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Abstract
In this work, we study a stochastic single machine scheduling problem in which
the features of learning effect on processing times, sequence-dependent setup times,
and machine configuration selection are considered simultaneously. More precisely,
the machine works under a set of configurations and requires stochastic sequence-
dependent setup times to switch from one configuration to another. Also, the stochastic
processing time of a job is a function of its position and the machine configuration.
The objective is to find the sequence of jobs and choose a configuration to process
each job to minimize the makespan. We first show that the proposed problem can be
formulated through two-stage andmulti-stage Stochastic Programmingmodels, which
are challenging from the computational point of view. Then, by looking at the problem
as amulti-stage dynamic randomdecision process, a newdeterministic approximation-
based formulation is developed. The method first derives a mixed-integer non-linear
model based on the concept of accessibility to all possible and available alternatives
at each stage of the decision-making process. Then, to efficiently solve the problem, a
new accessibility measure is defined to convert the model into the search of a shortest
path throughout the stages. Extensive computational experiments are carried out on
various sets of instances. We discuss and compare the results found by the resolution
of plain stochastic models with those obtained by the deterministic approximation
approach. Our approximation shows excellent performances both in terms of solution
accuracy and computational time.

Keywords Single machine scheduling · Stochastic sequence-dependent setup times ·
Stochastic processing times · Learning effect · Deterministic approximation ·
Multi-stage stochastic programming
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1 Introduction

Single machine scheduling is a decision-making process that plays a critical role in all
manufacturing and service systems. This problem has been extensively investigated
for a long time because of its practical importance in developing scheduling theory in
more complex job shops and integrated processes. The flow time, total tardiness, or
makespan minimization are the main frequently used criteria. Here, the same machine
can be used for different jobs, but the efficiency of processing them depends on the
configuration used. In general, switching fromone configuration to another one implies
a so-called setup time.

In machine scheduling problems, the setup times are considered either sequence-
independent or sequence-dependent. In the former case, the setup times are negligible
or assumed to be a part of job processing times while, in the latter case, the setup
times depend on not only the job currently being scheduled but also the last scheduled
job. Sequence-dependent setup time between two different activities is encountered
in many industries such as the printing industry, paper industry, automotive industry,
chemical processing, and plastic manufacturing industry. Dudek et al. (1974) reported
that 70% of industrial activities include sequence-dependent setup times.

Another realistic aspect to consider is that the efficiency of workers or machines
increases depending on the time spent by the jobs or repetition of activities in many
manufacturing and service industries. Therefore, the actual processing time of a job
could be shorter if it is scheduled at the end of a queue. This phenomenon, known as
learning effect, has been observed in various practical situations in several branches of
industry and for a variety of activities (Yelle 1979; Gawiejnowicz 1996). Depending
on the production system, learning effects can be based on position or on the sum of
processing times. In the former case, they depend only on the number of jobs being
processed, while in the latter case, they depend on the sum of the processing times
of the already processed jobs. In this study, single machine scheduling with position-
dependent learning effects is considered.

It is also essential to notice that the manufacturing and service systems operate
under uncertainty in many realistic situations. The uncertain environment stems from
a variety of random events, such as machine breakdown, job cancellation, rush orders,
and inaccurate expected job information. The majority of the works in the literature on
stochastic single machine scheduling mainly consider uncertain job processing time.
However, in some real-world situations, the setup times may also be uncertain due to
some random factors like crew skills, tools and setup crews, or unexpected breakdown
of fixtures and tools. Although it is a typical case in several industries, we found
only a few studies that consider stochastic sequence-dependent setup times (see, e.g.,
Allahverdi 2015). Some real-life examples include various practices such as the use of
checklists during the setup of the machine, the use of documented standard operating
procedures, the use of devices to reduce operator errors during the setup, and the use of
training. In some cases, setup times increase due to unplanned maintenance, which in
general needs more setup activities such as the replacement of worn-out tools. These
examples indicate that variability in setup time is a real concern in practice.

In this study, we consider a scheduling problem on a single machine with a set
of configurations that can perform the jobs in various processing times. Each job
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has a deterministic processing time, which has been affected by the job-dependent
learning effect and the selected machine configuration. The deterministic setup time
of switching the machine from a configuration to another is sequence-dependent. A
random variable associated with the job attributes, including both processing time and
setup time between the machine configurations, is defined. The problem objective is to
determine the sequence of jobs and choose the configuration to process each job such
that the makespan is minimized. Our proposed problem belongs to NP-hard class
since the deterministic single machine scheduling with sequence-dependent setup
times is NP-hand as well (Baker and Trietsch 2009). To the best of our knowledge,
there is only one paper which studies a quite similar problem. The work is proposed
by Soroush (2014), which addresses the single machine scheduling in which pro-
cessing times, setup times, and reliabilities are sequence-dependent random variables.
These attributes are also subjected to different job-dependent and position-based learn-
ing effects. They explored various scenarios of the problem when the cost functions
are linear, exponential, and fractional in different pairs of criteria consisting of the
makespan, total absolute variations in completion times, total waiting time and their
weighted counterparts, and the total reliability/unreliability. It has been proved that
the scenarios can be modeled as quadratic assignment problems, which are solvable
exactly or approximately. Also, the special cases with sequence-independent setup
times and either position-independent or sequence-independent reliabilities can be
solved optimally in polynomial time.

We address the above problem by using three methods: a two-stage Stochastic
Programming (SP) model, a multi-stage SP one, and a Deterministic Approximation
(DA)-based approach. SP is one of the main existing paradigms to deal with uncertain
data and assumes that the random input data follow given probability distributions and
pursues optimality in the average sense, adopting a risk-neutral perspective. However,
it is difficult to obtain the probabilistic distribution of input data in practice. Even if
an estimate of such a distribution is available, many scenarios are necessarily needed
to approximate it accurately. Unfortunately, as the number of scenarios increases the
problem becomes more complicated since the number of decision variables and con-
straints grows up. To dealwith these drawbacks, wemodel the problem as amulti-stage
dynamic random decision process where the knowledge of the probabilistic distribu-
tion of uncertain data is not needed. According to this perspective, the problem is seen
as a multi-stage decision process in which jobs and configurations are chosen step by
step to achieve an optimal sequence eventually. According to Tadei et al. (2020), the
probability distribution of the best choice in terms of the next processed job and of
the machine configuration can be asymptotically approximated by using results from
the Extreme Value Theory (Galambos 1994). In turn, the makespan of the process can
be analytically derived. From now on, we will refer to this framework to the Extreme
Value Theory-based Deterministic Approximation (EVTDA). Using this approach,
the problem is first reformulated as a mixed-integer non-linear programming model.
Then, a simplification of such a model is provided to achieve a linear formulation.
More precisely, it is shown that the optimal scheduling can be found by efficiently
solving a linear shortest path problem in a multi-stage framework.

The contribution of this study is twofold. First, two-stage and multi-stage SP for-
mulations are derived to model a single machine scheduling involving both stochastic
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sequence-dependent setup times and stochastic position-dependent processing times,
affected by learning effect. Second, approximated makespan and optimal solutions
are found by proposing an innovative deterministic model which, for the first time
in the literature, embeds the calculation of estimators and parameters coming from
the EVTDA approach. This approach provides a powerful decision support tool that
overcomes the computational burden of solving fat stochastic programs that depend
on the number of scenarios considered and can be derived even when the probability
distribution of the uncertainties is unknown.

This paper is organized as follows. In Sect. 2, a literature review of the problem is
given. Sect. 3 describes the problem and formulates it using the two-stage and multi-
stage SP models. In Sect. 4, we propose a solution approach based on a deterministic
approximation recently introduced in the literature. We first derive the approximation,
and, based on that, we then formulate the problem as a non-linear model. Eventually,
by defining a new accessibility measure, the model is converted into a shortest path
problem. In Sect. 5, the computational results over several simulated instances are
proposed. Finally, conclusions are given in Sect. 6.

2 Literature review

The first research on job scheduling problems was performed in the mid-1950s. Since
then, thousands of papers on different scheduling problems have appeared in the litera-
ture. In themanufacturing industries, themachine environment is generally considered
as the resource of scheduling problems. The production system sometimes includes a
machine bottleneck, which affects, in some cases, all the jobs. Since the management
of this bottleneck is crucial, the single machine scheduling problem has been gaining
importance for a long time. Here, we explored the scheduling literature within the sin-
glemachine scheduling problems. The surveys byYen andWan (2003), Pinedo (2012),
Adamu andAdewumi (2014), and the work proposed by Leksakul and Techanitisawad
(2005) have detailed the literature on the theory and applications about this problem
in the past several decades.

The majority of papers assumed sequence-dependent setup times, which occur in
many different manufacturing environments. Angel-Bello et al. (2011) addressed the
single machine scheduling with sequence-dependent setup times and maintenance
with the aim of makespan minimizations. They developed a MIP model, as well as
a linear relaxation of it and an efficient heuristic approach to solve large instances.
Kaplanoglu (2014) addressed the case of dynamic job arrivals. He developed a col-
laborative multi-stage optimization approach. Bahalke et al. (2010) proposed a tabu
search andgenetic algorithm to dealwith the singlemachine schedulingwith sequence-
dependent setup times and deteriorating jobs. Stecco et al. (2008) deal with the single
machine scheduling where the setup time is not only sequence-dependent but also
time-dependent. They developed a branch-and-cut algorithm that solves the instances
up to 50 jobs. Ying and Bin Mokhtar (2012) addressed this problem with the sec-
ondary objective of minimizing the total setup time where jobs dynamically arrive.
They proposed a heuristic algorithm based on the dynamic scheduling system. There
are numerous studies on single machine scheduling with sequence-dependent setup
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times and various performancemeasures, such asminimizing total flow time, tardiness,
lateness, or waiting time.We refer the reader to Allahverdi et al. (1999) and Allahverdi
(2015) for a comprehensive survey of the models, applications, and algorithms.

As Allahverdi (2015) emphasizes, the literature on stochastic sequence-dependent
setup times is scarce. However, in some real-world situations, setup times may be
uncertain as a result of random factors such as crew skills, tools and setup crews,
and unexpected breakdown of fixtures and tools. In the literature of single machine
scheduling, we found only a few papers that consider sequence-dependent setup times
as random variables. Lu et al. (2012) addressed a robust single machine scheduling
problem with uncertain job processing times and sequence-dependent family setup
times. They formulated the problem as a robust constrained shortest path problem
and solved by a simulated annealing-based heuristic. The objective was minimizing
the absolute deviation of total flow time from the optimal solution under the worst-
case scenario. Also, the interval data were used to generate uncertain parameters
of sequence-dependent setup times. Ertem et al. (2019) focused on single machine
scheduling with stochastic sequence-dependent setup times to minimize the total
expected tardiness. They proposed a two-stage SP and the sample average approx-
imation (SAA) method to model and solve the problem. The genetic algorithm is
used to solve more significant size problems. Soroush (2014) deals with position and
sequence-dependent setup times in the single machine scheduling under uncertain job
attributes, including processing time and setup times.

Many researchers have been focused on various scheduling problems with learning
effect on processing times. Biskup (1999) demonstrated that the makespan minimiza-
tion on single machine scheduling with position-based learning could be optimally
solved in polynomial time by using the shortest processing time (SPT) rule. Since then,
many researchers have focusedon schedulingwith a position-based learningmodel and
various performance measures. The most well-known ones include those of Mosheiov
(2001), Lee et al. (2004), Zhao et al. (2004), and Kuo and Yang (2007), Mustu and
Eren (2018). A comprehensive review of different kinds of learning effects is proposed
by Azzouz et al. (2018). Some extensions of the basic position-based learning model
have been presented, including the consideration of job-dependent position-based
learning effects (Yin et al. 2010; Cheng et al. 2008), autonomous position-based and
induced learning effects (Zhang et al. 2013; Huo et al. 2018), position-based learning
and deteriorating effects (Toksari and Guner 2009; Cheng et al. 2011; Sun 2009), and
both position-based and sum-of-the-processing-time-based learning effects (Yang and
Yang 2011; Cheng et al. 2013).

In the above studies, the processing time is assumed to be a deterministic value.
However, real-world manufacturing and service systems usually work under uncertain
environment due to various random interruptions. The ignorance of uncertainty yields
schedules that cannot be readily executed in practice. Most works in the literature of
stochastic single machine scheduling mainly study uncertain processing time. Various
objective functions have been considered, such asminimizing expected total tardiness,
earliness and tardiness penalty costs, expected number of tardy jobs, expected total
weighted number of early and tardy jobs, expected value of the sum of a quadratic
cost function of idle time and the weighted sum of a quadratic function of job lateness,
mean completion time and earliness and tardiness costs, worst-case conditional value
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at risk of the job sequence total flow time, total weighted completion time or the total
weighted tardiness (Ertem et al. 2019). Hu et al. (2015) used uncertainty theory to
study the single machine scheduling problemwith deadlines and stochastic processing
timeswith known uncertainty distributions. The aim is to derive a deterministic integer
programming model by using the operational law for inverse uncertainty distributions
to maximize the expected total weight of batches of jobs. Pereira (2016) addressed
single machine scheduling under a weighted completion time performance metric
in which the processing times are uncertain, but can only take values from closed
intervals. The objective is to minimize the maximum absolute regret for any possible
realization of the processing times. An exact branch-and-bound method to solve the
problem has been developed. Seo et al. (2005) studied single machine scheduling
to minimize the expected number of tardy jobs. The jobs usually have distributed
processing times and a common deterministic due date. They proposed a non-linear
integer programming model and some relaxations to approximately solve it.

Limited work exists to address problems with both learning effect and uncertainty
on processing time in the single machine context. Li (2016) addressed the single
machine scheduling problem with random nominal processing time, or random job-
based learning rate, or both, to minimize the expected total flow time and expected
makespan. It was shown that the shortest expected processing time (SEPT) rule is opti-
mal for minimizing the expected total flow time or makespan in the position-based
learning model with only job processing time being random. For the job-based learn-
ing model, it was proved that minimizing the expected total flow time or makespan
is equivalent to solve a random assignment problem with uncertain assignment costs.
Zhang et al. (2013) studied the single machine scheduling problem with both learning
effect and uncertain processing time. They proved that the SEPT rule is optimal for
minimizing the expected makespan and maximum lateness. Also, they studied the
case with stochastic machine breakdowns.

Concerning the need to take into account uncertain data, researchers have applied
various methodologies to achieve optimal solutions, such as Robust Optimization and
Stochastic Programming (Maggioni et al. 2017). In Robust Optimization (RO), uncer-
tain data are represented using continuous intervals, and the aim is to optimize the
performance measure in the worst-case scenario. Lu et al. (2012) studied the robust
single machine scheduling with uncertain processing time and sequence-dependent
family setup time represented by interval data. The objective is to minimize the abso-
lute deviation of total flow time from the optimal solution of the worst-case scenario.
They formulated the problem as a robust constrained shortest path problem and solved
by a simulated annealing algorithm that embeds a generalized label correctingmethod.
Daniels and Kouvelis (1995) addressed the single machine scheduling with the uncer-
tain processing time and objective of total flow time. They used a branch-and-bound
algorithm and two surrogate relation heuristics to find robust schedules. Yang and
Yu (2002) studied the same problem but with a discrete finite set of processing time
scenarios rather than interval data. They developed an exact dynamic programming
algorithm and two heuristics to obtain robust schedules. Stochastic Programming (SP)
is another approach to tackle machine scheduling in which job attributes (e.g., pro-
cessing time, release time, setup time, due dates) follow given probability distributions
and reach optimality in the average sense. Some studies indicate that the SP models
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of single machine scheduling are NP-hard under certain distributional assumptions
of job processing time. For example, Soroush (2007) addressed static stochastic sin-
gle machine scheduling problem in which jobs have random processing times with
arbitrary distributions, known due dates with certainty, and fixed individual penalties
imposed on both early and tardy jobs. He showed that the problem is NP-hard and
developed certain conditions under which the problem is solvable exactly. In the liter-
ature, various performancemeasures, such as flow time (Agrawala et al. 1984; Lu et al.
2010), maximum lateness (Cai et al. 2007), the number of late jobs (van den Akker
and Hoogeveen 2008; Seo et al. 2005; Trietsch et al. 2008), weighted number of early
and tardy jobs (Soroush 2007), and the total tardiness (Ertem et al. 2019; Ronconi and
Powell 2010), have been addressed.

It is well-known that explicitly addressing uncertainty in an optimization prob-
lem generally poses significant computational challenges. Therefore, another line of
research is to see whether it is possible to incorporate uncertainty in an approximated
way and convert the stochastic model into a deterministic one. Tadei et al. (2020)
have recently proposed the EVTDA approach to deal with uncertainty in a multi-
stage decision-making process, where the knowledge of the probability distribution of
uncertain data is not required. Approaches leveraging the Extreme Value Theory for
deterministically approximating stochastic optimization problems have empirically
proved to be effective (Perboli et al. 2012, 2014; Tadei et al. 2009). Roohnavazfar
et al. (2019) relied on such an approach for finding the optimal sequence of choices
in a multi-stage stochastic structure and compared the obtained solution with that of
the expected value problem. The results pointed out the suitability of the method.

3 Problem definition andmathematical formulation

The problem proposed in this paper aims at sequencing a set of jobs that require to be
processed on a single machine so to minimize the makespan. The considered machine
can handle one job per time and works under a set of operating modes (from now on
simply called configurations), which affect the job processing times. No pre-emption
is allowed, i.e., a job must be completed without interruptions once it is started to be
processed. Sequence-dependent setup times are assumed when the machine switches
from a configuration to another one. Finally, taking into account the learning effect,
job processing times also depend on the job positions in the sequence. Let us consider
the following notation:

– I = {1, 2, . . . , n}: set of jobs;
– R = {1, 2, . . . , n}: set of positions in the job sequence;
– F = {0, 1, 2, . . . ,m}: set of possiblemachine configurations. Note that 0 indicates
a dummy initial configuration of the machine;

– α < 0: learning effect rate;
– Pk

i : nominal processing time of job i under configuration k;
– Pk

ir := Pk
i ·rα: deterministic processing time of job i processed at position r under

configuration k;
– S jk

r : deterministic sequence-dependent setup time of the machine to switch from
configuration j to configuration k at position r .
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To achieve a more realistic representation of manufacturing and service systems, a
stochastic oscillation associated with the machine setup time and the job processing
time is considered. This oscillation can be represented by a random variable, defined
over a given probability space. As commonly done in the literature (see, e.g., Birge and
Louveaux 2011), we approximate the distribution of the random variables through a
sufficiently large set of realizations. Therefore, let us consider the following additional
notation:

– L jk
ir : set of scenarios of random oscillations related to processing job i at position

r under configuration k after switching from configuration j ;
– Lr : set of scenarios associated with position r ;
– π l : probability of each scenario l ∈ L jk

ir ;

– θ̃
jkl
ir : realization of the random oscillation of the time when processing job i at
position r and configuration k, when the machine is switched from configuration
j , under scenario l ∈ L jk

ir .

In the following, we provide two different mathematical formulations for the prob-
lem described, using the well-known two-stage and multi-stage SP paradigms.

3.1 Two-stage Stochastic Programming formulation

The proposed problem can be formulated as a mixed-integer linear model by using a
two-stage SP model in which the first-stage variables are those that have to be decided
before the actual realization of the uncertain parameters becomes available. Once the
random events occur, the value of the second-stage (or recourse) variables can be
decided.

The proposed problem contains two different types of operational decisions,
namely, assigning jobs to positions and choosing a machine configuration to process
each job. In our two-stage SP model, two variables sets corresponding to decisions
before and after revealing informationmust be defined. The first-stage decisions, com-
mon to all realizations, represent the assignments of jobs to positions. The second-stage
decisions, specific to each realization and dependent on the first-stage decisions, repre-
sent the choice of configuration to process each job. Obviously, in the two-stagemodel,
the term stage is corresponding to the period before and after revealing information.
Therefore, the first stage is completed when all the jobs are assigned to positions. Then
the second stage starts as soon as the uncertainties are revealed.

We consider the following variables:

– yir : boolean variable equal to 1 if job i is assigned to position r , 0 otherwise;
– x jkl

ir : boolean variable equal to 1 if job i is assigned to position r and processed
under configuration k after switching from configuration j and scenario l, 0 oth-
erwise.

Then, a two-stage SP model for the problem is as follows:

min
x

n∑

i=1

n∑

r=1

m∑

j=0

m∑

k=1

∑

l∈L jk
ir

π l(S jk
r + Pk

ir + θ̃
jkl
ir ) x jkl

ir (1)
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subject to

n∑

r=1

yir = 1 ∀i ∈ I , (2)

n∑

i=1

yir = 1 ∀r ∈ R, (3)

m∑

j=0

m∑

k=1

x jkl
ir = yir ∀i ∈ I , r ∈ R, l ∈ L jk

ir , (4)

n∑

i=1

m∑

j=0

x jkl
ir =

n∑

i=1

m∑

j=1

xk jli,r+1 ∀k ∈ F\{0}, r ∈ R\{n}, l ∈ L jk
ir , (5)

m∑

k=1

x0kli1 = yi1 ∀i ∈ I , l ∈ L0k
i1 , (6)

yir ∈ {0, 1} ∀i ∈ I , r ∈ R, (7)

x jkl
ir ∈ {0, 1} ∀i ∈ I , r ∈ R, j, k ∈ F, l ∈ L jk

ir . (8)

The objective function (1) expresses the minimum expected makespan. Constraints
(2) and (3) ensure that each jobmust be selected to be processed in exactly one position,
and in each position, exactly one job is assigned. Constraints (4) state that the machine
is switched from a configuration to another one to process each job (it should be noted
that the two consecutive configurations are not necessarily different from each other).
These constraints are also linking the two types of decisions. Constraints (5) form
the sequence (flow) of configurations to process all jobs over the positions. They
establish the fact that it is possible to switch from a certain configuration k to another
if and only if the machine is already under configuration k. Without this constraint, the
sequence of configurations switch over positions would not be continuous. Constraint
(6) indicate that the machine is switched from the initial configuration 0 to one of the
configurations to process the job in the first position. Finally, (7) and (8) are binary
constraints on the variables.

The proposed two-stage SP formulation, at first glance, might look quite simplistic.
However, it can be used to model many practical situations exhaustively. Consider, for
instance, the operations scheduling of a crane dedicated to loading/unloading of heavy
items, such as containers or pallets. This machine works under different configurations
and provides processing times that depend on the actual weight of the item to be
managed. If a series of items is to be processed in the future, it may be essential for
organizational issues of the company to estimate the makespan of the whole process
managing before the items arrive. The precise weight of each item is not known a
priori, but only an estimate of it is available. In this case, our two-stage formulation
could be particularly suitable since, at the first stage, the decision-maker is asked to
establish the processing order (which provides an estimate of the makespan). Then,
only when the items arrive, the weight of each of them can be carefully measured and,
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therefore, the best configuration under which each item should be managed can be
decided.

Despite the applicability of the two-stage model, the strongly periodical structure
of the considered problem naturally suggests that a multi-stage SP approach could be
more suitable. Therefore, in the following, we also propose to model the uncertainty
structure of the problem differently.

3.2 Multi-stage Stochastic Programming formulation

The proposed scheduling problem can also be modeled using aMulti-Stage Stochastic
Programming formulation in which the decisions are taken stage by stage, along with
the realizations of some random variables. Using the multi-stage SP paradigm, the
uncertainty of random oscillations is dealt with a scenario tree as a branching structure
representing the evolution of realizations over stages. In this context, we define a
symmetric and balanced scenario tree. The jobs positions in our proposed problem
correspond to stages in the SP approach in which the decisions on choosing jobs and
configurations are taken. In a scenario tree, a path of realizations from the root node
to a leaf node represents a scenario ω, occurring with probability πω. We call Ω the
entire set of scenarios, i.e., the set of paths of realizations up to any leaf of the scenario
tree. Two scenariosω, ώ are called indistinguishable at stage r if they share a common
history of realizations until that stage, while after that they are represented by distinct
paths. Also, each node o at stage r in the tree can be associated with a scenario group,
represented asΩo

r , such that two scenarios that belong to the same group have the same
realizations up to that stage. Moreover, the set of all the nodes at stage r is depicted
as Φr .

Let us consider a boolean variable x jkω
ir equal to 1 if job i is assigned to position r and

processed under configuration k after switching from configuration j under scenario
ω, and 0 otherwise. Then, a multi-stage SP model for the problem is as follows:

min
x

∑

ω∈Ω

πω
n∑

i=1

n∑

r=1

m∑

j=0

m∑

k=1

(S jk
r + Pk

ir + θ̃
jkω
ir ) x jkω

ir (9)

subject to

n∑

r=1

m∑

j=0

m∑

k=1

x jkω
ir = 1 ∀i ∈ I , ω ∈ Ω, (10)

n∑

i=1

m∑

j=0

m∑

k=1

x jkω
ir = 1 ∀r ∈ R, ω ∈ Ω, (11)

n∑

i=1

m∑

j=0

x jkω
ir =

n∑

i=1

m∑

t=1

xktωi,r+1 ∀k ∈ F\{0}, r ∈ R\{n}, ω ∈ Ω, (12)

x jkω
ir = x jkώ

ir ∀i ∈ I , j, k ∈ F, r ∈ R\{n}, ω, ώ ∈ Ωo
r , o ∈ Φr , (13)
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n∑

i=1

m∑

k=1

x0kωi1 = 1 ∀ω ∈ Ω, (14)

x jkω
ir ∈ {0, 1} ∀i ∈ I , r ∈ R, j, k ∈ F, ω ∈ Ω. (15)

The objective function (9) expresses the minimum expected makespan. Constraints
(10) ensure that each jobmust be selected to be processed in exactly one position under
a switched configuration. In contrast, constraints (11) indicate that exactly one job and
switched configurations are assigned to each position. Constraints (12) imposes the
continuity of the sequence of configurations switch, as explained for constraint (5).
Constraints (13) indicate specific non-anticipativity conditions which ensure that, for
any pair of scenarios with the same history of realizations up to stage (position) r , the
decisions must be the same. These constraints imply that the decisions taken at any
stage do not depend on future realizations of uncertainty, but they are affected by the
previous realizations of uncertainty as well as the knowledge of previous decisions.
Constraints (14) indicate that the machine is switched from the initial configuration 0
to one of the configurations to process the job assigned to the first position. Finally,
(15) are binary conditions on the variables.

4 EVTDAmodeling approach

In the previous sections, we proposed a couple of formulations according to the two-
stage and multi-stage stochastic programming paradigms. It is important to note that
the twomodels handle uncertainty differently.While the two-stagemodel has a kind of
invest-and-use perspective, the greater flexibility offered by the multi-stage SP allows
us to deal with the problem more operationally. In particular, in the two-stage case,
the whole sequence is defined under uncertainty. In contrast, in the multi-stage case,
the problem is formulated, such as to allow, as new information becomes available,
simultaneous optimization of both the job sequence and the configuration choice.
However, these two models are computationally demanding. So, in this section, we
derive an effective deterministic approximation of the multi-stage SP formulation of
the problem that relies on the EVTDA approach, to make possible the resolution of
large scale instances.

4.1 Estimation of the expected completion times

To derive a deterministic model that approximates the multi-stage SP one, we interpret
the proposed problemas a stochasticmulti-stage choice process, i.e., a decision process
in which the decision-maker has to choose, stage by stage, the job to process and the
configuration to use to minimize the expected time needed to process the remaining
jobs, i.e., the completion time. Therefore, we aim to obtain at each stage a completion
time estimator that depends on the chosen job and configuration. However, obtaining
such an estimator is not trivial at all, since the expected completion time at each stage
depends on the probability distribution of the oscillations, which is assumed to be
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unknown. Hence, we decided to leverage the EVTDA approach to derive such an
estimator at each stage. Note that, this way, the estimated expected completion time
at the dummy stage corresponds to the expected makespan. As one should expect,
the derived estimators (both for the makespan and the intermediate completion times)
depend on the sequence of the jobs chosen over the stages and on the configurations
used for processing them. Hence, once obtained the expression of these estimators,
we derive an innovative non-linear scheduling model that aims at minimizing the
makespan and that represents a deterministic approximation of the multi-stage SP
formulation.

More precisely, at each stage (i.e., in each position), the decision maker faces a set
of choices including the combinations of jobs and machine configurations to choose
from for the next stage. At stage r , the choice of the combination made up by job i and
configuration k switching from configuration j incurs a total cost t̃ jkir constituted by

the deterministic configurations setup time S jk
r , the processing time Pk

ir , and finally the
expected completion time T k

ir of the remaining jobs to be processed in future positions.
To derive a deterministic approximation of the expected completion times T k

ir , the
EVTDA assumes that the decision-maker has an optimistic vision of the future. Not
knowing what will happen in the future, he assumes that he will have to pay as little as
possible. Then, from this assumption, it is derived an estimate of the expected future
cost, which, however, depends on a parameter whose appropriate calibration allows
to mitigate the risk associated with the initial optimistic attitude. Therefore, in our
context, it is optimistically assumed that we have to incur in the following stochastic
time:

t̃ jkir = min
l∈L jk

ir

[S jk
r + Pk

ir + θ
jkl
ir + T k

ir ], (16)

where θ
jkl
ir is a random variable, representing the time oscillation, whose realizations

are {θ̃ jkl
ir }. Please note that the completion times T k

ir as well as the makespan are
random variables since they depend on the realizations of the random time oscillation
in future stages. Still following the optimistic perspective of the EVTDA, the expected
completion times after each stage could be expressed as follows:

T k
ir =

⎧
⎨

⎩
IEθ̃

[
min j́∈F,h∈ Ĩir t̃

k j́
h,r+1

]
, i ∈ I , k ∈ F\{0}, r ∈ R\{n}

0, r = n
(17)

where Ĩir denote the set of jobs that are still to be considered after having processed
the job i at position r .

The distribution of the random cost T k
ir is not known because it depends on future

realizations of the random oscillations whose probability distribution is unknown.
However, under the following assumptions:

1. the random oscillations θ
jkl
ir are independent and identically distributed (i.i.d.)

according to an unknown survival function F(x) = P(θ
jkl
ir > x);
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2. F(x) has an asymptotic exponential behavior in its left tail, i.e.,

∃β > 0 such that lim
y→−∞

1 − F(x + y)

1 − F(y)
= eβx ; (18)

the following two main results can be derived from the EVTDA:

1. T k
ir can be approximated by:

T k
ir = − 1

β
(ln Ak

ir + γ ) ∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}, (19)

where γ � 0.5772 is the Euler constant and Ak
ir is the accessibility in the sense

of Hansen (1959) to the overall set of choices at position r + 1 when it is reached
from job i and configuration k at position r and it is calculated as

Ak
ir =

n∑

h=1

m∑

j=1

α
k j
h,r+1 exp

−β
(
Sk jr+1+P j

h,r+1+T j
h,r+1

)

∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}, (20)

where α
k j
ir = |Lkj

ir |
|Lr | indicates the proportion of the number of available scenarios

associated with the job i and configuration k at position r with respect to the total
number of scenarios associated with position r ;

2. the expected makespan T0 of all jobs can be estimated by:

T0 = − 1

β
(ln A0 + γ ), (21)

where A0 is the accessibility to all the choices and realizations in the first stage of
decision the making process.

To fully understand the role of parameter β, it must be remembered that the entire
decision-making process consists of as many stages as there are jobs. At each stage, a
choice must be made between different alternatives. Each alternative being made by
a couple formed by a job and a configuration under which the job will be processed.
Each alternative is therefore associated with a stochastic cost as reported in (16).
Being the cost associated with each alternative stochastic, the choice among them is
not trivial. The β parameter aims at capturing the diversity in terms of cost and, thus,
the probability of choosing among the available alternatives while taking into account
the stochastic nature of their costs. It, therefore, allows to model more effectively the
effect of uncertainty on the completion time estimator while minimizing any risks
associated with the optimistic nature of the EVTDA approach.

It is important to notice that the assumption needed to apply the proposed EVTDA
approach are quite mild and, in any case, less restrictive of those required by the SP
paradigm. Interesting enough, Fadda et al. (2020) have recently proved that theEVTDA
can still be deployed when assumption (18) is relaxed to the following condition:
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∃β > 0, a|Lr | such that lim|Lr |→+∞(F(x + a|Lr |))|Lr | = exp−eβx
. (22)

Assumption (22) is equivalent to ask the unknown distribution of the random
oscillations to belong to the domain of attraction of a Gumbel distribution. The
Gumbel domain of attraction describes distributions with light tails, i.e., probabil-
ity distributions whose tails decrease exponentially. This assumption enlarges the set
of distributions for which the EVTDA approach can be deployed in practice. It can
be shown that such assumption is satisfied by widely used distributions such as the
Normal, the Gumbel, the exponential, the Weibull, the Logistic, the Laplace, the Log-
normal, and any cumulative distribution in the form1−e−p(x), where p(x) is a positive
polynomial function. Thus, this is a very mild assumption and, therefore, does not sig-
nificantly restrict the deployment of the EVTDA approach. It is essential to notice
that some empirical results presented in Tadei et al. (2017), Fadda et al. (2020), and
Roohnavazfar et al. (2019) have demonstrated the effectiveness of the EVTDA frame-
work evenwhen the distribution of random oscillations does not satisfy the assumption
(22) like the Uniform distribution.

The theoretical result underlining the EVTDAapproach considers a singleβ param-
eter for the whole decision-making process. In practice, however, the problem of how
to calibrate this parameter so that it captures the effects of uncertainty in a highly
accurate way is still open. Therefore, to obtain a robust solution, we investigate the
possibility of using one β parameter for each alternative. Although this approach
makes the model less selfish, it allows us to directly model the dispersion of the real-
izations of the random oscillation associated with each alternative and, therefore, to
derive a more robust estimate of the expected completion times. A similar approach
has been profitably adopted by Roohnavazfar et al. (2019).

Using one β parameter per alternative, the expected completion times in (19) are
now approximated by:

T k
ir = − 1

βk
ir

(ln Ak
ir + γ ) ∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}. (23)

4.2 EVTDA-basedMixed Integer Non-Linear formulation

Leveraging the deterministic approximation of the completion times in (23), both the
sequence of jobs and configurations, as well as the expected optimal makespan, can
be determined by using a non-linear model. Let us consider the following decision
variables:

– ykir : boolean variable equal to 1 if job i is processed at position r under configuration
k, 0 otherwise;

– Ak
ir : accessibility of job i and configuration k at position r to the set of available

choices at position r + 1;
– A0: accessibility to the set of available choices in the first position;
– T k

ir : expected total completion time of future schedules when they are reached
from job i and configuration k at position r ;

– T0: expected makespan.
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Then, the following Mixed Integer Non-Linear model for the problem is proposed as
a deterministic approximation of the multi-stage SP formulation of the problem:

min T0 (24)

subject to

n∑

r=1

m∑

k=1

ykir = 1 ∀i ∈ I , (25)

n∑

i=1

m∑

k=1

ykir = 1 ∀r ∈ R, (26)

T k
ir = − 1

βk
ir

(ln Ak
ir + γ ) ∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}, (27)

Ak
ir =

n∑

h=1

m∑

j=1

(
α
k j
h,r+1 exp

−βk
ir (S

k j
r+1+P j

h,r+1+T j
h,r+1)

)⎛

⎝1 −
r∑

ŕ=1

m∑

j́=1

y j́
hŕ

⎞

⎠

∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}, (28)

T k
in = 0 ∀i ∈ I , k ∈ F\{0}, (29)

A0 =
n∑

i=1

m∑

j=1

(
α
0 j
i1 exp−β0(S

0 j
1 +P j

i1+T j
i1)

)
, (30)

T0 = − 1

β0
(ln A0 + γ ), (31)

ykir ∈ {0, 1} ∀i ∈ I , r ∈ R, k ∈ F\{0}, (32)

T k
ir , T0, A

k
ir , A0 ≥ 0 ∀i ∈ I , k ∈ F\{0}, r ∈ R. (33)

Theobjective function (24) expresses theminimumexpectedmakespan.Constraints
(25) and (26) ensure that each job must be selected to be processed under one configu-
ration in exactly one position and in each position exactly one job and one configuration
are assigned, respectively. Using constraints (27) and (28), the expected completion
time and the accessibility of job i and configuration k at position r to the set of avail-
able choices at position r + 1 are computed, respectively. It should be noted that,

in computing Ak
ir , the part (1 − ∑r

ŕ=1
∑m

j́=1
y j́
hŕ ) indicates that the set of available

choices at position r contains the jobs that have not yet been processed at any positions
before r . According to constraint (29), the expected completion time of all choices at
the last position is equal to zero. The accessibility to all choices in the first position
and the expected makespan are calculated in (30) and (31). Clearly, in calculating A0,
the set of available choices include all the combinations of jobs and configurations,
since no job has been assigned before. Finally, the binary and non-negative variables
are indicated in (32) and (33).
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4.3 Linearizing the EVTDA-based formulation

Despite the mixed-integer non-linear formulation presented in the previous section,
being a deterministic model not obtained by scenario generation, is less computational
demanding than the multi-stage formulation. However, solving it for large instances
can still be challenging. Its complexity is mainly due to the non-linearity of the model
and the nested structure of some of its constraints. For instance, in constraints (27) and
(28), the expected completion time T k

ir is computed using the accessibility Ak
ir that

in turn is depending on the expected completion time T k
ir+1 of the chosen schedule

(job and configuration) in the next position. In the following, to make possible an
efficient resolution of realistic instances of the problem, a linear model inspired by the
non-linear EVTDA-based formulation in (24)–(33) is developed.

As yet mentioned, the constraint (28) expresses the accessibility in the sense of
Hansen. In the context of this work, such accessibility measures the attractiveness of
a given schedule at the position r by computing a weighted sum of the exponential
cost associated to the choices that would still be available at the position r + 1 is case
such schedule is chosen. Unfortunately the deployment of the Hansen’s accessibility
leads to the deterministic approximation model in (24)–(33) that is computationally
challenging for realistic instances. For this reason, by maintaining the EVTDA-based
model structure, we consider a different measure of accessibility that allows to obtain a
new formulation of the problem that can be effectively linearized. In particular rather
than taking a convex sum of the exponential cost of the alternative available at the
next position as suggested by the Hansen’ measure of accessibility, the new measure
assesses the attractiveness of a given schedule at the position r by looking at the
exponential cost of the best alternative (lowest processing plus switching time) among
those still available at the position r +1 if such schedule is chosen. Therefore, the new
accessibility measure Ak

ir which determines the attractiveness of choosing job i and
configuration k at position r is computed as:

Ak
ir =

n∑

h=1

m∑

j=1

(
exp−βk

ir (S
k j
r+1+P j

h,r+1+T j
h,r+1)

)
y j
h,r+1

∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}. (34)

Let us suppose that the most profitable choice at position r + 1 is to process a
certain job h̄ under a certain configuration j̄ after processing job i under configuration

k at stage r , which means y j̄
h̄,r+1

= 1. Hence, the accessibility Ak
ir in equation (34) is

represented as:

Ak
ir = exp

−βk
ir (S

k j̄
r+1+P j̄

h̄,r+1
+T j̄

h̄,r+1
) ∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}. (35)

So, the expected completion time T k
ir can be reformulated as:

T k
ir = − 1

βk
ir

(ln Ak
ir + γ )
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= Sk j̄r+1 + P j̄
h̄,r+1

+ T j̄
h̄,r+1

− γ

βk
ir

∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}. (36)

Using, this new accessibility measure, the following simpler non-linear EVTDA-
based model can be written as:

min T0 (37)

subject to

T k
ir =

n∑

h=1

m∑

j=1

(
Skjr+1 + P j

h,r+1 + T j
h,r+1 − γ

βk
ir

)
y j
h,r+1

∀i ∈ I , k ∈ F\{0}, r ∈ R\{n}, (38)

T0 =
n∑

i=1

m∑

j=1

(
S0 j1 + P j

i1 + T j
i1 − γ

β0

)
y j
i1, (39)

T k
ir , T0 ≥ 0 ∀i ∈ I , k ∈ F\{0}, r ∈ R, (40)

and constraints (25), (26), and (32).
The objective function (37) expresses the minimum expected makespan. Using

constraints (38), the expected completion time of job i and configuration k at position
r are computed. The expected makespan is calculated in (39).

By comparing Eqs. (17) and (36), we can notice that − γ

βk
ir

is equivalent to the

expected minimum time oscillation to be incurred if job i is chosen to be processed
at position r under configuration k after switching from configuration j under which
the job h has been addressed at stage r − 1, i.e.,

θ̄
j̄ k
ir := IEθ

⎡

⎣min
l∈L j̄k

ir

θ
j̄ kl
ir

⎤

⎦ ≡ − γ

β
j̄
h̄,r−1

, ∀i ∈ I , r ∈ R, k ∈ F\{0}. (41)

The estimation of the expected minimum time oscillation in (41) enables us to approx-
imate the total expected time needed to switch the machine from any configuration k
to another configuration j at position r and process job i . The optimal sequence of
jobs and configurations as well as the makespan can then be computed by finding a
shortest path on a multi-stage network, as done in Roohnavazfar et al. (2019), through
the following model:

min
x

⎡

⎣
n∑

i=1

n∑

r=1

m∑

j=0

m∑

k=1

(S jk
r + Pk

ir + θ̄
jk
ir )x jk

ir

⎤

⎦ (42)
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subject to

n∑

r=1

m∑

j=0

m∑

k=1

x jk
ir = 1 ∀i ∈ I , (43)

n∑

i=1

m∑

j=0

m∑

k=1

x jk
ir = 1 ∀r ∈ I , (44)

n∑

i=1

m∑

j=0

x jk
ir =

n∑

i=1

m∑

t=1

xkti,r+1 ∀k ∈ F, r ∈ R − {n}, (45)

n∑

i=1

m∑

k=1

x0ki1 = 1, (46)

x jk
ir ∈ {0, 1} ∀i ∈ I , r ∈ R, j, k ∈ F . (47)

The objective function (42) expresses the minimum makespan. Constraints (43)
ensure that each job must be selected to be processed at exactly one position under
a switched configuration, while constraints (44) indicate that exactly one job and
switched configurations are assigned to each position. Constraints (45) ensures the
continuity of configurations switch over the positions. Constraints (46) indicate that
the machine is switched from the initial configuration 0 to one of the configurations
to process the job assigned to the first position. Finally, (47) are binary conditions on
the variables.

5 Computational results

In this section, we present the results of the computational experiments carried out
to evaluate the effectiveness of the EVTDA approach in comparison with the two-
stage and multi-stage recourse models to address the proposed problem. In Sect. 5.1,
we describe the instances set generated for our assessment. The calibration of the β

parameters is presented in Sect. 5.3, while the value of stochastic solutions including
both two-stage and multi-stage recourse models are discussed in Sects. 5.2.1 and
5.2.2, respectively. The results of our computational experiment are described and
commented in Sect. 5.4.

Because of the computational complexity of the non-linear EVTDA-based model
presented in Sect. 4.2, the derived equivalent shortest pathmodel described in Sect. 4.3
is used to solve the instances.All themodels are implemented inGAMS1 on an Intel(R)
Core(TM) i5-6200U (CPU2.30GHz) computer with 16GB RAM.

1 https://www.gams.com/. Last accessed: 2020-07-31.
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5.1 Instance generation

To evaluate the performance of the proposed approximation approach, we randomly
generated instances classified into small and large-scale groups. The small-scale group
involves instances with 3 and 5 jobs processed on a machine with 2 configurations,
while the larger ones include 10, 20, 30, and 40 jobs scheduled on a machine with 3,
4, and 5 configurations. The equivalent shortest path model is compared to the two-
stage and the multi-stage stochastic models in dealing with the small and large-scale
instances, respectively.

Our test generating procedure is somehow similar to the work proposed by Ertem
et al. (2019). The nominal processing times are generated from the Uniform distribu-
tion in the range [1, 99]. In contrast, the sequence-dependent setup times between
machine configurations are produced using the Uniform distribution in the range
[51, 149]. The learning effect is assumed to be α = log2(0.8). The random oscil-
lations are generated according to the Uniform, Normal, and Gumbel distributions
in two ranges [−0.5d, 0.5d] and [−0.9d, 0.9d], where d is the sum of deterministic
job processing time and the machine setup time associated with the random oscilla-
tion to be generated. Besides being common in many practical applications, the three
above distributions have been chosen to represent quite extreme cases of possible
unknown distributions of observations. Also, the two smaller and larger ranges allow
us to assess the behavior of the proposed approaches against different magnitudes
of random oscillations. For each problem, 10 random instances are generated, which
result in 360 instances in total.

Note that, in generating realizations using the Gumbel and Normal distributions,
the location parameter μ = 0 is used for both small and large ranges. For the Gumbel
distribution, the proportional scale parameterσ = 0.125d andσ = 0.220d are adopted
for the smaller and larger ranges, respectively. As suggested by Manerba et al. (2018),
the scale factor has been chosen experimentally so that the 96%of the probability lies in
the considered truncated domains [−0.5d, 0.5d] and [−0.9d, 0.9d] for each possible
instance. Similarly, for the Normal distribution, the standard deviation σ = 0.166d
and σ = 0.3d is set to give a 99% confidence interval for the smaller and larger ranges,
respectively.

5.2 Value of the stochastic solutions

Stochastic programs, in general, have the reputation of being computationally chal-
lenging to solve. Before solving a stochastic optimization problem, it is essential to
make sure that the effort the computational effort spent on solving the whole deter-
ministic equivalent model derived from the SP formulation is justified. In the next two
subsections, the value of stochastic solutions for the generated instances is therefore
determined both for the two-stage and multi-stage recourse models.
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5.2.1 Value of two-stage stochastic solutions

The value of stochastic solution (V SS) is an indication of how much the decision-
maker would gain if he manages to solve the whole deterministic equivalent model
of the stochastic problem, instead of just ignoring the uncertainty by approximating
each uncertain data with its average. This measure in two-stage recourse model is
calculated as:

V SS = EEV − RP, (48)

where EEV is obtained as follows: (1) solve the related expected value problem (EV);
(2) fix the first stage solution for each scenario (in the recourse problem) at the optimal
one obtained for the first stage of the EV problem; (3) solve the resulting problem for
each scenario; (4) calculate the expectation over the set of scenarios of the value at
the objective function of these modified recourse problems.

To compute the V SS, the number of observations considered in the model plays a
key role. There is a trade-off between the optimality of the results and the computational
complexity caused by increasing the realizations number. Here, to assess the required
number of observations to solve the recourse problem in larger-sized instances, we
implement a set of experiments and vary the number of realizations from 30 to 50 with
the same probability. For all the instances in the larger-sized group, 50 realizations
are considered. But, due to the computational complexity in the instances with 30
and 40 jobs (with 4 and 5 configurations), we fix the number of realizations to 30 for
these instances. It should be noted that this number still shows well-enough results
in a reasonable time. Table 1 reports the average value of the percentage V SS with
respect to the RP value for the large-scale instances computed as:

V SS = EEV − RP

RP
× 100. (49)

It can be observed, as expected, that the V SS of instances associated to the larger
range of random variables is higher than those of obtained in the smaller one. Also,
it can be seen that the percentage VSS is also affected by the type of probability
distributions. It seems, the Uniform distribution results in larger average percentage
V SS in comparison with the other two distributions.

5.2.2 Value of multi-stage stochastic solutions

In this work, the value of the multi-stage stochastic solution is calculated using the
generalization of parameter V SS proposed by Escudero et al. (2007). They defined
the value of stochastic solution at stage r , denoted by V SSr , as

V SSr = EEVr − mRP ∀r ∈ R, (50)

where:
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Table 1 Average value of the
percentage VSS with respect to
the RP value for large-scale
instances

Instance Uniform Normal Gumbel

|I | |F | Range V SSavg V SSavg V SSavg

10 3 Small 6.68 1.47 1.39

10 3 Large 42.64 8.08 7.86

20 4 Small 8.95 1.48 1.44

20 4 Large 52.43 10.87 10.09

30 4 Small 9.36 1.43 1.07

30 4 Large 57.71 10.95 10.20

40 5 Small 10.34 1.50 1.13

40 5 Large 60.22 11.05 10.61

– EEVr for r = 2, . . . , n, is the optimal value of the recourse problem in which the
decision variables until stage r − 1 are fixed at the optimal values obtained in the
solution of the average value model, i.e.,

EEVr =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(9)−(15)
s.t .

x jkω
i1 = x̄ jk

i1 ∀ω ∈ Ω

...

x jkω
ir−1 = x̄ jk

ir−1 ∀ω ∈ Ω

(51)

where x̄ jk
ir denotes the optimal solution of the EV problem;

– mRP is the value of the multi-stage SP model (9)–(15).

It has been proved (Escudero et al. 2007) that the following relations for any multi-
stage stochastic program hold:

0 ≤ V SSr ≤ V SSr+1 ∀r ∈ R. (52)

This sequence of non-negative values represents the cost of ignoring uncertainty until
stage r while making decision relying on a multi-stage models.

Because of the branching structure of the scenario tree, even with a small number
of realizations and stages, the tree becomes huge and difficult to manage and solve.
Therefore, only small-scale instances have been solved using the multi-stage recourse
model. Here, we fix the number of realizations to 7 and 3 associated with the instances
with 3 and 5 jobs, respectively. This leads to trees with 73 = 343 and 35 = 243
scenarios. These number of realizations are the values which can be handled in a
reasonable computational time. Tables 2 and 3 report the average values of percentage
V SSr with respect to the mRP value for instances with 3 and 5 jobs, respectively,
computed as:

V SSr = EEVr − mRP

mRP
× 100. (53)
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Table 2 Average values of
percentage V SSr with respect to
the mRP value for instances
with |I | = 3 jobs and |F | = 2
configurations

Distributions Range V SS1 V SS2 V SS3

Uniform Small 7.51 12.22 13.76

Uniform Large 11.90 39.43 43.39

Normal Small 1.34 2.24 2.70

Normal Large 5.26 8.62 11.71

Gumbel Small 0.00 1.49 4.19

Gumbel Large 4.46 8.15 10.18

Table 3 Average values of percentage V SSr with respect to themRP value for instances with |I | = 5 jobs
and |F | = 2 configurations

Distributions Range V SS1 V SS2 V SS3 V SS4 V SS5

Uniform Small 4.77 7.56 10.14 11.21 11.26

Uniform Large 11.88 34.95 43.93 53.34 63.85

Normal Small 1.37 2.32 2.39 3.34 3.34

Normal Large 4.06 10.16 11.64 14.16 14.20

Gumbel Small 0.95 2.54 3.67 3.67 3.69

Gumbel Large 6.50 14.43 17.79 20.90 21.94

As it can be observed, the V SS average values increase over stages. It can be
noticed that the average V SS per stage associated to the instances with small range
of oscillations are less than those with largely affected by uncertainty. Moreover,
comparing the results for the three distributions shows that the uniform distribution
still yields higher average V SS.

5.3 Calibration ofˇ parameters

The effectiveness of the proposed EVTDA-based models is highly dependent on the
calibration of the β parameters.

Although EVTDA considers a single β parameter for modeling the uncertainty
structure of the whole decision process, as yet mentioned, it is not straightforward
to calibrate a single β parameter in such a way that it fully captures the uncertainty
effect. Therefore, we propose to use many β parameters. In particular, we consider
the possibility to use one β parameter to capture the uncertainty associated with the
cost of each alternative in our stochastic choice process. To fully understand the pro-
cess guiding the calibration of the β parameter for each alternative, it is essential to
first analyze in more detail the actual role played by the single β parameter, initially
considered by the EVTDA framework.

In Tadei et al. (2020) it has been shown that such a single β value is a parameter of
a nested multinomial logit model (NMLM) expressing the choice probability of each
alternative among those available at the next stage in a multi-stage stochastic choice
process. In particular, according to such a NMLM, the choice probability of all the
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Table 4 Value of parameter δ

for problem sets
Distribution Small range Large range

Uniform 0.25 0.45

Normal 0.09 0.20

Gumbel 0.08 0.18

alternatives tends to be the same when β approaches to zero. In other words as β tends
to zero, all the alternative are equivalent. On the other hand, when the magnitude of
uncertainty increases, the effect of random oscillations on the deterministic cost of
the different alternative becomes significant. In this case, all the alternative tend to
be considered equivalent by the decision maker point of view, since it is difficult to
decide which alternative is the best. The above discussion suggest that, if a single β

parameter is to be considered as suggested by the EVTDA framework, it should be
inversely proportional to the range of random oscillations, so that it tends to zero as
the amplitudes of the oscillation increase.

In this work, as a β parameter is considered for each alternative to enhance the
robustness of our solution, these parameters no longer model the diversity between
the different alternatives available at the next stage and thus their choice probabilities.
Instead each of them captures the variability of the future realizations of the random
oscillations that determine the completion time if a certain alternative is chosen at a
given stage, as suggested by the Eq. (41) that put in relation the β parameters of stage
r − 1 with the expected minimum of the random oscillations at stage r that in turn is
strongly related to the expected completion time at stage r − 1.

Based on the fact that the β parameters should tend to zero as the support of the
oscillations increases, and that each β parameter should capture the dispersion of the
realizations of the future random oscillations associated to its related alternative, we
decided to calibrate the β parameters as follows:

βk
ir = γ

δ · ST D{θ̃k jlh,r+1}h∈I\{i}, j∈F\{0},l∈Lkj
h,r+1

i ∈ I , r ∈ R, k ∈ F\{0}, (54)

where the nominator represents the Euler constant, while the denominator indicates a
proportion δ < 1 of the standard deviation of all possible realizations of the random
oscillations in the stage r + 1 if the machine processed job i under configuration
k in stage r . We define δ = σ

2 which indicates that this parameter is depending
on the standard deviation of the estimated probability distribution derived from the
realizations. The values of this parameter used in this paper are summarized in Table 4.
As it can be seen, the δ value associated to the smaller range is less than that of the
larger interval for the three distributions. Also, the δ value in the Uniform distribution
is larger for both small and large ranges in comparison with the two other ones which
implies the larger dispersion of this distribution. The experiments reported in Sect. 5.4
over random generated instances will show the accuracy of this calibration method.
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Table 5 Average percentage gap
between the two-stage and
multi-stage models for the
small-scale instances

Instance Uniform Normal Gumbel

|I | |F | Range gapavg gapavg gapavg

3 2 Small 5.98 1.15 2.53

3 2 Large 21.45 6.39 5.44

5 2 Small 6.10 2.38 2.01

5 2 Large 22.99 9.18 16.72

5.4 Results and discussion

In this section, we summarize and discuss the results obtained from our experiments
on the instance sets generated as discussed in Sect. 5.1. We first briefly compare
the two-stage and the multi-stage SP formulations in Sect. 5.4.1, then we assess the
performance of our EVTDA-based solution approach in Sect. 5.4.2.

5.4.1 Comparison of two-stage andmulti-stage stochastic models

Here, we present the results of the computational experiments carried out with the aim
of comparing the two-stage and multi-stage SP models. The comparison between the
two-stage and multi-stage solutions is performed by computing the percentage gap
calculated as

gapavg = optmRP − optRP
optmRP

× 100, (55)

where optmRP and optRP represent the optimal solutions of the multi-stage and two-
stage stochastic models, respectively.

Table 5 reports the average percentage gap between the two-stage and multi-stage
solutions for the instances with 3 and 5 jobs, and two configurations per job. Note that,
given the computational complexity of the multi-stage model, the evaluation can be
performed on just small-scale instances.

As it can be observed, the gaps are positive values for all the instances and distri-
butions. It means, as expected, that the optimal solutions derived from the multi-stage
model are better than those of obtained by the two-stage one. Also, the gaps associated
to the larger support and jobs are bigger than those of smaller ones for the three dis-
tributions. This means that, as the scale of instances becomes larger, the gap between
the two mentioned approaches increases. The only exception is corresponding to the
average percentage gap for the instances with 5 jobs, the small support and the Gumbel
distribution which is equal to 2.01. As it can be seen, this value is less than the gap
associated to the instances with 3 jobs and same support and distribution. Moreover,
comparing the three distributions shows the larger gaps of the Uniform distribution
with respect to the Normal and Gumbel distributions.

In conclusion, the multi-stage formulation has more flexibility in dealing with
the uncertainty, leading in general to possible lower costs. Note that our EVTDA-
based model has been obtained by using the approximation results inside the multi-
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stage structure. However, taking into account the computational time, the two-stage
approach can solve the considered instances in a few seconds while themulti-stage one
takes around 345 and 378 seconds to solve instances with 3 and 5 jobs, respectively
(see, e.g., Table 10). Therefore, in the next section, we will compare our EVTDA-
based solution approach to the multi-stage model for small-case instances, while we
resort to the two-stage model for the larger ones.

5.4.2 EVTDA-based solution approach performance

The results contain two distinct parts, associated to the small and large-scale instances.
The first part aims to assess the accuracy of the shortest path model derived from the
EVTDA approach in comparison with themulti-stage stochastic model for small-scale
problems,while in the second part, the two-stage SP formulation is used in dealingwith
the large-scale instances. The performance, in terms of percentage gap, is evaluated
through the calculation of the Relative Percentage Error (RPE) as follows:

RPE = T0 − optSP
optSP

× 100, (56)

where T0 and optSP represent the optimum makespan of the shortest path model
[see Eq. (42)] and the optimum of either two-stage or multi-stage stochastic model,
respectively.

We first evaluate the quality of the shortest path model with respect to the multi-
stage model in dealing with the small-scale instances. Table 6 reports the results. Each
entry of the table reports statistics of the RPE over 10 random generated instances,
given a specific combination of size of instance and the range of random variables.
In particular, the table shows the average, the best, the worst RPE , and its standard
deviation (columns RPEavg , RPEbest , RPEworst , and RPEσ , respectively). Those
statistics are shown for the three considered probability distributions. Although we
use small number of realizations in dealing with the multi-stage SP formulation, the
results show promising performance of the shortest path model.

The average RPE associated to the small range of realizations is less than the one
of the larger support for the considered distributions. As it can be seen, the average
RPE values of theUniformdistribution aremore than those of theNormal andGumbel
distributions. Taking into account the various sizes shows that the average RPE grows
as the scale of instances increases for the three distributions.

Tables 7, 8, and 9 present the RPE associated to the large-scale instances generated
using the Uniform, Normal, and Gumbel distributions, respectively.

The first thing that should be noticed is that, as expected, the average RPE associ-
ated with the broader range of oscillation is more significant than those of the smaller
range across all instances sizes and the three distributions. It means the approximation
model behaves better with smaller dispersion and magnitude of the oscillations. The
best, worst, and standard deviations RPEs also follow the same described behavior
with little discontinuities. Moreover, comparing the results of the three distributions
highlights better performance, as expected, of the Normal and Gumbel distributions
concerning the Uniform distribution in terms of the global average, best, worst, and
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Table 6 RPE of the makespan between the deterministic approximation and multi-stage stochastic model
in dealing with small-scale instances for the Uniform, Normal, and Gumbel distributions

Instance RPE(%)

Distribution |I | |F | Range RPEavg RPEbest RPEworst RPEσ

Uniform 3 2 Small 2.12 0.49 4.76 1.25

3 2 Large 3.61 0.06 6.67 1.79

Avg 2.86 0.27 5.71 1.52

Uniform 5 2 Small 2.20 0.26 4.85 1.66

5 2 Large 4.13 0.28 6.76 2.47

Avg 3.16 0.27 5.80 2.06

Normal 3 2 Small 1.75 0.26 3.72 1.17

3 2 Large 2.69 0.38 5.04 1.34

Avg 2.22 0.32 4.38 1.25

Normal 5 2 Small 1.83 0.09 3.86 1.21

5 2 Large 2.81 0.30 5.63 2.03

Avg 2.32 0.19 4.74 1.62

Gumbel 3 2 Small 1.60 0.27 3.33 1.03

3 2 Large 2.67 0.16 4.59 1.39

Avg 2.13 0.21 3.96 1.21

Gumbel 5 2 Small 1.78 0.11 4.21 1.34

5 2 Large 2.85 0.42 4.94 1.81

Avg 2.31 0.26 4.57 1.57

Global avg 2.50 0.25 4.86 1.53

Table 7 RPE of the makespan between the deterministic approximation and two-stage stochastic model
for the Uniform distribution

Instance RPE(%)

|I | |F | Range RPEavg RPEbest RPEworst RPEσ

10 3 Small 0.70 0.05 2.00 0.69

10 3 Large 1.19 0.27 3.90 1.09

Avg 0.94 0.16 2.95 0.89

20 4 Small 1.48 0.50 2.88 0.67

20 4 Large 2.04 0.78 3.13 0.77

Avg 1.76 0.64 3.00 0.72

30 4 Small 1.58 0.26 3.55 1.23

30 4 Large 2.11 0.23 5.35 1.78

Avg 1.84 0.24 4.45 1.50

40 5 Small 1.68 0.30 3.57 0.99

40 5 Large 2.51 0.41 6.11 1.60

Avg 2.09 0.35 4.84 1.29

Global avg 1.64 0.34 3.81 1.10
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Table 8 RPE of the makespan between the deterministic approximation and two-stage stochastic model
for the Normal distribution

Instance RPE(%)

|I | |F | Range RPEavg RPEbest RPEworst RPEσ

10 3 Small 0.42 0.04 0.88 0.27

10 3 Large 0.79 0.06 2.25 0.75

Avg 0.60 0.05 1.56 0.51

20 4 Small 0.53 0.13 1.14 0.37

20 4 Large 1.64 0.82 2.11 0.52

Avg 1.08 0.47 1.62 0.44

30 4 Small 0.79 0.40 1.04 0.23

30 4 Large 1.67 0.34 2.81 1.06

Avg 1.23 0.37 1.92 0.64

40 5 Small 0.90 0.36 1.52 0.41

40 5 Large 1.93 0.18 3.97 1.09

Avg 1.41 0.27 2.74 0.75

Global avg 1.08 0.29 1.96 0.58

Table 9 RPE of the makespan between the deterministic approximation and two-stage stochastic model
for the Gumbel distribution

Instance RPE(%)

|I | |F | Range RPEavg RPEbest RPEworst RPEσ

10 3 Small 0.38 0.07 0.97 0.33

10 3 Large 0.64 0.04 1.51 0.43

Avg 0.51 0.05 1.24 0.38

20 4 Small 0.42 0.12 1.18 0.42

20 4 Large 1.26 0.13 2.17 0.79

Avg 0.84 0.12 1.67 0.60

30 4 Small 0.75 0.02 1.39 0.52

30 4 Large 1.42 0.06 2.84 0.88

Avg 1.08 0.04 2.11 0.70

40 5 Small 0.89 0.20 1.49 0.41

40 5 Large 1.75 0.32 3.53 0.91

Avg 1.32 0.26 2.51 0.66

Global avg 0.93 0.11 1.88 0.58

standard deviations RPEs. Finally, taking into account different sizes of instances, it
can be seen that the average RPEs become more significant as the scale of instances
increases for the three distributions. Itmeans the quality of the approximation approach
is also affected by the scale of the instance. The best, worst, and standard deviations
RPEs also follow a similar behavior with little discontinuities.
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Table 10 Computational time in
seconds for calculating the
minimum makespan using the
deterministic approximation and
stochastic models

|I | |F | tSPM tSP

3 2 1 345

5 2 1 378

10 3 2 46

20 4 5 630

30 4 16 11,130

40 5 35 42,700

Finally, despite of the quality obtained by the deterministic approximation approach
in terms of accuracy, we also want to point out its efficiency. The computational
times for obtaining the minimum makespan of the shortest path model (tSPM ) and
the stochastic problem (tSP ) are reported in Table 10. As we pointed out before, the
small-scale instances are dealt with the multi-stage recourse model with a few number
of realizations, while the larger ones are solved using the two-stage problem with
the suitable number of observations. Since we have noticed that the computational
times were not affected by the distribution and the range of observations, we just
report average computational times for the various sizes of the instances. First, note
that the CPU time increases as the size of the problem increases for both shortest
path formulation and stochastic models. Comparing these two approaches, it is clear
that the shortest path model derived from the deterministic approximation approach
is capable of solving all instances in far less time than the stochastic models. Few
seconds are needed for even the largest size (40 jobs and 5 configurations), while it
takes 42700 seconds to deal with this scale using the stochastic model.

6 Conclusions

In this paper, we have addressed the stochastic single machine scheduling prob-
lem where learning effect on processing time, sequence-dependent setup times, and
machine configuration selection are considered simultaneously. Also, random vari-
ables are assumed to represent uncertainty associated with job processing time and
machine setup times. The problem aims at finding the sequence of jobs and choosing
a configuration to process each job, which minimizes the makespan under uncertainty.
First, we formulate the proposed problem as two-stage and multi-stage stochastic
models that are computationally demanding. Also, an extreme value theory based
deterministic approximation formulation is developed. Such a deterministic approxi-
mation can be derived even if the probability distribution of the random variables is
not known. More precisely, the problem is first approximated through a mixed-integer
non-linear programming model. Then, by defining a new measure of accessibility, the
model above is converted into a shortest path problem on amulti-stage network, which
is solvable in a few seconds, even for large-sized instances. Extensive computational
experiments showed particularly good performance of our proposals with respect to
the stochastic models both in terms of accuracy of solutions and computational time.
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Future work will consider the use of EVTDA in different scheduling problems
involving multi-stage random decision processes. From a methodological point of
view, it could be interesting to develop and assess a moving-window EVTDA-based
framework that iteratively considers a restricted horizon to provide optimal decisions
over stages.
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