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Abstract

The shape sensing, i.e. the reconstruction of the displacement field of a structure from discrete strain

measures, is a key tool for the support and development of the modern Structural Health Monitoring

frameworks and has received a huge attention in the last few decades. The parallel increase in the use

of composite materials in the aerospace industry has consequently generated the need to investigate the

applicability of the shape sensing methods to this peculiar kind of materials. In fact, the manufacturing

complexity of the composite materials can result in a significant variability in the characteristics of the

material. Therefore, a study on the propagation of this kind of uncertainty on the performance of the shape

sensing methods is paramount. The uncertainties in the strain measurements can influence the shape sensing

results and must be also considered. This paper, for the first time, investigates the propagation of these

two sources of inputs’ uncertainty on the performance of three shape sensing methods, the inverse Finite

Element Method (iFEM), the Modal Method (MM) and the Ko’s Displacement theory. Using the Monte

Carlo Simulation (MCS) with Latin Hypercube Sampling (LHS), the robustness of the three methods with

respect to the inputs’ variability is evaluated on the reconstruction of the displacement field of a composite

wing box. The MM shows a significant robustness and the iFEM, although more affected by the uncertainties,

is the method that achieves the best accuracy. The Ko’s displacement theory, on the other hand, is the less

accurate and the less robust.

Keywords: Structural Health Monitoring; Shape sensing; Material characteristics uncertainty; Strain measure-

ments uncertainty; Displacement field reconstruction.

Abbreviations:

The following abbreviations are used in this manuscript:

CoV Coefficient of Variation

FEM Finite Element Method

iFEM inverse Finite Element Method

LHS Latin Hypercube Sampling

MCS Monte Carlo Simulation

MM Modal Method

PDF probability density function

SHM Structural Health Monitoring

1 Introduction

Shape sensing techniques have witnessed a rapid development during the last few decades. These techniques

allow the reconstruction of the full displacement field of a structure from discrete strain measurements. On a

structure, strain measures are usually easily obtained through strain gauges and, more recently, by means of
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fibre optics distributed strain sensing systems [1, 2]. The knowledge of the displacement field can provide key

information for the application of the modern Structural Health Monitoring (SHM) frameworks. In fact, as

recently proved in [3–6], the reconstruction of the displacement field can lead to the detection of damages in

thin plates, stiffened plates and thin-walled cylindrical structures, using only few strain measures. Moreover,

the reconstruction of the displacement field is fundamental for the monitoring of the morphing structures [7–9].

In particular, the knowledge of the actual structural shape can be used as a feedback control for the morphing

mechanisms [10].

As already mentioned, a lot of interest and research effort has surrounded the development of the shape

sensing technology. Different techniques, all having in common the use of discrete strains as an input, have been

designed and tested on various problems. Three of them, based on different principles, have emerged so far as

the most reliable and successful in the open literature: the Ko’s Displacement theory [11], the Modal Method

(MM) [12–14] and the inverse Finite Element Method (iFEM) [15].

The Ko’s Displacement theory is based on the double integration of the curvature equation of the Bernoulli-

Euler beam. Through this model, for beam-like structures, the curvature can be expressed as a function of

the axial strains and of the distance of the measure from the neutral axis of the local section. Deriving the

deflection from the curvature, it is possible to reconstruct the vertical displacement along a sensing line at

the same locations where the strains are measured. The method was originally proposed in [11], numerically

validated on the wing of the Ikhana Unmanned vehicle [16] and then experimentally applied on the Global

Observer UAV [17] and, recently, on a cantilevered composite beam [18]. In [19], the method was specifically

formulated for the use of strain measurements coming from distributed fibre optic sensors (FOS) and also

tested on a cantilevered composite beam. In [20], the method was expanded in order to reconstruct the full

displacement field of a beam-like structure. By means of a modal transformation [21,22], the new formulation is

able to expand the displacements reconstructed along the sensing lines to the displacements in locations outside

of the sensing locations, allowing the reconstruction of the full displacement field. Using this novel formulation,

the method requires the computation of the modal characteristics of the structure.

The Modal Method, firstly developed in [12,13], is able to reconstruct the displacement field of any structure

using its modal shapes and some discrete strain measures. The strain field is expressed in terms of known spatial

functions, the modal strain shapes, and unknown weights, the modal coordinates. The modal coordinates are

computed by fitting the reconstructed strain field to the discrete measured strains. Once the whole strain field

is approximated, the displacement field is easily computed through the strain-displacements relations. In [12],

the modal strain shapes were experimentally computed to reconstruct the displacement field of a cantilevered

aluminum plate. Since the experimental evaluation of the modal strain properties can be really difficult, in [23]

they were numerically computed and then adopted to reconstruct the deformation of a real plate. The study

didn’t include an evaluation of the error introduced by using the numerically computed modal shapes. Recently,

in [24], the MM was experimentally validated on the reconstruction of the static and dynamic displacements of

a wing.

The iFEM was introduced in [15]. Following the same approach of the direct FEM, the method uses a

discretization of the structural domain with finite elements. Within each element the displacement field is

expressed by the interpolation of the nodal values trough shape functions. The strain-displacement relationship

is invoked to express the strain field in terms of the nodal displacements and of the spatial derivatives of

the shape functions. By minimizing the error between the interpolated strain field and the discrete strains

information coming from the strain sensors, the method is able to find the nodal displacements that best fit

the measured strains. The IFEM has been successfully applied to a vast amount of applications. Truss and

beam structures has been studied in [25, 26]. Three nodes inverse shell elements have been widely used for

the analysis of thin plates [27–29] and thin walled structures [30, 31]. Recently, a quadrilateral inverse shell

element, the IQS4, has been developed and broadly applied to marine structures [32–34]. The IQS4 elements

have also been adopted in [35]. This study compared the three aforementioned shape sensing methods, the MM,

the Ko’s Displacement theory and the iFEM, on the numerical reconstruction of the full displacement field of

a composite wing box. The most recent development in the field of iFEM is represented by the introduction

2



of an isogeometric formulation for variable cross-section beams [36] and curved shell structures [37]. In [38],

a smoothing technique for the computation of the full strain field from discrete strain measures has further

enriched the capabilities of the iFEM. The a priori expansion of few strain measures, inputs of the method,

allows an accurate shape sensing with fewer strain measurements.

The use of composite materials is rapidly increasing in the aerospace industry due to their impressive spe-

cific mechanical properties and to the possibility to design tailored characteristics for a specific application.

Nevertheless, they are also affected by uncertainties in their characteristics that can influence their behavior.

The manufacturing of composites is complex and difficult to control. Therefore, the actual laminates charac-

teristics can differ from the nominal ones. Fibre-to-matrix volume ratio, alignment of the fibres, temperature

effects during the curing process, porosity in the matrix, bonding between fibres and matrix are factors that

depend on the manufacturing process and that can introduce variability in the material properties [39]. The

quantification of the effect of these uncertainties on the direct structural problem, i.e. strength, failure, buckling

and stiffness analysis, is frequently performed by means of Monte Carlo Simulation (MCS) [40–42]. The MCS,

when using simple sampling, requires a considerable amount of samples so that the outputs analysis can be

considered representative of the variability of the inputs. The introduction of Latin Hypercube Sampling (LHS),

firstly described in [43], allowed the reduction of the number of samples and has been recently adopted in the

material uncertainty quantification study of laminated composites. In [44], the influence of the thickness, the

ply orientation and the lamina characteristics on the linear static and vibration analysis of composite plates has

been investigated using LHS. Lately, in [45], LHS has been used as the reference method to prove the accuracy

of two other stochastic analysis methods (PCDD and COLL) for the uncertainty quantification of composite

laminates.

As for the direct structural problem, the shape sensing methods are also influenced by the input uncertainties.

Although experimental validation and comparison of the three methods is present in the open literature [46], a

deep analysis of the effect of composite material characteristics uncertainties on the performance of the shape

sensing methods is missing. Another uncertainty that can influence the performance of the shape sensing

methods is due to the inaccuracy of the strain measurements. Several works have been dedicated to investigate

the sources of biases (systematic errors) and uncertainties (random errors) affecting strain sensors (especially

strain gauges) [47, 48]: temperature, transverse sensitivity of the sensor, misalignment, Wheatstone bridge’s

non-linearity. These effects are not taken into account systematically in this paper. Only the effect of noise on

the ideal measured strains is analyzed. In [32,49] a study of the influence of white noise in the strain inputs on

the IFEM is present. Nevertheless, the study doesn’t include the MM and The Ko’s Displacements theory.

The scope of this paper is to continue the study on the composite wing box started in [35] and, for the

first time, to evaluate and compare the effect of material and measurements uncertainties on the performance

of the three shape sensing methods. The same combination of MCS and LHS, usually adopted for the direct

structural problem, is used for the stochastic analysis of the three methods. The two kinds of uncertainties

are treated separately. This analysis proves that, although the MM is more robust and less influenced by the

inputs’ uncertainties, it is not capable of a better accuracy than the iFEM, also when the uncertainties have the

most negative effect on its performances. Moreover, the Ko’s Displacement theory results to be the less robust

method with respect to the inputs’ uncertainties. The paper is structured as follows. In section 2, the shape

sensing methods are briefly described. In section 3, the deterministic shape sensing of the wing box, not affected

by any uncertainty, is presented. Section 4 defines the methodology adopted for the uncertainty analysis and

the results of this analysis are reported in section 5. Finally, the concluding remarks are discussed in section 6.

2 Shape sensing methods

In this section, the three shape sensing methods, as they have been adopted in this work, are briefly described.

A more detailed description of the methods can be found in [35,46].

3



2.1 Modal Method

When discretizing a structural domain using a FE model, both the displacements and the strains of the structure

can be expressed in terms of a modal matrix and the vector of the modal coordinates

w = Φd q (1)

ε = Φs q (2)

where wDx1 is the nodal degrees-of-freedom (DOFs) vector and εSx1 is the strains vector. The modal matrix

[Φd]DxM is constituted by M columns (the i-th column being the i-th modal eigenvector of the displacement

degrees-of-freedom). The modal matrix [Φs]SxM is also constituted by M columns (the i-th column being

the i-th set of strains corresponding to the i-th mode shape of the FE model of the structure). The modal

coordinates that best fit, in a least square sense, the strain field to the discrete strains vector can be computed

by pseudo-inverting Equation 2

q = (ΦT
s Φs)

−1ΦT
s ε (3)

Substituting (3) into (1) leads to the expression of the nodal DOFs in terms of the modal matrices and the

discrete strains [12,13]

w = Φd(Φ
T
s Φs)

−1ΦT
s ε (4)

The nodal DOFs can then be computed by substituting ε with discrete strain measurements. This procedure is

possible only if the number of available strains (S) is greater or equal to the number of considered modes (M).

No mathematical restriction is imposed on the number of the desired DOFs (D).

2.2 Ko’s Displacement theory

The Ko’s Displacement theory [11] is based on the Bernoulli-Euler beam theory. According to this model, the

curvature along the beam axial coordinate p can be expressed as follows:

w,pp(p) = −ε(p)/z (5)

where z is the distance between the neutral axis and the strain sensor and ε is the strain measured along the p

direction.
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Figure 1: Ko’s Displacement theory - Geometry and sensors’ location.

Double integration of the curvature, assuming that N+1 strain measurements (ε0, ε1, ... εN ) are available

along p at p = p0, p1, ... , pN , respectively (Figure 1), that strain is linear between any two consecutive locations

and that strains sensors are located at a constant distance from the neutral axis (z = h), leads to the expression

of the deflection of the beam at the i-th station where the strain is measured [46]:

wi = − 1

6h

[
i∑

j=1

(2εj−1 + εj)(pj − pj−1)2 + 3

i−1∑
k=1

(εk−1 + εk)(pk − pk−1)(pi − pk)

]
(i = 1, 2, ..., N) (6)

This formulation is valid for clamped end boundary conditions at p = p0. More general formulations, that can

face different conditions, have been also derived [11].

Using a two step procedure, where the first step is represented by the computation of the deflections along

the strain sensing lines, as described by Equation (6), it is possible to extend the displacement reconstruction

to all the DOFs of a beam-like structure [20]. During the second step, the deflections computed in the previous

one are used as master DOFs (wm) to expand the shape sensing to the desired, or slave, DOFs (ws). The

expansion is obtained by means of the System Equivalent Reduction and Expansion Process (SEREP) [21]:

w =

{
wm

ws

}
=

[
Φdm(ΦT

dmΦdm)−1ΦT
dm

Φds(Φ
T
dmΦdm)−1ΦT

dm

]
wm (7)

where [Φdm]DmxM is the master DOFs modal shapes matrix, [Φds]DsxM is the slave DOFs modal shapes matrix,

Dm is the number of master DOFs, Ds is the number of slave DOFs and M is the number of the retained modes.

The expansion obtained through SEREP allows the reconstruction of the full displacement field, but it involves

the use, and consequently the computation, of the modal shapes of the structure.

2.3 iFEM

The inverse Finite Element Method has been inspired by the direct FEM [15]. The displacement field is

expressed in terms of the kinematic variables according to a specific structural model. In this application,

since the objective of the analysis is a thin-walled structure, the First Order Shear Deformation Theory has

been adopted [50]. Therefore, the displacement field can be expressed in terms of the plate’s reference surface

in-plane displacements, u and v, the transverse displacement w and the rotations around the mid-plane axis x

and y, expressed by θx and θy, respectively. Accordingly, the strain field can also be expressed in terms of the
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derivatives of the kinematic variables [15,50]:


εxx

εyy

γxy

 =


u,x

v,x

v,x + u,y

+ z


θy,x

−θx,y
(θy,y − θx,x)

 = e + zk (8a)

{
γxz

γyz

}
=

{
w,x + θy

w,y − θx

}
= g (8b)

Therefore, the strain field of FSDT can be fully described by the eight strain measures εk (k = 1, 2, ..., 8):

e = [u,x, v,x, v,x + u,y]T = [ε1, ε2, ε3]T (9a)

k = k = [θy,x, −θx,y, θy,y − θx,x]T = [ε4, ε5, ε6]T (9b)

g = [w,x + θy, w,y − θx]T = [ε7, ε8]T (9c)

Once the kinematic model is established, the domain is discretized using FE and the kinematic variables inside

each element are interpolated using shape functions:

[u, v, w, θx, θy]T = Nue (ueT = {ui, vi, wi, θxi, θyi}, i = 1, 2, ..., S) (10)

where N is the shape functions matrix, ue is the vector of the element’s nodal DOFs and S is the number of the

element’s nodes. N and S depend on the chosen element formulation. Throughout this paper, iQS4 four-nodes

elements are used, therefore, S = 4. The detailed formulation of the shape functions can be found in [32].

Substituting Eq. (10)into definitions (9), the k-th strain measure can be expressed in terms of the spatial

derivatives of the shape functions and the nodal DOFs:

εk(ue) = Bku
e (k = 1, 2, ..., 8) (11)

where Bk is the matrix containing the derivatives of the shape functions related to the k-th strain measure.

The detailed formulation of Bk for can also be found in [32].

The objective of inverse Finite Element Method is to find the nodal DOFs values that minimize the error

between the strain field, as expressed in (11), and the one measured in a finite number of discrete locations.

The error within each element is expressed through a least-square functional defined as follows [51]:

Ψe(ue) =

8∑
k=1

λekw
e
k

∫∫
Ae

(εk(ue)− εεk)2dxdy (12)

The superscript ε denotes an experimentally measured value. The argument of the integral over the element’s

area, Ae, is the squared difference between the experimentally evaluated strain measure, εεk, and its analytical

counterpart, εk(ue), depending on the element nodal DOFs. In the case of sparse strain sensors, the absence of

the k-th strain measure within an element is taken into account by setting the experimental strain measure to

zero and by setting the penalization factor λek to a small value (10−4). Otherwise, if the k-th strain measure has

been experimentally evaluated in the element, the related λek is set to be equal to 1. Since the transverse shear

strains are not measurable, the λe7,8 are always equal to 10−4 and the εε7,8 are equal to 0. The wek are dimensional

coefficients required to guarantee the physical units consistency of Eq. (12). They are set as follows: wek = 1

for k = 1, 2, 3, 7, 8 and wek = (2h)2 for k = 4, 5, 6, where h is the half-thickness of the element.

The integrals in (12) are numerically computed using the Gaussian quadrature, therefore they are trans-
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formed into summations over the nxn Gauss points [35]:

∫∫
Ae

(εk(ue)− εεk)2dxdy =

nxn∑
i=1

χiωi(εk(i)(u
e)− εεk(centroid))

2

(
χi=centroid = 1

χi 6=centroid = 10−4

)
(13)

where ωi are the quadrature weights, the subscript i denotes the computation of the quantity in the i-th

quadrature point and the subscript centroid refers to the quantity computed in the centroid of the element.

This formulation is designed to deal with the case where only one sensor is present in the element and it is

located at its centroid, where a Gauss point is always present if nxn is even. Consequently, a second weight, χi,

is introduced to penalize the contributes that come from quadrature points different from the centroid, where

the strain is not actually measured [35]. Since the χi weights are introduced to take into account the exact

location of the strain sensors, they are adopted only when a measure is present within the element. Therefore,

for k = 7, 8 and for elements without sensors, only the penalization strategy introduced by λek is adopted.

The first six strain measures can be experimentally measured in the centroid of the element by strain sensors

placed on the bottom (−) and top (+) surface of the plate:


εe1

εe2

εe3


(centroid)

=
1

2


ε+xx + ε−xx

ε+yy + ε−yy

γ+xy + γ−xy


(centroid)

(14a)


εe4

εe5

εe6


(centroid)

=
1

2h


ε+xx − ε−xx
ε+yy − ε−yy
γ+xy − γ−xy


(centroid)

(14b)

The procedure is completed with the minimization of the error functional in (12) with respect to the DOFs,

thus leading to a system of linear equations that can be solved to find the nodal DOFs of the element:

∂Ψe(u
e)

∂ue
= keue − fe = 0 (15a)

ue = ke−1fe (15b)

where:

ke =

8∑
k=1

nxn∑
i=1

[λekw
e
kχiωiB

T
k(i)Bk(i)] (16a)

fe =

8∑
k=1

nxn∑
i=1

[λekw
e
kχiωiB

T
k(i)ε

ε
k(centroid)] (16b)

The subscript i related to the Bk matrices denotes the computation of the matrix in the i-th Gauss point. It is

important to notice once again that, if no measure is present within the element or k = 7, 8, the χi coefficient

should be not considered in the previous formulas. On the other hand, if the measure is present, the value of

χi is attributed following the rule expressed in (13).

The extension of the procedure to all the elements of the domain, trough the assembly process, leads to the

system of linear equations for the global DOFs of the structure, U:

U = K−1F (17)
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where K is a matrix depending on the shape functions and strain-sensor locations, whereas F is a vector

incorporating the measured strains. The matrix K is a well-conditioned square matrix that, upon enforcement

of the displacement boundary conditions, can be inverted. Assuming that the strain-sensor locations is not

changed, the inversion of K is performed only once whereas the vector F needs to be updated at each strain-

data acquisition increment. Since only strain-displacement relations are invoked in the formulation, the method

does not require the knowledge of the material properties or the applied loads. Thus, it is applicable for both

static and dynamic loading conditions, without requiring inertial or damping material properties.

3 Deterministic shape sensing

The structure, object of this shape sensing study is, the wing box model illustrated in Figure 2. The wing box

is divided into two bays by two ribs. Four T-shaped stiffeners are present, two located on the top and two on

the bottom panel. The upper and lower panel are connected to the spars by means of four L-shaped caps. The

root section (y = 0) of the box is clamped and, at the tip section (y = 1600), a trapezoidal distributed load,

with q = 16 N/mm, is applied. This configuration guarantees a deformation with both bending and torsion,

resulting in a challenging problem for the shape sensing techniques.
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Figure 2: Geometry, boundary and loading conditions of the unswept wing box. - The wing box has a constant
cross section (a), is divided into two bays by two ribs and a trapezoidal distributed load is applied at the tip
section (b). The root section is clamped. All dimensions are expressed in mm.

A high-fidelity NASTRAN® FE model of the wing box was designed in order to generate the input strain

values for the shape sensing methods and the reference displacements objective of the reconstructions. The

same model was adopted for the computation of the modal properties of the structure (mode shapes and related

strains), necessary for the application of the Ko’s Displacements theory and of the Modal Method. The mesh

of the model consisted of 21004 CQUAD4 elements. Figure 3 shows the wing box deformed shape (object of

the displacement field reconstruction) as obtained with the high-fidelity FEM analysis. A coarser mesh was

developed for the application of the iFEM, using iQS4 quad elements. The mesh was designed so that every

centroid of the 1427 iQS4 elements was coincident with a node of the high-fidelity mesh.
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𝑤1 = 15.86𝑚𝑚

𝑤2 = 16.30𝑚𝑚

Figure 3: Wing box deformed shape as obtained with the FEM analysis - The color bar refers to the magnitude
(in mm) of the resultant displacements, w1 and w2 represent, respectively, the vertical displacement of the
top-left and top-right vertex of the tip cross section.

This phase of the study involved the use of composite materials with the properties of each ply (fibre

orientation and thickness) supposed to be deterministic and equal to the nominal values reported in Table 1.

The stacking sequence and the lamina properties are the same for each component of the box. The thickness

of the plies for the skin and spars is set to 0.25 mm (t(skin spars)), whereas the ply thickness of the remaining

components is set to 0.20 mm (t).

Table 1: Deterministic material properties of a carbon-epoxy unidirectional ply [35].

Characteristic Nominal value

E11[GPa] 111

E22[GPa] 7.857

ν12 0.34

G12[GPa] 3.292

G13[GPa] 3.292

G23[GPa] 3.292

St.seq. [45/− 45/0/90]s

t(skin spars)[mm] [0.25/0.25/0.25/0.25]s

t[mm] [0.20/0.20/0.20/0.20]s

The number of sensors and their location strongly influence the performances of the shape sensing techniques.

The optimization of these two aspects has been the focus of a previous work [35]. A broad sensors configuration

optimization campaign for iFEM, Ko’s Displacement theory and Modal Method has been carried on using a

Genetic Algorithm. All the three methods and the Genetic Algorithm have been implemented using in-house

codes written in MATLAB®. The objective of the optimization has been the minimization of the RMS percent

error between the reference vertical displacements and the reconstructed ones:

%ERMSw = 100×

√√√√ 1

n

n∑
i=1

(
wi − wrefi

wrefmax

)2

(18)
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where n is the number of nodes of the iFEM mesh, wrefi is the reference vertical displacement from the high-

fidelity model in the i-th node’s location, wrefmax is the maximum reference vertical displacement and wi is the

reconstructed vertical displacement in the i-th node. The investigation has also covered the selection of the

modes to be considered in the application of the MM and the Ko’s Displacement theory. The 1st the 3rd and

the 26th modes have been found to be the more significant for the modal representation of the investigated

deformation. The final scope of the optimization was to compare the three methods, when applied to the same

problem, each one at its best. Therefore, each optimized sensors configuration is different and it is the one

that allows the corresponding method to reconstruct the wing box displacement field with the highest degree

of accuracy.

The results of this investigation are summarized in Table 2. The results are reported in terms of the ERMSw,

the number of single strain gauges in the xstr direction (Sgx) and the number of the three-components strain

rosettes (Rxy) for the three methods.

Table 2: Deterministic shape sensing results.

Ko MM iFEM

ERMSw [%] 6.9 4.8 1.8

Sgx 28 33

Rxy 40 108

Stot 28 153 324

The detailed sensors configurations are represented in Figure 4, where also the measurement directions xstr

and ystr are shown for the different wing box components. The configurations described here are the same ones

reported in [35] with the exception of the one related to the Modal Method. For this method, a configuration

with a slightly smaller amount of sensors, but with the same value of the ERMSw, is adopted here.

Considering the practical difficulties connected with the application of sensors inside the wing box, only

strains measured on the external surface were considered. Therefore, for the computation of the strain mea-

sures in Eqs. (14), constant values of the strains through the thickness of each plate were considered. This

approximation is acceptable if the thickness of the skin panels is considerably smaller than the one of the entire

wing box. For the Ko’s Displacement theory, the optimizer was allowed to select only sensors aligned with the

wing’s longitudinal axis on the top and bottom skins of the box. In fact, the method’s formulation requires

the use of consecutive strain measurements aligned along the beam-like structure’s longitudinal axis, at a given

distance from its neutral axis. This constraint was not necessary for the iFEM and the MM, thus also sensors

on the spars were allowed. Nevertheless, the optimizer exclusively selected sensors on the skin panels, not only

for the Ko’s Displacement theory, but also for the MM. On the other hand, only sensors on the spars were

selected for the iFEM.

The different numbers of sensors for each method are a result of the optimization process. The genetic

optimizer was set to select among a maximum of 324 sensor locations but it could also select the same location

more than once, thus reducing the effective number of used strain information. Nevertheless, it is important to

highlight that the previous study also proved that increasing the number of sensors to the amount used by the

iFEM was ineffective for the MM and detrimental for the Ko’s Displacement theory.
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Figure 4: Sensors configurations - The optimization process for the three shape sensing methods selected sensors
on the two skins for the MM and the Ko’s Displacement theory (a)(b). For the iFEM, only sensor on the spars
were selected (c)(d).

4 Uncertainty propagation analysis

The scope of this work is to study the propagation of uncertainties from the input data to the results of the shape

sensing methods. This investigation aims at evaluating the reliability and robustness of the three methods when

uncertainty affects the structural behavior, like in real case scenarios. The uncertainty quantification process

consists in studying the output’s probability density function (PDF) and its statistical moments when the inputs

are subjected to variability. The more widely used method to perform this kind of analysis is the Monte Carlo

Simulation (MCS). According to this method, a probability distribution is associated to each input variable.

Several values of each variable are sampled from the assumed probability distribution in order to obtain several

input vectors for the investigated model. The sampled input vector are then used to repetitively run the

model, in this case the shape sensing methods, thus obtaining the PDF of the output. The number of input

vectors influences the ability to obtain a PDF capable to fully describe the phenomenon. When simple random

sampling is used, the required number of input vectors is large and, consequently, the computational time for

the simulation is significant. The use of different sampling methods can increase the accuracy of the simulation

with a smaller number of input vectors. Latin Hypercube Sampling (LHS) is a stratified sampling method that

guarantees that all the portions of the distributions of each variable are represented in the sampling [52]. This

guarantees a better accuracy with a small number of samples.

The input data for the shape sensing are the strain measurements. With respect to a deterministic simulation,

these quantities can be affected by two kinds of uncertainties: uncertainties due to the material properties’

variability and uncertainties affecting the experimental measurements. In this work, these two effects are

treated separately.

4.1 Material uncertainty

The material uncertainties influence the strain field of the structure. In this paper, the material uncertainties

are analyzed at the laminates’ ply level, including the mechanical characteristics and the geometric ones. The

ply mechanical properties’ variability is modeled with normal distributions, having the mean values (µ) equal to

the nominal ones and a Coefficient of Variation (CoV) of 7.5% [44]. The same distribution is used to represent

the thickness of the plies. The fibre orientations are modeled with normal distributions with µ equal to the

nominal ply angle and a standard deviations (σ) of 3° [53]. The variability represented by the distributions

simulates the uncertainty that can originate from multiple sources. The deviation from the nominal values due
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to the complexity of the manufacturing process, the variation of the material properties due to the fluctuation

in the ambient conditions and other sources that can influence the composite behavior are all taken into account

by the generous level of variability selected for the stochastic distributions of the variables.

Seven different stacking sequences are considered. The sequences share the same nominal values, but their

characteristics are sampled separately so that a wider variability of the characteristics over the wing box’s

components can be obtained. The seven layups distribution on the wing box is illustrated in Figure 5.

𝑆𝑡𝑆𝑒𝑞		 − 1

𝑆𝑇𝑆𝑒𝑞	 − 3
𝑆𝑡𝑆𝑒𝑞	 − 4
𝑆𝑡𝑆𝑒𝑞	 − 5
𝑆𝑡𝑆𝑒𝑞	 − 6
𝑆𝑡𝑆𝑒𝑞	 − 7

𝑆𝑡𝑆𝑒𝑞		 − 2

Figure 5: Stacking sequences - The box is divided into seven zones for the stochastic analysis. They have
the same nominal stacking sequence but they are sampled separately in order to guarantee a higher degree of
variability of the characteristics over the structure.

For every input vector of the MCS, the six mechanical properties are sampled once and associated to every

ply in the structure. The symmetry of the layups, in terms of fibre orientation and thickness, is preserved also in

the stochastic analysis. Therefore, four fibre orientations and four thicknesses are sampled for each of the seven

layups. As a consequence, each input vector of the MCS is constituted by 62 input variables (4 fibre orientation

x 7 stacking sequences, 4 ply thicknesses x 7 stacking sequences and 6 mechanical properties). The sampling

of the variables is obtained using a LHS from the multivariate normal distributions previously illustrated and

summarized in Table 3.

Table 3: Stochastic material characteristics.

Characteristic Distribution µ σ

E11[GPa] Normal 111 7.5% µ

E22[GPa] Normal 7.857 7.5% µ

ν12 Normal 0.34 7.5% µ

G12[GPa] Normal 3.292 7.5% µ

G13[GPa] Normal 3.292 7.5% µ

G23[GPa] Normal 3.292 7.5% µ

St.seq.(StSeq 1−7) Normal [45/− 45/0/90]s 3°

t(StSeq 1)[mm] Normal [0.25/0.25/0.25/0.25]s 7.5% µ

t(StSeq 2−7)[mm] Normal [0.20/0.20/0.20/0.20]s 7.5% µ

Once a representative number of input vectors is extracted, the material characteristics of each vector are

associated to the high-fidelity FE model and the stochastic strain measures are easily obtained, for each input

vector, through direct FEM analysis. Each input vector’s strain measures are subsequently used as inputs for

the application of the iFEM, the Modal Method and the Ko’s Displacement theory to obtain the PDF of the

output, i.e., the ERMSw. When computing the ERMSw, the reference displacements are the one obtained from
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the FEM analysis of the correspondent input vector. On the other hand, the Modal characteristics, necessary

for the application of the MM and Ko’s Displacement theory, are the ones obtained from the deterministic FE

model (where all of the properties are set to the nominal values). This approach is based on the assumption that

the modal properties, especially the one related to the strains, are really difficult to measure experimentally.

Therefore, the idea is to simulate the most common case, i.e., the modal analysis is performed on the numeric

model, whereas the strains and the displacements are measured experimentally and are affected by uncertainty.

The entire process for n input vectors is schematized in Figure 6.

Stochastic

material

LHS

Sample - 1

Sample - 2

Sample - n

FEM
Shape

sensing

Deterministic

material
FEM

Modal

characteristics

ERMSw - 1

ERMSw - 2

ERMSw - n

PDF (ERMSw)

Str. field- 1

Str. field - 2

Str. field - n

Disp. field - 1

Disp. field - 2

Disp. field - n

MCS

Figure 6: Material uncertainty simulation - The scheme illustrates the MCS with LHS procedure for the analysis
of the material uncertainties.

4.2 Measurements uncertainty

The second scenario concerns the evaluation of the uncertainties that originate from the experimental measures

of the strains. To take into account the deviation from the deterministic values caused by noisy strain mea-

surements, two cases of normally distributed errors with zero mean and a standard deviation of 5% and 10% of

the nominal value are added to the strain values obtained from the deterministic FEM analysis. All the input

strain measurements used for the shape sensing techniques exhibit the distribution summarized in Table 4. In

this case, the number of variables that constitute the input vectors depends on the number of strain sensors

required by each shape sensing method.

Table 4: Stochastic strain measurements.

Characteristic Distribution µ σ

ε Normal Deterministic value 5− 10% µ

The MCS procedure is similar to the one described in the previous section. The stochastic strains are sampled

using the LHS and then the shape sensing techniques are applied to the obtained input vectors. Thus, the PDFs

of the ERMSws are derived. The necessary modal properties are the ones evaluated from the deterministic FE

model and, this time, the reference displacements also derive from this model. In fact, if the aim is to evaluate

the uncertainty due to noisy strain measurements only, the hypothesis is that the real structure is supposed to

behave like the deterministic one and the experimental strains are affected by measurement errors. The scheme
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of the simulation is reported in Figure 7.
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Figure 7: Measurements noise effect simulation - The scheme illustrates the MCS with LHS procedure for the
analysis of the measurements uncertainties.

5 Results

The results from the material uncertainty analysis are presented in Figure 8. The results were extracted using

10000 input vectors. A convergence study to prove that this number of samples was able to characterize the

output variability was performed. The result of the study showed that no variation for the value of the means

and a maximum variation of 6% was observed for the CoV when increasing the number of samples to 20000

and 30000. These results are summarized in Table 5.

Table 5: Convergence study - The table shows the negligible variation of the CoV and of the µ of the ERMSw
distributions associated with the increase in the size of the input vectors.

Material uncertainty Measurements uncertainty (5%) Measurements uncertainty (10%)

n=10000 n=20000 n=30000 n=30000 n=50000 n=70000 n=30000 n=50000 n=70000

Ko

CoV 0.0873 0.0874 0.0878 0.0818 0.0817 0.0817 0.155 0.155 0.155

µ 7.208 7.208 7.208 6.971 6.971 6.971 7.199 7.199 7.199

MM

CoV 0.0344 0.0365 0.0354 0.00422 0.00424 0.00416 0.0163 0.0164 0.0161

µ 4.937 4.937 4.937 4.839 4.839 4.839 4.883 4.883 4.883

iFEM

CoV 0.117 0.118 0.117 0.156 0.156 0.156 0.291 0.290 0.289

µ 1.939 1.939 1.939 1.851 1.851 1.851 1.901 1.901 1.901
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𝜇 = 1.939
𝜎 = 0.227

CoV = 11.70%

𝜇 = 4.937
𝜎 = 0.170

CoV = 3.44%

𝜇 = 7.208
𝜎 = 0.629

CoV = 8.73%

Figure 8: PDFs - Material uncertainty - Probability density functions of the ERMSw obtained for the three
shape sensing approaches with 10000 input vectors of material characteristics sampled with LHS.

In Figure 8, the discrete PDFs of the ERMSw of the three methods are plotted, along with the means,

the standard deviations and the CoVs of the distributions. The means of all the distributions are close to the

deterministic results, although they are slightly higher for all the three methods. The more peaked distribution

is the one relative to the MM. The distribution corresponding to the iFEM is slightly less peaked, whereas the

one relative to the Ko’s Displacement theory is much flatter. Moreover, looking at the standard deviations, the

same trend of variability for the three histograms can be inferred. The MM is found to be the less sensitive to

the material uncertainty, exhibiting a really small influence of the input variability on the output. The iFEM

shows a higher degree of variability, although it is important to notice that there is no overlapping between the

worst result for the iFEM histogram and the best one for the MM one. Therefore, despite the fact that it is more

affected by the material uncertainty, the iFEM is still able to perform better than the other two methods for any

sample. The Ko’s displacement theory is strongly influenced by the variability in the material characteristics.

It is interesting to notice that the right side of the MM’s graph extends so that it overlaps to the Ko’s graph.

It happens for a portion where the number of occurrences for the MM and the Ko’s Displacement theory are

really small. It means that, in some particular and rare conditions, the MM and the Ko’s Displacement theory

may perform with the same level of accuracy.

For the iFEM, an additional study on the influence of the penalization factors relative to the missing strain

measurements, λ1−8, was performed. The results for values of λ1−8 varying from 10−3 to 10−6 are reported in

Figure 9. The distributions show that the penalization factors have a significant influence on the mean value of

the distribution, whereas they have almost no influence on the standard deviation and on the PDFs. They are

very similar to each other in shape and are only translated according to the different mean values. Therefore, it

is proven that the λ1−8 coefficients don’t have an influence on the variability of the displacements reconstruction

due to the material uncertainty, whereas they have an influence on the deterministic accuracy of the method.

16



𝜇 = 1.198
𝜎 = 0.207
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𝜇 = 1.939
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𝜇 = 7.398
𝜎 = 0.213
CoV = 2.88%

𝜇 = 1.263
𝜎 = 0.211
CoV = 16.71%

Figure 9: PDFs - Material uncertainty - Probability density functions of the ERMSw obtained for the iFEM
with varying λ1−8 values from 10−3 to 10−6.

The second study, concerning the effect of the measurement noise, is now illustrated. A larger sample

size of 30000 was established for the three methods, following the same convergence considerations described

previously. The maximum variability in the CoV, when 50000 and 70000 samples were considered, was less

than 2%, as reported in Table 5.

The outputs’ PDFs resulting from the analyses with 5% and 10% normal errors in the strain measurements

are reported in Figures 10 and 11, respectively. The peakedness of the distribution related to the MM is

impressive. The 5% error has practically no effect in the ERMSw distribution and an almost negligible influence

in the case of 10% error. On the other hand, the iFEM and Ko’s Displacement theory show a more significant

variability. When a 5% error is present, the two methods exhibit values of the standard deviations comparable

to the ones obtained during the material analysis. These values appear approximately twice as big in the case

of 10% error. The iFEM shows less variability and, in the two error scenarios, its histograms still never overlaps

to the other two, showing better results for any occurrence. The overlapping between the MM and the Ko’s

Displacement theory’s histograms is noticed when the normal error reaches the 10%, but this happens in the area

where really small occurrence bars are present. The iFEM and Ko’s histograms share another common feature,

a nearly symmetric distribution with respect to the mean value. This feature indicates an equal possibility of

having better or worst results with respect to the mean value. On the contrary, although with really lower

variability, the MM’s one is characterized by a highly positive skewness, only showing occurrences for solutions

with a higher value of the ERMSw with respect to the mean one.
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𝜎 = 0.288
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(b) Modal Method
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CoV = 8.18%

(c) Ko’s Displaecement theory

Figure 10: PDFs - Strain error 5% - Probability density functions of the ERMSw obtained for the three shape
sensing approaches with 30000 input vectors of strains affected by a normal error of 5%.

𝜇 = 1.901
𝜎 = 0.553

CoV = 29.10%

iFEM

(a) iFEM

MM

𝜇 = 4.883
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(b) Modal Method
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𝜇 = 7.199
𝜎 = 1.113

CoV = 15.50%

(c) Ko’s Displaecement theory

Figure 11: PDFs - Strain error 10% - Probability density functions of the ERMSw obtained for the three shape
sensing approaches with 30000 input vectors of strains affected by a normal error of 10%.

The effect of the strain measurement noise on the stress-field reconstruction has also been investigated for the

three shape-sensing methods. Starting from the displacement field reconstructions and using the constitutive

equations of the material, it is easy to compute the stress field that the structure is subject to. To compare

the overall quality of the stress reconstruction, and taking into account the typical failure analysis relevant to

multilayered composite structures, the Tsai-Hill failure index for composites has been chosen as a parameter

to assess the global accuracy of the stress field reconstruction. To compute the Tsai- Hill index, the material

strength properties reported in Table 6 have been used. The deterministic value of the maximum Tsai-Hill

index, computed using the reference displacements from the high-fidelity model without any uncertainty in the

system, is 0.73.

Table 6: Material strength characteristics.

Characteristic Value

Longitudinal tensile strength 749 [MPa]

Longitudinal compressive strength 351 [MPa]

Transverse tensile strength 30 [MPa]

Transverse compressive strength 100 [MPa]

In-plane shear strength 25 [MPa]

Interlaminar shear strength 14 [MPa]

To study the influence of the measurement noise, the displacement field that have generated the PDFs in

Figures 10 and 11 have been used to compute the percentage error, with respect to the deterministic value, of

the reconstructed value of the maximum Tsai-Hill index. The obtained distributions are reported in Figures
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12 and 13. The trend in the mean values of the error is the same noticed during the displacements analysis.

The iFEM is the most accurate of the three method. Moreover, in this case, the advantage in the accuracy

in favor of the iFEM is even more remarkable. The mean values of the estimations of the Tsai-Hill index for

the MM and the Ko’s Displacement theory are highly inaccurate. The standard deviations of the distributions

relative to the three methods are comparable and also the CoVs are closer than in the shape sensing case. As

a consequence, the higher robustness of the MM, in particular with respect to the iFEM, is still exhibited but

less marked.

𝜇 = 11.10
𝜎 = 1.356
CoV = 12.21%

𝜇 = 39.43
𝜎 = 2.217
CoV = 5.62%

𝜇 = 27.18
𝜎 = 1.059
CoV = 3.89%

Figure 12: PDFs - Strain error 5% - Probability density functions of the percentage error (%Err Tsai-Hill) in
the reconstruction of the maximum Tsai-Hill failure index.

𝜇 = 11.07
𝜎 = 2.734
CoV = 24.70%

𝜇 = 27.16
𝜎 = 2.113
CoV = 7.78%

𝜇 = 39.37
𝜎 = 4.418
CoV = 11.22%

Figure 13: PDFs - Strain error 10% - Probability density functions of the percentage error (%Err Tsai-Hill) in
the reconstruction of the maximum Tsai-Hill failure index.
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6 Conclusions

This paper investigated the influence of uncertain material properties and noisy strain measurements on the

outputs of three shape sensing methods, the inverse Finite Element Method, the Modal Method and the Ko’s

Displacement theory. The three methods have been applied to the reconstruction of the deformed shape of a

composite wing box undergoing a bending and torsional deformation. The uncertainties have been introduced

after optimizing the strain sensors set-up for the three methods, so that their effect on the performances of the

methods could be compared when each method performed at its highest level of accuracy. The optimization of

the sensors configurations have been performed during the deterministic analysis, before any kind of uncertainty

was introduced into the problem.

The composite material modelization is strongly influenced by the deviation of the real characteristics

from the nominal ones. In this work, the uncertainties related to the composite material were studied at the

ply level by performing a Monte Carlo Simulation. The ply thickness, the fibre orientations and the lamina

mechanical properties were sampled from normal distributions centered in their nominal values, using the

Latin Hypercube Sampling. Performing the shape sensing analysis for the different input values, it has been

possible to compute the PDFs of the RMS percent errors between the reference vertical displacements and the

reconstructed ones (ERMSw). These outputs’ distributions proved that the MM is the most robust with respect

to the material uncertainties. The iFEM, that showed the best results during the deterministic analysis, is more

influenced by the material uncertainties, but it is still capable of a better reconstruction of the displacement

field for every sample, meaning that in its worst case scenario, when the uncertainties have the most negative

influence on the output, iFEM is still more accurate than MM. The Ko’s Displacement theory, that was the less

accurate according to the deterministic analysis, also showed a high variability caused by the material properties

uncertainties.

The other cause of uncertainty that can influence the performance of the shape sensing is represented by

the noise that can affect the strain measurements. To take into account these effects, the same Monte Carlo

approach has been used. A Gaussian error of 5% and 10% of the nominal strain values was sampled with LHS

and added to the strain inputs for the three shape sensing methods. The distributions of the ERMSw confirmed

the results obtained during the material uncertainty analysis. For both the levels of the Gaussian error, the

MM’s output is barely influenced by this kind of inputs’ variability. Once again, the iFEM distribution is

moderately affected by the presence of uncertain inputs, whereas the Ko’s displacement theory shows a more

relevant variability in the output.

This work also investigated the effect of the measurement noise on the reconstruction of Tsai-Hill failure

index, computed by means of the stress-displacement constitutive equations. In this case the robustness of

the three methods is comparable and the MM results only slightly less influenced by the inputs’ variability.

Moreover, the iFEM shows a significantly higher overall accuracy in the reconstruction of the Tsai-Hill index.

In conclusion, the MM is the shape sensing method that is less influenced by the various source of un-

certainties. Therefore, the MM represents a useful tool when there is no confidence in the knowledge of the

material characteristics or the strain measurements. Moreover, the MM requires a smaller number of sensors

than the iFEM. The iFEM is more sensitive, but the cases most negatively influenced by the uncertainties

are still capable of a greater accuracy than the best one from MM. As a consequence, when more accuracy is

required and more sensors are available, the iFEM is still to be preferred. The Ko’s Displacement theory is not

suitable when uncertainty is present. The high variability in the output prevents from confidently rely on the

obtained results. Finally, when a study on the stress field reconstruction is also involved, the iFEM is strongly

recommended over the other two methods.

This work is part of a broad study on the application of shape sensing techniques to aircraft structures. After

having compared the performance of three shape sensing methods on the reconstruction of the deformed shape

of a composite wing box, in this work, the influence of an uncertain structural behavior has been introduced

and analyzed. The next step of the investigation should involve the experimental validation on a real wing box

of the previous studies.
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To further expand the knowledge about the behavior of the shape sensing methods in experimental scenarios

affected by uncertainty, future works should also investigate the robustness of the optimal sensors configuration

by means of the robust optimization framework.
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