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Online Single-Machine Scheduling via
Reinforcement Learning

Yuanyuan Li and Edoardo Fadda and Daniele Manerba and Mina Roohnavazfar
and Roberto Tadei and Olivier Terzo

Abstract Online scheduling has been an attractive field of research for over three
decades. Some recent developments suggest that Reinforcement Learning (RL) tech-
niques can effectively deal with online scheduling issues. Driven by an industrial ap-
plication, in this paper we apply four of themost important RL techniques, namelyQ-
learning, Sarsa,Watkins’s Q(_), and Sarsa(_), to the online single-machine schedul-
ing problem. Our main goal is to provide insights into how such techniques perform
in the scheduling process. We will consider the minimization of two different and
widely used objective functions: the total tardiness and the total earliness and tardi-
ness of the jobs. The computational experiments show that Watkins’s Q(_) performs
best in minimizing the total tardiness. At the same time, it seems that the RL ap-
proaches are not very effective in minimizing the total earliness and tardiness over
large time horizons.
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1 Introduction

Production scheduling is one of the most important aspects to address in manymanu-
facturing companies (see [2]). The optimization problems arising within production
scheduling can be of static or dynamic type (see [16]). In contrast with the static
case, in which specifications and requirements are fully and deterministically known
in advance, in the dynamic one, additional information (e.g., new orders, changes of
available resources) may arrive during the production process itself. In this paper, we
will consider the latter case, commonly called online scheduling, mainly fostered by
our experience on an industrial project (Plastic and Rubber 4.01) in which frequent
occurrences of unexpected events call for more dynamic and flexible scheduling (see
[22]).

We will mainly focus on online single-machine scheduling problems with release
dates, where preemption is allowed. Let us consider a set J of jobs that are released
over time. As soon as a job arrives, it is added to the end of a waiting queue. For
each job 9 ∈ J , let 3 9 be its due date and 2 9 its completion time. A job is early if
its completion time is shorter than its due date. On the contrary, a job is tardy if its
completion time is larger than its due date. When the completion time is equal to
the due date, the job is on time. The goal of the problem is to arrange the queue’s
jobs to minimize a specific objective function. In this work, we will consider the
minimization of two different objective functions: total tardiness (Γ1) and the total
earliness and tardiness (Γ2) of the jobs. The two objectives are calculated as:

• Γ1 =
∑
9∈J )9 ,

• Γ2 =
∑
9∈J (� 9 + )9 ),

where )9 and � 9 represent the tardiness and the earliness, respectively, and are
computed as )9 := max{0, 2 9 − 3 9 } and � 9 := max{0, 3 9 − 2 9 }. They are among the
most widely used objectives in scheduling, focusing on meeting jobs due dates. In
particular, the minimization of the second objective characterizes the Just-In-Time
principle in production.

The motivation to study a single-machine problem relies on the fact that, in
plastic and rubber manufacturing, transforming rawmaterial into a final product goes
through one or two machines. On the other hand, even those manufacturing require
multiple-machine scheduling problems. Each machine represents a chain’s primary
block. Thus improper usage of a machine can slow down the whole production
process.

The easiest way to deal with scheduling in a dynamic context is by using the
so-called dispatching rules. These rules prioritize jobs waiting for being processed
and then select the job with a greedy evaluation whenever a machine gets free
(see Section 2 for more details). While most dispatching rules schedule on a local
view basis, other smarter approaches can provide better results in the long run. For
instance, Reinforcement Learning (RL) is a continuing and goal-directed learning

1 Plastic&Rubber 4.0. Piattaforma Tecnologica per la Fabbrica Intelligente (Technological Platform
for Smart Factory), URL: https://www.openplast.it/en/homepage-en/
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paradigm, and it represents a promising approach to deal with online scheduling. The
potential of RL on online scheduling has been revealed in several works (see, e.g.,
[13], [31], [39]). However, while most works compare a single RL algorithm with
commonly-used dispatching rules, they do not compare different RL algorithms. A
research question naturally arises: how do different RL algorithms perform on online
scheduling?

Motivated by investigating the applicability of RL algorithms on online single-
machine scheduling in detail, in thiswork,wewill compare the following approaches’
performance:

• a random assignment (Random) which simply selects a job randomly;
• one of the most popular dispatching rules, namely the earliest due date (EDD)

rule;
• four RL approaches, namely Q-learning, Sarsa, Watkins’s Q(_), and Sarsa(_).

Furthermore, we will test the algorithms under different operating conditions (e.g.,
the frequency of job arrivals).

Therefore, we contribute the literature on two different aspects: getting insights
on the compared methods and giving practitioners suggestions on selecting the best
method against the specific situation. Notice that comparing and evaluating differ-
ent algorithms against various aspects and performance indicators is a commonly
adopted research methodology (see, e.g., [3], [6], [7], [8], [9], [10], and [14]). The
specific comparison of RL algorithms can be found, for instance, in the game field.
In [35], the authors compared two RL algorithms (Q-learning and Sarsa) through
the simulation of bargaining games. Even though the two algorithms present slight
differences, they might have essentially different simulation results, as reflected in
our experiment (see Section 4).

Finally, we also propose some preliminary results obtained by the use of Deep
Q Network (DQN), which utilizes the power of neural networks to approximate the
value function (see [25] for a review about DQN). However, our experiments will
show thatDQN is better suited for high-dimensional inputs. In contrast, with smaller
input settings, DQN has a longer training time and obtains results that are far from
the performance of Watkins’s Q(_).

The rest of the paper is organized as follows. Section 2 is dedicated to a general
overview of RL techniques, while Section 3 introduces and reviews some previ-
ous works using RL approaches on scheduling problems. Section 4 describes the
algorithmic framework for the online single-machine problem. Section 5 defines
the simulation procedure, and the simulation results from three different types of
experiments (Section 6). Finally, in Section 7, the paper concludes with a summary
of the findings and some future lines.
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2 Reinforcement Learning

RL is a branch ofMachine Learning that improves automatically through experience.
It comes from three main research branches: the first relates to learning by trial-and-
error, the second relates to optimal control problems, and the last links to temporal-
difference methods (see [33]). The three approaches converged together in the late
eighties to produce the modern RL.

RL approaches can be applied to scenarios in which a decision-maker called agent
interacts with a set of states called environment by means of a set of possible actions.
A reward is given to the agent in each specific state. In this paper, we consider a
discrete time system, i.e. defined over a finite set T of time steps with its cardinality
being called time horizon. As shown in Figure 1, at each time step C ∈ T , an agent
in state (C takes action �C , then, the environment reacts by changing into state (C+1
and by rewarding the agent of 'C+1. The interaction starts from an initial state, and
it continues until the end of the time horizon. Such a sequence of actions is named
an episode. In the following, E will represent the set of episodes.

Each state of the system is associated with a value function that estimates the
expected future reward achievable from that state. Each state-action pair ((C , �C ) is
associated with a so-called &-function &((C , �C ) that measures the future reward
achievable by implementing action �C in state (C . The agent’s goal is to find the best
policy, which is a function mapping the set of states to the set of actions, maximizing
the cumulative reward. If exact knowledge of the &-function is available, the best
policy for each state is defined by max0 &((C , 0).

Fig. 1 The agent-environment interaction in RL [33].

To estimate the value functions &(B, 0) and discover the optimal policies, three
main classes of RL techniques exist Monte Carlo (MC)-based, Dynamic Program-
ming (DP)-based methods, and temporal-difference (TD)-based methods. Unlike
DP-based methods, which require complete knowledge of all the possible transi-
tions, MC-based techniques only require some experience and the possibility to
sample from the environment randomly. TD-based methods are a sort of combi-
nation of MC-based and DP-based ones: they sample from the environment like
in MC-based methods and perform updates based on current estimates like DP-
based ones. Moreover, TD-based techniques are also appreciated for being flexible,
easy to implement, and computationally fast. For these reasons, in this paper, we
will consider only RL algorithms belonging to the TD-based methods. Even if sev-
eral TD-based RL algorithms have been introduced in the literature, the most used
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are Sarsa (an acronym for State-Action-Reward-State-Action), Q-learning and their
variations, e.g. the Watkins’s Q(_) method and the Sarsa(_) (see [36]).

3 Literature Review

Since the first research on scheduling problem was performed in the mid-1950s,
many articles have been published in the literature, considering different problem
variants and solution approaches.

The manufacturing industries sometimes include a machine bottleneck, which
affects, in some cases, all the jobs. Studies on single machine scheduling problems
have been gaining importance for a long time since this bottleneck’s management
is crucial. The excellent surveys by Pinedo [28], Adamu and Adewumi [1], and the
work proposed by Leksakul and Techanitisawad [18] have detailed the literature on
the theory and applications about this problem in the past several decades.

In themanufacturing environment, various objectives can be considered to use the
resources and provide good customer service efficiently. Scheduling against due dates
has received considerable attention to meet principles like Lean Management, Just-
in-Time, Simultaneous Engineering, etc. For example, the Just-in-Time principle
states that jobs are expected to be on time since both late and early processing
may negatively influence the manufacturing costs. While late processing does not
meet customer expectations, early processing increases inventory costs and causes
possible wastes since some products have a limited lifetime. One of the pioneers
addressing minimizing the sum of earliness and tardiness (also referred to as the
sum of deviations from a common due date) was [20]. Ying [38] addressed a single-
machine problem against common due dates concerning earliness and tardiness
penalties. He proposed a recovering beam search algorithm to solve this problem.
Behnamian et al. [17] considered the problem of parallel machine scheduling to
minimize both makespan and total earliness and tardiness. Fernandez-Viagas et al.
[11] studied the problem of scheduling jobs in a permutation flow shop to minimize
the sum of total tardiness and earliness. They developed and compared four heuristics
to deal with the problem. More recently, the two-machine permutation flow shop
scheduling problem to minimize total earliness and tardiness has been addressed by
two branch-and-bound algorithms utilizing lower bounds and dominance conditions
[30].

Total tardiness minimization is another common criterion in the scheduling liter-
ature where only the tardiness penalties are considered. Koulamas [21] surveyed the-
oretical developments, exact and approximation algorithms for the single-machine
scheduling problem with the aim of total tardiness minimization. In [26], single
machine scheduling with family setup and resource constraints to minimize total
tardiness minimization was addressed. A mathematical formulation and a heuris-
tic solution approach were presented. Recently, Silva et al. [24] studied the single
machine scheduling problem that minimizes the total tardiness. They presented two
algorithms to deal with the situation in which the processing time is uncertain.
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As for the scheduling modes, research on online scheduling is one of the popular
streams. Since this problem has been an active field for several decades, an in-depth
analysis of the literature review is beyond the present paper’s scope. Thus, in this
section, we recall some of the most traditional approaches to online scheduling, and
we review the main applications of RL to this problem.

Differently from tailored algorithms (heuristic and exact methods), which might
require effort in implementation and calibration over a broad set of parameters,
dispatching rules are widely adopted for online scheduling for their simplicity (see,
e.g., [19]). For instance, the earliest due date (EDD) dispatching rule is one of the
most commonly used ones in practical applications [34]. EDD schedules first the job
with the earliest due date. Again, in [15], the authors propose a deterministic greedy
algorithm known as list scheduling (LS), which assigns each job to the machine with
the smallest load. For more details, we refer the reader to the work [27] that classified
over one hundred dispatching rules. In [5], the authors designed a deterministic
algorithm and a randomized one for online machine sequencing problems using
Linear Programming techniques. At the same time, in [23], the authors proposed an
algorithm to make jobs artificially available to the online scheduler by delaying the
release time of jobs.

In online scheduling, a decision-maker is regularly scheduling jobs over time,
attempting to reach the overall best performance. Therefore, it is reasonable that RL
represents one of the possible techniques to exploit such a setting.

In [13], the authors interpreted job-shop scheduling problems as sequential de-
cision processes. They try to improve the job dispatching decisions of the agent by
employing an RL algorithm. Experimental results on numerous benchmark instances
showed the competitiveness of the RL algorithm. More recently, in [39], the authors
modeled the scheduling problem as aMarkov Decision Process and solved it through
a simulation-based value iteration and a simulation-based Q-learning. Their results
clearly showed that such RL algorithms could achieve better performance concern-
ing several dispatching heuristics, disclosing RL application’s potential in the field.
In the context of an online single-machine environment, in [37], the authors com-
pared the performance of neural fitted Q-learning techniques using combinations
of different states, actions, and rewards. They proved that taking only the necessary
inputs of states and actions is more efficient.

While all the discussed works revealed RL’s competitiveness on scheduling prob-
lems, a further comparison of the performance among various RL algorithms is
still missing in the scheduling literature. With the knowledge of the available stud-
ies showing RL’s potential and the demand from the industrial application, we are
motivated to compare different RL approaches’ performance on online scheduling
for getting more insights. In particular, we carry out experimental studies on four
of the most commonly used model-free RL algorithms, namely Q-learning, Sarsa,
Watkins’s Q(_), and Sarsa(_). Our comparison methodology is inspired by [37],
in which the best configuration for minimizing maximal lateness is pursued. In our
work, instead, we propose two different objective functions to minimize: the total tar-
diness and the total earliness and tardiness. Moreover, another significant difference
with their work lies in the way we evaluate the results. While they used the result
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from one run, our results come from 50 runs with different random seeds, and two
different time step sizes are tested (the interaction between agent and environment is
checked in each step). We further test a neural network-based RL technique showing
that it is unnecessary to use such a combination when the state space is limited.

4 Reinforcement Learning Algorithms for Online Scheduling

In this section, we describe the algorithmic framework used to deal with our online
single-machine scheduling problem. In particular, we provide several variants based
on different RL techniques.

4.1 States, actions, and rewards

To be approached by RL techniques, we define our problem setting along the lines
used in [37]. In particular:

• state: a state is associated with each possible length of the jobs in the waiting
queue;

• action: if not all the jobs are finished, the action is either to select one new job
from a specific position of the waiting queue and start processing it (we recall that
preemption is allowed) or to continue processing the job which has been already
assigned to the machine in the previous step;

• reward: since RL techniques aim at maximizing rewards while our problem seeks
to minimize its objective function (either the total tardiness or the total earliness
and tardiness), we set the reward of a state as the opposite value of the considered
measure.

When the action implies selecting a job from a certain position in the waiting
queue, it is important to decide the order in which jobs are stored inside the queue.
Therefore, we implemented three possible ordering of jobs that provide very different
scheduling effects:

• jobs are unsorted (UNSORT), i.e., they have the same order as the arrivals;
• jobs are sorted by increasing value of due time (DT);
• all unfinished jobs are sorted by increasing the value of the sum of due time and

processing time (DT+PT).

For instance, by using DT, if the action is to select a job in the second position of
the queue, the job with the second earliest due time will be processed.
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4.2 RL algorithms adopted

We have decided to implement four different RL algorithms, namely Q-learning,
Sarsa, Watkins’s Q(_), and Sarsa(_). They are described in the following. Here are
some notations used:

• B state;
• 0 action;
• S set of nonterminal states;
• A(B) set of actions possible in state B;
• (C state at C;
• �C action at C;
• 'C reward at C.

4.2.1 Q-learning

Q-learning is a technique that learns the value of an optimal policy independently
of the agent’s action. It is largely adopted for its simplicity in the analysis of the
algorithm and for the possibility of early convergence proofs by directly approximat-
ing the optimal action-value function (see [36] and [33]). The updating rule for the
estimation of the &-function is:

&((C , �C ) ← &((C , �C )+
U['C+1 + Wmax

0
&((C+1, 0) −&((C , �C )] . (1)

The &((C , �C ) function estimates the quality of state-action pair. At each time step
C, the reward 'C+1 from state (C to (C+1 is calculated and &((C , �C ) is updated ac-
cordingly. The coefficient U is the learning rate (0 ≤ U ≤ 1); it determines the extent
that new information overrides the old information. Furthermore, W is the discount
factor determining the importance of future reward and finally, max0 &((C+1, 0) is
the estimation of best future value.

The values of the &-function are stored in a look-up table called &-table. Figure
2 displays an example of &-table storing &-function values for states from 0 to 10
(in row) and actions from selecting Job 1 to Job 5 (in column). By overlooking the

Fig. 2 An example of Q table.
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actual policy being followed in deciding the next action, Q-learning simplifies the
analysis of the algorithm and enabled early convergence proofs.

4.2.2 Sarsa

Sarsa is a technique that updates the estimated &-function by following the experi-
ence gained from executing some policies (see [32] and [33]). The updating rule for
the estimation of the &-function is:

&((C , �C ) ← &((C , �C )+
U['C+1 + W&((C+1, �C+1) −&((C , �C )] . (2)

The structure of formula (2) is similar to (1). The only difference is that (2) considers
the actual action implemented in the next step �C+1, instead of the generic best action
max0 &((C+1, 0).

As for Q-learning, also in Sarsa the values of the &-function are stored in a Q
table. Despite the more expensive behaviour with respect to Q-learning, Sarsa may
provide better online performances in some scenarios (as shown by the Cliff Walking
example in [33]).

4.2.3 Watkins’s Q(,)

Watkins’s Q(_) is a well-known variant of Q-learning. The main difference with
respect to classical Q-learning is the presence of a so-called eligibility trace, i.e. a
temporary record of the occurrence of an event, such as the visiting of a state or
the taking of an action. The trace marks the memory parameters associated with the
event as eligible for undergoing learning changes. A trace is initialized when a state
is visited or an action is taken, and then the trace gets decayed over time according
to a decaying parameter _ (with 0 ≤ _ ≤ 1). Let us call 4C (B, 0) the trace for a
state-action pair (B, 0). Let us also define an indicator parameter 1GH that takes value
1 if and only if G and H are the same, and 0 otherwise. Then, for any (B, 0) pair (for
all B ∈ S, 0 ∈ A), the updating rule for the estimation of the &-function is:

&C+1 (B, 0) = &C (B, 0) + UXC4C (B, 0) (3)

where
XC = 'C+1 + Wmax

0′
&C ((C+1, 0′) −&C ((C , �C ) (4)

and

4C (B, 0) = W_4C−1 (B, 0) + 1B(C10�C
(5)

if &C−1 ((C , �C ) = max0 &C−1 ((C , 0), and 1B(C10�C
otherwise.
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As the reader can notice, by plugging Eq. (4) into Eq. (3), we obtain an equation
similar to (1) but with the additional eligibility term that increments the value of XC
if the state and action selected by the algorithm are one of the eligibility states. In
the rest of the paper we use Q(_) referring to Watkins’s Q(_).

4.2.4 Sarsa(,)

Similarly to Q(_), the Sarsa(_) algorithm represents a combination between Sarsa
and eligibility traces to obtain a more general method that may learn more efficiently.
Here, for any (B, 0) pair (for all B ∈ S, 0 ∈ A), the updating rule for the estimation
of the &-function is:

&C+1 (B, 0) = &C (B, 0) + UXC4C (B, 0) (6)

where
XC = 'C+1 + W&C ((C+1, �C+1) −&C ((C , �C ) (7)

and
4C (B, 0) = W_4C−1 (B, 0) + 1B(C10�C

(8)

Unlike Eq. (5), there is no other condition (set the eligibility traces to 0 when-
ever a non-greedy action is taken) added. A more in-depth discussion about the
interpretation of the formulas is given in [33].

5 Simulation Setting

In order to perform the comparison under interest, we create an online scheduling
simulation procedure as described in Algorithm 1.

We first update Q tables through a training phase then use the Q tables to select
actions in the test phase.

The arrival time of job 9 are distributed according to an exponential distribution,
i.e., - 9 ∼ 4G?(A) with the rate parameter valued A = 0.1. It is simulated in this way:
at the first time step, a random number of jobs (from 1 to 6 jobs) and an interval
time (following the exponential distribution) are generated. Once a job is generated
(simulating the job’s arrival), it will immediately be put into the waiting queue. Then
at the next time step, if the interval time is passed, new jobs will be generated and put
into the waiting queue; meanwhile, a new interval time will be created. Otherwise,
nothing is created. Then the same procedure repeats till reaching a final state.

For the settings regarding RL algorithms:

• In the policy, n = 0.1 enabling highly greedy actions while keeping some ran-
domness in job selections;
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Algorithm 1 Online scheduling simulation through RL algorithms
Require: |E | number of episodes; |T | number of time-steps;
1: Initialize & (B, 0) = 0, ∀ B ∈ S, 0 ∈ A;
2: for [ ← 1 to |E | do
3: Initialize (
4: for C ← 1 to |T | do
5: if new jobs arrive then
6: Update waiting list !
7: end if
8: if ! is not empty then
9: Take �C in (C , observe 'C , (C+1
10: Calculate �C+1 and update &C

11: (C ← (C+1, �C ← �C+1
12: end if
13: end for
14: end for

• In the value function, U = 0.6, i.e., there is a bit higher tendency to explore more
possibilities while a bit lower in keeping exploiting old information, whereas
W = 1.0, which means it strives for a long-term high reward;

• In the eligibility traces, _ is 0.95, a high decaying value leads to a longer-lasting
trace.

It is worth noting that all the algorithms considered are heuristics. They focus on
finding a good solution quickly by finding a balance between the solution space’s
intensified and diversified explorations. Nevertheless, the direct implantation of
the algorithms above does not ensure enough diversification. For this reason, it is
common to use a n-greedy method. Thus, with probability n , exploration is chosen,
which means the action is chosen uniformly at random between the available ones.
Instead, with probability 1 − n , exploitation is chosen by taking the actions with the
highest values greedily. After knowing how to balance exploration and exploitation,
we need to define a learning method for finding out policies leading to higher
cumulative rewards.

In an episode, we start a new schedule by initializing state ( and terminates
when either reaching the maximum steps or no jobs to process. To simulate real-
time scheduling, for each episode, we check the arrivals of new jobs and update the
waiting queue if there are, then we choose the action �, and calculate the reward
' and the next state (′ accordingly. The &-functions are updated according to the
exact RL algorithms used. The same procedure is carried out in both training and
test phases except that in the test. The &-table is not initialized with empty values
but obtained from the training phase.

Let us show how the total tardiness value evolves, for an example in which Q-
learning is used to schedule the jobs. In Fig. 3, the graph on the bottom shows that
the reward increases and reaches the maximum and holds steady after 80 episodes.
Accordingly, the objective value (the total tardiness) decreases with more noticeable
fluctuations and drops more slowly after 80 episodes. While the reward keeps sta-
ble, total tardiness continues dropping to around 40000. To summarize, using total
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tardiness as a goal is useful, but it is still challenging to represent the trend of this
objective value adequately.

Fig. 3 The changes to reward and the objective value (total tardiness) of 100 episodes.

6 Experimental Results and Discussion

In this section, we propose three different experimental results. Section 6.1 compares
the performance among random assignment (Random), EDD, and the four RL ap-
proaches implemented for both minimizing the total tardiness and the total earliness
and tardiness. Section 6.2 investigates the possible impact of different operating
conditions (i.e., frequency of jobs arrivals) on the RL approaches. Finally, Section
6.3 compares Q(_) and DQN.

The algorithms have been implemented in Python 3.6. To avoid possible ambi-
guities, we locate the related code in a public repository2. All the experiments are
carried out on an Intel Core i5 CPU@2.3GHz machine equipped with 8GB RAM
and running MacOS v10.15.4 operating system.

6.1 RL algorithms vs Random and EDD

To check if considering different time horizons leads to different results, we consider
two experiments in which the time horizon T is set to 2500 and 5000, respectively.

2 https://github.com/Yuanyuan517/RL_OnlineScheduling.git
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For each of the settings, we ran 50 tests with different random seeds. For each
algorithmΘ, we call ΓZΘ the objective value achieved in simulation Z . Furthermore,
we define dZΘ to be the percentage gap between the objective value achieved by the
best algorithm and algorithm Θ during run Z , i.e.,

dZΘ =
ΓZΘ

minZΘ ΓZΘ
. (9)

To compare the different algorithms,we consider the average value of dZΘ concerning
all the runs.

The simulation results with the algorithms (under different job orders, time hori-
zons) for the total tardiness and the total earliness and tardiness minimization are
displayed in Table 1 and 2, respectively. Note that avg(dZΘ) and std(dZΘ) represent
respectively the mean value and standard deviations of dZΘ. The best value among

|T |=2500 |T |=5000
Algorithm Jobs order avg(dZΘ) std(dZΘ) avg(dZΘ) std(dZΘ)

Random - 2.59 0.50 3.06 0.69
EDD - 7.67 1.76 9.19 1.47
Q-learning UNSORT 2.15 0.43 2.04 0.35
Q-learning DT 1.45 0.28 1.29 0.20
Q-learning DT+PT 1.44 0.30 1.25 0.18
Sarsa UNSORT 2.55 0.53 2.47 0.39
Sarsa DT 1.65 0.40 1.76 0.36
Sarsa DT+PT 1.66 0.47 1.68 0.33
Sarsa(_) UNSORT 4.42 0.93 5.04 0.93
Sarsa(_) DT 7.04 1.35 7.73 1.34
Sarsa(_) DT+PT 3.08 1.03 7.70 1.33
Q(_) UNSORT 2.04 0.42 2.01 0.40
Q(_) DT 1.11 0.18 1.13 0.17
Q(_) DT+PT 1.19 0.26 1.09 0.14

Table 1 Simulations of the algorithms with different settings and considering the total tardiness
minimization.

all the combinations of algorithms and jobs order policies for each time horizon is
highlighted in bold font.

While in [37] the authors show that EDD gets a better result than RL in minimiz-
ing the maximum tardiness, as shown in Table 1, all the implemented RL algorithms
outperform EDD in minimizing the total tardiness. This result is exciting and proba-
bly depends on whether the learning paradigm is more tailored to optimize min-sum
problems than min-max ones. Also, it can be seen that the size of running time steps
influences the result on job order but does not affect the algorithm. For the case with
2500 steps, the configuration Q(_) plus DT gets the best result, instead for 5000
steps, the configuration Q(_) plus DT+PT outperforms the others.
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Table 2 Simulations of the algorithms with different settings and considering the total earliness
and tardiness minimization.

|T |=2500 |T |=5000
Algorithm Jobs order avg(dZΘ) std(dZΘ) avg(dZΘ) std(dZΘ)

Random - 5.85 9.95 19.34 42.96
EDD - 4.17 1.86 6.24 2.99
Q-learning UNSORT 5.33 9.33 12.62 30.34
Q-learning DT 3.95 6.71 10.20 23.10
Q-learning DT+PT 3.72 6.20 9.91 22.20
Sarsa UNSORT 5.72 9.62 17.45 39.43
Sarsa DT 4.43 7.87 16.34 37.85
Sarsa DT+PT 4.46 8.13 13.77 33.89
Sarsa(_) UNSORT 10.77 17.78 36.59 75.93
Sarsa(_) DT 13.29 23.84 49.71 111.14
Sarsa(_) DT+PT 6.04 9.87 55.77 116.36
Q(_) UNSORT 4.68 8.25 15.45 34.97
Q(_) DT 3.89 6.66 10.21 23.98
Q(_) DT+PT 3.29 5.62 9.23 21.36

Besides, we find with the sorting choice DT+PT that all algorithms get smaller
average values except for the configuration Q(_) with 2500 steps. Comparatively, a
randomly sorting job leads to a much worse result.

Instead, as reported in Table 2, EDD outperforms the other algorithms in min-
imizing the total earliness and tardiness, both in terms of both the mean and the
standard deviation for the larger time horizon. Moreover, it achieves the smallest
standard deviation for both time horizons. However, the configuration using Q(_)
and DT+PT gets the smallest mean for the case with 2500 time steps. Taking into
account the three job’s ordering, it can be noticed that all the algorithms in com-
bination with UNSORT have the worst results in terms of both the mean and the
standard deviation, except for the algorithm Sarsa(_) (which instead performs very
poorly with the sorting choice DT).

Finally, it can be noticed that the mean and the standard deviation obtained by
the algorithms in minimizing the total earliness and tardiness are larger than those
achieved in Table 1. Unlike the total tardiness minimization’s objective, the total
earliness and tardiness may not be well addressed by the proposed RL algorithms.
Considering the measure of jobs, earliness can negatively affect the effectiveness of
RL algorithms. A possible reason can be found in the test environment settings. In
the experiments, the due date is calculated by first taking a random value, namely
the processing time of the job, from an exponential distribution - ∼ �G?(]) where

] =
1

7 ×max 9∈J{?A>24BB8=6)8<4�>1 9 }
,

and adding that value to the current simulation time. Reminding that the tardi-
ness of a job 9 is defined as )9 := max{0, 2 9 − 3 9 } where 2 9 = BC0AC)8<4 9 +
?A>24BB8=6)8<4�>1 9 , then the more the jobs accumulated as time running, the big-
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ger the difference between the start time and due date for a job. Hence, more delays
will occur, which might cause the simulation results in favor of tardiness calculation.

6.2 Q(,) performance against different job arrival rates

We carried out another test against different frequencies of job arrivals (controlled by
the rate parameter A) by considering the two best RL algorithm combinations resulted
from the previous tests, i.e., Q(_) plus DT and Q(_) plus DT+PT. To understand
whether the value of A affects the performance, we experimented with 2 more values,
i.e. A = {0.05, 0.2} in addition to the previous one A = 0.1. Tables 3 and 4 show the
results of this test in the case of minimization of total tardiness and total earliness
and tardiness, respectively. Note that the results have been normalized by following
Eq. (9) with 50 tests and |T | = 2500 for each test.

Jobs order A avg(dZΘ) std(dZΘ)

DT 0.05 1.14 0.18
DT+PT 0.05 1.17 0.55
DT 0.10 1.10 0.17
DT+PT 0.10 1.17 0.26
DT 0.20 1.17 0.28
DT+PT 0.20 1.12 0.24

Table 3 Experiments on the rate parameter with best settings from Q(_) concerning the total
tardiness minimization.

Jobs order A avg(dZΘ) std(dZΘ)

DT 0.05 1.74 0.83
DT+PT 0.05 1.94 0.90
DT 0.10 3.89 6.66
DT+PT 0.10 3.29 5.62
DT 0.20 5.97 6.66
DT+PT 0.20 5.75 6.37

Table 4 Experiments on the rate parameter with best settings from Q(_) concerning the total
earliness and tardiness minimization.

As shown in the Table 3, with small values of A (e.g., 0.05, 0.10), i.e., when
jobs arrive much less frequently than the last one, the version with jobs ordered by
DT performs better. When jobs arrive much more frequently, the version sorted by
DT+PT wins. Hence, a careful selection of algorithms and settings according to the
operating conditions matters.
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Table 4 shows results on comparing the total earliness and tardiness with the same
settings as the ones of Table 3. However, even with a different objective, the results
for A = 0.05 and A = 0.20 are similar: the version using �) (for the former) and
�) + %) (for the latter) perform better. The difference lies on A = 0.10, which gets
better performance with �) + %) instead of �) in Table 3. Thus, a combination
of factors (settings, operating conditions, and objective) is clearly necessary to be
considered when selecting the RL algorithm.

6.3 Comparison between Q(,) and DQN

Finally, in this section, we compare a four-layer �&# and Q(_) plus DT+PT, which
is the best performing RL algorithm. Figure 4 shows such a comparison in the total
tardiness minimization, while Figure 5 is dedicated to the case minimizing the total
earliness and tardiness. We run 50 tests and |T | = 5000 in each test. The horizontal
axis represents the total tardiness and the vertical axis shows the probability the
objective value falls in. Note that the brown area indicates the overlapping between
Q(_) and �&# .

Fig. 4 Comparison between Q(_) and �&# on the total tardiness of 50 runs with different seeds
representing different schedules.

FromFigure 4,we can seeQ(_) hasmuch higher probabilitywith smaller objective
value, which indicates Q(_) outperforms �&# . Taking into account the time spent
in training �&# is almost 10 times of Q(_), Q(_) is a better option, especially for
guaranteeing a flexible and adaptive scheduling in realtime.

The results in Figure 5 are very similar to the previous ones. Compared to Q(_),
�&# has a much higher probability with a bigger objective, which stands for its
poor performance.

7 Conclusions and Future
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Fig. 5 Comparison between Q(_) and �&# on the total earliness and tardiness of 50 runs with
different seeds representing different schedules.

Research Directions

In this paper, we compared four RL methods, namely Q-learning, Sarsa, Watkins’s
Q(_), and Sarsa(_), with EDD and random assignment on an online single-machine
scheduling problem with two different objectives, as the total tardiness and the total
earliness and tardiness minimization. The experiments show that:

• better scheduling performance in minimizing the total tardiness is achieved by
the RL methodWatkins’s Q(_), especially when the action concerns the selection
of jobs sorted by due date for the smaller time horizon (|T | = 2500) and the
selection of jobs sorted by due date and processing time for bigger time horizon
(|T | = 5000).

• considering the measure of earliness may negatively affect the performance of RL
algorithms. In minimizing the total earliness and tardiness, Watkins’s Q(_) with
the sorting choice DT+PT performs better for the small-time horizon in terms of
mean values. In contrast, EDD can get better results for the large-time horizon.

• when considering different frequencies of jobs arrival, the combination of Q(_)
and job orders have different performances in various operating conditions with
different objectives.

• slight differences in algorithms and objectives can profoundly change the results.

Besides, with limited input, using �&# is too costly for extended running time
and energy spent adjusting parameters to guarantee a good result. In addition to
the numerical results explicitly presented in the paper, according to our previous
experience, RL algorithms also do not perform well on a single job-related objective
(e.g., maximum tardiness [37]). These indicate careful analysis should be done
from different viewpoints (running time, operating conditions, average results from
multiple experiments) for making a wiser selection of algorithms.

Furthermore, withmultiplemachines, more transitionsmust be considered, which
need more representational state information. Thus it will be impossible to store
values of all state-action pairs in a &-table. �&# may take a leading role then. As
indicated by the work [12], unpredictable changes may happen at different places in



18 Authors Suppressed Due to Excessive Length

the state-action space, and more care should be taken to avoid instabilities of �&# .
One technique that can achieve this goal is the so-called kernel function (see [4]),
which builds a future research avenue. Another possibility is creating an algorithm
selection framework, as explored in work by Rice [29]. In particular, by mapping
from the problem characteristics to the appropriate algorithms considered in the
framework, we can achieve an automatic selection of the best one to use.
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