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On the Non-Uniqueness of Friction Forces and the Systematic Computation 
of Dynamic Response Boundaries for Turbine Bladed Disks with Contacts 

 

Erhan Ferhatoglu†1, Stefano Zucca† 

† Department of Mechanical and Aerospace Engineering, Politecnico di Torino, Corso Duca 
degli Abruzzi 24, 10129 Torino, Italy 

ABSTRACT 

Turbine bladed disks with friction contacts may have a large scattering of dynamic response 

amplitudes in laboratory conditions even for two consecutive tests. The non-repeatability of 

experimental studies might directly be related to a physical phenomenon associated with an 

uncertainty in contact forces. This observation has also been computationally shown in many 

studies with non-unique contact forces and multiple responses obtained for the same set of 

inputs. This study presents a numerical aspect and a deeper insight for understanding the 

variability observed in the periodic vibration analysis of turbine bladed disks with friction 

damping. A novel method based on an optimization algorithm is proposed to systematically 

detect the nonlinear dynamic response boundaries. The main idea of the developed approach 

is to minimize the system loss factor which ultimately determines the damping ability of the 

structure. In the meanwhile, algebraic set of dynamic balance equations are simultaneously 

imposed as the nonlinear constraints to be satisfied. In this way, two cases with the minimum 

values of the positive and negative loss factor determine the upper and the lower boundaries, 

respectively. The method is validated and demonstrated on a realistic turbine bladed disk with 

friction interfaces on the shrouds and on the blade-disk interface. Several case studies are 

performed on different cases by using the state of the art 2D friction model with varying 

normal load. The results show that the limits of the variability range can be successfully 

captured by utilizing the offered optimization algorithm. The great contribution of the study is 

also discussed with some accompanying numerical drawbacks. 

Keywords: Nonlinear Forced Response, Friction Damping, Non-Unique Contact Forces, 

Multiple Solutions, Optimization Algorithm, Turbine Bladed Disks. 
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1. INTRODUCTION 

Remarkable developments have been performed in the field of undesired vibration reduction 

with friction damping for turbo-machinery applications over the last four decades. Since 

detuning of the natural frequencies has been generally unsuccessful to avoid large stresses due 

to high modal density of the rotors and wide spectrum of the excitation force; starting from 

the first studies proposed in 1980s [1-3], intentional implementation of the dry friction into 

large turbine structures has greatly facilitated to deal with high cycle fatigue problems 

resulted by high vibration amplitudes [4]. Engineers in academia and industry have developed 

several design solutions to be able to mitigate large oscillatory loads. Some examples are 

under-platform dampers (UPD) [5, 6], ring dampers [7, 8], mid-span dampers [9, 10] or the 

use of contacts in the shrouds [11, 12] and in the blade-disk interfaces [13, 14]. 

Great success of the friction damping over the years has promoted the researchers to delve 

into further in experimental studies as well as the computational ones. However, interpretation 

of the test results in laboratory conditions have always become challenging due to difficulties 

for large assemblies with sub-components and loss of repeatability in the measurements. 

There are several sources for the ineffectiveness of the real life application tests. Some of 

them may be related to wearing in the contact surfaces, misalignments in the assemblies, 

manufacturing errors, residual stresses and etc. Brake et. al deeply investigated the 

prospective problems for response variability in experimental studies, where the interested 

readers may refer to their paper [15]. One of the most important reasons for the variability in 

the response, which is elaborately studied in this paper, comes from the uncertainty of the 

friction forces. According to the Coulomb’s friction law, tangential contact force value for a 

fully stuck contact should always stay within a range whose boundaries are determined by 

limit values obtained with a multiplication of the surface friction coefficient and the normal 

force on that surface. This fact generates non-unique tangential forces within a range, where 

all of the possibilities are true. In addition to this fully stuck interface; if there is at least one 

another slipping contact in the system, multiple steady state response for totally same system 

parameters is possible due to interaction between normal and tangential directions. It is worth 

here highlighting that the definition of uncertainty in the literature is slightly ambiguous. It is 

used as a very general term to explain different phenomena [15]; for instance, uncertainty of 

friction parameters, uncertainties due to wearing in contact surfaces, uncertainty in the 

measurements and etc. In this study, uncertainty mainly refers to non-uniqueness of tangential 



friction forces. Correspondingly, the dynamic response variability is investigated in the 

context of above described fact. 

The uncertainty phenomenon was analytically shown as the first time by Yang et. al [16, 17] 

on wedge dampers. The authors reported that non-unique steady-state vibration amplitudes 

exist due to uncertainty of the contact forces even if all the input parameters are kept same. 

Detailed investigation is then performed on UPDs by Zucca et. al [18] stating different static 

balance of the damper leads a range of variability in the turbine dynamics. Although this 

phenomenon has been shown in several applications in the last decades [16-20], the 

researchers presented all the nonlinear response curves in their computational studies, 

probably unconsciously, as if they are unique. However, recent experimental investigations 

performed exactly on the same conditions for UPDs [21-23] showed that different initial state 

of the damper in successive tests give rise to a huge variability in vibration amplitudes and 

resonance frequencies. The authors of [23] declared that the large scattering of the variability 

cannot only be explained by micro changes in the contact surface (e.g. microwear) since it 

generally induces a slow changing progress in the response behavior. All of these 

experimental observations prove that the variability obtained in computational studies is not a 

modeling artifact but a real physical phenomenon. The latest numerical researches on 

different systems also point out the same fact [10, 24, 25]. 

Non-unique vibration amplitudes creates a range in frequency response graphs, whose upper 

and lower boundaries take the highest attention in terms of engineering point of view, because 

the turbine components are generally designed with respect to the largest vibration 

amplitudes. For this purpose, Yang et. al [16, 17] offered an analytical technique for wedge 

dampers to estimate the highest oscillatory amplitudes. The authors utilized geometric 

relations in contact state configurations for the computation of extreme friction forces, where 

the detailed information can be found in [26]. Similarly, Ferhatoglu et. al [25] very recently 

developed a numerical approach for the response boundaries of wedge dampers modeled with 

macro-slip contact elements. It is shown that the all possible solutions can be bounded by the 

frequency response curves obtained by utilizing the limit tangential force values. However, 

these two approaches are not suitable for the systems undergoing micro-slip behavior. On the 

other hand, besides finding the limits methodically, one can also search for it manually by 

assigning a set of static displacements as an initial guess. This idea with some filtering 

algorithm is used in [23]. Despite the simplicity of this approach, its feasibility is quite limited 

due to high computational burden. In addition, the selected initial set may not become 



sufficient to be able to capture all potential contact states, which can result to miss correct 

response boundaries. Zucca et. al [20] also proposed a way to compute always the identical 

steady-state response within the variability range.  

There are also various studies in the literature, which use statistical and stochastic approaches 

to be able to predict the response bounds in frictional systems [27-29]. However, these studies 

are not directly relevant to the uncertainty and the variability terms used in the concept of this 

work. It should be noted that the state of the art in the literature for variability studies and for 

the frequency response limits has not reached its maturity level yet. 

Each abovementioned techniques have advantageous aspects but limited capabilities for a 

systematic computation of dynamic response boundaries in the context of non-unique friction 

force uncertainty. In line with this purpose, in this paper, a novel numerical method based on 

an optimization algorithm is proposed for the determination of periodic response boundaries 

of the variability range. Unlike the other studies in the literature, developed method is a 

deterministic and a generalized approach which makes it suitable for all type of turbine bladed 

disk applications having friction damping with a large number of contacts. The method 

particularly uses the system’s damping loss factor as the objective function to minimize 

through an optimization procedure as well as it concurrently satisfies the nonlinear set of 

algebraic equations obtained with Harmonic Balance Method (HBM). With this novel side of 

the method, the upper and the lower boundaries are systematically computed regardless of the 

system’s complexity degree. The method is demonstrated on a realistic large turbine bladed 

disk having the contact on the blade tip with shrouds and in the root with blade-disk 

interfaces. Validation of the proposed approach is firstly performed on shroud contacts by 

comparing the obtained results with those computed with the reference technique [25]. The 

boundaries are then calculated and shown by performing several case studies on the shrouds 

and on the blade-disk interfaces. All of the analyses showed that the method is considerably 

adequate to be able to detect the nonlinear response boundaries. To the best of authors’ 

knowledge, this study offers the first deterministic and systematic technique in turbo-

machinery applications for the computation of nonlinear response limits in the context of 

variability phenomenon due to non-uniqueness of friction force. 



2. METHODOLOGY 

2.1 Dynamics of Turbine Bladed Disks with Contact Interfaces 

Turbine bladed disks are large structures having complex three-dimensional shapes with 

possibly several sub-components as representatively shown in Fig. 1a. It consists of ns totally 

identical sectors divided evenly over a 2π angle under the assumption of absence of mistuning 

effects, i.e. variations of the system properties for each sector. This enables to utilize cyclic 

symmetry by applying proper boundary conditions on the sector interfaces [30]. In this way, 

full bladed disk model can be reduced to only fundamental sector which is an isolated one 

subjected to excitation and contact forces as representatively shown in Fig. 1b. This approach 

greatly facilitates to deal with large models with high computational burden. In this study, the 

blade is assumed tuned and all of the theoretical derivations are presented for the fundamental 

sector. 

 

Fig. 1 (a) Turbine Bladed Disk, (b) Fundamental Sector  
The nonlinear dynamics of the fundamental sector excited by a periodic external force is 

governed by the second order differential equation in time domain as 

 , ,( ) ( ) ( ) )( ()    M q C q K q F F 0 
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Here, M s , Cs  and K s  denote the symmetric and positive definite sector matrices of mass, 

viscous damping and stiffness, respectively. ( )s tq  represents the generalized coordinates 

vector of the fundamental sector. , ( )Fs c t  and , ( )Fs exc t  are the nonlinear contact force and 

periodic excitation force vectors, respectively. It should be noted that contact forces are 

directly dependent to system response. Gyroscopic effects due to Coriolis forces is also 

neglected in Eq. (1). 

The turbine bladed disks are subjected to periodic travelling excitation as the rotor hub rotates 

with an angular velocity, ω. This implies a time delay between adjacent sectors with δt = T/ 

ns, being T is the period of the excitation (T = 2π/ω). Since the excitation is periodic, it can be 

decomposed to its harmonic components as 

 0
, , ,
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0
,F̂s exc  and ,F̂h

s exc  are the real and complex amplitude vectors of the 0th and hth harmonics, 

respectively. H is the truncated harmonic number and i is the unit imaginary number. 

The main interest in the dynamics of the turbine bladed disks is generally the steady-state 

vibration amplitudes which can be assumed periodic, as well. Therefore, steady state response 

and correspondingly the contact forces can also be written with their harmonic components as 
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respectively. Similarly, 0q̂s  and 0
,F̂s c  are the real bias, q̂h

s  and ,F̂ h
s c  are the complex amplitude 

vectors of the hth harmonics.  

In accordance with the Fourier-Galerkin method, substitution of Eqs. (2) and (3) into Eq. (1) 

yield to obtain nonlinear algebraic set of equations in frequency domain as 
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where all the nonlinear equations are coupled to each other via contact forces, 0
,F̂s c  and ,F̂ h

s c . 



In turbo-machinery field, contact interfaces on the bladed disks are widely modeled with 

contacts elements. In this study, two dimensional contact element with variable normal load, 

also the so-called as Jenkins element, is utilized. Due to its simplicity and effectiveness, it has 

been widely used in many studies [10, 18-20, 23]. The contact element is able to capture the 

macro-slip contact behavior in two in-plane tangential directions and the normal motion in 

out-of-plane direction. Three springs perpendicular to each other in each direction are utilized 

to represent the contact stiffness, i.e. kt,1, kt,2 and kn. Two sliders are used in tangential 

directions to pair the contact points. It should be noted that two sliding directions are 

decoupled in the contact element, as representatively shown in Fig. 2a.  

 

Fig. 2 (a) Two Dimensional Contact Element with Variable Normal Load, (b) Alternating 
Frequency/Time Method 

Normal Force, N(t), and Tangential Forces in two decoupled directions, T1,2(t), can be 

calculated in Jenkins model at time instant t as  

      
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where v(t), u(t) and w(t) represent the relative displacement in normal direction, relative 

displacement in tangential direction and the slip motion of the slider, respectively. μ is the 

friction coefficient of the contact surface. It should be noted the slider position of the element 

is an unknown parameter at time t, which prevents to calculate the tangential force value 

directly. In order to overcome this problem, a very simple predictor-corrector technique [12] 

can be utilized to compute tangential forces. In this technique, it is first assumed that the 

contact element has a stick state at time instant t and the position of the slider is arbitrarily 

estimated by guessing an initial value. The assumption is then checked according to the 
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Coulomb’s law. If the assumption is valid, initial guess becomes correct; if not, it means that 

the contact element is under either alternating stick-slip or lift-off state. In this case, the 

computation of the tangential force does not require the information of the slider position as 

can be seen in Eq. (5). Interested readers may refer to [12] for a more detailed investigation. 

Moreover, in order to compute contact forces in frequency domain, ,
ˆ

s cF , Alternating 

Frequency/Time (AFT) algorithm [31] is used. In this approach, time domain nonlinear 

responses, ( )s tq , are first obtained by performing Inverse Fast Fourier Transform (IFFT) to 

Fourier coefficients, ˆ sq . Nonlinear contact forces, , ( )s c tF , are then calculated by using Eq (5). 

Lastly, the forces computed in time domain are transformed back to frequency domain by 

applying Fast Fourier Transform (FFT) to obtain complex amplitudes, ,
ˆ

s cF .The procedure is 

also summarized schematically in Fig. 2b. The simplicity of the approach makes it quite 

feasible to utilize in the nonlinear analysis instead of taking the numerical integration of 

Fourier coefficients. 

2.2 Non-Unique Contact Forces and Multiple Responses 

Computation of tangential contact force in stick state, as explained in the previous section, 

creates a set of correct values within a range. In other words, the uncertainty of the slider 

position makes the tangential force non-unique. In order to understand this phenomenon 

further, consider a fully stuck element whose contact force graph and hysteresis curve are 

representatively shown in Fig. 3. According to the Coulomb’s law, tangential force, T(t), 

should always be confined into a range, whose boundaries are determined by μN(t) and -μN(t), 

for a full stick cycle. It should be noted that although the dynamic part of the tangential force 

is the same, the static component, T0, is non-unique and can vary within the range between 

T0
min and T0

max. As a consequence, an infinite number of configurations is possible, each 

corresponding to a given value of T0 such that T0
min ≤ T0 ≤ T0

max. It is worth noting that non-

unique contact forces exist when the element is fully stuck. If the contact element undergoes 

an alternating stick-slip or an alternating stick-slip-separation motion, the periodic contact 

forces are uniquely defined, as representatively shown in Fig. 4. 



 

Fig. 3 (a) Time Histories of Contact Forces, (b) Hysteresis Curves for a Full Stick Cycle [25] 

 

Fig. 4 (a) Time Histories of Contact Forces for an Alternating Stick-Slip Cycle, (b) Time 
Histories of Contact Forces for an Alternating Stick-Slip-Separation Cycle [25] 

In order to understand the effects of non-unique contact forces on the system response, first 

consider a Jenkins element which is under a harmonic motion of q( )t . Contact force, f ( )c t , in 

steady-state can be generically written as a multiplication of contact element’s equivalent 

stiffness, k eq , and equivalent damping, ceq , terms with the input motion as  

  ˆ ˆ( ) k ( ) c ( ) q( )f eq eqc i q tqt    , (6) 

where q̂  denotes the response amplitude of the input motion. k eq  and ceq  correspond to real 

and imaginary parts of complex describing functions that are introduced for the harmonic 

vibration analysis of nonlinear structures in [32]. They are the physical representation of the 

equivalent stiffness and damping of the contact element for a certain harmonic input motion 
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q( )t . Their equations for a one-dimensional Jenkins element with a constant normal load 0N  

and under a harmonic input motion, i.e. ˆ( ) cos( )q t q t , is given in Appendix. 

For the illustration of the multiple responses, now consider a body with contact interfaces, 

modeled by means of multiple Jenkins elements, as the one shown in Fig. 5. In this system, 

consider a steady-state dynamic configuration, in which elements A and C are in a fully stuck 

cycle, while the other ones (B and D) are undergoing an alternating stick-slip motion. The 

static tangential components T0
A and T0

C are non-unique. This means that the static normal 

components of the slipping contact elements (N0
B and N0

D) can also be non-unique due to the 

static equilibrium of the body. As a result, the equivalent stiffness and damping at contacts B 

and D may change with different values of N0
B and N0

D (see Appendix). This leads to multiple 

contact force vectors 0
,

ˆ
s cF  and ,

ˆ h
s cF  in Eq. (4) and to multiple response levels for the same 

physical system under the identical excitation frequency and forces. 

 

Fig. 5 A Body with Multiple Contact Elements 
It is important to note that multiple responses only exist in case of partial slip. If all the 

contact elements (A-D) are in a full stick cycle, keq  and ceq  do not differ and the solution 

ends up a unique linear response. Similarly, if the contact undergoes a gross-slip motion (i.e. 

all elements enter the slip and/or the separation state during the periodic motion), only one 
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single solution occurs since the variability comes from the fully stuck elements. Interested 

readers can refer to [25] for a more detailed investigation of the geometric coupling and the 

variability phenomenon. 

Multiple solutions can be easily obtained by following different strategies. Some examples are 

to change frequency sweep direction [23], frequency step [10], or initial guess of the static 

displacements in the nonlinear analyses [23]. One another straightforward approach is also to 

change initial guess of the tangential contact force before starting the computation of friction 

forces, as it was proposed in [25]. In this approach, the initial value of the tangential force at 

the very beginning of the predictor-corrector strategy, described in the previous section, is set 

to an arbitrary value so that the Coulomb’s law is satisfied. In a more general way, the 

tangential force value with a stick state assumption can be initially guessed at t = tini for each 

contact element in the system as 

 ( ) ( )ini iniT t m N t  , (7) 

where m is a multiplier coefficient and may be different for each contact element. It should 

also be noted that m can theoretically take a value in a range between –1 and 1, i.e. 1 1m  

. After the predictor-corrector algorithm, if the contact element fully sticks at the end of the 

cycle, one of the multiple tangential forces in the variability range (see Fig. 3) is computed. In 

this way, the non-unique contact forces can be obtained by simply changing the value of m in 

different analyses. Therefore, if there is a partial-slip motion in the contacts, the multiple 

solution of the response becomes possible with non-unique contact forces. 

2.3 Periodic Response Boundaries with an Optimization Algorithm 

Multiple alternatives of possible steady-state solutions bring much more complexity to 

interpretation of the results. Especially, if there is a strong geometric cross-coupling between 

tangential and normal directions on different contact surfaces in the system, such as in wedge 

or mid-span dampers, the variability range can be unpredictably large. For example, 

Ferhatoglu et. al [10] computationally showed in the mid-span dampers that there may be 

even ten times difference between two possible response amplitudes at the same frequency. In 

addition, Gastaldi et. al [23] observed 50 Hz resonance shift in UPDs after two consecutive 

tests in laboratory conditions. All of these computational and experimental studies prove that 

variability phenomenon may create huge effects and cannot be ignored in the design of 

frictional systems. From the engineering point of view, the boundaries always take the core 



attention and need to be determined. In this study, an optimization algorithm aiming to 

minimize the loss factor of the system is developed to detect the highest and the lowest limits 

in steady-state vibration amplitudes.  

First, consider the work done by an external periodic force for the fundamental sector per one 

vibration cycle as 

 
2π/

,
0

T ( ) ( )s exs ct t dtW


  q F . (8) 

For a vibrating system under a steady-state condition, the main energy input to system due to 

periodic excitation is equivalent to the work done, and it is balanced by the sum of dissipated 

energy, disW , and maximum potential energy, potU , for the corresponding response 

amplitude level as 

 dis potW W U   . (9) 

Eq. (9) is valid for a vibration-in-unison pattern, which means all of the system points reach 

their maximum oscillation amplitudes and pass through zero simultaneously. Therefore, the 

kinetic energy at time instant t, when the dynamic response reaches to amplitude, can be 

considered zero and all of the mechanical energy for this case becomes equal to maximum 

potential energy. Reduction of the vibration response in frictional systems is associated with 

the dissipated energy. However, in turbine bladed disks, the amount of dissipated energy is 

not an absolute indicator for a meaningful interpretation of damping present in the system. In 

order to quantify damping, loss factor,  , defined as the proportion of the total energy 

dissipated over one cycle to the maximum potential energy corresponding to the vibration 

amplitude[33, 34] is used, and it is shown as 

 
 2π 2π

visc fricdis

pot blad cont

W WW

U U U


 
 


, (10) 

where viscW , fricW , bladU  and contU  represent the dissipated energy by viscous material 

damping, dissipated energy by friction damping, potential energy of the linear bladed disk 

without any contact and potential energy due to contacts, respectively. 



Dissipated energy by viscous damping and potential energy for one sector of the bladed disk 

are directly related to linear matrices of the system and they can be calculated for one 

vibration period as [33], 

 Hˆ ˆπvisc s s sW    q C q , (11) 

 H1
ˆ ˆ

4blad s s sU  q K q , (12) 

where superscript H represents the hermitian operator.  

fricW  and contU  are the energy terms introduced by the contact. It should be noted that 

friction element has a complex contact force value, where the real part is associated with 

stiffness and imaginary part is related to damping as shown in Eq. (6). Hence, dissipated 

energy by friction damping and the potential energy due to contacts for one vibration period 

can also be computed as [33] 

  H
,ˆπ Im ˆ

fric s s cW   q F , (13) 

  H
,

1
ˆRe ˆ

4cont s s cU  q F , (14) 

respectively. It has been shown in many studies that the loss factor,  , is the absolute 

parameter for quantifying the total damping in the system. Its numerical value in free or fully 

stuck linear cases, in which the only contribution is made by viscous damping, is expected 

considerably small since no dissipation is supplied by friction. When the slip takes place in 

contact interface, it starts increasing and may reach to its local maximum. Then, it can 

decrease to its minimum values. Detailed investigation of the behavior of loss factor with 

respect to changing several parameters can be found in [33, 34]. In this study, a novel 

approach utilizing an optimization algorithm with the minimization of the loss factor is 

developed for the computation of the non-unique response boundaries. 

In the proposed approach, in addition to the unknown response vector, ˆ sq , in Eq. (4), another 

variable unknown vector of multiplier coefficients, m , in which the number of array terms is 

twice of the number of contact elements ( cN ), is firstly defined as 



 
T

1 2 2, , , , ,
c cN Nm m m m   m   . (15) 

These multipliers do not directly appear in the nonlinear set of algebraic Eq. (4) as an 

unknown, but they can be considered as the so-called internal unknowns of the contact 

element. In particular, the ith term of the vector, mi, represents the ratio between the tangential 

force and the Coulomb limit force at the very beginning (t = tini) of the predictor-corrector 

loop used to determine the periodic contact forces in time domain (see Section 2.2), as  

  ( ) ( ) 1,2, ,2i ini i i ini cT t m N t i N    , (16) 

with 1 1im   . It should be noted that the number of the multipliers is the double of the 

number of contact elements, because one 2D Jenkins element consists two uncoupled sliders 

for two tangential directions (see Fig. 2a). If 1D Jenkins element had been used in the system, 

the number of the multipliers would have become equal to the number of contact elements, 

since one 1D Jenkins element has only a single slider in the tangential direction. 

When the number of 2D contact elements in the system is only one, two different multipliers 

(m1 and m2), which are the unknowns corresponding to two uncoupled in-plane tangential 

directions, need to be multiplied with the Coulomb limit force, separately. In this case, the 

response boundaries of the variability range are determined by setting m1,2 = –1 and m1,2  = 1, 

respectively, as developed in [25]. On the other hand, if the number of 2D contact elements in 

the system is more than one, the response boundaries may not be determined manually by 

assigning some particular values to m; because, in this case, a huge number of combinations 

with different m values for each fully stuck element can occur. In order to overcome this 

limitation, we propose an optimization algorithm to determine the response boundaries in 

every case as 

 T T T

minimize

ˆwith respect to [ , ]

subject to
s




q m

R 0

, (17) 

where R  is the residual of Eq.(4), and can be defined as 

  2
, ,

ˆ ˆˆ( ) ( 0,1, , )h h h
s s s s s c s exch ih h H       R M C K q F F  . (18) 



In Eq. (17),   is calculated as shown in Eq. (10) and it is the objective function to be 

minimized. Unknown variables of the optimization scheme are the response amplitudes of the 

fundamental sector, ˆ sq , and the vector of multipliers, m . Residual of Eq. (4), R , gets 

involved into optimization algorithm as the nonlinear constraints to be satisfied. The 

optimization algorithm given in Eq. (17) looks for the global minimum of the loss factor, 

which is the case for the lowest damping achieved in the system. Hence, the results of Eq. 

(17) give the upper boundary of the variability range in response amplitudes. In order to find 

the lower boundary, the same logic can be used, but with the objective function corresponding 

to the opposite sign of the loss factor as 

 T T T

minimize

ˆwith respect to [ , ]

subject to
s




q m

R 0

. (19) 

Nonlinear dynamic analysis of turbine bladed disks is computationally expensive due to the 

large number of contact points usually utilized in the models. The computational burden 

becomes even much higher with an additional optimization scheme since the number of 

function evaluations severely increases. In order to partly overcome this problem, Craig-

Bampton technique [35] to reduce the system matrices and partitioning of the linear and 

nonlinear DOFs in the solution path [2, 30] are used. There are several optimization strategies 

in the literature for different purposes. In this study, the interior-point method is utilized. 

Basically, the interior-point approach approximates the original minimization problem as a 

sequence of equality constraint problems by adding a barrier function. Interested readers may 

refer to [36, 37] for a more detailed description of the main theory of the interior-point 

algorithm. It is not presented here for brevity. Implementation of the optimization process in 

this study is performed by using fmincon built-in function in Matlab. The algorithm uses 

either a direct step or a conjugate gradient step to solve the approximate problem. The 

gradients are numerically computed by forward finite difference method. The convergence 

tolerance in the interior-point algorithm and the error tolerance for the nonlinear constraints 

are set to 10-8. The whole solution process is briefly summarized in Fig. 6. 



 

Fig. 6 Flowchart of the Solution Scheme with the Optimization Algorithm 

It is worth mentioning that the main aim of this study is to develop a correct framework and to 

propose a systematic approach that determines the response boundaries with the help of an 

optimization algorithm. Offering a new numerical optimization method or assessing the most 

suitable optimization strategy for different problems is out of scope in this study. Here, 

interior-point algorithm was sufficient for demonstration purposes of the developed 

methodology with satisfactorily accurate results and a manageable computational cost. 

However, there may be other optimization methods, which are more appropriate than the 

interior-point algorithm, for different applications. None of the optimization algorithms can be 

generalized and would give perfect results for each problem. Nevertheless, it can be said that 

the global optimization algorithms would be better in capturing the global minima of the 

objective function with an additional computational cost. This can be seen as a trade-off 

between robustness and computational burden. Interested readers may also refer to [38] for a 

basic comparison between several optimization strategies on an engineering design problem. 

3. APPLICATION 

In this section, the proposed method is validated and demonstrated on the turbine bladed disk 

depicted in Fig. 1. The model is constructed by using one of the commercial Finite Element 

programs. The following assumptions are made in the model: 
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- The bladed disk is considered totally tuned despite the fact that mistuning effects may play 

an important role on some special turbo-machinery applications. 

- Friction contacts are located at the blade shroud and at the blade root. 

- The bladed disk considered in this study is constructed for the academic purposes and 

imitates a realistic geometry of industrial applications. 

- The stiffening effect on the bladed disk structure due to rotation is neglected and the system 

matrices are assumed constant for the response computations within the entire rotational 

speed interval. 

- Micro changes in the contact surfaces are neglected. Contact stiffness of the Jenkins element 

and friction coefficient of the surface (μ = 0.5) are assumed constant. 

- Pre-loads and excitation forces are applied on discrete points. 

- Linear damping matrix is created with Classical Rayleigh damping with only stiffness 

proportion, i.e. 510s s
C K . 

- The disk is considered rigid and excluded in the analyses. The blade is directly clamped 

from the root. Gyroscopic effects are neglected. 

- In model order reduction with Craig-Bampton approach, reduced system matrices are 

obtained by retaining the force nodes, response monitoring node and contact nodes as the 

master nodes, while 50 modal coordinates are taken into account as the slave coordinates. 

In order to show the general applicability of the method on different applications, possible 

source of friction damping at the shrouds and at the blade roots are investigated separately. It 

should also be noted that the coupled approach with the zeroth and the first harmonics in 

harmonic balance equations is employed in the solution process. Influence of the higher 

harmonics on the system response accuracy is out of scope in this work and only the first 

harmonic is sufficient for the demonstration of the developed method. 

3.1 Response Boundaries due to Friction Damping at the Blade Shrouds  

The method is firstly applied to the shrouded blades, by assuming no friction damping at the 

blade roots. Fig. 7a shows the FE model, boundary conditions, excitation nodes and response 

monitoring node. Since the blade root is clamped, cyclic symmetry only applies through the 



shroud contact nodes. Both static pre-load and dynamic excitation are applied from two 

forcing nodes located at the leading and at the trailing edge of a reference airfoil around 80% 

of the blade span. Two opposite axial static forces in z and –z directions, respectively, are 

applied in order to twist the blade and to establish contact at the shrouds during operation. In 

addition, periodic forces with 100 N amplitudes are applied from the same nodes in all three 

directions in order to excite multiple blade modes. Response node used to monitor the blade 

vibration is located in the center of the shroud.  

 

Fig. 7 (a) Finite Element Model, (b) Single Contact Node on Shroud Surface, (c) Multiple 
Contact Nodes on Shroud Surface 

Validation of the method is initially performed on the system with a single contact node as 

shown in Fig. 7b. This first step allows to prove that the proposed optimization algorithm is 

theoretically correct, since the developed method can capture the reference boundaries for a 

simple case whose solution is already available in the literature [25]. Then, the number of 

contacts is increased and the results for a general case including several contact nodes, as 

depicted in Fig. 7c, are presented. All the analyses are performed around the first bending 

resonance region with the 1st harmonic index. The deformed mode shape with the single 

contact node on the shroud is depicted for the whole turbine bladed disk and the fundamental 

sector in Fig. 8a and Fig. 8b, respectively. For a better illustration, a color variation is used to 

depict the mode deflection levels of different regions. Blue and red colors represent the 
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minimum and maximum deflections, respectively, while the other colors show those in 

between them. In Fig. 8a, the first nodal diameter among the blades can be clearly seen with 

the hypothetical blue line in the horizontal middle section of the assembly. In Fig. 8b, the 

lateral bending mode is highlighted with an interference of the un-deformed (black edge line) 

and the deformed mode shapes (colored). In case of multiple contact nodes, the mode shape 

does not change significantly and it is not shown for brevity. 

 

Fig. 8 (a) Investigated Mode Shape of Fully Stuck Linear System for the Turbine Bladed Disk 
and (b) for the Fundamental Sector 

3.1.1 Application with a Single Contact Node 

A single contact includes one 2D Jenkins element with two tangential forces in radial and 

circumferential directions and one normal force in axial direction. Therefore, the contact has a 

macro-slip motion behavior on the shroud surface in both tangential directions separately. The 

value of the contact stiffness in tangential and normal directions is assumed same (kt,1 = kt,2 = 

kn) and set to 1000 N/μm. It is known from the recent literature [25] that, in the presence of 

two sliders, when one contact pair is fully stuck, while the other one alternates either stick-slip 

or stick-slip-separation; multiple solutions exist due to uncertainty of the tangential forces. In 

these conditions, the response boundaries for macro-slip contact behavior can be determined 

by using limit tangential forces in the fully stuck element. This strategy developed in [25] is 

first used here to obtain the reference boundaries. Two nonlinear analyses are performed by 

(a) (b) 



setting m1,2 = 1 and m1,2 = –1, respectively, to find the upper and the lower boundaries without 

utilizing the proposed optimization algorithm.  

Fig. 9 shows multiple responses with three different static forces applied on the system. Since 

the first mode shape of the fully stuck linear system is the lateral bending mode, 

circumferential displacement amplitudes are shown. Non-unique multiple responses and the 

variability range corresponding to all three static forces are clearly visible. The reason of this 

variability is that while the contact is slipping in the circumferential direction, it stays fully 

stuck in the radial one. Therefore, the uncertainty of the tangential forces in radial static 

component creates variability in dynamic response calculations. In Fig. 9, the reference 

boundaries [25], which is obtained manually with limit tangential forces, and those computed 

with the optimization algorithm are perfectly overlapped, confirming that the choice of the 

loss factor as the objective function of the optimization algorithm is correct. It should also be 

noted that, in frictionally damped systems, each contact surface is characterized by a case-

dependent threshold F0
T value, under which 2D gross slip occurs. Hence, the variability range 

in Fig. 9 shrinks, in agreement with the results presented in [25], as the pre-load F0 decreases 

tending towards the shroud threshold value (approximately 2kN in this case). 

 

Fig. 9 Multiple Nonlinear Responses with the Boundaries 
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In the analyses performed with the reference method, m1 and m2 are kept constant throughout 

the entire frequency range and set to –1 and 1; while they vary in the optimization algorithm, 

since they are additional internal unknowns. For the sake of comparison, the values both m1 

(radial direction) and m2 (circumferential direction) for the case with F0 = 200kN are shown in 

Fig. 10a (lower boundary) and in Fig. 10b (upper boundary). Zero initial guess for both 

multipliers in the optimization is assigned at the very beginning of the analyses and their 

actual values are obtained at the end of the iterative solution process. The only varying 

multiplier coefficient in the optimization algorithm is m1, while m2 values do not change with 

respect to initial guess. This indicates that the algorithm searches the global minimum of the 

loss factor in each analysis by only changing the m1 value for a certain frequency interval, in 

which the initial and end points are marked by blue dots and an alternate stick-slip motion 

occurs in the circumferential direction. 

 
Fig. 10 Values of the Multiplier Coefficients (F0 = 200kN): (a) Lower Boundary Analysis, (b) 

Upper Boundary Analysis 

In Fig. 10, it is also interesting to note that, when alternate stick-slip occurs and the system 

actually becomes nonlinear, the final value of m1 computed by the optimization algorithm is 

different from the reference (m1 = ±1). This result confirms that the reference solution strategy 

proposed in [25] in order to guarantee T(tini) = ± μN(tini), is conservative with respect to the 

optimization algorithm. Intermediate guess values (–1 < m < 1) could be also enough in some 

cases to correctly compute the response boundaries. To confirm this observation, the upper 

response boundary analysis is repeated with the reference method, by setting m1 = m2 = 0.6. 

The same results are again obtained, confirming that, in this case, any initial guess with m1 ≥ 

0.6 and m2 ≥ 0.6 allows computing the upper boundary. 



3.1.2 Application with Multiple Contact Nodes 

Modeling friction interfaces by multiple contact elements introduces more uncertainty, since 

the number of potential fully stuck contact elements increases. As a result, a huge number of 

possible combinations is possible with different non-unique static tangential force at each 

stuck element. Hence, computation of the boundaries with a manual search is totally 

infeasible and impossible in fact. However, the optimization algorithm proposed in this study 

overcomes this problem. 

Fig. 11 shows the linear responses for free and fully stuck cases and the nonlinear response 

curves obtained for different pre-loads, F0. It should be noted that since the turbine bladed 

disk used in this study is constructed just for academic purposes, the static pre-load applied 

represents only the twisting effect to retain contact in the shroud interfaces. Contact stiffness 

for each element in tangential and normal directions is assumed same and arbitrarily assigned 

to a reasonable value of 100 N/μm. 

As can be seen from Fig. 11, there are two response curves given in each case for different 

pre-loads, although the two curves are either fully or partially overlapped in some cases. 

These nonlinear responses are computed by the optimization algorithm by minimizing the 

positive and negative of the loss factor, which results the upper and the lower boundaries, 

respectively. By doing that, the static and the dynamic balance equations are imposed as the 

nonlinear constraints. From a general view, the algorithm successfully satisfies these 

constraints almost in the entire frequency range, while the response jiggles at some particular 

points. This shows a slight convergence problem took place at some specific frequencies 

during the iterations, while the general pattern is captured. This can be considered as one of 

the method’s minor drawbacks despite its theoretical correctness. The optimization algorithm, 

which is implemented by using the fmincon function in Matlab, sometimes struggles to satisfy 

the nonlinear constraints. Nonetheless, the problem here is totally a numerical issue and can 

be overcome with more correct initial guesses. The authors did not cast a veil over this subject 

and think that it does not sharply affect the method’s great success in capturing the 

boundaries. 



 

Fig. 11 Frequency Response Curves with the Boundaries 
It is clearly seen from Fig. 11 that the variability range throughout the entire frequency range 

is considerably small. There is even no variability and the response boundaries totally overlap 

each other for the cases with low-preloads. The deviation slightly increases with higher pre-

loads where the difference between amplitudes and resonance frequencies become more 

apparent. The maximum range in the resonance amplitudes and the resonance frequencies are 

quite limited around 16% and 1% for the cases with 50kN and 8kN, respectively. This range 

is considerably smaller than those obtained in presence of either UPDs [23] or mid-span 

dampers [10]. The main reason for this fact is that UPDs or mid-span dampers used in [23] 

and [10] have two contact surfaces, where the uncertainty of tangential forces on fully stuck 

elements at one side strongly affects the other side’s normal contact forces. This interaction is 

defined as the so-called damper-induced cross coupling, since it occurs due to the damper 

geometry. On the other hand, the frictional interfaces at the shrouds are free from the 

geometric cross coupling, since both surfaces on the left and right sides have the same contact 

kinematics and the same periodic contact forces, although shifted in time, due to cyclic 

symmetry. In this case, the only interaction between tangential and normal contact forces is 

provided by the dynamic coupling present in the system. Therefore, the effect of uncertainty 

is smaller, when compared to those of UPDs and mid-span dampers. This observation is also 

completely coherent with the results presented in [25], where the authors stated that the 
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variability range is higher with wedge dampers (high cross coupling) with respect to flat 

dampers (low cross coupling). 

A further explanation for the low variability range can also be deduced from the steady-state 

contact maps depicted for five nonlinear analyses in Fig. 12. Since the main attention is 

generally focused on maximum amplitudes, contact conditions are presented around the 

corresponding resonance frequencies. Only one contact map is presented for each range due 

to the fact that the response variability is considerably small, which enables contact conditions 

not to differ too much within the range. In Fig. 12a-e, contact nodes at the shrouds are 

highlighted with respect to their contact conditions. Since, as described in Section 2.1, two 

uncoupled sliders in orthogonal tangential directions have been defined at each contact 

element, contact status information are provided for both radial (R) and circumferential (C) 

directions simultaneously. For instance, Fig. 12a illustrates a map at ω = 60.9 Hz for the case 

with F0 = 0.7kN. It is shown that all the nodes alternate stick-slip-separation in radial 

direction, while alternating slip-separation occurs in the circumferential direction. As a 

consequence, unique response exists and there is no variability in the response, as shown in 

Fig. 11. A similar behavior is also observed at higher pre-loads (F0 = 1 kN and F0 = 3 kN) in 

Fig. 12b and Fig. 12c, respectively. On the other hand, when the pre-load increases, some 

contact pairs enter fully-stuck condition during the periodic vibration. For instance, as shown 

in Fig. 12d for F0 = 8 kN, the whole shroud is in full stick in radial direction, while it is in 

gross-slip in the circumferential direction. Hence, the uncertainty in the fully stuck contact 

elements produces non-unique responses. Due to the low coupling between tangential and 

normal forces, the variability of the response is small. As the pre-load further increases (Fig. 

12e, corresponding to F0 = 50kN), the number of fully stuck nodes becomes larger as well as 

the variability range. The variability vanishes when the shroud is in full stick condition in 

both directions and a linear behavior is obtained. 



 

Fig. 12 Contact Conditions on the Frictional Interface of the Shroud 
The optimization algorithm proposed in this study overcomes the limitation of a manual 

search strategy that would imply a large number of simulations without any guarantee of 

detecting the boundaries. Instead, it represents a systematic approach, based on the 

minimization of a physical parameter that determines the damping ability of the system. 

However, the computational effort associated to the optimization algorithm is expected to be 

higher than the one of a single nonlinear analysis. Table 1 shows a performance comparison 

in terms of total number of iteration (Niter), total number of function evaluations (Neval) and 

computational times between the analyses of a manual one (without optimization) and 

boundaries (with optimization). The values are presented for the overall computation of the 

analyses characterized by 350 frequency points within a quite wide frequency range (see Fig. 

11). All the analyses are performed by a computer with a 4–core processor (Intel(R) Xeon(R) 

CPU E3–1245 v5 @ 3.50 GHz) and 32 GB RAM. It can be noted that the total number of 

iterations and function evaluations are higher when the optimization algorithm is used. This 

also makes the computational cost more expensive. It roughly increases between 2.5 – 7 times 

for the analyses with different pre-load computations. There is no significant variation 

between lower and upper boundary analyses since the variability range is small. It should also 

be noted that fmincon function of Matlab is a black-box for the user. It uses either a direct step 

or a conjugate gradient step to solve the problem. On the other hand, the manual analysis is 

classically performed by using Newton Raphson with Arc-length Continuation technique. All 
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the jacobian matrices needed in the iterations for both cases (with and without optimization) 

are computed numerically with forward finite difference method. It is worth noting that all of 

the quantitative values shown here is system dependent and they may considerably vary in 

different systems with a more/less contact elements. 

Table 1 Performance Comparison of the Analyses 

F0 
[kN] 

Niter Neval Comp. Time [min] 
Manual 
Analysis 

Lower 
Boundary 

Upper 
Boundary 

Manual 
Analysis 

Lower 
Boundary 

Upper 
Boundary 

Manual 
Analysis 

Lower 
Boundary 

Upper 
Boundary 

0.7 1.7x103 2.7x103 2.6x103 3.6x105 6.1x105 5.9x105 20 54 52 
1 5.9x102 2.2x103 3.5x103 1.6x105 5.1x105 7.8x105 10 46 71 
3 6.3x102 2.7x103 2.3x103 1.7x105 6.1x105 5.2x105 10 56 49 
8 1.1x103 3.5x103 2.9x103 2.5x105 7.6x105 6.5x105 15 72 62 
50 3.7x102 1.6x103 1.9x103 1.3x105 3.8x105 4.4 x105 8 36 39 

 

3.2 Response Boundaries due to Friction Damping at the Blade Root 

In the second case scenario, the blade is assumed to be cantilevered with contact elements (no 

engaged shrouds), in which the only source of friction damping is at the blade root. Since the 

disk is modeled as a rigid body, the contact elements (kt,1 = kt,2 = kn = 1000 N/μm) couple the 

blade root directly to ground and the blade is a free-free beam without any cyclic symmetry 

boundary condition applied. Friction surfaces and the location of the contact nodes on each 

side are shown in Fig. 13. In order to reduce the number of contact nodes and therefore the 

calculation time, only one lobe of the fir-tree root is used to connect the blade to the ground 

and 6 contact nodes per side are selected. On both root sides, tangential displacements in u1 

direction are parallel to rotation axis of the bladed disk, while tangential displacements in u2 

acts in the orthogonal direction, being v the normal displacement direction. A radial static 

force, corresponding to the centrifugal force of the blade, is applied at the forcing and 

response nodes. In addition, the same periodic excitation provided in the previous case is also 

applied here. 



 

Fig. 13 (a) Contact Surfaces on the Blade Root, (b) Contact Nodes on the 2nd Surface, (c) 
Contact Nodes on the 1st Surface 

The blade’s first bending modes in circumferential and axial directions (see Fig. 14) are 

investigated in order to show the applicability of the method at different resonance regions, 

characterized by different kinematics at the friction contacts. In order to activate the 

nonlinearity at the contact, two different values of radial force are applied in the two cases: 

500 kN and 30 kN for the first and the second modes, respectively. 
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Fig. 14 (a) The 1st Bending (circumferential) Mode Shape, (b) The 2nd Bending (axial) Mode 
Shape 

In Fig. 15a and Fig. 15b, the nonlinear displacement amplitudes of the response node are 

shown around the first (circumferential) and the second (axial) resonance, respectively. For 

reference, in both cases, the linear response of the fully stuck blade is also shown. It should be 

noted that these boundaries represent the theoretical limits that the dynamic response may 

reach and multiple responses are possible in between them. It is evident that for both 

resonances, the variability of the response is much larger than the one for the shroud contacts, 

in terms of vibration amplitudes (8 times for the 1st resonance; 2 times for the 2nd resonance) 

and frequency shifts (2% and 5%, respectively). There are two main reasons for such a wide 

variability range. The first one is the geometric coupling between the tangential direction (u2) 

of one root side and the normal direction (v) of the other one. This creates more interaction 

between the contact forces, hence increases the effect of non-unique static tangential forces on 

the response computation. The second one is the slip behavior at the contact surfaces. In order 

to explain this further, the contact status at different resonances is investigated in Fig. 16a-d. 

The left and the right contact surfaces of the root are simply sketched, where the contact 

nodes are shown and their status is highlighted. A large partial-slip characterizes both contact 

surfaces at each resonance. In all cases, almost half of the nodes are fully stuck in both local 

u1 and u2 directions. In Fig. 16a-c, the other half mostly alternates stick-slip in u2 direction 

(a) (b) 



with a full stick motion in u1 direction. There is full separation at some nodes in Fig. 16d, 

which implies a loss of stiffness with a considerable resonance shift (see lower boundary in 

Fig. 15b). 

 

Fig. 15 (a) Responses around the 1st resonance, (b) Responses around the 2nd resonance 

 

Fig. 16 Contact Conditions on the Friction Interface of the Blade Root 
In Fig. 16, it is interesting to note that the number of contact nodes that undergo an alternate 

stick – slip motion is higher at the upper boundary than at the lower one. This can be puzzling 

since the amplitudes are much higher in the former configuration. However, it should be 
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stressed that the amount of time that contacts spend at each contact state considerably differs 

in the two cases. For instance, considering the map in the upper boundary calculation around 

the 1st resonance region (Fig. 16a), only one slipping node (at the right side of the root) spends 

20% of its periodic vibration cycle in slip state, while it stays 80% in stick state. The rest 

slipping nodes are actually almost fully stuck (1% and 99% for slip and stick states, 

respectively). This situation provides a very small amount of damping in the system. On the 

other hand, in Fig. 16b, all slipping nodes spend approximately 65% and 35% of their cycles 

in slip and stick states, respectively. Therefore, although the number of slipping node is higher 

in the former, more damping is provided in the latter. 

Another valuable information about the results can be extracted by quantitatively tracking the 

loss factor computed during the analyses, since it is the ultimate parameter that determines the 

total damping in the system. Fig. 17a and Fig. 17b illustrate the loss factor, used as the 

objective function in the optimization process, for the first and the second resonance regions, 

respectively. The lower boundary is characterized by higher loss factors than the upper one. 

This result is relevant since the response is more damped in the former, as shown in Fig. 15. 

In Fig. 17a, the loss factor for both boundaries is almost constant. However, this does not 

mean that the dissipated energy does not change in the system. Because, the loss factor itself 

is the ratio between the amount of dissipated energy over the stored one, as defined in Eq. 

(10). All the curves except the blue one in Fig. 17a also show a bumpy behavior around the 

corresponding resonance frequencies, which indicates that slip begins and dissipated energy 

increases in the system. On the other hand, in the frequency interval considered, slip is always 

present for the lower boundary around the first resonance region. This is why the blue curve 

of Fig. 17a does not have such kind of behavior, only showing a straight behavior with some 

jumps at some specific frequencies. It is worth stating here that, although the optimization 

algorithm successfully satisfies the nonlinear constraints, which means no convergence 

problem takes place, it finds some local minimum points in these frequencies. Actually, 

optimization algorithms are generally dependent to initial guess and they may converge to a 

local minimum point instead of global minimum solutions. The same phenomenon is 

observed here in this study, as well. Although this effect is not too impactful in this specific 

case, there may be some other applications where this becomes more relevant. In those 

situations, one of the easiest remedies may be to change the initial points in order to be in the 

basin of attraction of the global minimum. This can be achieved by changing the step size 

and/or the sweep direction of the frequency. Another way is to perturb the objective function 



and constraints at various nearby points to check if better results can be obtained than the 

computed one. Moreover, computing the hessian matrix analytically may also help to obtain 

correct results, which requires a more sophisticated and further effort in the calculation of 

gradients. One of the exact solutions is to utilize a global optimization method, where an 

accompanying drawback of more expensive computational burden is accepted. 

 

Fig. 17 (a) Change of Loss Factor around the 1st resonance region, (b) Change of Loss Factor 
around the 2nd resonance region 

As in the previous section, performance comparisons are presented in Table 2 for each 

analysis. Since the frequency interval considered here (see Fig. 15) is narrow compared to 

shrouded blade case, the number of solution points is smaller (125 and 65 points for the 1st 

and the 2nd resonance, respectively). The optimization algorithm is considerably more 

expensive than the single non-linear analysis. This is expected since the number of iteration 

and function evaluation significantly increases in the optimization. It is also interesting to note 

that the lower boundary calculation takes more time than the upper one’s since the contact in 

the latter is fully stuck for a larger frequency interval. This provides a unique response in most 

of the analysis and the algorithm can detect the upper limit faster. On the other hand, in the 

computation of lower boundary, the partial-slip behavior in the contacts is observed for a 

wider frequency range. Thus, the optimization algorithm makes a significant number of 

iterations in the search for the global minimum, which increases the computational burden. 
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Table 2 Performance Comparison for Different Resonances 

 
Niter Neval Comp. Time [min] 

Manual 
Analysis 

Lower 
Boundary 

Upper 
Boundary 

Manual 
Analysis 

Lower 
Boundary 

Upper 
Boundary 

Manual 
Analysis 

Lower 
Boundary 

Upper 
Boundary 

1st Res. 1.9x102 3.2x103 5.0x102 3.2x104 4.4x105 8.2x104 1.5 41 7 
2nd Res. 1.1x102 6.0x102 3.4x102 1.8x104 8.8x104 5.3x104 1 7.5 5 

It is shown in the case studies that the developed method is able to capture the boundaries 

systematically. However, the response curves computed with the reference method [25] may 

still attract the reader’s attention, in case it will also work for systems with more than two 

contact elements. The blade root case study suits the best for this purpose, since the variability 

range is extremely large. Fig. 18 shows the displacement amplitude responses obtained with 

the reference method, in addition to the ones already given in Fig. 15a. The magenta and the 

green curves represent the nonlinear response (NLR) obtained by keeping the multiplier 

coefficient m constant at 1 and -1, respectively, for the entire frequency interval. Hence, the 

initial guess for the tangential contact force (T(tini)) becomes μN(tini) and -μN(tini) for two 

different analyses, respectively, as proposed in [25]. As can be seen in Fig. 18, the reference 

method [25] cannot capture the boundaries, which further highlights the advantage of the 

developed approach in this paper. 

 

Fig. 18 Response Curves with the Optimization Algorithm and the Reference Method [25] 
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4. CONCLUSION 

Structural dynamics community struggles to reasonably explain the non-repeatable data 

observed in the experiments of frictional systems. The main reason can be a simple physical 

fact: the uncertainty phenomenon due to non-unique contact forces. This uncertainty, which 

has been mostly ignored more than two decades in the literature, may provide a large response 

variability range, whose boundaries are of the utmost importance from the engineering point 

of view. In this study, a new numerical approach to determine the response boundaries within 

the variability range is developed. The method is a generalized technique that utilizes an 

optimization algorithm to minimize an objective function, being the loss factor of the dynamic 

system. It is applicable to the different bladed disk configurations, characterized by different 

friction damping systems, such as blade roots, friction dampers, shrouds, etc. The method is 

validated and demonstrated on a realistic example by investigating the contact interfaces on 

the shrouds and on the blade-disk interfaces of an academic bladed disk. The results prove 

that the method is capable of capturing the periodic response boundaries. In addition to the 

superior performance of the method, some observations are made throughout the study and 

they can be summarized as follows; 

- Variability range only exists if partial slip is achieved during vibration. In case of fully stuck 

or gross-slip motion, the uncertainty is lost and a unique response exists. 

- Variability range becomes considerably large if the interaction between tangential and 

normal components is high due to geometric coupling between the contact surfaces that can 

dissipate energy by friction, as for blade roots and wedge dampers. Therefore, if the main aim 

is to avoid the uncertainty during operation, non-interacting frictional surfaces that reduce the 

geometric coupling should be preferred in the design. 

- The proposed optimization algorithm successfully determines the response boundaries with 

an additional computational burden when compared to a single nonlinear analysis. This is 

quite natural for the optimization processes since the number of function evaluations 

significantly increases as well as the number of iteration. One possible remedy for this 

unavoidable consequence is to implement the proposed method into nonlinear modal analysis 

where the resonance response amplitudes with frequencies can be tracked with the nonlinear 

mode. This is still an open research area and requires further investigation. 

- The aim of the proposed method is to find the global minimum of the loss factor. However, 

optimization algorithms are generally strongly dependent on the initial guess, which can raise 



robustness problem in different analyses. In particular, when the variability range is large, the 

optimization methods might miss the global minimum and get stuck in one of the local ones. 

In this study, an interior point algorithm is implemented by using fmincon built-in function in 

Matlab. Although jumps are sometimes observed, it can be generally considered successful as 

validated in the results section. 

- Dynamic algebraic equations, obtained by applying the HBM, are supplied to the algorithm 

as the nonlinear constraints to be satisfied. However, when the initial conditions are weak, the 

solution may converge to infeasible points. Since fmincon is a black-box to user, an external 

modification to iteration processes in the nonlinear constraints is limited. It uses either a direct 

step or a gradient based solution technique. In this study, the hessian and gradient matrices are 

numerically computed by using forward finite difference method. 

To the best of authors’ knowledge, the method proposed is the first generalized approach to 

determine the response boundaries in the context of variability phenomenon. It is applicable 

and suitable for real life turbine bladed disks with several contacts, although a large number 

of contact points brings much more complexity and uncertainty to the system with possible 

negative consequences in terms of convergence. Nonetheless, the authors think that all of 

these challenges are mainly computational aspects and that the theory of this study represents 

a very strong framework for the prospective further studies. 

APPENDIX 

The analytical expressions of the equivalent stiffness and damping terms of a one-dimensional 

Jenkins element with a constant normal load, 0N , under a single harmonic input motion, i.e. 

ˆ( ) cos( )q t q t , are defined as 

  
full stick 0 full stick

k and c ,sin 2 4
stick-slip 1 stick-slip

ˆ ˆ2
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0 0
eq eqt
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k N N

q k q
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 

 
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where 
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