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Stability and phase transitions of dynamical
flow networks with finite capacities

Leonardo Massai ∗ Giacomo Como ∗ Fabio Fagnani ∗

∗ Department of Mathematical Sciences “G.L. Lagrange”, Politecnico di
Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy

(e-mail: {leonardo.massai,giacomo.como,fabio.fagnani}@polito.it).

Abstract: We study deterministic continuous-time lossy dynamical flow networks with constant
exogenous demands, fixed routing, and finite flow and buffer capacities. In the considered model,
when the total net flow in a cell —consisting of the difference between the total flow directed
towards it minus the outflow from it— exceeds a certain capacity constraint, then the exceeding
part of it leaks out of the system. The ensuing network flow dynamics is a linear saturated
system with compact state space that we analyse using tools from monotone systems and
contraction theory. Specifically, we prove that there exists a set of equilibrium points that
is globally asymptotically stable. Such set of equilibrium points reduces to a single globally
asymptotically stable equilibrium point for generic exogenous demand vectors. Moreover, we
show that the critical exogenous demand vectors giving rise to non-unique equilibrium points
correspond to phase transitions in the asymptotic behavior of the dynamical flow network.

Keywords: Dynamical flow networks, nonlinear systems, compartmental systems, network
flows, robust control.

1. INTRODUCTION

The study of dynamical flows in infrastructure networks
has attracted a considerable amount of attention in recent
years. In particular, there is a growing body of literature
in the control systems field dealing with issues of stability,
optimality, robustness, and resilience in dynamical flow
networks. See, e.g., Paganini (2002); Low et al. (2002); Fan
et al. (2004); Como et al. (2013); Bauso et al. (2013); Como
et al. (2015); Coogan and Arcak (2015); Como (2017);
Nilsson and Como (2020) and references therein.

In this paper, we study deterministic continuous-time
models of dynamical flow networks. We consider a fi-
nite number of cells exchanging some indistinguishable
commodity among themselves and with the external en-
vironment. Cells possibly receive a constant exogenous
inflow from outside the network and a constant flow is
possibly drained out of them directly towards the external
environment. We assume that the outflow from a cell is
split among its immediately downstream cells in fixed
proportions and that each cell has a finite flow and buffer
capacity. When the total net flow in a cell —consisting of
the difference between the total flow directed towards it
minus the outflow from it— exceeds the cell’s capacity,
then the exceeding part of such net flow leaks out of
the system. Also, when the difference between the total
exogenous demand on a cell and the total inflow in it
exceeds the cell’s capacity, then the outflow towards the
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external environment is reduced by an amount equal to
the exceeding part of this difference. The ensuing network
flow dynamics tuns out to be a linear saturated system
with compact state space that we analyse using tools from
monotone systems and contraction theory.

The rest of the paper is organized as follows. The remain-
der of this section is devoted to the introduction of some
notational conventions to be used throughout the paper.
In Section 2 we present the class of dynamical flow network
models to be studied. Section 3 presents the main results
concerning the characterization of the set of equilibrium
points and its global asymptotic stability, as well as the
dependence of such equilibrium points on the exogenous
demand vector. Finally, Section 4 and 5 contain the proofs
needed to demonstrate such results.

We shall consider the standard partial order on Rn

whereby the inequality a ≤ b for two vectors a, b ∈ Rn

is meant hold true entry-wise. A dynamical system with
state space X ⊆ Rn will be referred to as monotone if it
preserves such partial order. For two vectors a, b ∈ Rn such
that a ≤ b, we shall denote by

Lb
a = {x ∈ Rn : a ≤ x ≤ b} = ×n

i=1[ai, bi]

the complete lattice and let Sb
a : Rn → Lb

a be the vector
saturation function defined by

(
Sb
a(y)

)
i
= max{ai,min{yi, bi}} , (1)

for y ∈ Rn and i = 1, . . . , n. For subsets of indices
A,B ⊆ {1, . . . , n}, we shall denote the restriction of a
vector x ∈ Rn by xA = (xi)i∈A and the restriction of
a matrix M ∈ Rn×n by MAB = (Mij)i∈A,j∈B.
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external environment is reduced by an amount equal to
the exceeding part of this difference. The ensuing network
flow dynamics tuns out to be a linear saturated system
with compact state space that we analyse using tools from
monotone systems and contraction theory.

The rest of the paper is organized as follows. The remain-
der of this section is devoted to the introduction of some
notational conventions to be used throughout the paper.
In Section 2 we present the class of dynamical flow network
models to be studied. Section 3 presents the main results
concerning the characterization of the set of equilibrium
points and its global asymptotic stability, as well as the
dependence of such equilibrium points on the exogenous
demand vector. Finally, Section 4 and 5 contain the proofs
needed to demonstrate such results.

We shall consider the standard partial order on Rn

whereby the inequality a ≤ b for two vectors a, b ∈ Rn

is meant hold true entry-wise. A dynamical system with
state space X ⊆ Rn will be referred to as monotone if it
preserves such partial order. For two vectors a, b ∈ Rn such
that a ≤ b, we shall denote by

Lb
a = {x ∈ Rn : a ≤ x ≤ b} = ×n

i=1[ai, bi]

the complete lattice and let Sb
a : Rn → Lb

a be the vector
saturation function defined by

(
Sb
a(y)

)
i
= max{ai,min{yi, bi}} , (1)

for y ∈ Rn and i = 1, . . . , n. For subsets of indices
A,B ⊆ {1, . . . , n}, we shall denote the restriction of a
vector x ∈ Rn by xA = (xi)i∈A and the restriction of
a matrix M ∈ Rn×n by MAB = (Mij)i∈A,j∈B.
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Fig. 1. A dynamical flow network with four cells.

2. A DYNAMICAL FLOW NETWORK MODEL WITH
FINITE CAPACITY

We consider dynamical flow networks consisting of finitely
many cells i = 1, 2, . . . , n, exchanging an indistinguishable
commodity both among themselves and with the external
environment as described below. (See also Figure 1)

Let xi(t) be the quantity of commodity contained in cell
i = 1, 2, . . . , n at time t ≥ 0 and let wi > 0 be its
capacity. The state of the system is described by the
vector x(t) = (xi(t))1≤i≤n and evolves in continuous time
according to the following ordinary differential equation

ẋ = f(x) , (2)
where f(x) = (fi(x))1≤i≤n is the vector of instantaneous
net flows (inflows minus outflows) in the cells that will be
assumed to satisfy the constraints

−xi ≤ fi(x) ≤ wi − xi , i = 0, . . . , n , (3)
throughout the evolution of the system.

The leftmost inequality in (3) states that the outflow from
cell i can never exceed the current inflow plus the total
quantity of commodity in the cell, in particular implying
the physically meaningful fact that the net flow fi(x) is
nonnegative when the cell is empty (i.e., when xi = 0) so
that xi(t) can never become negative. On the other hand,
the rightmost inequality in (3) guarantees that the sum of
the current total mass and the inflow in a cell i and can
never exceed the difference between its capacity wi and
the current outflow, so that in particular, when the mass
x(t) = wi has reached the capacity, the net flow fi(x) is
nonpositive, thus implying that the total mass will never
exceed the capacity wi if started below that. Notice that
the complete lattice Lw

0 is invariant for any dynamical flow
network (2) satisfying (3).

Now, let each cell i possibly receive a constant exogenous
inflow λi ≥ 0 from outside the network and let a constant
flow µi ≥ 0 possibly be drained directly from cell i
towards the external environment, and let ci = λi − µi

be the exogenous net demand on cell i. Also, assume that
constant fraction Rij ≥ 0 of the quantity of commodity
xi flows directly towards another cell j �= i in the network
(fixed routing), while the remaining part (1 −

∑
j Rij)xi

leaves the network directly. Notice that the routing matrix
R = (Rij) ∈ Rn×n is necessarily sub-stochastic, i.e., with
nonnegative entries and such that its rows all have sum
less than or equal to 1.

Conservation of mass and the constraint (3) imply that
the netflow in each cell i = 1, . . . , n is given by

fi(x) = Swi−xi
−xi

(
λi − µi +

∑
j Rjixj − xi

)

= Swi
0

(∑
j Rjixj + ci

)
− xi .

(4)

We may then rewrite the dynamical flow network (2)–(4)
compactly as

ẋ = Sw
0

(
RTx+ c

)
− x , (5)

where w ∈ Rn is the vector of the cells’ capacities. Observe
that the function f(x) as defined in (4) is Lipschitz con-
tinuous on the whole Rn, so that existence and uniqueness
of a solution to the dynamical flow network (5) is ensured
for every initial state x(0) ∈ Lw

0 .

In the dynamical network flow (5) it is understood that
when the difference between the total flow λi +

∑
j Rjixj

directed towards a cell and the outflow µi + xi from it
exceeds the capacity wi, then the exceeding part of it
leaks out of the system. Moreover, the dynamical network
flow (5) also assumes that, when the difference between
the total exogenous demand µi on a cell i and the total
inflow λi +

∑
j Rjixj exceeds the cell’s capacity wi, then

the outflow towards the external environment is reduced
by an amount equal to the exceeding part of this difference.

3. MAIN RESULTS

In this section, we state the main results of this paper.
These are concerned on the one hand with global asymp-
totic stability of the dynamical flow network (5) and on the
other hand with the dependance (in particular, continuity
and the lack thereof) of the equilibrium points of (5) on
the exogenous demand vector c ∈ Rn.

Before proceeding, let us gather some terminology that
is used in our statements. The routing matrix R will be
referred to as out-connected is for every i = 1, . . . , n there
exists j ∈ {1, . . . , n} such that

∑
k Rjk < 1 and (Rl)ij > 0

for some l ≥ 0. It will be referred to as stochastic if all its
rows sum up to 1 and irreducible if, for every nonempty
proper subset S � {1, . . . , n}, there exists at least one
i ∈ S such that

∑
j∈S Rij < 1. It is a standard fact that,

if the routing matrix R is stochastic irreducible, then it
admits a unique invariant probability vector π = RTπ
and such vector is strictly positive entry-wise. Moreover,
as shown in Massai et al. (2019), for every zero-sum vector
v ∈ Rn, the vector series

Hv :=
1

2

∑
k≥0

(
I +RT

2

)k

v (6)

is convergent and its limit satisfies
Hv = RTHv + v . (7)

We start with the following stability results.
Theorem 1. Let w ∈ Rn be a positive vector and R ∈
Rn×n a sub-stochastic matrix. Then,

(i) if R is sub-stochastic and out-connected, then, for
every exogenous demand vector c ∈ Rn the dynamical
flow network (5) admits a globally asymptotically
stable equilibrium point x∗ ∈ Lw

0 .

On the other hand, if R is stochastic and irreducible, then

(ii) for every exogenous demand vector c ∈ Rn the set
of equilibrium points X (c) of the dynamical flow
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network (5) is a nonempty line segment joining two
points x ≤ x on the boundary of the lattice Lw

0 ;
(iii) for every initial state x(0) ∈ Lw

0 , the solution of (5)
converges to the set of equilibrium points X (c) as t
grows large;

(iv) the set of equilibrium points X (c) has positive length
if and only if

min
i

{
(Hc)i
πi

}
+min

i

{
wi − (Hc)i

πi

}
> 0 (8)

Theorem 1 characterizes the set of equilibrium points X (c).
In a given network, it is particularly relevant to study the
dependance of X (c) on the exogenous net flow vector c
as this might be subject to shocks that might affect the
whole flow on the network. The resilience of the system
with respect to such shocks heavily depends on the way
equilibrium points depend on c. We will show existence of
a set of critical vectors c such that the equilibrium points
of (5) undergo a jump discontinuity, thus determining a
phase transition in the asymptotic behavior of the system,
and we will describe this critical set.

Let us introduce some further notation. Let
U = {c ∈ Rn : |X (c)| = 1} , M = Rn \ U , (9)

be the subsets of exogenous flow vectors for which there
is a unique equilibrium point and, respectively, there are
multiple equilibrium points. Moreover, let x(c) and x(c) be
the lowest and, respectively, the highest equilibrium points
for a given vector c. For exogenous flow vectors c ∈ U , we
shall also use the notation

x∗(c) = x(c) = x(c)

for the unique equilibrium point.

We can now state the following result.
Theorem 2. Let w ∈ Rn

+ be a nonnegative vector. Let U
and M be defined as in (9). Then,

(i) if R is sub-stochastic and out-connected, then, for
every exogenous demand vector c ∈ Rn the map
c �→ x∗(c) is continuous.

On the other hand, if R is stochastic and irreducible, then

(ii) M is linear sub-manifold of co-dimension 1;
(iii) the map c �→ x∗(c) is continuous on the set U ;
(iv) for every c∗ ∈ M,

lim inf
c∈U
c→c∗

x∗(c) = x(c∗) , lim sup
c∈U
c→c∗

x∗(c) = x̄(c∗) .

Theorem 2 implies that the equilibrium points of (5)
undergo a jump discontinuity when the vector c crosses the
set M for which the uniqueness condition for equilibrium
points fails to hold. This in turn implies that even a
slight change in the exogenous flow may trigger a phase
transition in the system and a huge impact on the quantity
of commodities exchanged at equilibrium in the network.
We show this phenomenon in the following example.

Example 1 Let us consider a flow model with an irre-
ducible routing matrix R, in particular, we consider (5)
with:

R =

[
0 0.75 0.25
0 0 1
0.3 0.7 0

]
, w =

[
5
4
6

]
, c =

[
0
−1
1

]

The corresponding flow network is shown in Fig. 2.
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Fig. 2. Flow network with three cells.

Since 1T c = 0 and mini

{
(Hc)i
πi

}
+ mini

{
wi−(Hc)i

πi

}
≈

9.62 > 0 then (5) admits multiple equilibrium points
because of Theorem 1(iv). Indeed one can compute x(c) ≈
[1.62, 4, 5.41]T and x(c) ≈ [0.32, 0, 1.08]T . We highlight
the big jump that occurs for this particular vector c;
notice how in the largest solution x, cell 2 can deliver its
total outflow capacity 4 while in the smallest solution x it
outputs 0. A slight change of the exogenous flow around
c could then have a huge impact on the network. In Fig.
3 we show some trajectories (in red) for different initial
conditions in the phase space; we also plot the two lattices
Lw
0 and Lx

x (in green and light blue respectively); finally,
the segment of equilibrium points X is plot in orange.
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Fig. 3. Trajectories in the phase space in case of multiple
equilibrium points.

We can notice how all trajectories (red curves) converge
to the set of equilibrium points (orange segment).

Let us now change slightly the vector c by setting: c =
[α3 ,−1, 2α

3 ]T with α ∈ [0, 9]. Notice that we have multiple
equilibrium points when α = 1 =⇒ c∗ = [ 13 ,−1, 2

3 ]
T as in

that case one can check that condition of Theorem 1(iv)
holds. In Fig. 4 we show the set of equilibrium points X (c)
in the phase space as c varies as a function of α.
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points x ≤ x on the boundary of the lattice Lw
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(iii) for every initial state x(0) ∈ Lw

0 , the solution of (5)
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as this might be subject to shocks that might affect the
whole flow on the network. The resilience of the system
with respect to such shocks heavily depends on the way
equilibrium points depend on c. We will show existence of
a set of critical vectors c such that the equilibrium points
of (5) undergo a jump discontinuity, thus determining a
phase transition in the asymptotic behavior of the system,
and we will describe this critical set.

Let us introduce some further notation. Let
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is a unique equilibrium point and, respectively, there are
multiple equilibrium points. Moreover, let x(c) and x(c) be
the lowest and, respectively, the highest equilibrium points
for a given vector c. For exogenous flow vectors c ∈ U , we
shall also use the notation

x∗(c) = x(c) = x(c)

for the unique equilibrium point.

We can now state the following result.
Theorem 2. Let w ∈ Rn

+ be a nonnegative vector. Let U
and M be defined as in (9). Then,

(i) if R is sub-stochastic and out-connected, then, for
every exogenous demand vector c ∈ Rn the map
c �→ x∗(c) is continuous.

On the other hand, if R is stochastic and irreducible, then

(ii) M is linear sub-manifold of co-dimension 1;
(iii) the map c �→ x∗(c) is continuous on the set U ;
(iv) for every c∗ ∈ M,

lim inf
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c→c∗

x∗(c) = x(c∗) , lim sup
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c→c∗

x∗(c) = x̄(c∗) .

Theorem 2 implies that the equilibrium points of (5)
undergo a jump discontinuity when the vector c crosses the
set M for which the uniqueness condition for equilibrium
points fails to hold. This in turn implies that even a
slight change in the exogenous flow may trigger a phase
transition in the system and a huge impact on the quantity
of commodities exchanged at equilibrium in the network.
We show this phenomenon in the following example.
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ducible routing matrix R, in particular, we consider (5)
with:
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0 0.75 0.25
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1
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because of Theorem 1(iv). Indeed one can compute x(c) ≈
[1.62, 4, 5.41]T and x(c) ≈ [0.32, 0, 1.08]T . We highlight
the big jump that occurs for this particular vector c;
notice how in the largest solution x, cell 2 can deliver its
total outflow capacity 4 while in the smallest solution x it
outputs 0. A slight change of the exogenous flow around
c could then have a huge impact on the network. In Fig.
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Let us now change slightly the vector c by setting: c =
[α3 ,−1, 2α

3 ]T with α ∈ [0, 9]. Notice that we have multiple
equilibrium points when α = 1 =⇒ c∗ = [ 13 ,−1, 2

3 ]
T as in

that case one can check that condition of Theorem 1(iv)
holds. In Fig. 4 we show the set of equilibrium points X (c)
in the phase space as c varies as a function of α.
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Fig. 4. Set of equilibrium points as α varies.

Notice that x∗(c) is a piece-wise linear function. We can see
that for 0 ≤ α < 1 the equilibrium points (red segment)
start from 0, they are unique and located on ∂Lw

0 , then
when α = 1 (and c = c∗) we have multiple equilibrium
points (orange segment) and finally when α > 1 the unique
equilibrium points (gray segment) are located on ∂Lw

0 until
they eventually reach w, which means that all cells output
their maximal flow.

We appreciate a phase transition as the parameter α
crosses the value α = 1 and the equilibrium points undergo
a jump discontinuity going from x(c∗) to x(c∗).

4. PROOF OF THE STABILITY RESULTS

This section is devoted to prove Theorem 1. We will first
present some technical results concerning properties of the
system (5) that we will need to prove the main statement.

We start with the following technical results, whose proofs
are presented in Appendix A, Appendix B and Appendix
C respectively.
Lemma 1. The dynamical system (5) is monotone and
non-expansive in l1-distance on Lw

0 .
Lemma 2. The dynamical system (5) always admits a
maximal equilibrium point x ∈ Lw

0 and a minimal equi-
librium point x ∈ Lw

0 . Moreover, the sets

Xα =
{
x ∈ Lx

x :
∑

i
xi = α

∑
i
xi + (1− α)

∑
i
xi

}

(10)
for 0 ≤ α ≤ 1 are invariant for (5) and, for x(0) ∈ Lw

0 , the
solution of (5) is such that x(t)

t→+∞−→ Lx
x.

Lemma 3. Let x∗ be an equilibrium point of the dynamical
flow network (5) belonging to the interior of the lattice Lw

0 .
Then, there exists an ε > 0 such that, every solution of (5)
with initial condition x(0) ∈ Lw

0 such that ||x(0)−x∗|| < ε,
coincides with the solution of the linear dynamics

ẋ = (RT − I)x+ c . (11)

We are now ready to prove a first result that characterizes
the set of equilibrium points.
Proposition 1. There exists a nondecreasing curve of equi-
librium points joining x and x with image X . Moreover,
if R is stochastic irreducible, then such curve is entry-
wise strictly increasing, while if R is sub-stochastic out-
connected such curve is constant so that x = x.

Proof. For 0 ≤ α ≤ 1 the convex compact set Xα defined
in (10) is invariant for (5) by Lemma 2. Then, since f(x) is
Lipschitz-continuous, Lemma 1 in Lajmanovich and Yorke
(1976) implies that (5) has at least one equilibrium point
in Xα. For 0 ≤ α < β ≤ 1, if x∗(α) is an equilibrium point
of (5) in Xα, then the same argument can be applied to
show existence of an equilibrium point x∗(β) ∈ Xβ∩Lx

x∗(α).
Moreover, clearly limβ↓α x∗(β) = x∗(α). Similarly, one can
prove existence of an equilibrium point x∗(β) ∈ Xβ∩Lx∗(α)

x

for 0 ≤ β < α and that limβ↑α x∗(β) = x∗(α). This shows
that there exists a nondecreasing curve of equilibrium
points [0, 1] � t �→ x∗(t) joining x∗

0 = x to x∗
1 = x.

In order to prove the second part of the claim, fix 0 ≤ α <
β ≤ 1 and let S ⊆ {1, . . . , n} be the set of those cells i
such that x∗

i (α) < x∗
i (β). If R is stochastic irreducible and

S is a strict subset of {1, . . . , n}, then

β − α =
∑
i∈S

xi(β)− xi(α)

=
∑
i∈S

Swi
0

(∑
j
Rjixj(β) + ci

)

−
∑
i∈S

Swi
0

(∑
j
Rjixj(α) + ci

)

≤
∑
i∈S

∑
j∈S

Rji(xj(β)− xj(α))

<
∑
i∈S

(xj(β)− xj(α))

= β − α ,

(12)

where the last inequality follows from the fact that∑
i∈S

∑
j∈S Rjizj <

∑
i∈S zi for every positive z and

every strict subset S � {1, . . . , n}. It then follows that
necessarily xi(β) > xi(α) for every i = 1, . . . , n. Finally,
notice that if R is sub-stochastic out-connected then (12)
remains valid for every nonempty subset S ⊆ {1, . . . , n},
thus implying that necessarily x = x in thus case.

We are now ready to present the proof of Theorem 1.

Proof of Theorem 1

(i) It follows from Lemma 2 and Proposition 1 that, when
R is sub-stochastic out-connected x = x = x∗ is a
global asymptotically stable equilibrium point.

(ii) From Proposition 1 we know that there exists a
strictly increasing curve joining x and x, which means
that either the system has a unique equilibrium point
or it has a continuum of them. In the latter case,
since the curve is strictly increasing, all non extremal
equilibrium points x∗ ∈ X (c) \ {x, x} must belong to
the interior of the lattice Lw

0 and hence satisfy
x∗ = RTx∗ + c . (13)

Now observe that, since R is row-stochastic, we have
1Tx = 1TRTx + 1Tx + 1′c so that 1T c = 0, i.e.,
for the linear system (13) to admit solutions it is
necessary that c is a zero-sum vector. In fact, since
the stochastic matrix R is irreducible, we have that
I −RT has rank n− 1 and for every zero-sum vector
c the set of solutions x∗ of the linear system (13)
coincides with the line

H = {x∗ = Hc+ απ : α ∈ R} . (14)
Hence, we have that:
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X (c) = H ∩ Lw
0 = [x(c), x(c)] (15)

is a line segment joining x ∈ ∂Lw
0 and x ∈ ∂Lw

0 .
(iii) If x = x, then the global convergence follows from

Lemma 2. Hence, we focus on the case of infinitely
many equilibrium points. Notice that, for 0 ≤ α ≤ 1,
the set Xα defined in (10) intersects the line segment
X (c) in a single equilibrium point x∗(α) = αx+ (1−
α)x. Moreover, as discussed in the proof of point (ii)
above, x∗(α) belongs to the interior of the lattice Lw

0
for 0 < α < 1 so that Lemma 3 implies that (5)
reduces to the linear system (11) in a sufficiently small
neighborhood of x∗(α). Observe that all solutions of
(11) with initial condition x(0) ∈ Xα converge to
x∗
α as t grows large. It then follows that, for every

0 ≤ α ≤ 1, there exists some ε > 0 such that for
every solution x(t) of the dynamical flow network
with initial condition x(0) ∈ Xα such that ||x(0) −
x∗(α)|| < ε converges to x∗(α) as t grows large.

Let φt(x◦) be the solution of (5) started at x(0) =
x◦. By Theorem 4.5 in Khalil (2002) our last finding
implies that, for every 0 ≤ α ≤ 1 there exists
a KL function β(·, ·) such that ‖φt(x)− x∗(α)‖ ≤
β (x− x∗(α), t) for every x ∈ Xα such that ‖x −
x∗(α)‖1 ≤ ε. To prove global convergence to the set
X̊ (c) we need to show that for any x◦ ∈ Xα such that
‖x◦ − x∗‖1 > ε, there exists a finite time T ≥ 0 such
that ||φT (x◦)−x∗(α)||1 ≤ ε. For sake of notation, let
us put x∗ = x∗(α).

Now let x̂ = x∗+ε ‖x◦ − x∗‖−1
(x◦ − x∗) , for which

it is easily seen that ‖x̂− x∗‖1 = ε, and
‖x◦ − x∗‖1 = ‖x◦ − x̂‖1 + ‖x̂− x∗‖1 = ‖x◦ − x̂‖1 + ε

and consider the trajectories of the system starting
from x◦ and x̂. The l1-non expansiveness ensured by
Lemma 1 implies that d

dt ‖φ
t (x◦)− φt(x̂)‖1 ≤ 0, so

that ‖φt (x◦)− φt(x̂)‖1 ≤ ‖x◦ − x̂‖1. By the triangle
inequality,
‖φt (x◦)− x∗‖1 ≤ ‖φt (x◦)− φt(x̂)‖1 + ‖φt(x̂)− x∗‖1

= ‖x◦ − x̂‖1 + ‖φt(x̂)− x∗‖1
= ‖x◦ − x∗‖1 − ε+ ‖φt(x̂)− x∗‖1 .

Due to the properties of the KL functions, there exists
Tε/2 ≥ 0 such that β(x−y, t) ≤ ε/2 for all y such that
‖y − x∗‖1 ≤ ε and for all t ≥ Tε/2. Thus, we have

‖φt (x◦)− x∗‖1 ≤ ‖x◦ − x∗‖1 − ε+ ‖φt(x̃)− x∗‖1
≤ ‖x◦ − x∗‖1 − ε/2

for all t ≥ Tε/2. If ||φTε/2 (x◦)−x∗(α)||1 ≤ ε the proof
is complete with T− = Tε/2. Otherwise, by the same
argument, since each step the �1 distance between
φt(x) and x∗ decreases by at least ε/2 > 0 in no
more than �2 ‖x◦ − x∗‖1 /ε� steps, so that ‖φT (x◦)−
x∗‖1 ≤ ε for T ≤ �2 ‖x◦ − x∗‖1 /ε�Tε/2.

(iv) Because of what said in point (ii) of this proof, the
set X (c) has positive length if and only if (15) defines
a non-empty set, i.e. if and only if we can find values
of α ∈ R such that 0 < Hc + απ < w. As shown in
Massai et al. (2019), this is the case if and only if

min
i

{
(Hc)i
πi

}
+min

i

{
wi − (Hc)i

πi

}
> 0 , (16)

thus completing the proof.

5. PROOF OF THE CONTINUITY RESULTS

This section is devoted to prove Theorem 2.

We need the following technical results.
Lemma 4. Both c �→ x(c) and c �→ x̄(c) are monotone
nondecreasing maps from Rn to Lw

0 .

Proof. Consider two vectors c1, c2 ∈ Rn such that c1 ≤ c2
and let x1(t) and x2(t) the two solutions of (5) with,
respectively, c = c1 and c = c2, and with initial condition
x◦
1 = x◦

2 = 0. Then we know that these two solutions must
converge, respectively, to the minimal solutions x (c1) and
x (c2). Since Sw

0 (·) is monotone nondecreasing,
x1(t) ≤ x2(t) ⇒ ẋ1(t) = Sw

0

(
RTx1(t) + c1

)
− x1

≤ Sw
0

(
RTx2(t) + c2

)
− x2 = ẋ2(t) .

Since x◦
1 = x◦

2 = 0, this implies x1(t) ≤ x2(t) for all t.
This yields x (c1) ≤ x (c2) . Thus x(c) is nondecreasing.
The same property for x̄(c) follows analogously.

Lemma 4 allows us to prove the following results that is
the key for the proof of Theorem 2.
Lemma 5. Let R ∈ Rn×n

+ be a stochastic matrix and
w ∈ Rn

+ be a nonnegative vector. Then, for every c∗ ∈ Rn,
lim sup
c→c∗

x̄(c) = x̄(c∗) , lim inf
c→c∗

x(c) = x(c∗) .

Proof. Let (cn) be a sequence in Rn such that cn
n→+∞−→ c∗

and x̄(cn)
n→+∞−→ z∗. Let dn = sup{max{ck, c∗} : k ≥ n},

for n ≥ 1. Clearly, dn
n→+∞−→ c∗, while dn ≥ cn, dn ≥ c∗,

and dn+1 ≤ dn, for n ≥ 1. Then, Lemma 4 implies that
x̄(dn) ≥ x̄(cn), x̄(dn) ≥ x̄(c∗), and x̄(dn+1) ≤ x̄(dn),
for n ≥ 1. Thus, in particular, x̄(dn) converges to some
z ∈ Lw

0 such that z ≥ z∗ and z ≥ x(c∗). On the other
hand, x(dn) ∈ X (dn) is an equilibrium point so that
x(dn) = Sw

0 (R
Tx(dn) + dn) for n ≥ 1. By taking the limit

of both sides, continuity implies that z∗ = Sw
0 (R

T z∗ + c∗)
so that z ∈ X (c∗) is such that z ≤ x(c∗). Then

x̄(c∗) = z ≥ z∗ = lim sup
c→c∗

x̄(c) = x̄(c∗) .

The liminf part of can then be proven similarly.

Proof of Theorem 2

(i) Because of Theorem 1, in this case U = Rn and hence
by Lemma 5 it follows that, for c∗ ∈ Rn, we have

lim sup
c→c∗

x(c) ≤ lim sup
c→c∗

x̄(c) = x̄(c∗) = x(c∗)

= lim inf
c→c∗

x(c) ≤ lim inf
c→c∗

x̄(c) .

Then, the inequalities above all hold as equalities.
(ii) By Theorem 1, c∗ ∈ M satisfies (8). This determines

a linear sub-manifold of co-dimension 1 in Rn.
(iii) It follows from Lemma 5 that, for c∗ ∈ U , we have

lim sup
c→c∗

x(c) ≤ lim sup
c→c∗

x̄(c) = x̄(c∗) = x(c∗)

= lim inf
c→c∗

x(c) ≤ lim inf
c→c∗

x̄(c) .

Then, the inequalities above all hold as equalities.
(iv) If c∗ ∈ M, then any c ∈ Rn such that c > c∗ or c < c∗

belongs to U . This implies that the limit relations in
Lemma 5 continue to hold true when c is restricted
in U and the proof follows along the same lines.
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X (c) = H ∩ Lw
0 = [x(c), x(c)] (15)

is a line segment joining x ∈ ∂Lw
0 and x ∈ ∂Lw

0 .
(iii) If x = x, then the global convergence follows from

Lemma 2. Hence, we focus on the case of infinitely
many equilibrium points. Notice that, for 0 ≤ α ≤ 1,
the set Xα defined in (10) intersects the line segment
X (c) in a single equilibrium point x∗(α) = αx+ (1−
α)x. Moreover, as discussed in the proof of point (ii)
above, x∗(α) belongs to the interior of the lattice Lw

0
for 0 < α < 1 so that Lemma 3 implies that (5)
reduces to the linear system (11) in a sufficiently small
neighborhood of x∗(α). Observe that all solutions of
(11) with initial condition x(0) ∈ Xα converge to
x∗
α as t grows large. It then follows that, for every

0 ≤ α ≤ 1, there exists some ε > 0 such that for
every solution x(t) of the dynamical flow network
with initial condition x(0) ∈ Xα such that ||x(0) −
x∗(α)|| < ε converges to x∗(α) as t grows large.

Let φt(x◦) be the solution of (5) started at x(0) =
x◦. By Theorem 4.5 in Khalil (2002) our last finding
implies that, for every 0 ≤ α ≤ 1 there exists
a KL function β(·, ·) such that ‖φt(x)− x∗(α)‖ ≤
β (x− x∗(α), t) for every x ∈ Xα such that ‖x −
x∗(α)‖1 ≤ ε. To prove global convergence to the set
X̊ (c) we need to show that for any x◦ ∈ Xα such that
‖x◦ − x∗‖1 > ε, there exists a finite time T ≥ 0 such
that ||φT (x◦)−x∗(α)||1 ≤ ε. For sake of notation, let
us put x∗ = x∗(α).

Now let x̂ = x∗+ε ‖x◦ − x∗‖−1
(x◦ − x∗) , for which

it is easily seen that ‖x̂− x∗‖1 = ε, and
‖x◦ − x∗‖1 = ‖x◦ − x̂‖1 + ‖x̂− x∗‖1 = ‖x◦ − x̂‖1 + ε

and consider the trajectories of the system starting
from x◦ and x̂. The l1-non expansiveness ensured by
Lemma 1 implies that d

dt ‖φ
t (x◦)− φt(x̂)‖1 ≤ 0, so

that ‖φt (x◦)− φt(x̂)‖1 ≤ ‖x◦ − x̂‖1. By the triangle
inequality,
‖φt (x◦)− x∗‖1 ≤ ‖φt (x◦)− φt(x̂)‖1 + ‖φt(x̂)− x∗‖1

= ‖x◦ − x̂‖1 + ‖φt(x̂)− x∗‖1
= ‖x◦ − x∗‖1 − ε+ ‖φt(x̂)− x∗‖1 .

Due to the properties of the KL functions, there exists
Tε/2 ≥ 0 such that β(x−y, t) ≤ ε/2 for all y such that
‖y − x∗‖1 ≤ ε and for all t ≥ Tε/2. Thus, we have

‖φt (x◦)− x∗‖1 ≤ ‖x◦ − x∗‖1 − ε+ ‖φt(x̃)− x∗‖1
≤ ‖x◦ − x∗‖1 − ε/2

for all t ≥ Tε/2. If ||φTε/2 (x◦)−x∗(α)||1 ≤ ε the proof
is complete with T− = Tε/2. Otherwise, by the same
argument, since each step the �1 distance between
φt(x) and x∗ decreases by at least ε/2 > 0 in no
more than �2 ‖x◦ − x∗‖1 /ε� steps, so that ‖φT (x◦)−
x∗‖1 ≤ ε for T ≤ �2 ‖x◦ − x∗‖1 /ε�Tε/2.

(iv) Because of what said in point (ii) of this proof, the
set X (c) has positive length if and only if (15) defines
a non-empty set, i.e. if and only if we can find values
of α ∈ R such that 0 < Hc + απ < w. As shown in
Massai et al. (2019), this is the case if and only if

min
i

{
(Hc)i
πi

}
+min

i

{
wi − (Hc)i

πi

}
> 0 , (16)

thus completing the proof.

5. PROOF OF THE CONTINUITY RESULTS

This section is devoted to prove Theorem 2.

We need the following technical results.
Lemma 4. Both c �→ x(c) and c �→ x̄(c) are monotone
nondecreasing maps from Rn to Lw

0 .

Proof. Consider two vectors c1, c2 ∈ Rn such that c1 ≤ c2
and let x1(t) and x2(t) the two solutions of (5) with,
respectively, c = c1 and c = c2, and with initial condition
x◦
1 = x◦

2 = 0. Then we know that these two solutions must
converge, respectively, to the minimal solutions x (c1) and
x (c2). Since Sw

0 (·) is monotone nondecreasing,
x1(t) ≤ x2(t) ⇒ ẋ1(t) = Sw

0

(
RTx1(t) + c1

)
− x1

≤ Sw
0

(
RTx2(t) + c2

)
− x2 = ẋ2(t) .

Since x◦
1 = x◦

2 = 0, this implies x1(t) ≤ x2(t) for all t.
This yields x (c1) ≤ x (c2) . Thus x(c) is nondecreasing.
The same property for x̄(c) follows analogously.

Lemma 4 allows us to prove the following results that is
the key for the proof of Theorem 2.
Lemma 5. Let R ∈ Rn×n

+ be a stochastic matrix and
w ∈ Rn

+ be a nonnegative vector. Then, for every c∗ ∈ Rn,
lim sup
c→c∗

x̄(c) = x̄(c∗) , lim inf
c→c∗

x(c) = x(c∗) .

Proof. Let (cn) be a sequence in Rn such that cn
n→+∞−→ c∗

and x̄(cn)
n→+∞−→ z∗. Let dn = sup{max{ck, c∗} : k ≥ n},

for n ≥ 1. Clearly, dn
n→+∞−→ c∗, while dn ≥ cn, dn ≥ c∗,

and dn+1 ≤ dn, for n ≥ 1. Then, Lemma 4 implies that
x̄(dn) ≥ x̄(cn), x̄(dn) ≥ x̄(c∗), and x̄(dn+1) ≤ x̄(dn),
for n ≥ 1. Thus, in particular, x̄(dn) converges to some
z ∈ Lw

0 such that z ≥ z∗ and z ≥ x(c∗). On the other
hand, x(dn) ∈ X (dn) is an equilibrium point so that
x(dn) = Sw

0 (R
Tx(dn) + dn) for n ≥ 1. By taking the limit

of both sides, continuity implies that z∗ = Sw
0 (R

T z∗ + c∗)
so that z ∈ X (c∗) is such that z ≤ x(c∗). Then

x̄(c∗) = z ≥ z∗ = lim sup
c→c∗

x̄(c) = x̄(c∗) .

The liminf part of can then be proven similarly.

Proof of Theorem 2

(i) Because of Theorem 1, in this case U = Rn and hence
by Lemma 5 it follows that, for c∗ ∈ Rn, we have

lim sup
c→c∗

x(c) ≤ lim sup
c→c∗

x̄(c) = x̄(c∗) = x(c∗)

= lim inf
c→c∗

x(c) ≤ lim inf
c→c∗

x̄(c) .

Then, the inequalities above all hold as equalities.
(ii) By Theorem 1, c∗ ∈ M satisfies (8). This determines

a linear sub-manifold of co-dimension 1 in Rn.
(iii) It follows from Lemma 5 that, for c∗ ∈ U , we have

lim sup
c→c∗

x(c) ≤ lim sup
c→c∗

x̄(c) = x̄(c∗) = x(c∗)

= lim inf
c→c∗

x(c) ≤ lim inf
c→c∗

x̄(c) .

Then, the inequalities above all hold as equalities.
(iv) If c∗ ∈ M, then any c ∈ Rn such that c > c∗ or c < c∗

belongs to U . This implies that the limit relations in
Lemma 5 continue to hold true when c is restricted
in U and the proof follows along the same lines.

6. CONCLUSIONS AND FUTURE WORK

We have introduced a nonlinear dynamical system mod-
eling flow dynamics among cells with finite capacity. We
have completely characterized the set of equilibrium points
and proved the global convergence toward this set. More-
over, we have shown how the model exhibits critical phase
transitions as the exogenous flow approaches a set of criti-
cal values. Future work includes more in-depth analysis of
the discontinuities and their relationship to the network
structure and extending the dynamical flow model to allow
for nonlinearities in the dependence of the outflow from a
cell on the mass of commodity in it.
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Appendix A. PROOF OF LEMMA 1

We first prove that Lw
0 is invariant. This follows from the

fact that, for every x in Lw
0 such that xi = wi, we have

fi(x) = Swi
0

(∑
j
Rjixj + ci

)
− wi ≤ 0 ,

whereas for every x in Lw
0 such that xi = 0 we have

fi(x) = Swi
0

(∑
j
Rjixj + ci

)
≥ 0 .

We now prove that (5) is a monotone system. For i �= k,

∂fi
∂xk

(x) =




0 if
∑

j Rjixj + ci < 0

Rki if 0 <
∑

j Rjixj + ci < wi

0 if
∑

j Rjixj + ci > wi

(A.1)

This shows that ∂fi
∂xk

(x) ≥ 0 almost everywhere in Lw
0 , so

(5) is a monotone system by (Kamke, 1929, Theorem 1.2).

Finally, we show that (5) is nonexpansive in l1 distance on
Lw
0 . By monotonicity and using the fact that

∑
i

∂fi
∂xk

(x) ≤
∑
i

Rki − 1 ≤ 0 (A.2)

this follows from (Lovisari et al., 2015, Lemma 5).

Appendix B. PROOF OF LEMMA 2

From monotonicity and the fact that Lw
0 is invariant, the

two initial value problems{
ẋ = Sw

0

(
RTx+ c

)
− x

x0 = 0

{
ẋ = Sw

0

(
RTx+ c

)
− x

x0 = w
(B.1)

admit unique solutions that converge to a lower equi-
librium point x and largest equilibrium point x̄ ≥ x.
Now, let y =

∑
i xi and y =

∑
i xi. Consider an initial

state x(0) ∈ Lx
x. Since the system is non-expansive in l1-

distance, both ‖x(t)−x‖1 and ‖x(t)−x‖1 cannot increase
in time, which implies that

∑
i xi(t) remains constant.

Then, the sets Xα = {x ∈ Lx
x :

∑
i xi = αy+(1−α)y} for

0 ≤ α ≤ 1 are all invariant. Finally, for any x◦ ∈ Lw
0 , let

φt(x◦) be the solution of (5) at t ≥ 0. Since φt(0)
t→+∞−→ x

and φt(w)
t→+∞−→ x, then φt(x◦)

t→+∞−→ Lx
x for x◦ ∈ Lw

0 .

Appendix C. PROOF OF LEMMA 3

Observe that an equilibrium point x∗ in the interior of Lw
0

is such that Sw
0 (R

Tx∗ + c) = x∗ belongs to the interior of
Lw
0 which in turn implies that

f(x∗) = Sw
0 (R

Tx∗ + c)− x∗ = (RT − I)x∗ + c .

Since the map f(x) is continuous, there necessarily exists
an ε > 0 such that f(x) = (RT−I)x+c for all ||x−x∗|| < ε.
Since R is stochastic, its spectrum is contained in the
unitary disk centered in 0. Hence RT−I has all eigenvalues
with nonpositive real part and x∗ is stable (both for the
linear dynamical system (11) and the nonlinear dynamical
flow network (5), as they locally coincide), so that we can
always find a number δ ≤ ε such that if ‖x(0)− x∗‖ < δ
then ‖x(t)− x∗‖ < ε for all t ≥ 0. This ensures that the
trajectories of the system remain in the region where the
dynamics is linear and hence the claim follows.


