POLITECNICO DI TORINO

Repository ISTITUZIONALE

Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration

Original
Organics removal from shale gas wastewater by pre-oxidation combined with biologically active filtration / Tang, P.; Xie, W.; Tiraferri, A.; Zhang, Y.; Zhu, J.; Li, J.; Lin, D.; Crittenden, J. C.; Liu, B.. - In: WATER RESEARCH. - ISSN 0043-1354. - 196:(2021), p. 117041. [10.1016/j.watres.2021.117041]

Availability:

This version is available at: 11583/2895712 since: 2021-04-20T09:59:31Z

Publisher:
Elsevier Ltd

Published
DOI:10.1016/j.watres.2021.117041

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in the repository

Publisher copyright

Elsevier postprint/Author's Accepted Manuscript
© 2021. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/.The final authenticated version is available online at: http://dx.doi.org/10.1016/j.watres.2021.117041
(Article begins on next page)

Organics Removal from Shale Gas Wastewater by Pre-oxidation Combined with Biologically Active Filtration

Peng Tang, ${ }^{\dagger, \hbar}$ Wancen Xie, ${ }^{\dagger+\hbar}$ Alberto Tiraferri, ${ }^{\S}$ Yongli Zhang, ${ }^{\dagger}$ Jin Zhu, " Jing Li," Dong Lin, " John C. Crittenden, ${ }^{\top}$ Baicang Liu ${ }^{*},+$,

${ }^{\dagger}$ Key Laboratory of Deep Earth Science and Engineering (Ministry of Education), College of Architecture and Environment, Institute of New Energy and Low-Carbon Technology, Institute for Disaster Management and Reconstruction, Sichuan University, Chengdu, Sichuan 610207, PR China
\$ Yibin Institute of Industrial Technology, Sichuan University Yibin Park, Section 2, Lingang Ave., Cuiping District, Yibin, Sichuan 644000, People’s Republic of China
${ }^{\S}$ Department of Environment, Land and Infrastructure Engineering, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Turin, Italy
"Petro China Southwest Oil \& Gasfield Company, No. 5 Fuqing Rd., Chengdu, Sichuan 610051, PR China
${ }^{\top}$ Brook Byers Institute for Sustainable Systems, School of Civil and Environmental Engineering, Georgia Institute of Technology, North Ave. NW, Atlanta, Georgia, 30332, USA

[^0]
Abstract

Biological treatment technology is increasingly explored in shale gas wastewater (SGW) treatment owing to its cost effectiveness and requires efforts to improve its efficacy. In this work, ozone and ferrate(VI) oxidation pre-treatment were evaluated to enhance the performance of the subsequent biologically active filtration (BAF) in the removal of organic contaminants. The oxidation improve the SGW biodegradability and organic composition in the presence of high salinity ($\sim 20 \mathrm{~g} / \mathrm{L}$). Due to the degradation activity of microorganisms, the organics removal efficiency in the BAF system was observed to gradually improve and then reaching stability in long-term continuous-mode operation. The removal rate of dissolved organic carbon (DOC) of the ozone-BAF (O_{3}-BAF) and the ferrate(VI)-BAF (Fe(VI)-BAF) systems was 83.2% and 82.8%, respectively, higher than that of BAF alone (80.9%). This increase was attributed to higher activity and content of microorganisms in O_{3}-BAF and $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ systems. The presence of uncultured bacteria of genus Rehaibacterium with high abundance of $7.2-21.0 \%$ was significantly correlated with DOC removal. Also, uncultured bacteria of genus Methyloversatilis (2.24-22.31\%) were significantly correlated with fluorescent organics removal. Results suggest that these two bacterial species have strong ability to degrade organics. More research is needed to understand whether the species were new and their specific function. This study provides valuable suggestions for extracting safe water from SGW with an efficient treatment train.

KEYWORDS: Shale gas wastewater; Biologically active filtration; Ozone; Ferrate

1. INTRODUCTION

With the fast development of the shale gas industry, associated shale gas wastewater (SGW) streams caused by hydraulic fracturing increasingly threaten water ecosystem and human health. In 2016, 6 million tons and 131 million tons of SGW were produced in the Sichuan Basin of China and in the United States, respectively. ${ }^{1,2}$ SGW contains high concentrations of salt, heavy metals, microorganisms, and refractory organics released from the shale formation or as chemical residue of compounds added to enhance hydraulic fracturing. ${ }^{3,4}$ Effectively managing SGW produced from shale gas extraction has become an urgent environmental and engineering issue.

Membrane technologies are usually considered as the most effective tertiary treatment for SGW, but they require significant energy and face serious fouling challenges. ${ }^{4,5}$ A limited number of studies has investigated hybrid systems that apply biological treatment to reduce membrane fouling, and found that biological treatment processes can efficiently control fouling in ultrafiltration and nanofiltration. ${ }^{6}$ Furthermore, cost-effective biological treatment technology is regarded as a high-potential treatment technology for SGW, because the large amount of organics present in SGW is mostly biodegradable. ${ }^{7,8}$ In the past few years, activated sludge, ${ }^{9}$ sequencing batch reactor,,${ }^{10,11}$ membrane bioreactor, ${ }^{12-14}$ microbial mats, ${ }^{15,16}$ moving bed biofilm reactor, ${ }^{17}$ biologically active filtration (BAF) ${ }^{6,18-21}$ and bioelectrochemical system ${ }^{22-26}$ have been evaluated for SGW treatment.

BAF exploits the biofilm attached to filter media to degrade and adsorb organics from the wastewater. ${ }^{3}$ Limited research has shown that BAF can remove organics (72-90\% COD and 72-92\% DOC) from six different SGW generated in basins of USA with varying salinity ($10.5-31.2 \mathrm{~g} / \mathrm{L}$ TDS) and organics content ($85-6360 \mathrm{mg} / \mathrm{L}$ COD and 36-2170 mg/L DOC). ${ }^{6,19}$ The BAF efficiency under different operating conditions (aeration rate, temperature, empty bed contact time, and type of activated carbon) was systematically studied. ${ }^{19-21}$ However, analysis of the microbial community composition and function in BAF is still scarce. Concurrently, the feasibility of BAF in treating SGW needs further evaluation and the mechanism of pollutant migration and transformation in BAF needs more detailed study.

At present, the combination of ozonation and $\mathrm{BAF}\left(\mathrm{O}_{3}\right.$-BAF) has been widely used in water treatment, because ozone can degrade refractory pollutants and improve the performance of the subsequent biological process. ${ }^{27,28}$ Also, biological processes can effectively remove ozonation by-products. This system has never been tested for the treatment of shale gas wastewater and its feasibility is still unclear for this application. Ferrate(VI) or $\mathrm{Fe}(\mathrm{VI})$ has been also successfully used in water and wastewater treatment as a new type of green oxidant. ${ }^{29}$ The redox potential of Fe (VI) is $+0.7-+2.2 \mathrm{~V}^{29}$ The redox potential of ozone is slightly higher than that of $\mathrm{Fe}(\mathrm{VI})$ in solutions of basic $\mathrm{pH} .{ }^{29} \mathrm{SGW}$ typically contains high concentrations of Cl^{-}and Br^{-}, which seriously weaken the oxidation ability and the safety of ozonation. ${ }^{30}$ On the contrary, $\mathrm{Fe}(\mathrm{VI})$ has no known reactivity with halogens, ${ }^{29}$ indicating that $\mathrm{Fe}(\mathrm{VI})$ might
have a certain advantage in oxidizing shale gas wastewater. Similar to ozone, Fe (VI) can degrade refractory pollutants and improve their biodegradability. Nevertheless, there are only a few studies on the combination of $\mathrm{Fe}(\mathrm{VI})$ and biological processes. ${ }^{31-33}$ Ma et al. ${ }^{32}$ found that $\mathrm{Fe}(\mathrm{VI})(1 \mathrm{mg} / \mathrm{L})$ pretreatment significantly increased the removal rate of $\mathrm{COD}_{\mathrm{Mn}}, \mathrm{UV}_{254}, \mathrm{NH}_{4}$ by BAF in treating river water. Besides, a simple comparison of $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ and O_{3} - BAF showed that the $\mathrm{COD}_{\mathrm{Mn}}$ removal rate of $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ was slightly lower than that of $\mathrm{O}_{3}-\mathrm{BAF}$, and the $\mathrm{NH}_{4}{ }^{+}$ removal rate of $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ was much higher than that of O_{3}-BAF. In general, Fe(VI)-BAF has shown interesting potential, but a more systematic and comprehensive assessment of $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ is needed, especially in the treatment of SGW.

Therefore, the objectives of this study are to (i) evaluate the effect of $\mathrm{Fe}(\mathrm{VI})$ and O_{3} pre-oxidation on organics removal; (ii) assess the effect of $\mathrm{Fe}(\mathrm{VI})$ and O_{3} pre-oxidation on the performance of BAF systems; (iii) analyze the composition and evolution of microbial community in such hybrid systems, and explore the dominant and functional microorganisms; (iv) comprehensively analyze the feasibility of $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ in treating SGW compared with that of O_{3}-BAF.

2. EXPERIMENTAL SECTION

2.1. Water Samples and Water Quality Analysis. SGW samples were collected from the Changning shale gas play (Sichuan Basin, China). Due to the high turbidity (>

1000 NTU) of SGW, SGW was pre-treated with coagulation-sedimentation before the subsequent processing. Therefore, the raw water in the article referred to the SGW after coagulation. Aluminum sulfate was chosen as flocculant and the dose was 600 mg / L according to our previous work. ${ }^{34}$ The coagulation step was divided into three stages: rapid mixing at 200 rpm for 1 minute, then slow mixing at 40 rpm for 20 min , and settling for $30 \mathrm{~min} .{ }^{34}$ The water quality parameters of SGW were summarized in Table S2 of the Supporting Information (SI). The methods for the quantification of dissolved organic carbon (DOC), turbidity, pH , chemical oxygen demands (COD), biochemical oxygen demand $\left(\mathrm{BOD}_{5}\right)$, UV absorbance at $254 \mathrm{~nm}\left(\mathrm{UV}_{254}\right)$, total dissolved solid (TDS), and fluorescence excitation-emission matrix (EEM) can be found in our previous articles ${ }^{30,35}$ and in Text S1 of the SI.
2.2. Experimental Setups and Procedures of Pre-oxidation. Ferrate (VI) treatment was one of pre-oxidation method. The dosage of $\mathrm{Fe}(\mathrm{VI})$ was $40 \mathrm{mg} / \mathrm{L}$. The recrystallization method was used in this study to increase the purity of potassium ferrate $\left(\mathrm{K}_{2} \mathrm{FeO}_{4}\right)$ to $>90 \% .^{36-38} \mathrm{The} \mathrm{Fe}(\mathrm{VI})$ pre-oxidation experiment consisted of three stages: rapid mixing at 200 rpm for 2 min , then slow mixing at 40 rpm for 20 min , and settling for 30 min . The supernatant was used as feed water for the subsequent BAF process.

Ozonation was another pre-oxidation method. The dosage of ozone was $80 \mathrm{mg} / \mathrm{L}$, according to our previous work. ${ }^{30}$ Treatment of raw water by pre-ozonation was carried out in batch experiment. In each batch experiment, 1 L raw water was added
into a reactor and oxidized by ozone produced form ozone generator (Beijing Tonglin Co., Ltd., China) at desired flow rate. Before the subsequent BAF treatment, the residual ozone in water was quenched by water bath heating with 30 min at $50^{\circ} \mathrm{C}$.
2.3. Experimental Setup and Protocol of BAF Tests. In the BAF column acclimation process, microorganisms in shale gas wastewater were gradually enriched in activated carbon carrier through sequential batch influent and gradient dilution of raw water, thus forming biofilm on activated carbon. Operation parameters and steps of BAF column acclimation can be found in Table S1 (SI). A carbon source (sodium acetate anhydrous) was added to adjust the $\mathrm{C}: \mathrm{N}$ ratio to $3.5: 1$ of the raw water, which was beneficial to the growth of microorganisms. BAF systems were operated in batch-mode at influent flow rate of $0.14 \mathrm{~L} / \mathrm{h}$ and aerated at a rate of $50 \mathrm{~mL} / \mathrm{min}$. The volume of circulation feed tank was 0.55 L , and 0.5 L raw water was changed every two days. The inner diameter and height of the BAF reactor were 1.4 cm and 80 cm , respectively. The filling height of activated carbon (CPG LH 12×40, Calgon Carbon Co., Ltd., USA) was 45 cm , and the filling mass was about 30 g . The corresponding data and analysis during the acclimation stage are summarized in Figure S2 and Figure S3 (SI).

In the continuous-mode BAF systems, the raw water pre-oxidized by ozone or $\mathrm{Fe}(\mathrm{VI})$ was used as BAF influent to investigate the treatment effect of combined processes of ozone-BAF $\left(\mathrm{O}_{3}-\mathrm{BAF}\right)$ and $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$. The raw water was also used as BAF influent for comparison. Three BAF systems were thus operated in
continuous-mode at influent flow rate of $0.014 \mathrm{~L} / \mathrm{h}$ and aerated at a rate of $10 \mathrm{~mL} / \mathrm{min}$. The backwashing frequency, backwashing flow rate, and backwashing time were 20 days, $0.14 \mathrm{~L} / \mathrm{h}$, and 10 min , respectively.
2.4. Analysis of Biofilm on GAC. At the end of BAF operation, a certain amount of granular activated carbon (GAC) samples were collected from each BAF column to evaluate the activity, relative concentration and growth of the biofilm on GAC through measurement of the oxygen uptake rate (OUR), extracellular polymeric substances (EPS), GAC static adsorption, and using scanning electron microscopy (SEM) combined with energy dispersive X-ray spectroscopy (EDS) analysis. GAC samples were collected from $\sim 15 \mathrm{~cm}$ bed-depth (from the top).

A mass equivalent to 0.3 g GAC was placed into a 150 mL conical flask on a magnetic stirrer. The conical flask was then filled with raw water (about $8 \mathrm{mg} / \mathrm{L}$ dissolved oxygen). A rubber plug with a dissolved oxygen probe was installed on the conical flask to ensure that there were no bubbles. Then, the dissolved oxygen was measured as a function of time under stirring (400 rpm) at $20^{\circ} \mathrm{C}$. The final result was expressed in mg of dissolved oxygen consumed per g of activated carbon per hour $\left(\mathrm{mg}_{\mathrm{O} 2} /\left(\mathrm{g}_{\mathrm{GAC}} \cdot \mathrm{h}\right)\right)$.

Extraction and detection of EPS, which was defined as the sum of polysaccharides and proteins, were conducted using the standard methods, while the specific detection of polysaccharides and proteins was undertaken using the anthrone $/ \mathrm{H}_{2} \mathrm{SO}_{4}$ and Bradford methods, respectively.

Static adsorption experiments were performed on new GAC, used GAC, and used GAC after sterilization to distinguish the adsorption and microbial degradation in each BAF systems. A high pressure steam sterilizer was used to sterilize the used GAC. The operating temperature was $125^{\circ} \mathrm{C}$ and the sterilization time was 20 min . In the static adsorption experiment at $20^{\circ} \mathrm{C}$, the dosage of GAC was $2 \mathrm{~g} / \mathrm{L}$, the stirring speed was 400 rpm and the running time was 72 h . Reaction mixtures were withdrawn at specific time intervals to measure the variation of DOC and UV_{254}.

GAC samples were analyzed using SEM (FE-SEM, Regulug-8230, Hitachi, Japan) and EDS (X-MAX Extreme, Oxford-Instruments, UK) to detect physical and chemical changes on the GAC surface and observe the morphology of biofilm. GAC was prepared for SEM imaging by fixation with 2% glutaraldehyde, dehydration in 20-100\% ethanol, and drying in a freeze vacuum dryer. EDS was applied in tandem with SEM to map and evaluate the deposition of elemental content on the GAC surface throughout BAF treatment.
2.5. Microbial diversity analysis. Through the microbial diversity sequencing of the raw water, the GAC at the end of BAF column acclimation, and the GAC at different times of continuous-mode BAF systems, the temporal and spatial variation of the microbial community and the dominant functional microorganisms were analyzed. Details about microbial diversity sequencing and analysis are presented in Text S2 of the SI and in our previous study. ${ }^{35,39}$ Note that the same amount of GAC was filled into the reactor after sampling.

3. RESULTS AND DISCUSSION

3.1. Effect of Pre-oxidation on Water Quality. Pre-oxidation had a negligible effect on the DOC parameter, shown in Figure 1a. The DOC change upon $\mathrm{Fe}(\mathrm{VI})$ treatment was -2.1%, while that upon O_{3} treatment was $+4.1 \%$, caused by the competing effect of organic matter mineralization and solubilization. More explicitly, pre-oxidation only partly mineralizes the organic content, which would translate into a decrease of DOC values. However, this reaction simultaneously increases the solubility of suspended organic matter and promotes the release of intracellular organic substances from sterilized bacteria, with the effect of increasing the DOC. ${ }^{30}$ The effect of oxidation was instead directly associated with the reduction of other parameters related to organic composition. The UV_{254} removal rates by O_{3} and $\mathrm{Fe}(\mathrm{VI})$ were 13% and 23%, respectively (Figure 1b). As shown in Figure $1 \mathrm{c}, \mathrm{O}_{3}$ and $\mathrm{Fe}(\mathrm{VI})$ removed part of the COD $(9.2 \%-11.8 \%)$ and, most importantly, increased the concentration of $\mathrm{BOD}_{5}(33.2 \%-22.7 \%)$, as well as the value of $\mathrm{BOD}_{5} / \mathrm{COD}$ (47.2\%-39.6\%), suggesting that pre-oxidation significantly improved the biodegradability of SGW. The composition and relative content of fluorescent organic matters in SGW were obtained through fluorescence EEM spectra and FRI analysis method (Figure S4 and Figure 1d). ${ }^{40}$ The soluble microbial by-product-like matters (region IV) and humic acid-like matters (region V) were the dominant fluorescent organic components in SGW. O_{3} had excellent removal effect on all kids of
fluorescent organic matters (74.5\%), while $\mathrm{Fe}(\mathrm{VI})$ only slightly removed fluorescent organic matters (9.4%), mainly acting on soluble microbial by-product-like matters and humic acid-like matters. In summary, the mineralization of organic matters by O_{3} or $\mathrm{Fe}(\mathrm{VI})$ was limited, while pre-oxidation mainly changed the properties of organic matters.

Some interesting phenomena were found in GAC static adsorption experiments of pre-oxidized SGW. In the first 24 h of adsorption, the adsorption rate of DOC in pre-oxidized SGW was practically the same of that measured in raw SGW, as shown in Figure 1f. The same trend was observed for UV_{254} before and after ozonation (Figure 1 g). On the contrary, the adsorption rate and equilibrium adsorption capacity of GAC for UV_{254} in SGW treated by $\mathrm{Fe}(\mathrm{VI})$ was lower than that assessed in raw SGW. The value of UV_{254} mainly represents the content of low molecular weight aromatic compounds. ${ }^{41,42}$ This result might indicate that, as this fraction of organic matter was removed more efficiently by $\mathrm{Fe}(\mathrm{VI})$ than O_{3} (Figure 1b), the affinity or the kinetics of adsorption for other fractions was higher upon oxidation with ferrate. In general, these tests suggested a complex effect of pre-oxidation on organic content and composition. Also, the data evidently indicate that pre-oxidation would not translate into better water quality if followed by simple GAC adsorption in the absence of microorganisms. However, the analysis of organic matter biodegradability upon oxidation suggests that the performance of BAF systems may be improved compared to a raw water not subjected to this pre-treatment step, and this effect is
discussed below.

Figure 1. Effect of preoxidation on (a-e) water quality, (f) DOC adsorption on GAC, and $(\mathrm{g}) \mathrm{UV}_{254}$ adsorption on GAC. The dosages of O_{3} and $\mathrm{Fe}(\mathrm{VI})$ were $80 \mathrm{mg} / \mathrm{L}$ and
$40 \mathrm{mg} / \mathrm{L}$, respectively. The GAC dosage was $2 \mathrm{~g} / \mathrm{L}$.
3.2. Performance of $\mathbf{B A F}, \mathrm{O}_{3}$-BAF, and $\mathrm{Fe}(\mathrm{VI})$-BAF. The variation of DOC and UV_{254} in three BAF systems effluent measured during 60 days of continuous operation is shown in Figure 2a and Figure 2b. In the first 18 days of continuous operation, the DOC removal rate of the three BAF systems was somewhat erratic with the water pre-treated by $\mathrm{Fe}(\mathrm{VI})$ oxidation showing the highest value. With the operation and related strengthening of microbial activity, the removal rate of DOC in all three systems increased and reached stability at values around 80%, specifically with rates that decreased in the order $\mathrm{O}_{3}-\mathrm{BAF}>\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}>\mathrm{BAF}$. Similarly, the removal rate of UV_{254} by three BAF systems was more inconsistent during the initial stage of BAF experiments and reached stability toward the end. Generally, the UV_{254} removal rate of BAF was the highest, while that of $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ was the lowest, consistent with what reported in Figure 1g for static adsorption tests. However, the efficiency of UV_{254} removal by Fe (VI)-BAF was gradually improved during operation, which may be attributed to the continuous enrichment of microorganisms.

Overall, the BAF systems had high COD removal rates (90.7\%-91.4\%) (Figure 2c). In particular, the COD content in effluent from BAF, O_{3}-BAF, and $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ was $48.8,42.0$, and $39.5 \mathrm{mg} / \mathrm{L}$, respectively. The turbidity ($0.42-0.49 \mathrm{NTU}$) of the effluents was also low (Figure 2d). The composition and relative content of fluorescent organic compounds were measured in the effluents of the three BAF systems on the 20th day, 40th day, and 60th day of operation, and the results are
shown in Figure 2e and Figure S4. BAF systems efficiently removed fluorescent organic compounds, and the removal rate increased gradually with the operation. The soluble microbial by-product-like matters (region IV) and humic acid-like matters (region V) were the dominant fluorescent organic components in the effluents.

Figure 2. Quality of the effluents from the BAF systems. (a-b) DOC and UV254 parameters as a function of time during operation: here the larger data points refer to the concentrations (left axis) and the small data points connected by lines to the removal rate (right axis). (c-d) COD and turbidity values of the effluent: here, the bars refer to the value of each parameter (left axis) and the circles to the average removal rate (right axis). (e) Fluorescent organic components at three moments of the BAF operation.
3.3. Biofilm Morphology and Microbial Activity. The results in Figure 3a and Figure S6 indicate the presence of a large amount of microorganisms and of some microbial micelleons on the GAC surface from the three BAF systems. The microorganisms were mainly bacilli, cocci, and filamentous bacteria. Clearly, the microorganisms observed in samples from $\mathrm{O}_{3}-\mathrm{BAF}$ and $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ reactors were far more than those observed in the BAF reactor. As shown in Figure 3b and Figure 3c, the OUR of microorganisms and the concentration of EPS decreased in the order $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}>\mathrm{O}_{3}-\mathrm{BAF}>\mathrm{BAF}$, corroborating that the activity of the microorganism in BAF systems was higher upon pre-oxidation. ${ }^{43,44}$

The adsorption performance of GAC after long-term operation in BAF systems was always lower than that of the new GAC, as presented in Figure 3d. This result is rationalized with the larger density of available sites for adsorption on pristine GAC. In real operation, the lower adsorption of biologically-enhanced GAC would be
compensated by the concurrent degradation of organic matter, which is the main target of this treatment. Interestingly, sterilization of the GAC used in the BAF system without pre-oxidation did not change its DOC removal performance compared to the material analyzed after use and without sterilization. On the contrary, both the adsorption rate and the equilibrium adsorption capacity of sterilized used GAC for DOC were significantly lower than that of used GAC from O_{3} - BAF and $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ systems. This analysis, combined with the observations from Figure 3a-d, suggests that microorganisms in O_{3} - BAF and $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ systems were highly functional and played an important role in the removal of organic matter. This result is attributed to the better biodegradability of pre-oxidized SGW, which helped sustaining a healthier and more active microbial community in the BAF systems.

Figure 3. (a) Surface micrographs of new GAC and used GAC from three BAF systems. (b) OUR of microorganisms and (c) EPS concentration in the used GAC biofilm. (d) Variation of DOC removal in static adsorption experiment with new GAC, used GAC, and sterilized used GAC as adsorbents. The used GAC was collected on
the 60th day of continuous operation of the three BAF systems. The magnification of surface micrographs is $5 \mathrm{k} \times$ or $10 \mathrm{k} \times$. In static adsorption experiment, the GAC dosage was $2 \mathrm{~g} / \mathrm{L}$.
3.4. Microbial Community Analysis. The number of effective sequences, OUTs, alpha diversity indexes, and rarefaction curves for microbial communities in raw water and three BAF systems at different operation times are presented in Table S4 and Figure S8. The richness and diversity of microbial communities in raw water were higher than those in the three BAF reactors. The coverage values and rarefaction curves suggested the sequencing depth were sufficient. ${ }^{45,}{ }^{46}$ Through principal component analysis (PCA) at OUT level (Figure S9), the affinity relationships of microbial community between raw water and three BAF reactors, as well as among the three BAF reactors are revealed. The microbial community in the raw water was vastly different from that in the BAF reactor at 0 day after acclimation process, indicating new dominant microorganisms had been formed in BAF reactors. Also, the microbial communities in the same reactor at different times were similar, and O_{3} seemed to have an effect in affecting more pronounced changes of the microbial community compared to ferrate pre-treatment.

Figure 4 a and Figure 4 b show in details the microbial community composition at the phylum and genus level, respectively. Proteobacteria (30.4\%), Actinobacteriota (18.1\%), Bacteroidota (14.7\%), Firmicutes (12.3\%), Desulfobacterota (9.5\%), and

Synergistota (7.0%) were the major phyla and constituted 92% of bacteria in raw water. Through acclimation, Proteobacteria (98.1%) became the absolute dominant microbial phylum in BAF reactors. Similarly, the major genera in raw water, which also were widely detected in SGW from shale gas wells, ${ }^{46-48}$ were norank_f_Coriobacteriaceae (18.0\%), Marinobacterium (8.7\%), Lentimicrobium (6.0\%), Roseovarius (5.0\%), and Desulfovibrio (4.6\%). Family Coriobacteriaceae is an anaerobic fermentative bacteria within phylum Actinobacteriota. ${ }^{23}$ Marinobacterium is a strict aerobe microorganism capable of utilizing a wide range of carbon sources. ${ }^{49,50}$ Lentimicrobium is a strictly anaerobic bacterium with the function of hydrolyzing organics. ${ }^{51,52}$ Almaraz et al. ${ }^{18}$ reported Roseovarius as an iodine oxidation bacterium, which can promote the formation of large amounts of iodinated organic compounds that would cause serious negative implications to the water environment . Desulfovibrio as a sulfate-reducing bacterium is widely detected in shale gas wastewater, and is associated with the risk of corrosion to shale gas production facilities. ${ }^{47,53,54}$

A large amount of relatively low abundance microorganisms were enriched upon acclimation, with the major genus components being Methyloversatilis (39.1\%), Rhizobium (20.0\%), Rehaibacterium (10.4\%), Acinetobacter (6.3\%), Pseudomonas (4.5%), and Acidovorax (2.9%). During the BAF tests, the communities adapted differently based on the presence and type of oxidation pre-treatment. Consistent with PCA analysis, the microbial communities in the same BAF reactor at different
operation times were similar. Although there were some differences in the microbial community structure of the three BAF systems, the core microorganisms were similar. These were Rehaibacterium, Methyloversatilis, Pseudomonas, Rhizobium, Porphyrobacter, Acinetobacter, Bosea, Roseovarius, Acidovorax and Xanthobacter. Methyloversatilis is a salinity tolerant bacterium with the ability of denitrification and organics degradation. ${ }^{55,56}$ Rhizobium are typical denitrifying bacteria, which widely exists in activated sludge, soil, and wastewater. ${ }^{35,57,58}$ Genus Acinetobacter is related rich functions, such as degradation of organics, denitrification, phosphorus removal, and oxidation of heavy metals. ${ }^{59-62}$ Members of Pseudomonas can degrade organics like toluene and chloroform. ${ }^{63}$ Some research shows that members of Acidovorax could conduct heterotrophic denitrification. ${ }^{64,}{ }^{65}$ In general, SGW contains a large number of microorganisms with ability of degrading organic matter, removing nitrogen, and oxidizing heavy metals. Efficiently taking advantage of these microorganisms for biological treatment has great prospects in SGW management. Furthermore, a large number of anaerobes were eliminated during BAF acclimation process, and new dominant microorganisms were formed with the variation of environmental factors (aeration, variation of TDS, and the addition of sodium acetate).

In order to determine the microorganisms with significant abundance differences between the three BAF systems, we performed biomarker analysis using the linear discriminant analysis effect size (LEfSe) method. As shown in Figure S10, 9 bacterial
clades presented statistically significant differences with an LDA threshold of 3.4. Each reactor had its own characteristic microorganisms whose abundance was higher than that of other reactors. Specifically, norank_o_Bacteroideres_VC2_1_Bac22 and norank_f_Vermiphilaceae were enriched in the BAF reactor without pre-oxidation. Norank_f_Rhodospirillaceae, Gemmobacter, and Rhizobium were enriched in O_{3}-BAF reactor. Instead, Dietzia, Roseovarius, norank_o_ Gammaproteobacteria_Incertae_Sedis, and norank_f_Rhodobacteraceae were enriched in the $\mathrm{Fe}(\mathrm{VI})-\mathrm{BAF}$ reactor.

The correlation analysis between microbial community at genus level (top 50) and environmental variables (organic matter removal rate) is shown in Figure 4c. It was found that Rehaibacterium with the high abundance of $3.0-21.1 \%$ was significantly correlated with DOC removal rate ($\mathrm{P}<0.01$). In a previous study, Rehaibacterium terrae, a thermotolerant and strictly aerobic bacterium was found in geothermally heated soil of Rehai National Park, China. ${ }^{66}$ Rehaibacterium terrae can survive under the conditions of $0-30 \mathrm{~g} / \mathrm{L} \mathrm{NaCl}$ solution and $30-55^{\circ} \mathrm{C}$ and degrade some organics. ${ }^{66}$ One species in the genus Rehaibacterium was detected in our study but could not be defined: the base pair fragments were different from those of Rehaibacterium terrae. This result might indicate that a new species of genus Rehaibacterium was present with the strong ability of degrading DOC. Of course, more research is needed to study this hypothesis and to understand the new functions of this putative species. Mesorhizobium (0.01-0.20\%) were correlated with UV $_{254}$
removal rate ($\mathrm{P}<0.05$). Research studies reported that Mesorhizobium members are halotolerant potential denitrifying bacteria and organics degrading bacteria. ${ }^{67,68}$ In addition, Labrenzia (0.01-1.29\%), Magnetospira (0.01-3.04\%), and SM1A02 (0.01-2.42\%) were correlated with COD removal rate ($\mathrm{P}<0.05$). Bosea ($0.75-3.58 \%$) and unclassified_f_Rhodobacteraceae (0.02-1.25\%) were correlated with EEM removal rate $(\mathrm{P}<0.05)$. Methyloversatilis $(2.24-22.31 \%)$ was significantly correlated with EEM removal rate ($\mathrm{P}<0.01$).
value of $\mathrm{p}<0.05$ and " $* *$ " represents a value of $\mathrm{p}<0.01$.

Figure 4. Bacterial community compositions at (a) the phylum (> 1\%) and (b) the genus level (> 1.5%) in raw water and the three BAF systems at different operation times. (c) Correlation analysis between microbial community at genus level (top 50) and environmental variables (organic matter removal rate). Here, "*" represents a

Implications. O_{3} and $\mathrm{Fe}(\mathrm{VI})$ pre-oxidation can effectively improve the removal efficiency of organics in BAF, which is attributed to higher activity and content of microorganisms in O_{3}-BAF and $\mathrm{Fe}(\mathrm{VI})$-BAF systems compared with BAF. In our experiments, the removal rate of organic matters by BAF systems gradually increased and stabilized, owing to the enhancement of the microbial degradation function, with the enrichment of a large number of microorganisms with specific functions, such as organic matter degradation, nitrogen removal, heavy metals oxidation. For example, Rehaibacterium is significantly correlated with DOC removal rate ($\mathrm{P}<0.01$). Besides, Methyloversatilis is significantly correlated with fluorescent organics removal ($\mathrm{P}<$ $0.01)$.

The oxidation behavior of O_{3} is different from that of $\mathrm{Fe}(\mathrm{VI})$, but both processes can effectively improve the biodegradability of wastewater. However, the mineralization rate and the improvement of organic quality in the effluent of systems upon pre-oxidation with O_{3} and $\mathrm{Fe}(\mathrm{VI})$ were still limited. Combination with other oxidants (such as $\mathrm{H}_{2} \mathrm{O}_{2}$) or with electrooxidation may further improve the oxidation efficiency and the efficiency of the BAF process. Ozonation has feasibility and application value in the treatment of SGW, already at this stage of its technological development. Compared with pre-ozonation, $\mathrm{Fe}(\mathrm{VI})$ pre-oxidation has the potential advantages of easy operation and maintenance, but its application is still under development and should be optimized. ${ }^{32}$ The in-situ Fe(VI) synthesis in wastewater treatment plant through wet chemical or electrochemical method is expected to further
reduce the chemical cost. ${ }^{69}$ It should be noted that the results presented here were obtained at the lab scale, while further studies are needed to evaluate the relevant systems at the pilot and full scales in long-term operation.

ASSOCIATED CONTENT

Supporting Information

The Supporting Information is available free of charge on the ACS Publications website.

AUTHOR INFORMATION

Corresponding Authors

Email: bcliu@scu.edu.cn (Baicang Liu)

ORCID

Baicang Liu: 0000-0003-3219-1924

John C. Crittenden: 0000-0002-9048-7208

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science Foundation of China (52070134, 51678377), Xinglin Environment Project (2020CDYB-H02), and Sichuan University and Yibin City People's Government strategic cooperation project (2019CDYB-25). We would like to thank the Institute of New Energy and

REFERENCES

1. Zou, C.; Ni, Y.; Li, J.; Kondash, A.; Coyte, R.; Lauer, N.; Cui, H.; Liao, F.; Vengosh, A., The water footprint of hydraulic fracturing in Sichuan Basin, China. Sci. Total Environ. 2018, 630, 349-356.
2. Kondash, A. J.; Lauer, N. E.; Vengosh, A., The intensification of the water footprint of hydraulic fracturing. Sci. Adv. 2018, 4, (8), eaar5982.
3. Acharya, S. M.; Chakraborty, R.; Tringe, S. G., Emerging Trends in Biological Treatment of Wastewater From Unconventional Oil and Gas Extraction. Front. Microbiol. 2020, 11, (2203).
4. Chang, H.; Li, T.; Liu, B.; Vidic, R. D.; Elimelech, M.; Crittenden, J. C., Potential and implemented membrane-based technologies for the treatment and reuse of flowback and produced water from shale gas and oil plays: A review. Desalination 2019, 455, 34-57.
5. Tong, T.; Carlson, K. H.; Robbins, C. A.; Zhang, Z.; Du, X., Membrane-based treatment of shale oil and gas wastewater: The current state of knowledge. Front. Env. Sci. Eng. 2019, 13, (4), 63.
6. Riley, S. M.; Oliveira, J. M. S.; Regnery, J.; Cath, T. Y., Hybrid membrane bio-systems for sustainable treatment of oil and gas produced water and fracturing flowback water. Sep. Purif. Technol. 2016, 171, 297-311.
7. Butkovskyi, A.; Bruning, H.; Kools, S. A. E.; Rijnaarts, H. H. M.; Van Wezel, A. P., Organic pollutants in shale gas flowback and produced waters: Identification, potential ecological impact, and implications for treatment strategies. Environ. Sci. Technol. 2017, 51, (9), 4740-4754.
8. Camarillo, M. K.; Domen, J. K.; Stringfellow, W. T., Physical-chemical evaluation of hydraulic fracturing chemicals in the context of produced water treatment. J. Environ. Manag. 2016, 183, 164-174.
9. Zhang, X.; Chen, A.; Zhang, D.; Kou, S.; Lu, P., The treatment of flowback water in a sequencing batch reactor with aerobic granular sludge: Performance and microbial community structure. Chemosphere 2018, 211, 1065-1072.
10. Frank, V. B.; Regnery, J.; Chan, K. E.; Ramey, D. F.; Spear, J. R.; Cath, T. Y., Co-treatment of residential and oil and gas production wastewater with a hybrid sequencing batch reactor-membrane bioreactor process. J. Water Process Eng. 2017, 17, 82-94.
11. Sitterley, K. A.; Silverstein, J.; Rosenblum, J.; Linden, K. G., Aerobic biological degradation of organic matter and fracturing fluid additives in high salinity hydraulic fracturing wastewaters. Sci. Total Environ. 2020, 143622.
12. Kose Mutlu, B.; Ozgun, H.; Ersahin, M. E.; Kaya, R.; Eliduzgun, S.; Altinbas, M.; Kinaci, C.; Koyuncu, I., Impact of salinity on the population dynamics of microorganisms in a membrane bioreactor treating produced water. Sci. Total Environ. 2019, 646, 1080-1089.
13. Sharghi, E. A.; Bonakdarpour, B.; Roustazade, P.; Amoozegar, M. A.; Rabbani, A. R., The biological treatment of high salinity synthetic oilfield produced water in a
submerged membrane bioreactor using a halophilic bacterial consortium. J. Chem. Technol. Biot. 2013, 88, (11), 2016-2026.
14. Abass, O. K.; Zhang, K., Nano-Fe mediated treatment of real hydraulic fracturing flowback and its practical implication on membrane fouling in tandem anaerobic-oxic membrane bioreactor. J. Hazard. Mater. 2020, 395, 122666.
15. Akyon, B.; Stachler, E.; Wei, N.; Bibby, K., Microbial Mats as a Biological Treatment Approach for Saline Wastewaters: The Case of Produced Water from Hydraulic Fracturing. Environ. Sci. Technol. 2015, 49, (10), 6172-6180.
16. Akyon, B.; McLaughlin, M.; Hernández, F.; Blotevogel, J.; Bibby, K., Characterization and biological removal of organic compounds from hydraulic fracturing produced water. Environ. Sci. Proc. Imp. 2019, 21, (2), 279-290.
17. Zhuang, Y.; Zhang, Z.; Zhou, Z.; Chen, M.; Li, J.; Chen, S., Co-treatment of shale-gas produced water and municipal wastewater: Removal of nitrogen in a moving-bed biofilm reactor. Process Saf. Environ. Prot. 2019, 126, 269-277.
18. Almaraz, N.; Regnery, J.; Vanzin, G. F.; Riley, S. M.; Ahoor, D. C.; Cath, T. Y., Emergence and fate of volatile iodinated organic compounds during biological treatment of oil and gas produced water. Sci. Total Environ. 2020, 699, 134202.
19. Freedman, D. E.; Riley, S. M.; Jones, Z. L.; Rosenblum, J. S.; Sharp, J. O.; Spear, J. R.; Cath, T. Y., Biologically active filtration for fracturing flowback and produced water treatment. J. Water Process Eng. 2017, 18, 29-40.
20. Riley, S. M.; Ahoor, D. C.; Cath, T. Y., Enhanced biofiltration of O\&G produced water comparing granular activated carbon and nutrients. Sci. Total Environ. 2018, 640-641, 419-428.
21. Riley, S. M.; Ahoor, D. C.; Regnery, J.; Cath, T. Y., Tracking oil and gas wastewater-derived organic matter in a hybrid biofilter membrane treatment system: A multi-analytical approach. Sci. Total Environ. 2018, 613-614, 208-217.
22. Zhang, X.; Zhang, D.; Huang, Y.; Wu, S.; Lu, P., The anodic potential shaped a cryptic sulfur cycling with forming thiosulfate in a microbial fuel cell treating hydraulic fracturing flowback water. Water Res. 2020, 185, 116270.
23. Zhang, X.; Zhang, D.; Huang, Y.; Zhang, K.; Lu, P., Simultaneous removal of organic matter and iron from hydraulic fracturing flowback water through sulfur cycling in a microbial fuel cell. Water Res. 2018, 147, 461-471.
24. Forrestal, C.; Haeger, A.; Dankovich Iv, L.; Cath, T. Y.; Ren, Z. J., A liter-scale microbial capacitive deionization system for the treatment of shale gas wastewater. Environ. Sci. Water Res. Technol. 2016, 2, (2), 353-361.
25. Forrestal, C.; Stoll, Z.; Xu, P.; Ren, Z. J., Microbial capacitive desalination for integrated organic matter and salt removal and energy production from unconventional natural gas produced water. Environ. Sci. Water Res. Technol. 2015, 1, (1), 47-55.
26. Shrestha, N.; Chilkoor, G.; Wilder, J.; Ren, Z. J.; Gadhamshetty, V., Comparative performances of microbial capacitive deionization cell and microbial fuel cell fed with produced water from the Bakken shale. Bioelectrochemistry 2018, 121, 56-64.
27. Gomes, J.; Costa, R.; Quinta-Ferreira, R. M.; Martins, R. C., Application of
ozonation for pharmaceuticals and personal care products removal from water. Sci. Total Environ. 2017, 586, 265-283.
28. Wang, W.-L.; Cai, Y.-Z.; Hu, H.-Y.; Chen, J.; Wang, J.; Xue, G.; Wu, Q.-Y., Advanced treatment of bio-treated dyeing and finishing wastewater using ozone-biological activated carbon: A study on the synergistic effects. Chem. Eng. J. 2019, 359, 168-175.
29. Sharma, V. K.; Zboril, R.; Varma, R. S., Ferrates: Greener Oxidants with Multimodal Action in Water Treatment Technologies. Acc. Chem. Res. 2015, 48, (2), 182-191.
30. Tang, P.; Liu, B.; Zhang, Y.; Chang, H.; Zhou, P.; Feng, M.; Sharma, V. K., Sustainable reuse of shale gas wastewater by pre-ozonation with ultrafiltration-reverse osmosis. Chem. Eng. J. 2020, 392, 123743.
31. Zhu, J.-H.; Yan, X.-L.; Liu, Y.; Zhang, B., Improving alachlor biodegradability by ferrate oxidation. J. Hazard. Mater. 2006, 135, (1), 94-99.
32. Ma, J.; Li, C.; Zhang, Y.; Ju, R., Combined Process of Ferrate Preoxidation and Biological Activated Carbon Filtration for Upgrading Water Quality. In Ferrates, American Chemical Society: 2008; Vol. 985, pp 446-455.
33. Li, M.; Liang, B.; Shang, J.; Li, J.; Zhang, H., Treatment of Polysilicon Production Wastewater by Ferrate(VI) Microcapsule Oxidation and Biological Aerated Biofilter. Water Air Soil Pollut. 2019, 230, (11), 254.
34. Shang, W.; Tiraferri, A.; He, Q.; Li, N.; Chang, H.; Liu, C.; Liu, B., Reuse of shale gas flowback and produced water: Effects of coagulation and adsorption on ultrafiltration, reverse osmosis combined process. Sci. Total Environ. 2019, 689, 47-56.
35. Tang, P.; Li, J.; Li, T.; Tian, L.; Sun, Y.; Xie, W.; He, Q.; Chang, H.; Tiraferri, A.; Liu, B., Efficient integrated module of gravity driven membrane filtration, solar aeration and GAC adsorption for pretreatment of shale gas wastewater. J. Hazard. Mater. 2020, 124166.
36. Schreyer, J. M.; Thompson, G. W.; Ockerman, L. T., Ferrate Oxidimetry. Anal. Chem. 1950, 22, (5), 691-692.
37. Thompson, G. W.; Ockerman, L. T.; Schreyer, J. M., Preparation and Purification of Potassium Ferrate. VI. J. Am. Chem. Soc. 1951, 73, (3), 1379-1381.
38. Li, C.; Li, X. Z.; Graham, N., A study of the preparation and reactivity of potassium ferrate. Chemosphere 2005, 61, (4), 537-543.
39. Chang, H.; Liu, B.; Wang, H.; Zhang, S. Y.; Chen, S.; Tiraferri, A.; Tang, Y. Q., Evaluating the performance of gravity-driven membrane filtration as desalination pretreatment of shale gas flowback and produced water. J. Membr. Sci. 2019, 587, 117187.
40. Chen, W.; Westerhoff, P.; Leenheer, J. A.; Booksh, K., Fluorescence excitation-emission matrix regional integration to quantify spectra for dissolved organic matter. Environ. Sci. Technol. 2003, 37, (24), 5701-5710.
41. Acero, J. L.; Benitez, F. J.; Real, F. J.; Teva, F., Micropollutants removal from retentates generated in ultrafiltration and nanofiltration treatments of municipal
secondary effluents by means of coagulation, oxidation, and adsorption processes. Chem. Eng. J. 2016, 289, 48-58.
42. Wang, X.; Xia, J.; Ding, S.; Zhang, S.; Li, M.; Shang, Z.; Lu, J.; Ding, J., Removing organic matters from reverse osmosis concentrate using advanced oxidation-biological activated carbon process combined with $\mathrm{Fe} 3+/$ humus-reducing bacteria. Ecotox. Environ. Safe. 2020, 203, 110945.
43. Guwy, A. J.; Buckland, H.; Hawkes, F. R.; Hawkes, D. L., Active biomass in activated sludge: Comparison of respirometry with catalase activity measured using an on-line monitor. Water Res. 1998, 32, (12), 3705-3709.
44. Shi, Y.; Huang, J.; Zeng, G.; Gu, Y.; Chen, Y.; Hu, Y.; Tang, B.; Zhou, J.; Yang, Y.; Shi, L., Exploiting extracellular polymeric substances (EPS) controlling strategies for performance enhancement of biological wastewater treatments: An overview. Chemosphere 2017, 180, 396-411.
45. Fang, D.; Zhao, G.; Xu, X.; Zhang, Q.; Shen, Q.; Fang, Z.; Huang, L.; Ji, F., Microbial community structures and functions of wastewater treatment systems in plateau and cold regions. Bioresour. Technol. 2018, 249, 684-693.
46. Wang, H.; Lu, L.; Chen, X.; Bian, Y.; Ren, Z. J., Geochemical and microbial characterizations of flowback and produced water in three shale oil and gas plays in the central and western United States. Water Res. 2019, 164, 114942.
47. Zhang, Y.; Yu, Z.; Zhang, H.; Thompson, I. P., Microbial distribution and variation in produced water from separators to storage tanks of shale gas wells in Sichuan Basin, China. Environ. Sci. Water Res. Technol. 2017, 3, (2), 340-351.
48. Cluff, M. A.; Hartsock, A.; MacRae, J. D.; Carter, K.; Mouser, P. J., Temporal Changes in Microbial Ecology and Geochemistry in Produced Water from Hydraulically Fractured Marcellus Shale Gas Wells. Environ. Sci. Technol. 2014, 48, (11), 6508-6517.
49. Murali Mohan, A.; Hartsock, A.; Hammack, R. W.; Vidic, R. D.; Gregory, K. B. J. F. m. e., Microbial communities in flowback water impoundments from hydraulic fracturing for recovery of shale gas. FEMS Microbiol. Ecol. 2013, 86, (3), 567-580.
50. GONZáLEZ, J. M.; MAYER, F.; MORAN, M. A.; HODSON, R. E.; WHITMAN, W. B., Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., Two Marine Bacteria from a Lignin-Rich Pulp Mill Waste Enrichment Community. Int. J. Syst. Evol. Micr. 1997, 47, (2), 369-376.
51. Wang, H.; Chen, N.; Feng, C.; Deng, Y.; Gao, Y., Research on efficient denitrification system based on banana peel waste in sequencing batch reactors: Performance, microbial behavior and dissolved organic matter evolution. Chemosphere 2020, 253, 126693.
52. Sun, L.; Toyonaga, M.; Ohashi, A.; Tourlousse, D. M.; Matsuura, N.; Meng, X.-Y.; Tamaki, H.; Hanada, S.; Cruz, R.; Yamaguchi, T.; Sekiguchi, Y., Lentimicrobium saccharophilum gen. nov., sp. nov., a strictly anaerobic bacterium representing a new family in the phylum Bacteroidetes, and proposal of Lentimicrobiaceae fam. nov. Int. J. Syst. Evol. Micr. 2016, 66, (7), 2635-2642.
53. Suri, N.; Gassara, F.; Stanislav, P.; Voordouw, G., Microbially Enhanced Oil

Recovery by Alkylbenzene-Oxidizing Nitrate-Reducing Bacteria. Front. Microbiol. 2019, 10, (1243).
54. Struchtemeyer, C. G.; Davis, J. P.; Elshahed, M. S., Influence of the Drilling Mud Formulation Process on the Bacterial Communities in Thermogenic Natural Gas Wells of the Barnett Shale. Appl. Environ. Microb. 2011, 77, (14), 4744.
55. Lu, Z.; Sun, W.; Li, C.; Ao, X.; Yang, C.; Li, S., Bioremoval of non-steroidal anti-inflammatory drugs by Pseudoxanthomonas sp. DIN-3 isolated from biological activated carbon process. Water Res. 2019, 161, 459-472.
56. Xu, L.; Graham, N. J. D.; Wei, C.; Zhang, L.; Yu, W., Abatement of the membrane biofouling: Performance of an in-situ integrated bioelectrochemical-ultrafiltration system. Water Res. 2020, 179, 115892.
57. Kinh, C. T.; Suenaga, T.; Hori, T.; Riya, S.; Hosomi, M.; Smets, B. F.; Terada, A., Counter-diffusion biofilms have lower N2O emissions than co-diffusion biofilms during simultaneous nitrification and denitrification: Insights from depth-profile analysis. Water Res. 2017, 124, 363-371.
58. Nikolova, C.; Gutierrez, T., Use of Microorganisms in the Recovery of Oil From Recalcitrant Oil Reservoirs: Current State of Knowledge, Technological Advances and Future Perspectives. Front. Microbiol. 2020, 10, (2996).
59. Oberoi, A. S.; Jia, Y.; Zhang, H.; Khanal, S. K.; Lu, H., Insights into the Fate and Removal of Antibiotics in Engineered Biological Treatment Systems: A Critical Review. Environ. Sci. Technol. 2019, 53, (13), 7234-7264.
60. Ren, B.; Li, C.; Zhang, X.; Zhang, Z., Fe(II)-dosed ceramic membrane bioreactor for wastewater treatment: Nutrient removal, microbial community and membrane fouling analysis. Sci. Total Environ. 2019, 664, 116-126.
61. Momba, M. N. B.; Cloete, T. E., The relationship of biomass to phosphate uptake by Acinetobacter junii in activated sludge mixed liquor. Water Res. 1996, 30, (2), 364-370.
62. Tang, X.; Xie, B.; Chen, R.; Wang, J.; Huang, K.; Zhu, X.; Li, G.; Liang, H., Gravity-driven membrane filtration treating manganese-contaminated surface water: Flux stabilization and removal performance. Chem. Eng. J. 2020, 397, 125248.
63. Liden, T.; Santos, I. C.; Hildenbrand, Z. L.; Schug, K. A., Treatment modalities for the reuse of produced waste from oil and gas development. Sci. Total Environ. 2018, 643, 107-118.
64. Willems, A.; Falsen, E.; Pot, B.; Jantzen, E.; Hoste, B.; Vandamme, P.; Gillis, M.; Kersters, K.; Deley, J., Acidovorax, A New Genus For Pseudomonas-Facilis, Pseudomonas-Delafieldii, E-Falsen (Ef) Group 13, Ef Group 16, And Several Clinical Isolates, With The Species Acidovorax-Facilis Comb-Nov, Acidovorax-Delafieldii Comb-Nov, And Acidovorax-Temperans Sp-Nov. Int. J. Syst. Bacteriol. 1990, 40, (4), 384-398.
65. Yang, Y.; Chen, T.; Zhang, X.; Qing, C.; Wang, J.; Yue, Z.; Liu, H.; Yang, Z., Simultaneous removal of nitrate and phosphate from wastewater by siderite based autotrophic denitrification. Chemosphere 2018, 199, 130-137.
66. Yu, T.-T.; Yao, J.-C.; Yin, Y.-R.; Dong, L.; Liu, R.-F.; Ming, H.; Zhou, E.-M.; Li,
W.-J., Rehaibacterium terrae gen. nova, sp nov isolated from a geothermally heated soil sample. Int. J. Syst. Evol. Micr. 2013, 63, 4058-4063.
67. Luján-Facundo, M. J.; Fernández-Navarro, J.; Alonso-Molina, J. L.; Amorós-Muñoz, I.; Moreno, Y.; Mendoza-Roca, J. A.; Pastor-Alcañiz, L., The role of salinity on the changes of the biomass characteristics and on the performance of an OMBR treating tannery wastewater. Water Res. 2018, 142, 129-137.
68. Xu, J.; Gao, W.; Zhao, B.; Chen, M.; Ma, L.; Jia, Z.; Zhang, J., Bacterial community composition and assembly along a natural sodicity/salinity gradient in surface and subsurface soils. Appl. Soil Ecol. 2021, 157, 103731.
69. Ni, B.-J.; Yan, X.; Dai, X.; Liu, Z.; Wei, W.; Wu, S.-L.; Xu, Q.; Sun, J., Ferrate effectively removes antibiotic resistance genes from wastewater through combined effect of microbial DNA damage and coagulation. Water Res. 2020, 185, 116273.

[^0]: * Corresponding author. Tel.: +86-28-85995998. Fax: +86-28-62138325. E-mail: bcliu@scu.edu.cn; baicangliu@gmail.com (B. Liu)

