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ABSTRACT Increasing traffic demands are causing network operators to adopt disaggregated and open
networking solutions to better exploit optical transmission capacity, and consequently enable a software-
defined networking (SDN) approach to control and management that encompasses the WDM data transport
layer. In these frameworks, a quality of transmission estimator (QoT-E) that gives the generalized signal-
to-noise ratio (GSNR) is commonly used to compute the feasibility of transparent lightpaths (LP)s,
taking into account the amplified spontaneous emission (ASE) noise and the nonlinear interference (NLI).
In general, the ASE noise is the main contributor to the GSNR and is also the most challenging noise
component to evaluate in a scenario with varying spectral loads, due to fluctuations in the optical amplifier
responses. In this work, we propose a machine learning (ML) algorithm that is trained using different
ASE-shaped spectral loads in order to predict the OSNR component of the GSNR; this methodology is
subsequently used in combination with a QoT-E in the lightpath computation engine (L-PCE). We present
an experiment on a point-to-point optical line system (OLS), including 9 commercial erbium-doped fiber
amplifiers (EDFA)s used as black-boxes, each with variable gain and tilt values, and 8 fibers that are
characterized by distinct physical parameters. Within this experiment, we receive the signal at the end of
the OLS, measuring the bit-error-rate (BER) and the power spectrum, over 2520 different spectral loads.
From this dataset, we extract the expected GSNRs and their linear and nonlinear components. Through
joint application of a ML algorithm and the open-source GNPy library, we obtain a complete QoT-E,
demonstrating that a reliable and accurate LP feasibility predictor may be implemented.

INDEX TERMS Machine learning, optical communications, erbium doped fiber amplifier (EDFA), Raman
scattering, quality of transmission (QoT).

I. INTRODUCTION

AS CAPACITY and traffic demands continue to
increase [1], network operators have started to

look towards innovative solutions that exploit existing

infrastructures, in order to maximally increase transmission
speeds and capacities [2], [3]. In particular, disaggregated
and open infrastructures have been identified as solutions that
afford networks with greater degrees of flexibility and allow
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multi-vendor approaches to be realized [4]�[6]. In these
regimes, a software-defined networking (SDN) approach to
optical network control and management may be imple-
mented, with lightpaths (LP)s being assigned dynamically.
This allows the wavelength division multiplexed (WDM)
optical transport to be implemented in a fully virtual fash-
ion with a common application programming interface (API),
in order to independently manage network subsystems and
components [7]. To achieve this, a quality of transmission
estimator (QoT-E) must be used to compute the generalized
signal-to-noise ratio (GSNR) of transparent LPs to assess
network performance before, after and during deployment,
enabling implementation of the lightpath computation engine
(L-PCE). Operating under the assumption that LPs are addi-
tive white Gaussian noise (AWGN) channels, the GSNR
includes the accumulations of both the amplified sponta-
neous emission (ASE) noise that arises from the amplifiers,
and the nonlinear interference (NLI) noise that is induced by
the fiber propagation [8], with the interaction between these
two contributions being negligible in terrestrial networks [9],
[10]. This approach has been extensively validated, in partic-
ular a reliable QoT estimation is provided by the open-source
GNPy project [11], which is able to accurately simulate these
propagation impairments with a small computational over-
head, given sufficient information about the system under
investigation [12], [13].

To prevent downtime, network operators must ensure that
the QoT never falls below a given lower bound, which has led
to the implementation of design margins that quantify uncer-
tainties on the QoT degradation. In many cases these margins
have risen to multiple dB as a result of conservative over-
estimations [14] � reducing the uncertainties contributing to
these margins may enable a significant traffic increase with-
out any changes to the network configuration. An overview
of the various classifications of margins and their contribu-
tors is presented in [15]. In this work, we consider a partially
disaggregated optical network with a SDN approach to con-
trol and management [16], [17]; the network is constructed
from disaggregated re-configurable optical add-drop mul-
tiplexers (ROADM)s [4], [18], connected by independent
optical line systems (OLSs) that include the degrees of
the ROADM multiplexer/demultiplexer, fibers, and ampli-
fiers (booster, in-line and pre-amp). These OLSs transport
colored WDM optical tributary signals [19] from ROADM
to ROADM upon transparent LPs, with each OLS indepen-
dently orchestrated using the SDN controller [20]. In this
framework any LP can be separated into the OLSs that are
traversed during signal propagation; crucially, the total QoT
may be calculated using the knowledge of each QoT con-
tribution arising from these OLSs. We focus our study on
estimating the GSNR over one of these domains and inves-
tigating the fluctuations in signal quality that arise when
varying the spectral load.

In general, the main contributor to the LP QoT degradation
is the ASE noise [21], [22], which depends on the working
points of the erbium-doped fiber amplifiers (EDFA)s within
the OLSs. Given the different signal power dependencies of

the ASE and NLI contributions, in an optimal working point
scenario the former is the most significant contributor to
the GSNR degradation, as it is twice the NLI. Minimizing
the uncertainty on ASE noise is an ideal target for mar-
gin reduction, as its magnitude depends upon the spectral
load, which includes non-trivial effects such as spectral hole
burning [23], [24]. A naive characterization of the ampli-
fiers to find these ASE noise contributions would require
investigation of all plausible spectral load configurations
before the LP is established, which is unfeasible for almost
all practical scenarios. Instead, this problem represents an
ideal scenario for the application of machine learning (ML),
allowing the relation between the ASE noise generated by
amplifiers present within the LP for each spectral load to
be deduced, subsequently enabling the design margin to be
significantly reduced. This may be achieved by collecting
a dataset of the OLS responses to various spectral loads
in order to train a ML algorithm, allowing a QoT-E to be
calculated for both untested spectral load configurations and
LPs which have not yet been explored. Subsequently, this
ML approach may be combined with a sufficiently accurate
QoT-E that accounts for NLI contributions � in this way,
the QoT impairments that are produced when a new LP is
established may be accurately predicted for arbitrary spectral
load configurations.

In this work we perform an experimental validation of
this methodology, obtaining the GSNR at the termination
of a non-transparent, point-to-point optical amplified line,
containing 9 erbium-doped fiber amplifiers (EDFA)s, each
with distinct but fixed gain and tilt values, and 8 fibers,
each distinguished by a unique set of physical parame-
ters. Besides the GSNR measurements, we also measure
the signal and ASE noise powers at the termination of the
OLS, obtaining a dataset that is used to train a deep neural
network (DNN) over 2520 different measured spectral loads
� providing OSNR predictions that may be used to reduce
uncertainties that arise from amplifier response fluctuations.
Combining these OSNR predictions with an accurate model
of the NLI implemented in the GNPy engine provides a
precise estimation of the total GSNR within the OLS under
consideration.

This work is organized as follows: In Section II an
overview of related works is presented. In Section III we
outline the fundamental network architecture under consid-
eration, along with the approach to QoT-E calculation. In
Section IV we describe the experimental setup and the cam-
paign that has been undertaken. In Section V we describe the
characterization of the OLS components. In Section VI we
report the settings chosen for the ML model and a concep-
tual overview of the ML application is given. In Section VII
we present the results of our investigation. In Section VIII
we provide comments regarding the outcome of this work
and describe future investigations.

II. RELATED WORK
Establishing a new LP with the lowest possible margin
requires an accurate QoT-E, regardless of the spectral load
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configuration. Various ML approaches have been investigated
and compared for this purpose, ranging from a general QoT
estimation perspective to more accurately quantifying indi-
vidual margin contributions. Considering first the former,
there has been much research showing the ability of ML
techniques to produce sufficiently accurate results. Initial
works, with [25] given as an example, have provided a
methodological framework where the bit-error-rate (BER)
of an LP may be supplied to a cognitive estimator in order
to classify its feasibility. More recent works have adapted
this methodology, now encompassing a wide variety of sce-
narios. In [26] LP feasibility is investigated using margin
thresholds, with a ML algorithm used to predict the BERs
of new LPs. In [27] a k-nearest-neighbor (KNN) algorithm is
used to predict whether a planned LP within a model network
can be successfully implemented for a variety of modula-
tion formats and bandwidth occupancies. In [28] supervised
ML models are used to accurately predict uncertainties in
physical- and network-layer impairments for the Deutsche
Telekom (DT) and NSFnet topologies. An implementation
which is able to predict the OSNR of new lightpaths with
microsecond speeds has also been demonstrated [29]. The
performance of various ML algorithms for these purposes
has also been compared, with [30] showing that artificial
neural networks (ANN)s may provide the highest level of
accuracy. We remark that extensive surveys of existing ML
approaches applied to optical networking have already been
performed and may be found in [31]�[33].

Focusing specifically on the quantification of EDFA uncer-
tainties for margin reduction purposes, ML has previously
been utilized to model EDFA gain [34], [35], noise
figures [36], [37] and power excursions [38], [39], with [39]
further demonstrating wavelength assignment using an algo-
rithm that was able to recommend channel provisioning
based upon the ML model results. Correction for EDFA
gain ripple has also been targeted in [40], [41], with [41]
further using monitoring information to significantly reduce
the margin of a network planning tool based upon the
Gaussian noise (GN) model. Some recent works have moved
beyond predicting ASE noise contributions in isolation; a
hybrid approach is investigated in [42], demonstrating that
the performance of common ML implementations may be
enhanced by inclusion of an analytical model of EDFA gain.
The improvement in ML predictions when considering a
nonlinear transmission model has also been demonstrated
in [43].

The ML implementation within this work is performed
in a similar way to a previous work [44], where a deep
neural network (DNN) implemented within the TensorFlow
open source library [45] is used to estimate the OSNR of
arbitrary new lightpaths. We go beyond both this previous
work and other recent works described within this section
in multiple ways. We provide a study of the overall GSNR
built from two constituent models; with the NLI contribu-
tion being modelled with an accurate QoT-E � the GNPy
engine, and the OSNR contribution being predicted using two

FIGURE 1. A partially disaggregated optical network that deploys independent
OLSs on ROADM-to-ROADM WDM optical lines.

DNNs, estimating the signal and ASE noise powers across
an entire spectrum, no matter the spectral load configuration.
We verify this approach through an experimental campaign,
comparing the estimated end-of-line GSNR degradations to
real QoT measurements. Our approach takes into account
all nonlinear effects, stimulated Raman scattering (SRS),
along with amplifier fluctuations induced by variations in
the spectral load. We demonstrate the enhancements that
result when combining an analytical QoT-E approach, in this
case the GNPy engine, with a ML algorithm that provides
an accurate GSNR prediction. Additionally, the approach
taken within this work can be applied to next-generation
SDN network management scenarios, pursuing an ultimate
goal of a fully automated network without human input.
As examples, we highlight an experimental implementa-
tion of an observe-decide-act (ODA) loop utilizing a ML
algorithm performed in [46], [47], a tutorial showing how
similar ML implementations may contribute to an automated
network architecture in [48], along with a demo for a ML-
based monitoring system for a fully disaggregated ROADM
implementation in [49].

III. OPTICAL NETWORK ARCHITECTURE
In this work we consider a partially disaggregated optical
network that operates within a SDN framework, where the
amplified lines connecting ROADMs may be independent
WDM OLSs [16], [17], [20], as pictorially described in
Fig. 1. These ROADMs are operated in a disaggregated
manner [4], [18], where each degree unit, including the wave-
length selective switches (WSS)s are disaggregated, implying
that different directions may be managed by independent
OLSs. These ROADMs are assumed to be equipped with
ASE noise generators that can be shaped by these WSSs for
spectral noise loading, if required. Within the SDN archi-
tecture, each OLS is managed by an independent optical
line controller (OLC) that sets the working points of the
booster and preamp amplifiers included in the degree unit of
the source and destination ROADMs, along with the in-line
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FIGURE 2. Conceptual schema of a ROADM-to-ROADM WDM optical line system.
We suppose that the ROADM only includes the optical switching component and the
booster and preamp ampli�ers considered as part of the optical line.

amplifiers (ILAs). This OLC defines the amplifier work-
ing points and consequently the propagation impairments
(as GSNR degradations) on each LP deployed on the line.
All OLSs are assumed to be bidirectional and symmetric:
for simplicity we refer to a single direction in figures and
descriptions � these concepts are presented schematically in
Fig. 2.

We suppose that the OLC operates in a way which is
agnostic with respect to the traffic in the OLS, meaning
that potentially unknown and proprietary algorithms may be
in use. Additionally, we assume that a line model is sup-
plied to the SDN optical network controller (ONC) by the
OLC, for the purpose of network management [17], [18].
The ONC has overarching control over the entire network;
in particular it controls the path of the optical tributary
signals [19] through the WDM optical line systems on
every ROADM-to-ROADM optical line, sets the switching
matrices in ROADMs, and manages all control and safety
operations [16], [18], [20]. Furthermore, the ONC has access
to telemetry data that is retrieved from all monitors within
the line. The ONC may read the outputs of the optical
channel monitors (OCM)s at the ROADM I/Os [4] to get a
per-channel power measurement, along with amplifier gain
values from the amplifier I/Os.

When an optical tributary signal is requested, the ONC
first defines the available routes and wavelengths in order to
establish a transparent LP by running the routing and wave-
length assignment (RWA) algorithm. Subsequently, the ONC
runs the L-PCE that tests the actual QoT (the GSNR) on the
defined LP. The RWA algorithm may work in conjunction
with the L-PCE to enable a QoT-aware RWA. In general,
the L-PCE pictorially described in Fig. 3 can be a closed
module with standardized interfaces, and the proposed ML
agent can be implemented as an add-on.

In this work, the L-PCE is implemented by relying on
GNPy as a QoT-E. After defining the route from the source,
s, to the destination, d, in the considered transparent infras-
tructure, the L-PCE requires the QoT-E to navigate the
topological graph that abstracts the network WDM layer [50]
and computes the overall GSNRsd, which is given by:

GSNRsd =
1

�

i,j �LPsd

1
GSNRij

, (1)

where i and j label, in turn, the OLS ROADM source and
destination nodes crossed by the LP, and GSNRij are the
respective GSNRs for the specified wavelength of the chan-
nel under test (CUT), �CUT. The ONC provides the line
model and the OLS spectral load to the QoT-E, providing
the GSNRij, expressed as follows:

GSNRij =
1

1
OSNRij

+ 1
SNRNL,ij

, (2)

where OSNRij = PCUT,ij/PASE,ij and SNRNL,ij =
PCUT,ij/PNLI,ij are the optical SNR degradations from
ROADM i to ROADM j due to the accumulated ASE noise,
PASE,ij, and the NLI interference, PNLI,ij, respectively. PCUT,j
is the power of the channel under test at the input of the
destination ROADM of OLSij. It has been proven that, if
a precise line description is available, GNPy provides an
extremely accurate GSNR computation, even for brownfield
scenarios [12], [13] Nevertheless, amplifier characterizations
are commonly given for a full spectral load scenario, for a
given line description. Considering a progressive and varying
spectral load scenario, for each OLSij, a non-trivial sepa-
ration between the actual amplifier gain profile and noise
figure and their nominal values are induced. Consequently,
unpredictable and non-negligible fluctuations arise on both
the OSNRij and the SNRNL,ij. A full characterization on
the behaviour of these fluctuations would require, for each
OLS, an enormous number of measurements of amplifier
responses to different spectral load configurations, which
scale linearly with the number of amplifiers and exponen-
tially with the number of available channels on the specific
OLS. Instead, we propose a ML approach that can be trained
using a dataset that is obtained from each OLSij; for a given
ASE noise generator within a given ROADM, it is possible to
probe each OLSij of the network with different ASE-shaped
spectral loads, collecting OCM measurements in the i and
j ROADMs. These measurements are supplied to a DNN
model that is used to evaluate the OSNRij in the L-PCE for
specific spectral loads. This prediction can be combined with
the SNRNL,ij computation provided by the GNPy engine in
order to obtain an overall QoT-E, as described in Fig. 3
option (b).

IV. EXPERIMENTAL SETUP
An experimental setup was created containing 9 commer-
cial EDFAs and 8 fibers that are characterized by distinct
physical parameters; a schematic block diagram is depicted
in Fig. 4. Starting from the transmitter, the OLS begins
with a booster amplifier that is set to produce a flat, con-
stant power value of �1 dBm for each channel (regardless of
the spectral load configuration), followed by 8 fiber spans,
each approximately 80 km long, with a mixture of single
mode fiber (SMF) types, each followed by a commercial
EDFA [51] operating with distinct and constant gain and
tilt values. To generate the input spectral loads, an ASE
noise source has been manipulated using a commercial pro-
grammable WaveShaper c� (1000S from Finisar) obtaining
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FIGURE 3. Schematic description of the L-PCE that enables QoT computation of a LP under test in a partially disaggregated optical network. In option (a) the GSNR is
computed solely from the QoT-E, whereas in (b) the QoT-E computes the SNRNL and the OSNR component is estimated using a ML algorithm. In this representation we
abbreviate 1/ GSNR as ISNR and separate the QoT-E outputs in linear, LIN, and nonlinear, NL, components.

FIGURE 4. A schematic representation of the experimental setup described within
this work.

a 80 channel WDM comb, centered at 193.3 THz with a
WDM grid spacing of 50 GHz within the C-band, according
to ITU-T specifications [52]. We consider two CUTs, cen-
tered at 191.65 and 194.95 THz, that we refer to as CUT
7 and CUT 73, respectively, given their cardinal position
in the WDM comb. For these CUTs, the signal transmis-
sion is managed by a commercial AS7716-24SC Cassini
device [53], along with a CFP2-DCO coherent module from
Lumentum, that is able to generate and detect either a
32 GBaud, quadrature phase shift keying (QPSK) modulated
signal or a 43 GBaud, 8-quadrature amplitude modulated
(8-QAM) modulated signal.

In order to control the settings of each EDFA, i.e., the gain
and tilt values, software has been developed in the MATLAB
environment. An optical spectrum analyzer (OSA) has been
placed at the end of the OLS to emulate the OCM at the
ROADM I/Os. Within this experimental framework, we gen-
erate 2520 different spectral loads, iterating through various
scenarios where a different number of channels are turned
on. In each scenario, permutations that represent unique
spectral load configurations are generated, between a mini-
mum of 2 channels turned on up to the maximum spectral
load case of 80 channels. For each of these configurations,
the power levels of all 80 channels are measured, obtaining
the signal power if the channel is turned on and the ASE

FIGURE 5. The power measured using the end-of-line OSA for one of the 2520
spectral load con�gurations. Channels which are turned on provide signal power
measurements, whereas channels which are turned off provide ASE noise power
measurements.

power if the channel is turned off; an example spectrum
power measurement performed using the OSA is shown in
Fig. 5. We assume that the four-wave mixing component
of the NLI impairment is negligible for all OLS parameter
configurations under investigation, as verified in [44], [54].
Furthermore, for all spectral load configurations we mea-
sure the BER in transmission associated with the specific
CUT investigated. From these quantities we obtain a quanti-
tative estimation of the GSNR by inverting the BER vs the
OSNR curve, obtained through a progressive back-to-back
noise loading characterization [13].

V. OPTICAL LINE SYSTEM CHARACTERIZATION
As mentioned in the previous sections, the GNPy engine
requires a comprehensive description of the line model under
test for QoT-E purposes. In particular, the physical param-
eters of the fiber spans were unknown before initiating
the experimental campaign. As a preliminary analysis, we
performed an optical time domain reflectometer (OTDR)
analysis to probe the lengths and loss coefficients � of the
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FIGURE 6. Final SRS ef�ciency curves deduced and used for each �ber span.

fiber spans within the link at the OTDR pulse frequency
(193.414 THz). After investigating the full dataset of these
measurements, this characterization was found to not be suf-
ficiently accurate, as the signal experienced a more severe
frequency dependent tilt than expected. These discrepancies
arise due to characterization inaccuracies of both the spec-
tral fiber loss coefficient profile, initially considered flat in
frequency, and the efficiency curve of the stimulated Raman
scattering (SRS). To overcome this, we implemented an
optimization algorithm that, given a model for both the fiber
loss coefficient and the SRS efficiency, provides the joint
characterization that best matches the experimental signal
profile of the full spectrum scenario.

Regarding the SRS contribution, we consider a fixed,
normalized efficiency curve [55] multiplied by a fiber span-
dependent Raman coefficient, CR, with the resulting SRS
efficiency curves shown in Fig. 6. Regarding the frequency-
dependent fiber loss coefficient profile, �dB/km, we adopt a
model that takes into account a full description of the physi-
cal phenomena over the frequency range of interest. Starting
from [56] and considering only the four main contributions
that occur in the C-band, we obtain the following simplified
model:

�dB/km � �S + �UV + �IR + �13 , (3)

where:

�S = A��4 + B ,
�UV = KUVeCUV/� ,
�IR = KIRe�CIR/� ,

�13 = A1

�

�Aa

A1
e

�(���a)2

2�2a +
1

A1

3�

i=1

Aie
�(���i)

2

2�2
i

�

� ,

are the Rayleigh scattering, ultraviolet, infrared and OH�

peak contributions, respectively. Considering these expres-
sions in logarithmic units (dB/km), the Rayleigh scattering
loss has a linear trend, the ultraviolet and the infrared absorp-
tion contributions have exponential forms and the OH�

FIGURE 7. A generic loss coef�cient pro�le and the related four model
contributions.

TABLE 1. Fiber con�gurations tested within this experimental campaign.

TABLE 2. EDFA con�gurations tested within this experimental campaign.

peak absorption term, centered at 1.39 µm, may be approx-
imated as a quadruple-Gaussian equation. As the ultraviolet
absorption provides a constant contribution to the over-
all attenuation profile, this term has not been optimized.
Consequently, Eq. 3 depends only upon four parameters; A,
B, KIR, A1, providing a highly functional solution that allows
even broadband fiber loss coefficient profiles to be derived
easily.

In Fig. 7, we plot an example of the total �dB/km and its
separate contributions against wavelength, �.

This approach allowed the fiber loss coefficient and SRS
fiber efficiency values to be estimated to a satisfactory level
of accuracy. Furthermore, the resulting SRS coefficients
allow the different fiber types to be classified and enable
distinct dispersion coefficients to be set. As the last required
fiber parameter, we assume a single nonlinear coefficient
value, � = 1.27 W�1• km�1. We report the characterization
results for all fibers within the OLS in Tab. 1. Regarding
EDFA gain and tilt, we list the values used in this exper-
imental campaign in Tab. 2. In general, we anticipate that
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these values are fixed and may be retrieved from the OLC.
The OLS characterizations described in this section were
supplied to the GNPy engine in order to acquire a reference
QoT-E.

VI. MACHINE LEARNING AIDED QOT-E
In this work we follow-up the approach presented in [44],
implementing a ML algorithm that is able to enhance QoT
computation over the OLS under investigation, reducing
OSNR estimation inaccuracies. Firstly, we underline that
the application of ML must be restricted to the OSNR
contribution of the total GSNR, as the SNRNL can only
be measured if the channel transports a modulated signal.
Subsequently, creating a training dataset that fulfils this con-
dition before traffic deployment is unfeasible within the
considered network framework. Moreover, various mathe-
matical models (considering specifically the GN model),
have been shown to provide a precise estimation of nonlin-
ear effects due to fiber propagation, dependent upon certain
physical parameters being given with to a required level
of accuracy. In this framework a ML approach provides
the greatest benefit when used to reduce uncertainties that
are often accounted for simply through use of a design
margin.

Such uncertainties include the aging of optical compo-
nents, a lack of device characterizations, inaccuracies due to
estimations made by proprietary software and fluctuations in
the amplification process which are unaccounted for by the
current model in question. It is worth noting that the ASE
noise measurement described in Section IV, which is carried
out when the channel is turned off, is a biased estimator of
the actual ASE noise that affects the channel when it is turned
on. Nevertheless, the bias in this prediction decreases signif-
icantly as the number of channels contributing to the spectral
load increases � this value is always an overestimation that
results in a conservative QoT prediction. As the spacing of
the channels prevents measurement of the ASE noise within
the channel frequency neighborhood, we highlight that the
ASE noise may only be measured for a given channel when
the channel is turned off.

Considering the ML algorithm implemented within this
work, we normalize and divide the dataset into training,
validation and testing subsets, making up 60%, 10% and
30% of the total dataset size, respectively. Using the open
source TensorFlow c� library, we implement a DNN model
that consists of 4 hidden layers, each including 512 nodes;
these values have been found to be optimal from the valida-
tion process, providing a satisfactory trade-off between the
accuracy of the ML predictions and the overall training time.
The computer used to run this training procedure contained
a quad-core Intel Core i7-8565U CPU running at 1.80GHz,
along with 8 GB of RAM, giving a total training time for
each DNN of approximately 6 hours.

In order to estimate the OSNR, we train two distinct ML
models, predicting the signal and ASE noise power levels,

FIGURE 8. A description of the ML process used within this work; after the OLSi , j
settings are provided, the linear components (the signal and ASE noise powers) are
supplied to the ML agent, whereas the NLI component is estimated using the GNPy
engine. A future implementation scenario is also shown, described in Section VIII.

respectively. As the spectral load changes for every mea-
surement within the dataset, it is important to choose a
suitable set of features that serve as DNN inputs, as well
as suitable outputs. Considering first the feature require-
ments, these must be fixed before the training process
is started and cannot be changed once they have been
chosen. These features used for the training stage must cor-
respond to known system variables to obtain any individual
prediction of the DNN outputs. Therefore, by exclusion,
the entire set of power measurements can be used uniquely
as DNN outputs, as they are not known for any indi-
vidual spectral load. The only information that is known
before a prediction is made are the channel statuses, which
are either on or off. This information is relatively limited
with respect to the entire realization space of both the sig-
nal and ASE power levels and leads to a low accuracy
prediction.

In order to increase the DNN prediction performance we
apply the following solution, presented diagrammatically in
Fig. 8. Firstly, we supply the ML models with the array of
channel statuses, along with the signal and the ASE noise
predictions obtained using the GNPy engine � this enriches
the input information, providing a partial insight of the
OLS responses to specific spectral loads. Secondly, we per-
form the DNN training process over the entire spectral load,
requesting information over all channels, not only the CUTs.
As the number of channels varies between distinct spec-
tral loads, we set the number of DNN outputs equal to the
maximum number of available channels within the system
under investigation. As the node weights are shared among
the DNN outputs, specific channel predictions are tuned
by considering the entire spectrum; consequently, precise
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FIGURE 9. Error distribution of the signal and ASE noise prediction obtained with the the ML models and the GNPy engine, respectively.

information provided by the measurements is propagated
through the entire DNN.

A straightforward issue is that when a channel is turned
on, the signal power can be measured, however, the power
of the ASE noise cannot. On the contrary, when a channel
is turned off, by definition there is no signal power, but the
ASE noise power can be measured. A naive solution is to set
the unmeasured channel power quantities to zero during the
training procedure. In our implementation we provide a better
solution by taking advantage of the correlation between the
spectral profiles of the signal and ASE noise power levels at
the OLS output. In fact, both of these quantities are subject to
the same gain and loss profiles during propagation and can be
combined, constructing two unique, normalized and properly
dimensioned power arrays that maximize the information
supplied to the DNN. These two arrays of artificial quantities
are used, respectively, for the prediction of the signal and
ASE noise powers. Considering the signal power inputs and
outputs, we take the array of signal powers and fill the
missing elements with the rescaled ASE noise powers. For
the ASE noise power inputs and outputs, we perform the
opposite, replacing all missing elements with rescaled signal
power values.

With this strategy, each DNN has a total of 160 inputs and
80 outputs; the inputs are composed of 80 channel statuses,
combined with 80 power level estimates of ASE noise or
signal power (depending upon the DNN model), whereas the
outputs represent 80 power level values. Enhancing the ML
implementation in this way enables accurate predictions of
both the signal and ASE noise powers and hence a precise
OSNR estimation to be obtained.

VII. RESULTS
In this section we present the ML prediction results that were
obtained for a testing dataset containing 808 different spec-
tral load configurations. As an accuracy metric, we evaluate
the root-mean-square error (RMSE), which is defined with
the following expression, for any pair of measured, Xm, and
predicted, Xp, quantities:

RMSE(Xm, Xp) =

�			

N�

i=0

�
Xm

i � Xp
i
�2

N
, (4)

where N is the total number of tested spectral load con-
figurations. Alongside this metric, we define the error of a
prediction as simply the difference between the measured
and predicted quantities:

�X = Xm � Xp . (5)

As a first demonstration of the benefits in utilizing
a ML approach, we investigate the DNN accuracy, esti-
mating the signal and ASE noise power levels over the
entire spectrum and compare them to the corresponding
results obtained using the GNPy engine. Regarding the sig-
nal power predictions, RMSE values ranging between 0.2
and 1.5 dBm were found using the GNPy engine (depend-
ing upon the channel under investigation). Using instead a
ML approach, the RMSE values ranged between 0.2 and
0.3 dBm, demonstrating an increase in prediction accuracy.
Similarly, considering the ASE noise power predictions, the
RMSE range prediction is reduced from 0.5 to 1.5 dBm to 0.3
to 0.4 dBm. A qualitative insight of this accuracy improve-
ment is shown in Fig. 9, where the signal and ASE noise
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FIGURE 10. The error distribution for the OSNR predictions provided by the GNPy
engine and the ML algorithm, for CUT 7.

results are reported for both prediction methods, illustrating
the error distribution as a vertical colored strip for each chan-
nel, with brighter colors representing a higher distribution
density, and vice versa. This figure serves as a qualitative
visualization � the real error distributions have been replaced
by equivalent Gaussian distributions with the same mean
and standard deviation values. Nevertheless, Fig. 9 presents
some interesting conclusions: firstly, applying ML moves the
error distributions into a dense region of values concentrated
around a zero mean, for both the signal and ASE noise power
predictions, representing the best feature for a generic esti-
mator. It is also visible that the higher RMSE values obtained
using the GNPy engine are due to a biased estimation rather
than incorrect modelling, as the error distributions maintain
a limited standard deviation for every channel. This bias can
be attributed to the fluctuations of the ILA responses to dif-
ferent spectral loads, which cannot be modelled in advance
and consequently cannot be accounted for in the GNPy simu-
lation. Moreover, the GNPy engine power predictions feature
an increasing uncertainty as the characteristic spectral hole
burning frequency (approximately 195 THz) is approached.

Beyond these observations, we next study how the
aforementioned improvements affect the prediction of the
signal-to-noise ratios. These quantities have been measured
only for the CUTs, as they require a modulated signal, and
in what follows we restrict our analysis to these two chan-
nels. As expected, through investigation of the dataset, we
find that the covariance of the OSNR and SNRNL is non-
trivial. Therefore, in order to have a fair estimation of the
enhancement provided by the ML approach, first we dis-
cuss the prediction accuracy of the OSNR. In Fig. 10 - 11
we report the error distributions of the OSNR predictions
obtained with and without the ML models, for both CUTs.
In this case, the ML methodology reduces the RMSE of the
OSNR from 0.5 to 0.2 dB for CUT 7 and from 0.7 to 0.2 dB
for CUT 73.

Finally, we investigate the final GSNR prediction obtained
by applying the proposed methodology described in Fig. 8.
In Fig. 12, we report the comparison between both the mea-
sured GSNR and fully predicted GSNR, and the �GSNR

FIGURE 11. The error distribution for the OSNR predictions provided by the GNPy
engine and the ML algorithm, for CUT 73.

distributions for the two CUTs. Finally, the total RMSE value
of the GSNR estimation is 0.3 dB for CUT 7 and 0.5 dB for
CUT 73. Additionally, it can be observed in this case that
the ML-aided prediction does not contain a bias for either of
these CUTs. As the same behaviour is expected across the
entire spectrum, it is possible to set a margin that yields con-
servative results in most cases. However, this feature is not
guaranteed when using the GNPy engine due to the afore-
mentioned estimation biases for the signal and ASE noise
power predictions � this prevents a fixed margin, and hence a
conservative result from always being reached. In this work,
we applied a margin of 0.5 dB to the obtained predictions,
shifting the error distributions as shown in Fig. 12; the error
is calculated using Eq. (5), with positive values of this quan-
tity representing conservative GSNR estimations. We remark
that a margin of this size does not significantly affect the
accuracy of the final predictions and is reduced with respect
to most currently employed design margins [14]. This pro-
cedure provides a 90.5% and 94.6% conservative GSNR
prediction for CUTs 7 and 73, respectively. Moreover, a mar-
gin such as this may also be defined to take into account
additional SNR degradations, for example filtering penalties,
which is a promising avenue for future investigations.

VIII. CONCLUSION
In this work, we consider a partially disaggregated opti-
cal network and aim to compute the QoT for LPs with
dynamic traffic loading. We propose a methodology based
around training a ML agent to assist QoT-E within the L-PCE
to better model fluctuations in the ILA response behaviour
under different spectral loads. To test the proposed solution,
we carried out an experimental campaign that considers a
non-transparent, point-to-point optical amplified line based
on commercial amplifiers. Using this setup we measured the
end-of-line GSNR over 2520 different spectral load config-
urations for two different CUTs. We show that, even if the
full spectral load behavior can be accurately modelled, the
GNPy engine is not able to predict the GSNR fluctuations
that arise from unpredictable ILA responses. The result is an
uncertainty in the GSNR prediction, which leads to deploy-
ment of significant margins. To reduce these uncertainties
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FIGURE 12. The measured and predicted GSNR power distributions for: (a) CUT 7 and (b) CUT 73, along with the corresponding � GSNR power distributions with and without
a 0.5 dB margin for: (c) CUT 7 and (d) CUT 73.

and hence enable a reliable QoT estimation, we propose and
verify the combined usage of a ML algorithm and the GNPy
engine. The signal and ASE noise powers are estimated using
the GNPy engine; these results are then supplied to the ML
algorithm for the ML training procedure, as shown in Fig. 8,
in order to obtain the most accurate OSNR predictions. After
the ML models have been trained, we combine these OSNR
predictions with SNRNL estimations provided by the GNPy
engine, obtaining accurate final GSNR evaluations, for the
entire set of tested spectral load configurations. We show
that, by including a system margin of 0.5 dB, more the
90% of the predictions are conservative, without significantly
affecting the accuracy of our results. Moreover, we highlight
that the ML models perform well when predicting both the
signal and ASE noise power levels for all channels. The
separate estimation of these two quantities can be used to
optimize the OLS settings, further increasing the accuracy of
the proposed QoT-E and improving the SNRNL predictions,
shown in Fig. 8 as a future implementation.

We remark that the proposed solution is completely agnos-
tic with respect to both the hardware and the control strategy,
as it only requires ASE-shaped generators and measurements
from the OCMs, both commonly available in ROADM I/Os,
in order to create a ML training dataset. Consequently, the
solution which we propose is demonstrated to be a feasible
and non-intrusive method for L-PCE accuracy improvement,
allowing a seamless increase in network performance.
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