
24 December 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Updating and transferring Random Effect models: The case of operating speed percentile estimation / Tremblay, Jean-
Michel; Cirillo, Cinzia; Bassani, Marco. - In: TRANSPORTATION RESEARCH. PART A, POLICY AND PRACTICE. -
ISSN 0965-8564. - ELETTRONICO. - 148:(2021), pp. 286-304. [10.1016/j.tra.2021.01.008]

Original

Updating and transferring Random Effect models: The case of operating speed percentile estimation

Elsevier postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1016/j.tra.2021.01.008

Terms of use:

Publisher copyright

© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license
http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at:
http://dx.doi.org/10.1016/j.tra.2021.01.008

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2896333 since: 2021-04-21T15:40:10Z

Elsevier Ltd



Transportation Research Part A
 

Updating and transferring Random Effect models: the case of operating speed
percentile estimation

--Manuscript Draft--
 

Manuscript Number:

Article Type: Research Paper

Keywords: Operating speed, speed quantiles (percentile), random effects regression, jack-knife
resampling technique, out-of-sample prediction

Corresponding Author: Cinzia Cirillo
University of Maryland
College Park, MD United States

First Author: Jean-Michel Tremblay, PhD

Order of Authors: Jean-Michel Tremblay, PhD

Cinzia Cirillo

Marco Bassani, PhD

Abstract: Random Effect (RE) models are used for analyzing data that are non-independent or
when data are characterized by a hierarchical structure. In traffic and highway
engineering, RE models have been successfully employed to estimate free-flow speed
distributions from data containing observations that are naturally nested according to
different levels (i.e. direction, sections, roads). Empirical studies conducted on both
urban arterials and rural two-lane highways have shown that RE models, by properly
accounting for the survey design, are superior to traditional Fixed Effect (FE) models.  
In this paper, the transferability of RE models to road sections that were not in the
original sample used for model estimation was studied, under the assumption that for
these additional sections very few observations are available or can be collected. This
problem poses two challenges. First, random effects for the new road sections should
be estimated in order to make out-of-sample predictions. Second, the original model
formulation makes use of speed quantiles as predictors of the linear model which are
not readily available for the new sections.   The method proposed estimates an
auxiliary model, in which the RE of the original model are correlated to the RE to be
defined for the new section, with the former being used to predict the latter. The RE
pairs are modeled jointly, taking advantage of their potential mutual correlation. The
model coefficients obtained are also validated using a jackknife technique. Results
show that the method converges quite fast and that a handful of observations for the
new road section are sufficient for good RE estimates.

Suggested Reviewers:

Opposed Reviewers:

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation



Updating and transferring Random Effect models:1

the case of operating speed percentile estimation2

Jean-Michel Tremblay1, Cinzia Cirillo2, and Marco Bassani33

1Edgybees Ltd., jeanmi.tremblay@gmail.com4
2University of Maryland, Department of Civil and Environmental Engineering, ccirillo@umd.edu5

3Politecnico di Torino, Department of Environment, Land and Infrastructure Engineering,6

marco.bassani@polito.it7

April 20, 20208

1

Manuscript File Click here to view linked References

https://www.editorialmanager.com/ytra/viewRCResults.aspx?pdf=1&docID=6325&rev=0&fileID=37650&msid=d6dd978a-f6f9-42f0-a058-3b83c1e5d32d
https://www.editorialmanager.com/ytra/viewRCResults.aspx?pdf=1&docID=6325&rev=0&fileID=37650&msid=d6dd978a-f6f9-42f0-a058-3b83c1e5d32d


Abstract9

Random Effect (RE) models are used for analyzing data that are non-independent or when10

data are characterized by a hierarchical structure. In traffic and highway engineering, RE11

models have been successfully employed to estimate free-flow speed distributions from data12

containing observations that are naturally nested according to different levels (i.e. direction,13

sections, roads). Empirical studies conducted on both urban arterials and rural two-lane14

highways have shown that RE models, by properly accounting for the survey design, are15

superior to traditional Fixed Effect (FE) models.16

In this paper, the transferability of RE models to road sections that were not in the original17

sample used for model estimation was studied, under the assumption that for these additional18

sections very few observations are available or can be collected. This problem poses two19

challenges. First, random effects for the new road sections should be estimated in order to20

make out-of-sample predictions. Second, the original model formulation makes use of speed21

quantiles as predictors of the linear model which are not readily available for the new sections.22

The method proposed estimates an auxiliary model, in which the RE of the original model are23

correlated to the RE to be defined for the new section, with the former being used to predict24

the latter. The RE pairs are modeled jointly, taking advantage of their potential mutual25

correlation. The model coefficients obtained are also validated using a jackknife technique.26

Results show that the method converges quite fast and that a handful of observations for the27

new road section are sufficient for good RE estimates.28

Keywords: Operating speed, speed quantiles (percentile), random effects regression, jack-29

knife resampling technique, out-of-sample prediction. .30
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1 Introduction31

Among the parameters characterizing vehicular flows, speed is used in multiple applications32

including traffic analysis, speed management, road design, and road safety. Speeds are col-33

lected through spot speed observations or by recurring to permanent acquisition units in the34

field (Garber and Hoel 2020; Catani et al. 2017). This data may be used to calibrate models35

to explain how speed is related to some significant variables depicting the road scenario. As36

a result, analysts and road designers can select the most appropriate road features to mod-37

ulate risk perception and compel drivers to adopt consistent speed decisions and behaviors.38

Starting from the ‘80s, a conspicuous quantity of papers proposed models to predict the39

85th speed percentile (i.e., V85) of operating speeds (OS), and OS differential (e.g., ΔV85,40

85MSR) between road elements (Dimaiuta et al. 2011).41

V85 is conventionally considered representative of OS distribution since it separates the speed42

of prudent drivers from that of more aggressive ones. V85 models may include geometric43

characteristics of roads (e.g., lane width, radius or curvature), environmental conditions (e.g.,44

lighting, weather, land use), and driving regulations affecting driver behavior (Himes et al.45

2013). The variation in operating speed between road elements has repeatedly been used to46

support design decisions (Lamm et al. 1988). Park and Saccomanno (2006) evidenced that47

speed variations must be evaluated for individual drivers (i.e., disaggregated data) rather than48

from aggregated data for the observed group, in order to prevent the so called “ecological49

fallacy” problem. However, this approach is challenging due to the need to monitor individual50

vehicles along entire road segments (McFadden and Elefteriadou 2000).51

However, when attention is focused on a section, the use of V85 becomes controversial52

since different OS distributions may exhibit the same 85th percentile. To address this is-53

sue, Shankar and Mannering (1998) proposed the use of simultaneous equations to model54

the average and standard deviation of speed in each lane of multilane highways. Later on,55

Figueroa-Medina and Tarko 2005 introduced a model to predict any speed percentile com-56

bining the mean and the standard deviation in a linear regression equation.57

Most of the available literature has proposed models of the Fixed Effect (FE) type, in which58

each speed observation along a road section is assumed to be dependent on the predictors59

included in that model only (Dimaiuta et al. 2011). This is only acceptable when speed60

clusters used to calibrate the model are not distinguished per direction, are from segments61

that do not belong to the same road, and are sufficiently distant from each other. However,62

when speed observations are clustered and spatially close to each other, each of them may63

share unobserved effects. Thus, it is not possible to assume independence of errors for64

individual observations without considering Random Effects (RE) for these groups.65

Tarris et al. (1996) carried out a panel analysis of free-flow speed data collected from indi-66

vidual drivers with speed values recorded at sensor locations. In the proposed model, RE67

were associated with groups and speed location. Islam and El-Basyouny (2015) used RE68

to account for differences in hourly free-flow speed data related to site and community in69
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a pilot study aimed at reducing OS. More recently, Cheng et al. (2018) evidenced that RE70

are fundamental in predicting the speed and speed deviation along lanes in multilane high-71

ways. They used RE to account for the variation between adjoining lanes, between adjacent72

segments, and among segments.73

RE models reach a higher coefficient of determination than those obtained assuming FE74

coefficients for groups and sensor locations (Bassani, Dalmazzo, et al. 2014). RE models for75

OS was proposed by the authors (Bassani, Dalmazzo, et al. 2014; Bassani, Cirillo, et al. 2016;76

Bassani, Catani, et al. 2016) in multiple observations for the same direction (d) of a section77

(s), on several sections of a road (r), and on several roads of the network. In the model:78

Vrsd,i = β0 + βkXrsd,k + βjZpXrsd,j + αr + αs|r + αd|rs + εrsd,i, (1)

where β0 is the general model intercept, βk and βj are calibration parameters for the k and79

jvariables affecting the estimated mean Xrsd,k, and the estimated standard deviation Xrsd,j80

respectively, and Zp is the standardized normal variable. In eq. 1, αr, αs|r and αd|rs are the81

three nested RE accounting for the variability introduced by the random selection of roads82

in the network, the section within a road, and the directions in the section.83

The objective of this study is to transfer RE models calibrated on a given sample of lanes,84

sections and roads to road sections that were not included in the estimation sample and85

for which few speed observations were collected or available to the analyst. The problem86

has relevant practical implications, as the method proposed will facilitate the use of existing87

models on different sections without the need to collect a significant number of new obser-88

vations, which is usually a lengthy and costly process. In order for this transferability to be89

effective and to have realistic out-of-sample predictions, RE need to be predicted for the new90

road section. Also, the model specification is based on speed quantiles, which are not readily91

available for the new road sections.92

REs in most situations are assumed to have zero mean and therefore the best a priori predictor93

for REs in a new road section is zero as well. However, it is likely that better predictors can94

be produced by considering a simpler, auxiliary RE model whose purpose is to overcome the95

unavailability of quantiles in the validation sample. Specifically, following McCulloch et al.96

(2008), it is possible to build an auxiliary model which, although inferior to the actual model,97

takes advantage of the potential correlation existing across RE pairs in order to provide good98

RE predictors. The method is based on the assumption that REs of the original model are99

correlated with the REs to be defined for the new section and that the first one can be used100

to predict the latter. The methodology is first developed in the case of one RE, and then101

extended to the case of a model including two REs. The best predictor is derived and the102

convergence is tested on empirical data. Finally, validation is performed on the quantiles of103

all the road sections considered using a jackknife technique (Efron and Tibshirani 1993).104

The remaining of this paper is articulated as follows. Model formulation for one RE and105

two REs is presented in Section 2. Numerical results derived from real data collected in the106

North-West of Italy are reported in Section 3. The case where predictors are multiplied by107
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the normal quantiles is solved in Section 4. In Section 5, a Jackknife re-sampling technique is108

used to analyze the causes of poor estimation results. Conclusions and suggestions for future109

research are given in Section 6.110

2 Model formulation111

In this Section, we derive the statistical method to transfer an estimated random effect112

model to a new road section for which very few observations are available to the analyst.113

The problem is that for this new road section, only the model predictors are available, while114

the random effect(s) are unknown. Under the hypothesis that the random effect of the new115

section are correlated to those of the section for which the model has been estimated, we116

derive the conditional mean of the Best Linear Unbiased Predictor (BLUP) of the error in117

the new section. The method is developed first for a one random effect model (Section 2.1)118

and then generalized to a two random effect model (Section 2.2).119

2.1 One random effect model120

Following the formulation in eq.1, we first develop the proposed methodology for a simple121

case that contains one random effect. Let’s assume that speed data is available for several122

sections s, and that the response variable Vs,i is affected by a set of predictors Xs,k. The123

model contains one random effect αs and an error term εs,i:124

Vs,i = β0 + βkXs,k + αs + εs,i, (2)

where αs and εs,i are independent and follow a normal distribution:125

αs ∼ N(0, σ2
s),

εs,i ∼ N(0, σ2).

while β is defined as the the vector of fixed coefficients to be estimated and that includes126

both β0 and βk.127

Once the model is calibrated, estimates for the model parameters (denoted as β̂, σ̂2
s , and128

σ̂2) are available to the analyst, and predictions for the random variables αs and Vs,i can be129

obtained (McCulloch et al. 2008).130

Assuming the analyst is interested in predicting random effects for a new section s′ with131

unknown random effect αs′ , the best a priori estimate of αs′ is zero since αs′ ∼ N(0, σ2
s).132

In some contexts this may be satisfying, but other methods can be explored under the133

assumption that it is possible to sample a few observations for the new section s′ in order to134
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improve the knowledge about αs′ and build a better a posteriori prediction. This is precisely135

the ultimate objective of our method.136

Suppose that n observations Vs′,1, Vs′,2, . . . , Vs′,n are collected in the new section. αs′ cannot137

be observed directly, because we always observe the sum of the errors. Hence according to138

eq. 2 the sum of the residuals is:139

rs′,i = αs′ + εs′,i = Vs′,i − βXs′,k.

The difference Vs′,i − βXs′,k cannot be measured because the value of the parameters in β is140

unknown, so the estimated value β̂ from model calibration is used to approximate the total141

residuals r′s, i.142

Let’s define u = (αs′) and let’s assume that it follows a normal distribution with mean zero143

and variance D = (σ2
s). In this case, u refers to a single random effect, but as we will see144

in the next Section, the methodology applies to any number of effects to be predicted. The145

residuals r = (rs′,1, rs′,2, ..., rs′,n) have zero mean and variance W :146

W =


σ2
s + σ2 σ2

s ... σ2
s

σ2
s σ2

s + σ2 ... σ2
s

... ... ... ...
σ2
s σ2

s ... σ2
s + σ2

 .

W can be written as follows:147

W = σ2I + σ2
s

where I is the identity matrix.148

The covariance between the random effect αs′ and one given total residual is:149

Cov(αs′ , rs′,i) = σ2
s .

and more generally, the covariance C between u and r is:150

C =
[
σ2
s σ2

s ... σ2
s

]
= σ2

s11×n

and therefore:151

[
u
r

]
∼

([
0
0

]
,

[
D C
CT W

])
.
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At this stage, it is not necessary to formulate hypotheses on the joint distribution of (u, r); it152

is sufficient to know the first and second moments of (u, r) to derive the best linear unbiased153

predictor (BLUP) of u (McCulloch et al. 2008). If the joint distribution were normal, the154

BLUP would be the overall best predictor of u. This not the case for our real application.155

Once r is observed, the BLUP of u is the conditional mean. The expectation of u|r is given156

by:157

α̂s′ = E(u|r) = CW−1r.

The estimated values of the coefficients are used to produce numerical values for the BLUP.158

The predicted value for an observation i in section s′ will be:159

V̂s′,i = β̂Xs′,k + α̂s′ .

β̂ can be estimated in a relatively easy way, so the main challenge for this problem is to160

predict α̂s′ . The objective here is to investigate what is the smallest sample in section s′ that161

we can use to predict αs′ satisfactorily. In general, it can be observed that the prediction162

converges faster when σ2 is low relative to σ2
s ; this is because one single observation of r is163

expected to be less noisy and more correlated with the unknown realized value αs′ .164

2.2 Two random effects models165

The case with two nested random effects is formulated in eq. 3:166

Vsd,i = β0 + βkXsd,k + αs + αd|s + εsd,i, (3)

where the subscript d stands for direction, so speed data can be distinguished into two167

different directions for the same section. The random effect αd|s is nested within the levels168

of αs.169

We make the assumption that this new random effect is normally distributed:

αd|s ∼ N(0, σ2
d)

As a result, in this model a sample from the new section s′ also includes some levels of the170

direction effect. For illustration purposes, one section, two directions and n observations per171

direction are assumed. The RE to be predicted is:172

u = (αs′ , αd1, αd2),

and the total residuals are given by:173
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rs′d,i = Vs′d,i − βXs′d,k.

where β is the vector of coefficient to be estimated.174

Similar to the one RE model, the RE cannot be directly observed. In this case, the covariance175

structure for the total residuals is:176

var(rs′d,i) = σ2
s + σ2

d + σ2,

cov(rs′d,i, rs′d,j) = σ2
s + σ2

d,

cov(rs′d,i, rs′d′,i) = σ2
s

Two residuals in the same section but for different directions only share the αs term so their177

covariance is σ2
s . Residuals in the same direction also share αd|s so their covariance is the178

sum σ2
s + σ2

d. Finally, the total variance of r is the sum of its three components σ2
s + σ2

d + σ2.179

These results are a consequence of the independence assumption made on the three REs.180

As in the previous section, we want to derive the joint moments of (u, r). The covariance181

matrices D, C and W of (u, r) are respectively:182

D =

σ2
s 0 0
0 σ2

d 0
0 0 σ2

d

 ,W = σ2
s +


σ2
d + σ2 σ2

d σ2
d 0 0 0

σ2
d σ2

d + σ2 σ2
d 0 0 0

σ2
d σ2

d σ2
d + σ2 0 0 0

0 0 0 σ2
d + σ2 σ2

d σ2
d

0 0 0 σ2
d σ2

d + σ2 σ2
d

0 0 0 σ2
d σ2

d σ2
d + σ2


with 0 being a matrix of zeros and I the identity matrix:183

W = σ2
s +

[
σ2
d + σ2I 0n×n

0n×n σ2
d + σ2I

]
C is finally given by:184

C =

σ2
s σ2

s σ2
s σ2

s σ2
s σ2

s

σ2
d σ2

d σ2
d 0 0 0

0 0 0 σ2
d σ2

d σ2
d

 =

σ2
s11×n σ2

s11×n

σ2
d11×n 01×n

01×n σ2
d11×n


The predicted random effects are given by the expected mean:185

E(u|r) = CW−1r.
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The predicted value for an observation i in section s′ and direction d will be:186

V̂s′d,i = β̂s′diXs′d,k + α̂s′ + α̂d|s.

3 Numerical examples on OS data187

Speed data used in this study were collected in road sections of two-lane rural highways188

in the North-West part of Italy. Individual speeds of isolated vehicles were collected under189

free-flow conditions in sections where vehicles travel at constant speed (i.e. in the center of190

tangents and curves). Speeds were included in the database only when a minimum headway191

of six seconds was observed. The data for model estimation were extracted from a larger192

database already used by the authors in (Bassani, Cirillo, et al. 2016). The density and the193

presence of elements along the road section was evaluated along one km across the sample194

sections. Table 1 lists the values assumed by the variables that were found to be significant195

in the calibration of the model reported in eq. 1. In the table, the variables are divided196

into those affecting the average (Xk) and the dispersion (Xj) of predictors. The latter are197

also divided into numerical and Boolean variables. Finally, the last five columns summarize198

the minimum (Vmin), the maximum (Vmax), the 50th (V 50) and the 85th (V 85) percentile of199

speeds included in the database, while nobs indicates the number of data available for each200

section. The notes at the end of table 1 describe the acronyms used to identify the variables.201
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3.1 Results: one RE model202

The first case study models speed data with only one RE, as formulated in 2.1; specifically,203

it accounts for the RE related to sections but ignores the RE related to directions. A model204

is calibrated using thirty sections out of the thirty one available in the database and listed205

in Table 1. Once the model is fitted on the thirty sections, the RE effect is predicted for206

the section that was left out from model estimation. This is repeated for all the thirty one207

sections in the dataset. This procedure provides a series of predicted REs; these results are208

used to assess the convergence of the method proposed.209

Figures 1 and 2 illustrate the results obtained for each section. Each subplot represents210

the predicted RE in the section used for validation. The x-axis corresponds to the number211

of observations that were used from the validation section in order to predict the REs. For212

example, an x-value of 10 for section 3 means that a model with all sections but the third one213

was estimated, and that ten observations in the third section were used in order to predict214

the (realized) effect of section 3.215

Each subplot contains a solid line, a dashed line, and a dotted line. The solid line shows216

the predicted effects obtained with the full model, for which the quantile information in217

the validation sample is assumed to be known. This is ultimately the effect that we aim to218

predict. The dotted line shows the predicted effects obtained with a simple auxiliary model219

that only contains the predictors Xs,k that affect the mean speed. The dashed line shows the220

predicted effects for the conditional model obtained using information from the auxiliary221

model. This is the prediction that ultimately is going to be used.222

From figures 1 and 2, the following three remarks can be made: (i) a relative convergence in223

the predicted effects as the number of observations grows is observed; (ii) there is a substantial224

difference between the dotted line and the black solid line; meaning that the closer the two225

lines are, the more likely that the one can be predicted from the other; (iii) the dashed line226

does not approximate the solid line and it is mostly super-posed to the dotted line. Therefore,227

it can be concluded that the predicted effect of the full model using the auxiliary model are228

no better approximation than just the predicted effects of the auxiliary model. This results229

might be seen as disappointing, but later it will be proved that correctly accounting for the230

sample design solves the problem observed.231
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Figure 1: Sections 1-22
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Figure 2: Sections 23-36
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3.2 Results: two RE model232

The second case study models two REs as formulated in 2.2; this time both section and233

direction effects are taken into account. The scope here is to assess the convergence of α̂s′ ,234

α̂d1 and α̂d2 in the presence of two REs; this model formulation is fully consistent with the235

survey design.236

Figures 3 and 4 should be read in the same way as figures 1 and 2. The thick solid line237

corresponds to the predicted section effect, and the two fine solid lines correspond to the238

predicted direction effects. The dashed lines correspond to the predicted effects using the239

auxiliary model and those are used to compute the REs in the validation section.240

For both sections and directions, the predicted effects using the auxiliary model are very241

close to the ones using the full model. However, there are still noticeable differences when242

very few observations are used for the prediction. For example, predictions in sections 8 and243

27 are not very precise for only two or three observations.244

It is worth noting that striking differences exist between predictions with one and two REs.245

Effects with only the section component are not close to the true effects of the full model;246

incorporating the direction effects, thus accounting for the design of the sample, drastically247

improves the predictions.248

4 Computation of the residuals249

We now turn our attention to the case where the model includes variables Xsd,j multiplied by250

the normal quantile Zp in addition to the regular predictors Xsd,k, (see Bassani, Dalmazzo, et251

al. 2014; Bassani, Cirillo, et al. 2016; Bassani, Catani, et al. 2016). This is done to calculate252

any percentile speed as a linear combination of variables affecting both the central tendency253

and the dispersion of the collected speed data. Those quantiles are not available for the254

validation sample, which is too small to allow for the calculation of variance indicators. Note255

that Zsd,j is a scalar so the term ZpXsd,j is simply a scalar multiplied by a vector.256

Vsd,i = β0 + βkXsd,k + βjZpXsd,j + αs + αd|s + εsd,i

In this case, it is not possible to isolate the sum of REs and we must rely on alternative257

methods. The strategy that is proposed here makes use of the estimated total residuals from258

a restricted model that only contains observable variables (Xsd,k) to predict the REs of an259

unrestricted model (with both Xsd,k and Xsd,j).260
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Figure 3: Sections 1-22
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Figure 4: Sections 23-36
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Vsd,i = βkXsd,k + α∗
s + α∗

d|s + ε∗sdi,

α∗
s ∼ N(0, σ∗2

s ),

α∗
d|s ∼ N(0, σ∗2

d ),

ε∗sd,i ∼ N(0, σ∗2).

r∗sd,i = Vsd,i − βkXsd,k

(4)

Vsd,i = βkXsd,k + βjXsd,j + αs + αd|s + εsdi,

αs ∼ N(0, σ2
s),

αd|s ∼ N(0, σ2
d),

εsd,i ∼ N(0, σ2).

rsd,i = Vsd,i − βkXsd,k − βjXsd,j

(5)

The restricted (eq. 4) and unrestricted models (eq. 5) are calibrated and parameters are261

estimated, together with the empirical correlation (ραs and ραd|s ,) across the effects of both262

models. Figures 5a and 5b plot the predicted section and direction effects of the restricted263

model and the unrestricted model respectively. As anticipated, the more correlated these264

effects are, the easier will be to predict one using the other.265

Figure 5: Predicted effects
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The term r∗sdi can be calculated in the validation sample, while the variance of one of those266

residuals is given by:267

V ar(r∗sd,i) = σ∗2
s + σ∗2

d + σ∗2.

The covariance of two residuals is given by:268

Cov(rsdi∗, rsdj∗) = σ2
s∗ + σ2

d∗ in the same direction„ and
Cov(rsd,i∗, rsd′i∗) = σ2

s∗ not in the same direction.
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The covariance between residuals and REs are given by:269

Cov(r∗sdi, αs) = Cov(α∗
s + α∗

d|s + ε∗sdi, αs) = Cov(α∗
s, αs) = ραsσsσ

∗
s = σ∗

ss,

Cov(r∗sdi, αd|s) = Cov(α∗
s + α∗

d|s + ε∗sdi, αd|s) = Cov(α∗
d|s, αd|s) = ραd|sσdσ

∗
d = σ∗

dd.

Therefore, the joint covariance of r∗ and u is described by the following variance components:270

D =

σ2
s 0 0
0 σ2

d 0
0 0 σ2

d

 ,

W = σ2
s∗ +


σ∗2
d + σ∗2 σ∗2

d σ∗2
d 0 0 0

σ∗2
d σ∗2

d + σ∗2 σ∗2
d 0 0 0

σ∗2
d σ∗2

d σ∗2
d + σ∗2 0 0 0

0 0 0 σ∗2
d + σ∗2 σ∗2

d σ∗2
d

0 0 0 σ∗2
d σ∗2

d + σ∗2 σ2
d

0 0 0 σ∗2
d σ∗2

d σ∗2
d + σ∗2

 ,

C =

σ∗
ss σ∗

ss σ∗
ss σ∗

ss σ∗
ss σ∗

ss

σ∗
dd σ∗

dd σ∗
dd 0 0 0

0 0 0 σ∗
dd σ∗

dd σ∗
dd

 .

Note that D is the same as before, but W is different because the random effects in r are271

from the simpler model, and C is also affected.272

Tables 2 through 9 report predicted speed deciles (pred.) and compare them with the ob-273

served ones (obs.).274

Table 2: Predicted quantiles sections 1,3,5 and 7

quantile
Section 1 Section 3 Section 5 Section 7

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs.

10 50 56 48.6 54 65.2 58 70.4 63 59.3 60 53.5 57 65.4 66 66.1 72.6
20 56.7 59 56.2 58 68.7 63 73.1 68 64.7 64 61 63 70.7 69 71.8 76
30 61.5 62 61.6 60 71.2 66 75 71 68.6 68 66.3 67 74.5 73 76 79.8
40 65.6 65.8 66.3 62 73.3 69 76.7 74 72 71 70.9 70 77.8 77 79.5 82
50 69.5 67 70.7 65 75.3 72 78.2 77 75.1 73 75.2 75 80.9 80 82.8 85
60 73.3 69 75 67 77.3 74 79.8 79 78.3 77 79.5 77 84 82 86.1 87
70 77.4 71 79.7 70 79.4 77 81.5 82 81.6 81 84.1 81.9 87.3 86.8 89.6 89
80 82.3 73 85.2 74 81.9 81 83.4 85 85.5 85 89.5 87 91.1 90 93.8 93
90 88.9 77.3 92.8 79 85.3 88 86.1 89 91 90 97 94 96.5 95 99.5 97.4
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Table 3: Predicted quantiles sections 8,9,10,11

quantile
Section 8 Section 9 Section 10 Section 11

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs.

10 68.2 69.4 67.9 74.2 63.2 60 65.2 70 47.4 50 54.5 56 56.4 59.3 56.4 59.3
20 73.9 75.4 73.5 77 68.4 67 70.4 72.8 51.8 51.2 57.2 60 62.5 63.2 62.5 61.7
30 78 81 77.5 77.6 72.1 68 74.1 76 54.9 54.6 59.1 63 66.9 65.1 66.8 67.1
40 81.5 84 81 81.6 75.2 73 77.3 79.6 57.6 55 60.8 64 70.6 68.1 70.6 71
50 84.8 86 84.2 85 78.2 75 80.3 82 60.1 56 62.4 65 74.2 70.6 74 72.5
60 88.1 88.2 87.4 87.2 81.1 79 83.3 86.4 62.6 57 63.9 67 77.7 71.9 77.5 74
70 91.6 90 90.9 90 84.3 86 86.5 88 65.3 59 65.6 68 81.5 75.9 81.2 76.4
80 95.7 94.2 94.9 94.8 87.9 87 90.2 91.2 68.4 60.8 67.5 71.2 85.9 81.6 85.6 81.6
90 101.4 103.5 100.5 100.6 93.1 90 95.4 94.1 72.7 64.4 70.2 73 92 95.6 91.6 93

Table 4: Predicted quantiles sections 12,13,14,15

quantile
Section 12 Section 13 Section 14 Section 15

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs.

10 60.9 59.7 61.1 59 62.9 62.7 62.2 65.8 64.5 67.1 63.4 67.8 64.6 64.3 63.7 65.7
20 66.9 64.2 67.4 67.5 68.6 67.4 68.3 68.5 71.2 70.6 70.6 72.1 70.7 69.5 70.2 73.8
30 71.3 71.3 71.8 72 72.7 70.7 72.7 72 76 76.3 75.7 75.3 75 74.3 74.8 75.6
40 75 73.9 75.7 78.3 76.3 75.4 76.5 74.3 80.1 79.6 80.2 79.1 78.8 78 78.7 80.2
50 78.5 76.9 79.3 82.9 79.6 79.8 80 81.9 83.9 83.1 84.3 83 82.2 81.9 82.4 83.8
60 81.9 85.7 82.8 86 82.9 84.2 83.5 84.4 87.7 85.9 88.5 90.6 85.7 84.3 86.1 85.2
70 85.7 88.8 86.7 90 86.4 87.8 87.3 84.8 91.8 91 92.9 94.1 89.4 88.6 90.1 88.7
80 90 92.1 91.2 91 90.5 89.1 91.7 86.9 96.6 96.3 98.1 97.9 93.8 92.6 94.7 93.7
90 96.1 94.8 97.4 106.8 96.3 93.2 97.8 93.4 103.3 107.1 105.3 105.9 99.8 103.1 101.1 97.2

Table 5: Predicted quantiles sections 16,17,18,21

quantile
Section 16 Section 17 Section 18 Section 21

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs.

10 65 71.7 64.4 71.3 62.4 66.2 64.2 67.8 51.4 51.9 51.2 52.6 85.8 73 86.2 81.7
20 71.8 75.2 71.1 74.6 69.1 69.2 70.3 70.9 57.8 54.2 57.8 56.6 89.3 88 90.3 89.2
30 76.6 80.2 76 76.3 74 72.9 74.8 74.4 62.4 58.4 62.6 60.9 91.9 92.5 93.2 95.3
40 80.8 82.5 80.2 79.6 78.1 74.5 78.6 77.4 66.3 65.3 66.7 62.2 94 97 95.6 98.4
50 84.7 85 84 82.2 82 76.9 82.2 80 70 67.2 70.5 68.5 96.1 98 98 104
60 88.6 88.3 87.9 84.4 85.9 85.4 85.7 83.3 73.7 69.7 74.3 71.8 98.1 99 100.3 105
70 92.7 90.5 92.1 91.5 90.1 92.3 89.6 88.7 77.6 74.9 78.4 75.4 100.3 99.5 102.8 105
80 97.6 93.5 96.9 94.3 95 96.3 94 92.4 82.2 80.3 83.1 84.9 102.8 100 105.7 111.8
90 104.3 108.6 103.7 100.2 101.7 99.3 100.2 94.1 88.6 91.2 89.7 91.7 106.3 105 109.7 114.9
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Table 6: Predicted quantiles sections 22,23,24,25

quantile
Section 22 Section 23 Section 24 Section 25

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs.

10 60.8 64.8 56.3 64 45.5 39.1 43.7 46 63.6 67 66.6 59.7 53.7 54 55.5 50.4
20 68 69 64 70 48.3 42.4 47.6 47 69.1 68.6 71.2 66 58.7 56.2 60.5 55.2
30 73.2 71.4 69.6 71 50.3 46.1 50.5 48 73.1 69 74.6 75.3 62.2 59.8 64.1 65.4
40 77.6 78 74.4 72 52 46.8 52.9 50 76.4 72.4 77.5 77.4 65.3 62.6 67.2 71.4
50 81.8 82 78.9 72 53.6 47.5 55.2 50.5 79.6 74 80.1 79 68.1 66 70.1 73
60 86 94 83.3 75 55.2 48.2 57.4 51.8 82.7 79.4 82.8 81.8 71 68.6 73 78.4
70 90.4 97.8 88.1 76 57 48.9 59.8 54.1 86.1 81 85.7 88.1 74 71 76 81.2
80 95.6 101 93.7 79 59 50.2 62.7 57.4 90 86 89 90.2 77.6 75 79.7 84.2
90 102.8 108.4 101.5 82 61.7 51 66.6 61.5 95.5 99 93.7 96.1 82.5 75 84.7 89

Table 7: Predicted quantiles sections 26,27,28,29

quantile
Section 26 Section 27 Section 28 Section 29

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs.

10 57.8 59.4 60.8 57.2 34.8 44.6 35.4 45.8 66.5 67 68.3 76.6 68.2 72.3 67.2 78.5
20 63.5 65.6 65.4 60.6 40.4 46.2 41 47.6 73.3 75 74.7 78 75.2 77.1 74.8 80.1
30 67.5 67 68.8 65.5 44.4 47.8 45 48.4 78.1 77 79.4 83.8 80.2 84 80.3 82.6
40 71 67.6 71.6 68.8 47.9 49.4 48.4 49.2 82.3 78 83.4 86.4 84.5 89.2 85 85.1
50 74.2 73 74.3 76 51.1 51 51.6 51 86.2 87 87.1 87 88.5 93.1 89.4 85.1
60 77.5 75.8 76.9 76.8 54.3 53.6 54.8 53.6 90 87 90.8 87.6 92.6 93.1 93.8 93.7
70 81 77.1 79.8 77.3 57.7 54.2 58.2 55.6 94.2 88.5 94.8 91 96.9 93.1 98.5 101.2
80 85 80.8 83.1 80.4 61.7 55 62.2 56.8 99 89 99.4 96.8 101.9 94.9 103.9 103.9
90 90.7 86.7 87.7 86.6 67.3 60 67.8 60.2 105.8 103 105.9 100.8 108.9 109.7 111.5 108.8

Table 8: Predicted quantiles sections 30,31,32,33

quantile
Section 30 Section 31 Section 32 Section 33

dir 1 dir 2 dir 1 dir 2 dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs. pred. obs.

10 62.6 56.3 65.3 57.4 56.8 61.2 60.6 67.2 46.2 52.1 47.4 55.2 54 52.7 56.5 58.2
20 64.2 56.3 66.5 62.1 62.9 66.5 65.6 68.9 52.9 57.5 53.7 59.2 58.8 58.1 60.6 60.9
30 65.3 57.5 67.4 62.1 67.2 68 69.3 70 57.7 59.6 58.3 62.2 62.2 60 63.6 64
40 66.3 61.4 68.1 63.8 70.9 70.3 72.3 73 61.9 59.6 62.2 63.9 65.2 62.7 66.1 67.4
50 67.3 65.9 68.8 71.8 74.4 71.9 75.2 74.4 65.7 64.2 65.8 67.4 67.9 66.2 68.5 67.4
60 68.2 69.3 69.5 74.1 77.9 73.2 78.1 77.1 69.6 66.7 69.4 69.3 70.7 67.6 70.9 67.4
70 69.2 69.3 70.2 74.1 81.6 74.6 81.2 79.6 73.7 69.5 73.3 71.4 73.6 71.1 73.4 71.1
80 70.3 87.2 71.1 79.2 85.9 76.9 84.8 83.4 78.5 79.4 77.9 73.5 77.1 73.8 76.4 71.9
90 71.9 93.2 72.3 79.2 92 84.1 89.8 87.5 85.2 83.4 84.2 77.3 81.9 81.3 80.5 75.3
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Table 9: Predicted quantiles sections 34,36

quantile
Section 34 Section 36

dir 1 dir 2 dir 1 dir 2
pred. obs. pred. obs. pred. obs. pred. obs.

10 45.6 42.5 43.9 43.1 45.3 44.6 46.5 56.7
20 49.3 46.5 48.7 50.6 53.1 50.9 53.8 59.1
30 52 49.1 52.2 52.7 58.8 59.2 59.1 62.2
40 54.3 51.2 55.2 56.2 63.6 64.2 63.6 65.2
50 56.5 53.2 57.9 58.8 68.1 68.2 67.8 69.5
60 58.6 54.7 60.7 60.2 72.6 70.9 72 72.4
70 60.9 58 63.7 64.9 77.5 74.9 76.5 76.8
80 63.6 62.2 67.2 70.3 83.1 79.3 81.8 78.8
90 67.3 68.4 72 76 91 94.6 89.1 82.5
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When analyzing Tables 2 to 9, a number of patterns can be observed. First, the speed275

quantiles of most sections are predicted accurately, which attests the validity of our statistical276

methodology. For example, most of the sections have predictions that are within an interval277

of 2-3 kilometer per hour (km/h) and for almost all the quantiles. Most central deciles (40th278

to 60th quantiles) have very good predictions and therefore it is possible to say that additional279

observations collected to predict the REs can be successfully used to predict the mean speed280

of the section with some accuracy. The worst value obtained for the predicted median (50th281

quantile) is the one related to section 29, direction 1, with an observed median of 93.1 km/h282

and a prediction of 88.5 km/h. This compares with the 10th quantile that predicts 68.2 km/h283

for an observed value of 72.3 km/h.284

Second, some sections are likely to have an error in part due to the prediction error of the285

random effects. One way to assess this is to observe the extreme quantiles of those sections286

for which both the 10th and the 90th quantiles are underestimated. Example of this type is287

section 22, direction 1. Looking back at the plots of predicted REs in figure 3, it is possible288

to observe that the direction effects are not very precise with only five observations and this289

is likely a case where the prediction has created a small error. For section 23 (figure 4) the290

section effect and one of the direction effect are overestimated with five observations, which291

would explain this component of the prediction error.292

Third, the most obvious prediction error is the overestimation of low deciles and the under-293

estimation of high deciles, or vice-versa. This can be observed for example in section 10,294

direction 1 for which the 10th quantile is underestimated by 2.6 km/h while the 90th quantile295

is overestimated by 8.3 km/h. There might still be an error in the predicted RE for this296

section but it cannot be fixed because the RE is a constant added to all predictions in the297

same section and direction. The most likely cause for this kind of error lies in the estimated298

coefficients. This possible source of error will be investigated in the next section using a299

re-sampling technique that will determine if data from a particular section has a relevant300

effects on the values of the coefficients estimated.301

5 Jackknife coefficients302

A jackknife re-sampling technique (Efron and Tibshirani 1993) is adopted to explore the poor303

predictions obtained for some combinations of sections and directions; we are particularly304

interested in predictions of high and low speed quantiles. We have already discussed in the305

previous section how to compute out of sample predictors for REs. However, the prediction306

of speed quantiles in a new section also requires the model’s coefficients to be estimated for307

the validation sample.308

The use of a jackknife procedure is based on the following observations: (1) the modeling309

approach suggested in this paper involves the fitting of a model on a set of road sections and310

the application of it to another section for which data is not available; (2) some sections are311

poorly predicted by the suggested model but (3) the majority of sections are predicted with312
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remarkable accuracy.313

We are specifically interested in comparing the jackknife coefficients obtained by excluding314

a generic section s and the quality of the forecasts for that section. We hypothesize that315

significant discrepancies among the values predicted and observed indicate the existence of316

one or more of the following problems: (i) inaccuracies in the data, (ii) errors in data collection317

(perhaps these sections have been sampled by operators who did not get proper training,318

and/or did not assess accurately if the vehicle was traveling under free flow conditions), (iii)319

different driving conditions might alter motorists’ behavior, (iv) the omission of important320

covariates that were overlooked and that affect some sections. These scenarios would generally321

cause some sections to be poorly modeled by the approach suggested in this paper and the322

assessment of such conditions is expected to greatly simplify the investigation task as the323

model’s user validates his data.324

In a model that is appropriate for its data, it is expected that the exclusion of any observation325

does not change the estimates of the model coefficients in a relevant way. The re-sampling326

scheme suggested discards a substantial number of observations. This way to proceed makes327

it impossible to directly use the standard re-sampling literature to quantify the effect of a328

specific coefficient, and ultimately to identify the specification issue. Furthermore, the use329

of such a criteria would involve a different threshold for each section due to the variability330

of their size. Simulations could be used to derive a more systematic identification method331

for sections requiring attention, however this is outside the scope of our analysis and we rely332

instead on a qualitative evaluation of the effect of each section on coefficients’ estimates.333

Tables 10, and 11 in Appendix A present the jackknife coefficients used for speed data334

validation and should be read together. Each line corresponds to estimates obtained by335

removing one section, except the first one that contains the estimations on the whole sample.336

Each column provides the estimated coefficients for a specific predictor. The cells in bold337

indicate the coefficients that are very different from the full sample equivalent (outside two338

standard deviations). Ideally, the estimated coefficients in a given column would be stable and339

comparable to the coefficient estimated using the entire sample. Large differences between340

a coefficient estimated by excluding one section and those obtained with the whole sample341

raise concerns about the specific section or the predictor.342

When reading the results, it can be observed that the jackknife coefficients for Z*SRW are343

very similar across the thirty one jackknife samples and are very similar to the coefficients344

estimated on the overall sample, whereas the coefficients for Z*1/R appear to be off only345

for sections 7 and 10. Sections 1, 3, 7, and 36 generate some of the extreme jackknife346

coefficients. We can probably conclude that these sections (1,3,7, and 36) behave according347

to a different model, or that the measurement of predictors and speed data was less reliable348

on these sections. This is also confirmed in the comparison between predition and observation349

reported in the Tables 2 to 9.350
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6 Conclusions351

In this paper we have explored methods to predict speed distributions using mixed linear352

models. Difficulties associated with this problem are twofold. First we rely on model with353

random effects to make prediction on new road sections. Second, we are using normal quan-354

tiles of the dependent variables as predictors.355

We have discussed that it is necessary to observe at least some speed data in the section356

for which decile predictions were computed. To overcome the problem created by the use of357

normal quantiles in the calculation of residuals, we propose the use of an auxiliary model. It358

has been shown how the relationship between this auxiliary model and the full actual model359

can be used in prediction in order to derive the best linear unbiased predictor (BLUP) in360

this context. It was also observed that this method was not performing well when used to361

make random effect predictions for a model that ignored the sampling design of the data,362

but turned out to be very precise when the full sampling design was accounted in the model.363

The approach was further tested to validate the models’ coefficients associated with the vari-364

ables of the model. The estimates obtained were roughly stable except for some variables that365

generated more extreme coefficients for some sections. The sections with extreme coefficients366

were consistently the same for all the affected variables.367

A jackknife technique was used to understand what road sections caused poor predictions of368

the random effects. It was found that most road sections were predicted satisfactorily. Large369

errors in the prediction of random effect were mostly caused by errors in the coefficients of the370

model. Some sections appeared to have a disproportionate effect on the model, suggesting371

that they should be modeled in a different way.372

Overall, this paper has contributed to the transferability of RE models, has identified the373

problems arising in the estimation of Operating Speeds, has developed a theory to calculate374

the best predictors and to validate the results obtained. Future efforts should be directed375

towards the use of the method proposed in practice and possibly to different model types376

that include REs.377

378
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Table 10: Jackknife coefficients - Part 1
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none 79.33 -7.59 -1946.46 20.54 -274.07 -3.46 -1.56 -0.83 -2.88 -0.64 -13.38 13.85
1 79.8 -7.77 -2042.39 25.07 -227.05 -1.95 -2.82 -0.91 -0.79 -1.36 -13.62 13.09
3 79.51 -7.67 -1983.47 22.96 -170.71 -2.49 -1.19 -0.97 -2.03 -0.31 -12.56 14.29
5 79.48 -7.65 -1976.76 19.71 -279.35 -3.38 -2.24 -0.95 -3.1 0.12 -13.41 13.74
7 79.21 -7.55 -2277.82 21.89 -289.06 -3.45 -0.93 -0.83 -2.72 -0.47 -13.36 14.13
8 79.09 -7.5 -1896.77 20.86 -283.21 -3.44 -1.44 -0.83 -2.86 -0.57 -13.36 13.9
9 79.3 -7.58 -1943.43 20.46 -274.26 -3.48 -1.64 -0.84 -2.88 -0.59 -13.4 13.87
10 79.2 -7.54 -1208.28 21.33 -248.33 -3.31 -1.48 -0.81 -2.82 -0.54 -13.34 13.78
11 79.53 -7.67 -1987.44 19.97 -267.14 -3.45 -1.5 -0.8 -2.88 -0.71 -13.37 13.85
12 79.28 -7.57 -1936.44 18.9 -271.29 -3.47 -1.53 -0.82 -2.94 -0.66 -13.37 13.89
13 79.33 -7.59 -1946 21.35 -283.83 -3.46 -1.58 -0.84 -2.88 -0.58 -13.39 13.85
14 79.12 -7.51 -1901.82 20.27 -274.76 -3.45 -1.57 -0.83 -2.91 -0.61 -13.36 13.84
15 79.22 -7.55 -1922.98 20.74 -273.66 -3.45 -1.59 -0.86 -2.88 -0.61 -13.38 13.85
16 79.12 -7.51 -1901.59 21.76 -266.84 -3.43 -1.58 -0.87 -2.83 -0.64 -13.38 13.82
17 79.23 -7.55 -1924.69 20.26 -270.36 -3.46 -1.6 -0.86 -2.88 -0.62 -13.38 13.85
18 79.68 -7.72 -2017.04 21.32 -276.61 -3.41 -1.49 -0.82 -2.84 -0.56 -13.4 13.84
20 78.42 -7.24 -1757.97 19.7 -278.04 -3.52 -1.65 -0.83 -2.93 -0.72 -13.37 13.87
21 78.71 -7.36 -1819.11 21.88 -244.19 -3.32 -1.37 -0.9 -2.78 -0.51 -13.39 13.82
22 79.33 -7.59 -1944.68 20.45 -274.83 -3.46 -1.5 -0.81 -2.94 -0.7 -13.37 13.89
23 80.41 -8 -2168.41 20.52 -276.31 -3.46 -1.55 -0.83 -2.88 -0.64 -13.38 13.86
24 79.33 -7.59 -1945.62 20.49 -273.89 -3.55 -1.54 -0.82 -2.86 -0.66 -13.4 13.84
25 79.73 -7.74 -2028.57 20.52 -273.66 -3.47 -1.57 -0.83 -2.89 -0.66 -13.39 13.85
26 79.58 -7.69 -1997.16 20.52 -273.93 -3.59 -1.46 -0.79 -2.74 -0.71 -13.38 13.88
27 79.48 -8.74 -1976.04 20.47 -269.15 -3.5 -1.59 -0.86 -2.83 -0.59 -13.35 13.85
28 79.09 -7.5 -1895.65 19.77 -272.6 -3.5 -1.67 -0.85 -2.91 -0.7 -13.36 13.85
29 78.93 -7.44 -1863.92 20.07 -267.62 -3.49 -1.65 -0.85 -2.93 -0.73 -13.34 13.86
30 79.37 -7.56 -1954.05 19.1 -214.59 -4.27 -2.05 -0.99 -3.53 -1.15 -13.43 13.63
31 79.52 -7.66 -1983.91 20.34 -256.36 -3.1 -1.63 -0.87 -2.74 -0.71 -13.26 13.93
32 79.47 -7.43 -1973.31 21.44 -295.67 -3.71 -1.6 -0.7 -3.11 -0.74 -13.36 13.82
33 79.78 -7.76 -2037.72 21.32 -276.67 -3.33 -1.5 -0.81 -3.05 -0.6 -13.39 13.83
34 79.34 -7.66 -1947.25 19.84 -275.81 -3.59 -1.67 -0.79 -3.01 -0.76 -13.35 13.87
36 79.39 -7.52 -1958.78 17.03 -257.65 -4.26 -2.33 -0.91 -3.62 -1.11 -13.31 13.82
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Table 11: Jackknife coefficients - Part 2
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none 0.06 0.43 -0.29 -3.52 -0.43 0.07 0.07 1.62 0.41 1.31 1.16
1 0.04 0.26 -0.78 -4.16 -0.3 0.09 0.19 0.11 0.03 2.57 2.52
3 0.16 0.6 -0.82 -6.73 -0.52 0.06 0.03 2.13 -0.3 1.03 1.25
5 0.07 0.45 -0.27 -3.37 -0.4 0.11 0.06 1.71 0.34 1.53 0.87
7 0.07 0.44 -0.86 -4.13 -0.46 -0.08 0.05 1.66 0.04 1.67 1.09
8 0.06 0.43 -0.4 -3.67 -0.43 0.06 0.07 1.62 0.31 1.36 1.17
9 0.06 0.42 -0.31 -3.48 -0.42 0.05 0.07 1.62 0.42 1.33 1.13
10 0.06 0.44 -0.25 -3.77 -0.49 0.13 0.07 1.58 0.5 1.19 1.17
11 0.06 0.43 -0.27 -3.37 -0.49 0.08 0.07 1.63 0.4 1.32 1.12
12 0.06 0.47 -0.24 -3.17 -0.42 0.07 0.08 1.61 0.4 1.35 1.26
13 0.06 0.42 -0.3 -3.75 -0.39 0.07 0.07 1.59 0.4 1.3 1.18
14 0.06 0.44 -0.26 -3.48 -0.42 0.09 0.07 1.6 0.39 1.3 1.22
15 0.06 0.43 -0.29 -3.58 -0.41 0.07 0.07 1.62 0.41 1.29 1.18
16 0.06 0.39 -0.32 -3.78 -0.46 0.07 0.07 1.65 0.41 1.26 1.06
17 0.06 0.42 -0.28 -3.44 -0.42 0.07 0.07 1.63 0.41 1.29 1.17
18 0.06 0.44 -0.3 -3.83 -0.42 0.07 0.08 1.59 0.37 1.39 1.27
20 0.06 0.4 -0.28 -3.18 -0.43 0.07 0.07 1.63 0.44 1.24 1.03
21 0.06 0.46 -0.46 -4 -0.51 0.07 0.07 1.67 0.17 1.38 1.3
22 0.06 0.45 -0.27 -3.53 -0.45 0.06 0.07 1.6 0.41 1.41 1.08
23 0.06 0.42 -0.3 -3.5 -0.43 0.07 0.07 1.61 0.39 1.31 1.14
24 0.06 0.41 -0.3 -3.5 -0.45 0.07 0.07 1.67 0.41 1.34 1.11
25 0.06 0.43 -0.28 -3.52 -0.43 0.06 0.07 1.62 0.42 1.33 1.16
26 0.06 0.44 -0.29 -3.53 -0.48 0.06 0.07 1.59 0.39 1.38 1.08
27 0.06 0.36 -0.33 -3.5 -0.44 0.07 0.06 2.12 0.46 1.33 1.03
28 0.06 0.4 -0.28 -3.19 -0.44 0.08 0.07 1.65 0.43 1.23 1.03
29 0.06 0.43 -0.12 -3.43 -0.45 0.07 0.08 1.65 0.57 1.28 1.14
30 0.05 0.34 -0.37 -2.7 -0.53 0.06 0.1 1.99 0.43 1.44 1.18
31 0.06 0.46 -0.27 -3.39 -0.46 0.07 0.08 1.38 0.38 1.21 1.12
32 0.06 0.38 -0.33 -3.75 -0.41 0.08 0.08 1.76 0.38 1.6 1.13
33 0.06 0.43 -0.31 -3.81 -0.43 0.07 0.08 1.63 0.37 1.41 1.24
34 0.06 0.41 -0.3 -3.19 -0.44 0.07 0.08 1.25 0.39 1.28 1.1
36 0.04 0.43 -0.35 -1.76 -0.38 0.1 0.1 1.81 0.28 0.82 1.29

27



References388

Bassani, M., L. Catani, C. Cirillo, and G. Mutani (2016). “Night-time and daytime oper-389

ating speed distribution in urban arterials.” In: Transportation Research Part F: Traffic390

Psychology and Behaviour 42.1, pp. 56–69.391

Bassani, M., C. Cirillo, S. Molinari, and J.M. Tremblay (2016). “Random effect models to392

predict operating speed distribution on rural two-lane highways.” In: Journal of Trans-393

portation Engineering 142.6, p. 04016019.394

Bassani, M., D. Dalmazzo, G. Marinelli, and C. Cirillo (2014). “The effects of road geometrics395

and traffic regulations on driver-preferred speeds in northern Italy. An exploratory anal-396

ysis.” In: Transportation Research Part F: Traffic Psychology and Behaviour 25, pp. 10–397

26.398

Catani, L., J.M. Tremblay, M. Bassani, and C. Cirillo (2017). “Methodology to backcalcu-399

late individual speed data originally aggregated by road detectors.” In: Transportation400

Research Record: Journal of the Transportation Research Board 2659.1, pp. 1–14.401

Cheng, W., G.S. Gill, T. Sakrani, D. Ralls, and X. Jia (2018). “Modeling the endogeneity402

of lane-mean speeds and lane-speed deviations using a bayesian structural equations ap-403

proach with spatial correlation.” In: Transportation Research Part A: Policy and Practice404

116, pp. 220–231.405

Dimaiuta, M., E. Donnell, S.C. Himes, and R. J. Porter (2011). “Modeling operating speed.”406

In: Transportation Research E-circular E-C151.407

Efron, B. and R.J. Tibshirani (1993). An Introduction to the Bootstrap. Chapman et Hall.408

Figueroa-Medina, A. and A.P. Tarko (2005). “Speed factors on two-lane rural highways in409

free-flow conditions.” In: Transportation Research Record: Journal of the Transportation410

Research Board 1912, pp. 39–46.411

Garber, N. and L. Hoel (2020). Traffic and highway engineering. 5th Edition. Cengage Learn-412

ing.413

Himes, S., E. Donnell, and R. Porter (2013). “Posted speed limit: To include or not to include414

in operating speed models.” In: Transportation Research Part A: Policy and Practice 52,415

pp. 23–33.416

Islam, M.T. and K. El-Basyouny (2015). “Multilevel models to analyze before and after speed417

data.” In: Analytic Methods in Accident Research 8, pp. 33–44.418

Lamm, R., E.M. Choueiri, J.C. Hayward, and Paluri. A. (1988). “Possible design procedure419

to promote design consistency in highway geometric design on two-lane rural road.” In:420

Transportation Research Record: Journal of the Transportation Research Board 1195,421

pp. 111–122.422

McCulloch, C.E., S.R. Searle, and J.M. Neuhaus (2008). Generalized, Linear, and Mixed423

Models. Second. Hoboken, New-Jersey: John Wiley & Sons.424

McFadden, J. and L. Elefteriadou (2000). “Evaluating horizontal alignment design consis-425

tency of two lane rural highways: development of new procedure.” In: Transportation426

Research Record: Journal of the Transportation Research Board 1737, pp. 9–17.427

28



Park, Y.J. and F.F. Saccomanno (2006). “Evaluating speed consistency between successive428

elements of a two-lane rural highway.” In: Transportation Research Part A: Policy and429

Practice 40.5, pp. 375–385.430

Shankar, V. and F. Mannering (1998). “Modeling the endogeneity of lane-mean speeds and431

lane-speed deviations: a structural equations approach.” In: Transportation Research Part432

A: Policy and Practice 32.5, pp. 311–322.433

Tarris, J., C. Poe, J. Mason, and K. Goulias (1996). “Predicting operating speeds on low-speed434

urban streets: Regression and panel analysis approaches.” In: Transportation Research435

Record: Journal of the Transportation Research Board 1523, pp. 46–54.436

29


