for the

iFEM, using 4 sensing lines, are illustrated. Also in this case, it can be noticed that the optimizer tended to

select sensors on the panels for the two-steps approach, with only one line selected on the rear spar and all the

remaining lines selected on the upper panel. This case confirmed, on the other hand, the selection of sensors

located only on the spars for the iFEM.
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(a) Two-steps shape sensing results (b) iFEM shape sensing results

Figure 17: Shape sensing for Load Case 2 - The %ERMSw for the best sensors configuration, with the number
of sensing lines varying from 1 to 10, are reported for the two-steps method (a) and the iFEM (b).

(a) 1 sensing line (b) 3 sensing lines

(c) 5 sensing lines (d) 7 sensing lines

Figure 18: Nodal forces identification along the wing tip chord for Load Case 2.

Figure 19: Vertical deflection along the wing tip chord for Load Case 2.
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(a) two-steps method.

(b) iFEM

Figure 20: Optimal sensors configurations for Load case 2 - The figures show the optimal sensors configurations
for the two-steps method (a) and the iFEM (b). In the legends, Upper and Lower refer to sensors located on
the upper or lower panel, whereas Upper/lower refers to sensors located on both panels. Front and Rear refers
to sensors that are located on the front or the rear spar, whereas Front/Rear refers to sensors located on both
spars.

The configuration with only one sensing line deserves more attention. The nodal values of the forces,

identified from the strains of this configuration, are reported in Table 4. In the table there are also the reference

values for the actually applied forces. It is easy to observe that the nodal values are not well predicted.

Nevertheless, looking at the resultant of the system of forces, Rz, it can be noticed that there is little discrepancy

between the one relative to the reference load system and the one relative to the identified system. Moreover,

the computation of the resultant moment along y, with respect to the center of gravity, MG
y , gives the same

result for the reference system of loads and the identified one. This results can explain the extreme accuracy

of the novel shape sensing method for both the load cases, when few strain information is available and the

external loads identification is not effective. The method is able to identify a system of loads that is different

from the actually applied one, but it is equivalent in terms of the caused deformations. For the Load Case

2, it can be observed that the two systems of forces have totally different values of the forces, but are almost
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equivalent as a system, having almost the same resultant of forces and the same resultant of moments. In the

end, it seems that the method, when few inputs are available, is able to find one of the infinite systems of loads

that can generate the deformed shape, whose induced strains are used as the inputs for the method.

Table 4: Load identification of Load Case 2 with only 1 sensing line - The positive directions and the identification
numbers of the forces are the ones depicted in Figure 5.

Loads %ERMSf Rz MG
y

Ref
F1 = F19 = 749N ; F2 = F18 = 1, 499N ; F3 = F17 = 937N ;

F4−8 = F12−16 = 375N ; F9 = F11 = 562N ; F10 = 749N
- 11, 993N 0N ·mm

Rec

F1 = 814N ; F2 = 1, 313N ; F3 = 1, 832N ; F4 = 957N ;

F5 = −1, 221N ; F6 = 367N ; F7 = 853N ; F8 = 155N ;

F9 = 953N ; F10 = 592N ; F11 = 858N ; F12 = −926N ;

F13 = 1, 056N ; F14 = 878N ; F15 = −661N ; F16 = −139N ;

F17 = 2, 276N ; F18 = 726N ; F19 = 1, 307N

50.10% 11, 990N 0N ·mm

5.3.4 Effect of measurement error

In this section, the influence of measurement error for the two-steps approach is evaluated. To take into account

for this errors, two cases of normally distributed errors with zero mean and a standard deviation of 1% and

5% of the nominal value are added to the strains obtained from the high-fidelity FEM analysis. The same two

load cases from the previous analysis are considered and only the more representative optimal sensors config-

urations have been selected for this application, namely the 1 line and the 7 lines configurations for both load

cases. Moreover, in order to smooth the amplification of the error due to the ill-posedness of the problem, the

Tikhonov regularization has been introduced in the solution of the inverse problem formulated in Eqs. 5 and

7. For each case, the Tikhonov regularization parameter (λ) has been computed empirically, searching for the

value that maximized the accuracy in the reconstruction of the external loads. In Table 5 and 6, the results of

these analysis are reported for the two load cases respectively. The results, in terms of %ERMSp, %ERMSf

and %ERMSw, are presented for the reconstructions obtained with and without the use of the Tikhonov reg-

ularization. In the tables, the values of the regularization parameters, λ, are also reported.

Table 5: Effect of measurement error for Load case 1.

NO regularization Tikhonov regularization

%Err Sensors %ERMSp %ERMSw %ERMSp %ERMSw λ

1%
1 line 934.6 9.9 23.1 0.5 7.0E-06

7 lines 29478.4 13.6 15.5 0.06 8.0E-05

5%
1 line 2782.2 19.8 27.3 0.8 7.0E-05

7 lines 247754.6 66.4 18.3 1.1 2.4E-04
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Table 6: Effect of measurement error for Load case 2.

NO regularization Tikhonov regularization

%Err Sensors %ERMSf %ERMSw %ERMSf %ERMSw λ

1%
1 line 21512113.2 448.7 22.1 3.5 2.0E-09

7 lines 210209.8 32.0 23.3 0.04 3.0E-08

5%
1 line 130845922 2578.9 25.8 7.2 7.0E-09

7 lines 4749253.5 58.5 23.5 0.2 2.0E-08

The results show that the two-step procedure is heavily influenced by the measurement error and that these errors

have a strong effect on the quality of the reconstruction of the loads and consequently also on the computation

of the displacement field. Even the case with 1% error gives highly inaccurate reconstructions for both load

cases and for every sensors configuration. Nevertheless, it can be noticed that the introduction of the Tikhonov

regularization is able to effectively reduce the inaccuracy introduced by the measurement error. In fact, the

regularization allows the reduction of the errors in the reconstruction of the loads (%ERMSp,%ERMSf ) from

values that reach, in the best case, almost 1000%, to values that, in the worst case, are close to 27%. In

addition, the quality of the reconstructed shape, obtained from the second step of the method, is even more

positively influenced by the Tikhonov regularization. As a matter of fact, the deformed shape is reconstructed

with impressive accuracy for all the analyzed configurations (0.06 < %ERMSw < 1.2), with the exception

of the Load case 2 with only one sensing line (%ERMSw > 3). The analysis of the configuration with 7

sensing lines is reported in the following to demonstrate the above mentioned behaviors. Figure 21 shows the

reconstruction of the Load case 1 when 1% error (Fig. 21a) and the 5% error (Fig. 21b) are introduced into the

input strains and the Thikonov regularization is adopted. The figures, when compared with Figure 3, confirm

that the method is only capable of a moderate reconstruction of the pressure distribution. On the other hand,

Figure 22 demonstrates that the shape sensing, under the same test conditions, is still really accurate. Figure

23 presents the reconstruction of the nodal forces of Load case 2. In the figure, the results are reported for the

7 lines sensors configuration when 1% (Fig. 23a) and 5% (Fig. 23b) measurement errors are introduced. The

resultants Rz and MG
y , as defined in Section 5.3.3, are also reported inside the figures. The accuracy in the

prediction of the single values of the nodal forces is modest and, although Rz, compared with the reference one

reported in Table 4, is well predicted, the values of the resultant moment, MG
y , are far from the reference one,

especially for the 5% error configuration. Nevertheless, the derived wing tip displacements, shown in Figure 24,

prove once again the good results obtained by the shape sensing step. As a consequence, it can be inferred that

the magnitude of the discrepancy in the identified resultant moment is not so relevant to induce considerable

effects on the deformation of the box.
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(a) 1% Error. (b) 5% Error.

Figure 21: Pressure field reconstructions for Load Case 2 when strains are affected by a normal error of 1%
(a) and 5% (b) and the Thikonov regularization is implemented. The results are showed for the 7 sensing lines
configuration.

Figure 22: Vertical deflection along the wing span for Load Case 1 when strains are affected by a normal error
of 1% and 5% and the Thikonov regularization is implemented. The results are showed for the 7 sensing lines
configuration.

𝑅𝑧 = −12,003 𝑁

𝑀𝑦
𝐺 = −4,7814 𝑁 ∙ 𝑚𝑚

(a) 1% Error.

𝑅𝑧 = −12,068 𝑁

𝑀𝑦
𝐺 = −133,302 𝑁 ∙ 𝑚𝑚

(b) 5% Error.

Figure 23: Nodal forces identification for Load Case 1 when strains are affected by a normal error of 1% (a)
and 5% (b). The results are showed for the 7 sensing lines configuration.
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Figure 24: Vertical deflection along the wing tip chord for Load Case 2 when strains are affected by a normal
error of 1% and 5%. The results are showed for the 7 sensing lines configuration.

6 Conclusions

This paper presents the study of a novel two-steps procedure designed for the simultaneous computation of the

external loads and the displacement field of a structure. The first step of the method is used to identify the

external loads from discrete strain measurements. The second step exploits the identified loads from the first

step to perform a standard direct FEM analysis and thus derive the displacement field. The procedure has

been numerically tested on an aluminum 3D swept wing box subject to two load cases, one constituted by a

distributed aerodynamic pressure and one constituted by a set of concentrated forces applied at the tip section

of the box. The method has been tested for different strain sensors configurations. The configurations have

been inspired by the optical fiber sensing technology. Therefore, each configuration has been constituted by a

varying number of sensing lines, from 1 to 10, running along the wing box span. Each sensor configuration has

been optimized by selecting the best configuration of sensing lines in order to obtain the best accuracy in the

external load identification. The results of the novel shape sensing technique have been compared to the ones

obtained with the well established iFEM.

The external load identification has proven to be improved by the introduction of the quadrilateral elements

and has shown to be accurate when a sufficient number of sensing lines is adopted. For both the load cases, a

significant level of accuracy is achieved for the configurations with 7 sensing lines. The reduction in the number

of sensing lines provokes a continuous loss of accuracy in the loads identification, reaching considerable values

of the errors for the configuration with only 1 sensing line.

The same behavior can be observed for the shape sensing step. The reduction in the number of sensing

lines obviously produces a lost of accuracy. However, in this case, the reached accuracy level is impressive and

strongly more precise than the iFEM for any sensors configuration and for any load case. With only 1 sensing

line the method is capable of a remarkable displacements reconstruction. The deeper analysis of this phenomena

brought to light that the method, when few strain information is available, is unable to identify the actually

applied external loads, but it is able to identify one of the infinite equivalent system of loads, whose action on
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the structure induces the measured strain field and, consequently, the investigated displacement field.

The introduction of measurement error has a significantly negative influences on the quality of the loads

identification and shape sensing. Nevertheless, in this case, the use of a regularization method, such as the

Tikhonov regularization, is able to improve the accuracy of the load identification step, although reaching

moderate levels of accuracy, and it allows the second step, once again, to produce remarkable reconstructions

of the displacement field.

In conclusion, the proposed method is able to simultaneously identify the external loads and the displace-

ment field of a structure when a sufficient number of discrete strains are provided to the method. When the

number of strains is not sufficient or they are affected by measurement error, the two-steps procedure is still

capable of remarkable results in the deformed shape reconstruction. In future works, the obtained results should

be validated experimentally. Moreover, the capability of the load identification step should be tested on the

reconstruction of discontinuous aerodynamic distributions, such as the ones typical of transonic wings, and on

more complex and realistic pressure distributions, extended to the whole structural domain of the wing box.
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A Appendix: Pressure distribution

The pressure distribution is obtained by multiplying a third order polynomial of x and a second order polynomial

of y:

p(x, y) = p1(x) · p2(y) = (axx
3 + bxx

2 + cxx+ dx) · (ayy2 + byy + cy) (A.1)

To find the coefficients of the polynomials it is necessary to impose the conditions described in Section 4.2.

They can be expressed mathematically as follows. The three conditions necessary to find the three coefficients

of the p2(y) polynomial are:


p2(y = 994) = 0 p2 equal to 0 at the tip section

p2(y = 0) = 1 p2 is equal to 1 at the root section

p2,y(y = 0) = 0 p2 has a maximum at the root section

(A.2)
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The four conditions necessary to find the four coefficients of the p1(x) polynomial are:



p1
(
x = 528.52

994 y
)

= 0 p1 equal to 0 at the leading edge

p1
(
x = 270.52

994 y + 378
)

= 0 p1 equal to 0 at the trailing edge

p1
(
x = 618.69

994 y + 126
)

= 1 p1 equal to 1 at one third of the chord

p1,x
(
x = 618.69

994 y + 126
)

= 0 p1 has a maximum at one third of the chord

(A.3)

where (x = 528.52
994 y+ 378) is the equation of the leading edge, (x = 270.52

994 y+ 378) is the equation of the trailing

edge and (x = 618.69
994 y + 126) is the equation of locus of the points at one-third of the chords.

Since the wing box’s panel is swept, the leading edge, the trailing edge and the point at one third of the

chord have different x values for every y section of the wing panel. Therefore, the coefficients of the p1(x)

polynomial depend on the y coordinate, as expressed in Eqs. A.3, and they have to be computed for each value

of y.
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