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Abstract

District Heating (DH) technology is considered to be a sustainable and quasi-

renewable way of producing and distributing hot water along the city to heat

buildings. However, the main obstacle to wider adoption of DH technology is

represented by the thermal request peak in the morning hours of winter days,

especially in Mediterranean countries. In this paper, this peak-shaving problem

is tackled by combining three different approaches. A thermodynamic model is

used to monitor the buildings’ thermal response to energy profile modifications.

An agent-based model is adopted in order to represent the end-users and their

adaptability to variations of temperatures in buildings. Finally, a Reinforcement

Learning algorithm is used to optimally mediate between two needs: on the one

hand, a set of anticipations and delays is applied to the energy profiles in order

to reduce the thermal request peak. On the other hand, the algorithm learns

by trial and error the individual agents’ sensitivity to thermal comfort, avoiding

drastic modifications for the most sensitive users. The experiments carried out

in the DH network in Torino (north-west of Italy) demonstrate that the proposed

approach, compared with a literature solution chosen as a baseline, allows to

achieve better results in terms of overall performances and speed of convergence.

Keywords: Agent-Based Model, Demand-Side Management, District Heating,

Peak Shaving, Reinforcement Learning.
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1. Introduction

District heating (DH) system represents an opportunity to reduce fossil fuel

adoption and consequently the carbon emissions for space heating and domestic

hot water consumption [1, 2, 3]. The management of DH is often not straight-

forward because of its large dimension and the large mass flow rates at stakes.5

The adoption of novel ICT (Information and Communication Technologies) so-

lutions for the automatic control can be particularly useful to reach higher

efficiencies [4, 5]. This is particularly important looking for optimal operations

and fault detection [6, 7] while moving towards integrated management of dif-

ferent energy infrastructure [8, 9]. Novel ICTs have also been proven useful for10

optimization of Energy Internet [10] or optimal scheduling in renewable energy

systems [11].

One of the biggest problems in district heating concerns the presence of peak

in the building thermal demand that makes the overall thermal request strongly

variable in time [12, 13]. This is particularly relevant in case the heat is supplied15

during the daytime and interrupted at night; this is done mainly because of the

habits of the customers. In these cases, the thermal demand is particularly high

in the morning in order to increase the temperature of the buildings and the

heating circuits. This creates a morning peak in the overall thermal request of

the DH system. The occurrence of peaks is undesirable mainly because they20

are covered with less efficient technologies and because they cause high mass

flow rates and therefore bottlenecks in water distribution [14]. In the rest of

this manuscript with the term ”power peak”, we refer to the overall daily power

peak, which often occurs in the early morning hours.

An interesting option to smooth the peak consists in modifying the schedules25

of the customer heating systems. This approach is mainly called Demand Side

Management (DSM) or Demand Response (DR), since actions are taken on

the demand, rather than the production, side. The name was born in the

electric engineering field [15]. This operation should be done taking into account
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carefully the various systems and stakeholders involved: i) operators require a30

profile as flat as possible; ii) customers require that the modifications performed

do not affect the indoor conditions of their buildings; iii) the presence of a district

heating network make the aggregation of the building demands much different

than the simple total request of building, because of its complex dynamics due

to various phenomena (e.g. thermal losses, mixing, front delay and thermal35

transients). In order to properly select the DSM strategy, the building thermal

demand should be known. In this context, a proper model for the selection of

the best heating schedules of the customers connected to a district heating can

be very useful; however in order to be effective, this should include the three

above-mentioned aspects.40

1.1. Related Works

In the literature, various attempts have been undertaken in this direction.

A simulation on an established building has been performed to find the optimal

DSM strategy from a building owner’s perspective in [16]. In the case analysed45

power peak shaving larger than 30% can be achieved without significantly af-

fecting indoor conditions. An agent-based intelligence has been used in [17] to

flatten the thermal load of a group of buildings. A Stable Roommates algorithm

has been adopted in [18] in order to minimise the sum of the thermal request of

28 buildings in England. In all these cases the effects of the network dynamic50

in the formation of the overall DH thermal request was not taken into account.

In [19], an optimisation through genetic algorithm has been performed with the

aim of minimising the maximum peak value. Results show that a reduction of

10% can be achieved in the overall thermal demand with very small schedule

variations. In [20] the same algorithm was used to find the best rescheduling,55

including more significant modifications, while taking into account the effects

of the indoor temperature changes. In [21] a field test campaign on two District

Heating networks has been presented, adopting the STORM controller, which

enabled a peak reduction in the range of 7.5–34%, saving operational costs and
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CO2 emissions. In [22] an active control strategy, based on a Model Predictive60

Control algorithm, is developed to maximise the profit of a cogeneration plant,

by using buildings as storage capacity and selling electricity on the spot market

when the price is the highest.

An optimisation technique such as Reinforcement Learning (RL), instead,

seems to have been employed only marginally for directly tackling the peak65

demand problem in district heating, as its applications to peak-shaving mostly

belong to the context of electric energy. In [23] an iterative Q-learning algorithm

is used for energy arbitrage and peak-shaving of thermostatically controlled

loads connected to a district heating system. In [24], the authors use temporal-

difference learning to optimally control residential energy storage systems for70

minimising energy cost.

On the other hand, the optimisation of district heating systems has been

approached several times with the help of agent-based technology. In [25], sub-

stations at the buildings level are equipped with reactive agents, which monitor

consumes and make predictions about future energy requests, with the objective75

of general efficiency improvement of the system. Thermal load management at

the buildings level is tackled in [26] with the purpose of reducing the thermal

peak at the individual building level, while maintaining the thermal comfort for

the users. Demand-side management through multi-agent based models, which

coordinate individual requests in order to reduce the intra-daily fluctuation in80

thermal request, is also adopted in [27, 28, 29].

1.2. Proposed Contribution

Our work aims at optimising customers’ heating systems startup times,

rescheduling them, with the aim of minimising the thermal peak load without85

affecting end-users comfort. This is carried out with a tailored approach that

allows to find the optimum taking into account both the customer satisfaction

level and the district heating network dynamics. In this perspective, a satis-

factory answer to the peak shaving problem would have to shave significantly

the morning peak thermal request while respecting the thermal comfort of end-90
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users and providing a realistic thermodynamic model to simulate a real-word

district heating network. With respect to previously cited literature works, our

approach aims at providing a novel, more realistic and organic solution that

encompasses all above-mentioned aspects.

• The thermal request peak is flattened by a Reinforcement Learning al-95

gorithm, which regulates the behaviour at the central plant level and is

responsible for rescheduling the startup times in the heating network.

• An agent-based model provides the learning algorithm with feedback about

the response to thermal changes of individual end-users, in order to guar-

antee that customers thermal comfort thresholds will not be exceeded as100

a consequence of the rescheduling of the heating network startup times.

• The thermodynamics of the network is simulated using an already estab-

lished technical tool, developed in [30].

The combination of these three methods represents a novel and more effec-

tive approach in the peak-shaving problem for DH systems. Furthermore, the105

solution presented in this paper unifies both the demand and the operator sides

of the problem. The Reinforcement Learning agent is responsible for managing

strategically the distribution of hot water at the central plant level, while the

agent-based model acts on the demand-side level of the system, giving real-time

feedback about the effectiveness of the strategies adopted.110

The rest of this paper is organised as follows. Section 2 presents the proposed

methodology to address the peak-shaving problem in district heating systems.

Section 3 discusses the experimental results. Finally, Section 4 provides our

concluding remarks.

2. Methodology115

The problem will be tackled by combining three different models, as shown

in Fig. 1: the network model, the end-users model and the agent at the central

plant level. The network model is based on a technical tool presented in [30],
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Figure 1: A schematic of the overall functioning of the presented system

it performs two tasks: i) computing the new aggregated energy profile at the

cogeneration plant level given a set of startup times for the buildings in the net-120

work and ii) modelling the individual thermal responses of the buildings caused

by the heating startup times rescheduling. These thermal modifications are then

received as input by an agent-based model, which monitors the end-users’ ther-

mal comfort modifications caused by said variations in the indoor temperature

of the buildings. Finally, a central agent based on a reinforcement learning algo-125

rithm is responsible for distributing the heating water throughout the network,

mediating in the trade-off between the peak-shaving task at the cogeneration

plant level and the individual comfort demands at the users’ level, which jointly

compound the reward, the main input of the reinforcement learning algorithm.

Such a comprehensive threefold approach has been chosen because the effects of130

demand response, intended as anticipations and delays of the thermal request of

buildings, affects several areas and specifically: i) the buildings, because of the

change of the indoor conditions ii) the network, because of the different mass

flows and temperature waves propagating in the pipelines iii) the central plant,

which receives a different thermal load evolution. The adopted strategy is a135

day-ahead optimisation that exploits forecast thermal loads. This optimisation
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aims at minimising the peak demand value; the independent variables are the

schedule variations of heating systems (i.e. the startup time) for each build-

ing while the constraints are the maximum anticipations and delays. After the

central plant agent completes a learning update, it provides the network model140

with a new set of anticipations and delays to be applied to the buildings, and

the cycle starts over.

The rest of this section provides an in-depth description of each component

shown in Fig. 1.

2.1. Network Model145

The algorithm includes a model for the simulation of the DH network. This

is done with the aim of taking into account: i) thermal losses during the water

path; ii) the mix of various mass flow rates exiting the customer heat exchangers;

iii) the thermal transients. In fact, if the pressure waves propagate within the

entire network in few seconds, the temperature front propagates with a velocity150

comparable to that of the fluid flow. Therefore when the heating systems are

switched on, the thermal plants (that receive large amount of mass flow at low

temperature) supply a peak load that strongly depends on the thermal tran-

sient occurring in the network. The model used relies on a representation of the

network as a series of pipes interconnected among them trough junctions. This155

is represented topologically as a set of branches interconnected among them

through nodes. The topological representation is used for interconnected equa-

tions applied to the various branches. A suitable way to describe the network

topology consists of using a matrix [31]. In our model, we defined a matrix A,

where each value of the matrix aij is 0 if node i and branch j are not inter-160

connected; 1 if i is the inlet node of the branch j ; -1 if i is the outlet node

of the branch j. This matrix is built starting from information about the inlet

node, the outlet node and their coordinates for each pipe. The adopted model

includes the equations to compute both the mass and the energy conservation,

which are applied to all the pipelines in the system. The former estimates the165

velocity and consequently the mass flow rates since density and sections are
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available. The latter estimates the temperature field. The mass conservation

equation is applied to all the branches in the network and the energy equation to

all the nodes, considering thermal losses and neglecting thermal diffusion. The

application to the entire network is done by relying on the incidence matrix as170

presented in [32]. The problem is solved to evaluate both matrices G and T,

respectively including the mass flow in each branch and the temperatures in

each node. This is done by taking into account proper boundary conditions,

thermal losses, thermal transient and mass flow mixing/splitting.

The network model takes as input a data-set indicating the energy profile175

of a particular day for a series of buildings, and outputs the aggregate energy

consumption at the level of the cogeneration plant (see Fig. 2). It is worth noting

that the impact of possible estimations or forecasts of building thermal profiles

on DSM strategies is moderate when the thermal load prediction is performed

using data available from the thermal substation [33]. The initial energy profile180

data-set is a T ×N matrix, where T is the number of time-steps in which the

individual energy profile is divided, and N is the number of buildings in the

data-set. Furthermore, the model also enables the monitoring of the indoor

temperature shifts in buildings, caused by modifications in the energy profiles

produced by the central agent’s actions. Detailed information on the network185

model is provided in [32].

The model allows the agent at the central plant level to perform actions

on the individual building, modifying its respective energy profile. The set of

possible actions is discrete and comprises four anticipations (10, 20, 30 and 40

minutes), two delays (10 and 20 minutes) and a neutral action. The energy190

profile between 4 AM and 9 AM of each building can be anticipated or delayed

accordingly as shown as example in Fig. 3, producing an alteration in the in-

door temperature of the building, which is calculated by the thermodynamic

model and used as explained below to evaluate the thermal comfort of users,

who occupy the buildings.195
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Figure 2: Aggregated energy profile as generated by the network model

2.1.1. Building Model

A compact building model has been used to evaluate the modification of the

indoor temperature caused by the modification in the heating schedule. The

model includes the thermal substation and the entire building, simplified as a200

unique equivalent room. This means that an average indoor temperature T is

considered for the entire building. The building is modelled with an energy

balance (Eq. 1) that includes the unsteady term, the heat provided by the

heating system and the losses with the environment.

Mcp
dT

dt
= Φsyst + Φloss (1)

where the left-hand side term is the unsteady term (related to the indoor tem-205

perature variation), Φsyst is the thermal power provided by the heating system

and Φloss the thermal losses towards the environment. The losses are expressed

through a global dispersion coefficient per unit volume. This is evaluated con-

sidering the afternoon steady state when the power provided is almost constant

and the heating power is equal to the thermal losses (Eq. 1 reduces to the right-210
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Figure 3: Example of energy profile shifting in a building (in blue the original profile, in

orange the proposed shift). Note that the shift can only take place between time-steps

4AM and 9AM.

hand side terms). The indoor temperature can be estimated as approximately

at 20◦C while outdoor temperature and thermal power provided to the system

are measured by the control system installed in the substations. The estimation

is done for each day of the available data (for the same afternoon the outdoor

conditions are supposed to not change significantly) and the average value is215

used as the global dispersion coefficient per unit volume. The thermal capacity

of the building is estimated considering the thermal transient that occurs after

the switching off time. During this transient the unsteady term is equal to the

thermal losses. If no indoor temperature are available it is possible to assume

that the night thermal transient of the return water in the secondary circuit in220

the last part follows the transient of the building air. This means that a mea-

sured temperature of the return water in the secondary circuit can be adopted

for the calculation of a lower bound approximation for the thermal capacity

that allows conservative estimation of the indoor temperature changes. The
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substation is modelled by using an effectiveness-NTU method and a time delay225

is considered to account for the average time necessary for the water circulation

in the building circuit.

2.2. The agent-based model

An agent-based approach is adopted to model the individual users’ reactions

to thermal changes in buildings. Agent-based modeling has been proven use-230

ful in many scenarios for simulating real-life dynamics. In general, agents are

autonomous entities that interact with one another giving rise to complex high-

level phenomena, which might or might not amount to the simple aggregation

of the individual behaviors. In this work, agents are identified with end-users

inhabiting the buildings. Their task is that of providing the cogeneration plant235

with feedback about their thermal comfort. For simplicity, it is assumed that

only one agent is associated with each building. For the sake of clarity, in what

follows the individual agents composing the network will be mostly referred to

as ”end-users”.

2.2.1. End-users thermal comfort240

In order to quantify the variation of comfort in the end-users due to a ther-

mal modification, the widely-used Fanger’s equation is adopted [34]. Fanger’s

comfort equation (Eq. 2) puts in correlation human endogenous variables and

environmental variables, with the thermal comfort perceived by the individuals.

245

M −W = H + EC + CRes + ERes (2)

Where M is the metabolic rate, W is the external work, H is the dry heat

loss from convection and radiation EC is the skin evaporative convecting heat

exchange, CRes and ERes are the respiratory convective and evaporative heat

exchange. From this equation follows the one defining the PMV value:250

PMV = (0.303 · e−0.036·M + 0.028) · L (3)
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where L is any unbalance in the previous equation:

L = (M −W )− (H + EC + CRes + ERes) (4)

Thanks to the thermodynamic model and Fanger’s equation, it is possible255

to monitor the variation of comfort experienced by the end-users as a direct

consequence of the thermal modification in buildings caused by a slightly an-

ticipated or delayed heat provision. The equation estimates two related values:

the Predicted Mean Vote (PMV) and the Predicted Percentage of Dissatisfied

(PPD). While the first is a scalar metric of evaluation for thermal comfort (i.e.260

too cold or too hot), the second measure predicts the percentage of the standard

population that would be dissatisfied in such thermal conditions.

These two metrics are correlated as such: a neutral judgement, the most com-

fortable condition, corresponds to 0 PMV and 5% PPD. Parallel to the increase

of PPD, judgements also vary, going from the neutral assessment to stronger265

evaluations such as ”warm” or ”hot”. According to the latest ASHRAE Stan-

dard [35], the band for thermal comfort is set to be between -0.5 and +0.5 PMV,

roughly corresponding to a maximum of 10% PPD. This is the value interval

that has been considered for the evaluation of comfort in this experiment.

For the sake of simplicity, it can be assumed that people are generally sat-270

isfied with the thermal conditions of their buildings - otherwise, they would

modify them until they reach a satisfactory situation. However, this is not al-

ways the case in real-life scenarios as there might be people that are more or

less satisfied with their initial thermal situations. In this case, a modification

of the indoor temperatures might worsen, but also better, their comfort. This275

is naturally due to the fact that a thermal variation can warm up the building

of somebody who is experiencing discomfort due to cold and vice-versa.

In our study, however, any thermal variations will be considered detrimental

to the end-user comfort. In general, a person is in thermal comfort in the range280
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between -0.5 and +0.5 PMV, which, according to the ASHRAE standard and

Fanger’s equation, happens when the thermal modification is not bigger than

roughly ± 2.3◦C. Any thermal modification bigger than ± 2.3◦C will make the

users closer to the PMV comfort limit of ± 0.5. By assuming that all agents

start the simulation in an optimal thermal situation, then, we guaranteed that285

any thermal variations whatsoever in their buildings will be detrimental to their

comfort levels.

Since everybody reacts differently to thermal modifications in their envi-

ronments, every end-user is modelled as having different sensibilities towards

thermal changes. This is achieved by having different threshold values for ther-290

mal comfort for each different agent. A Gaussian distribution with mean 2.3◦C

and standard deviation of 0.5◦C models this set of thresholds. By doing so, it

is possible to describe a population of end-users that will have different ther-

mal sensibilities, as some will be more resilient to temperature variations, while

others will exceed the PMV comfort range of ± 0.5 much more quickly.295

Whenever end-users will experience discomfort due to thermal modifications

bigger than their individual threshold, a discomfort penalty d is calculated and

sent to the central agent:

d=̇

N∑
n=1

Pn (5)

where

Pn=̇

max(|∆Tn|)−Kn, if max(|∆Tn|) > Kn

0, otherwise
(6)

∆T is a matrix of temperatures describing the daily variations of temperature300

for each building n in the network, caused by the central agent’s activity. The

max is taken in order to ensure that the discomfort is calculated in the worst

possible case, considering the largest difference per day for each user between the

initial and the modified situations. K represents the thermal comfort thresholds

(in ◦C) of each individual end-user. d is non-zero only when the variation of305

temperature, in absolute, is larger than the comfort threshold for at least one

particular end-user.
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End-users are therefore modelled as different from one another, that is, each

and every individual has a different propensity to accept thermal changes, and

will react accordingly. When a users’ thermal variation exceeds their individual310

threshold, a real-time penalty is calculated and sent to the central agent at the

cogeneration plant, which will then learn to avoid further penalties by under-

standing which users are more sensitive. A successful algorithm should then

comprehend and exploit this heterogeneity in the population’s adaptability to

thermal changes, by, at first, discovering each user’s thermal sensibility and,315

secondly, exploiting this piece of information by adopting more radical actions

on the more resilient users, while being softer with the more sensitive ones.

In conclusion, an individual user observes the temperature modification of

its building caused by the action of the learning agent at the cogeneration’s

plant level; then, it assesses if the resulting difference in temperature is above320

its own comfort thermal threshold; if it is, the user signals the discomfort, which

is ultimately added up for the whole network of end-users.

2.3. The central plant agent

This section presents the central plant agent and its input. Figure 4 presents

the working flow of the central plant agent and the interactions with the other325

models in the system.

The process can be described as follows: the initial energy profiles E, a N×s

matrix, specifying the initial energy profile for a particular winter day for each

of the N users, divided into s timesteps, is mapped by the Network Model into

their aggregation, and the initial peak P is obtained. Then the Central Plant330

Agent provides a set of strategies A to be applied to the initial energy profiles

E, in order to get a new set E′ and a relative new peak P ′. A is represented

by a matrix of dimension N × Q, where Q is the number of possible actions

per building. A penalty signal is now calculated by the Agent-Based Model,

which simulates the end-users reaction to the thermal changes occured in their335

building as a consequence of the rescheduling of the startup times produced by

the set of actions A. The reward R is now calculated (Eq. 7) from the observed
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Figure 4: Work-flow diagram

reduction of the thermal request’s peak and the possible penalty signals gathered

from the network of users (Eq. 5). The cogeneration plant’s agent then receives

the reward and, considering the set of actions that produced that reward, it340

updates its learning parameters, selecting a new set of actions A′ which is again

applied to E. Through this process the Central Plant Agent learns how to

effectively reduce the thermal peak while preserving the individual end-users’

thermal comfort.

2.3.1. The reward345

The focus of the present work, as said, is that of finding an optimal solution

to the peak-shaving problem. The objective of the optimization problem is

that of maximizing a reward as calculated by a reward function, which has to

encompass all the requirements that a strategy should satisfy to be optimal.

More specifically, the goal of our task is that of reducing the morning peak in350

the thermal request at the cogeneration plant level without discontenting the

end-users. On the one hand, then, the reward has to increase if the morning peak

is reduced; on the other hand, the reward has to reduce if thermal discomfort is

induced into the end-users. To accurately model these two aspects, the reward

15



has been calculated as follows:355

R=̇(Pinit − µplateau)/(Pnew − µplateau)− c · d (7)

where Pinit and Pnew are respectively the old and the new maxima (their

peaks) of the old and the new modified aggregated thermal profile, in kW , nor-

malised by subtracting µplateau, the average value of the afternoon energetic

plateau. d is the discomfort penalty as previously shown in Eq. 5. Constant

c ( 1
◦C ) is responsible for mediating between the peak shaving task and the360

discomfort of users: a lower value will favor the maximization of the peak re-

duction, conversely, a greater value gives greater importance to the preservation

of users comfort levels. This constant can assume any real value but has been

experimentally found to be helpful in balancing out the two sides of the reward

function when equal to 1. In this setting, any trespassing of the users’ comfort365

thresholds is greatly penalized as very detrimental to the overall reward.

2.3.2. Reinforcement Learning: Gradient Bandit

In this paper, it is argued that a better way to solve the peak-shaving prob-

lem is that of modeling it as a Multi-Armed Bandit (MAB) scenario, and solving

it with the help of a reinforcement learning algorithm. A MAB is generally de-370

scribed as a game at a slot machine game (this is why a ”bandit”) with multiple

levers, each representing one of k possible outcomes. The objective of a MAB

agent is that of finding the lever which leads to the highest expected average

reward. A MAB problem is considered to be a ”stateless” and thus simplest Re-

inforcement Learning scenario as the reward only depends on the action taken,375

independently by anything else. The MAB algorithm that has been chosen for

the peak-shaving scenario is the Gradient Bandit Algorithm (GBA) [36].

Differently to other MAB algorithms, gradient bandit estimates the desir-

ability of an action a by learning a numerical preference Hu(a) associated with

it. The larger the preference for a certain action, with respect to the other possi-380

ble actions, the more often that particular action will be chosen. The probability
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π of choosing action a at timestep u is determined according to the soft-max

distribution:

πu(a)=̇
eHu(a)∑k
b=1 e

Hu(b)
(8)

In which a is the chosen action, while b is one of the total k actions, which

are added up to normalize the numerator into a probability value. Initializing385

all preferences with the same value guarantees that every action will be chosen

with the same probability at the startup of the algorithm. The update of the

preference for action A at time u is done as follows:

Hu+1(Au)=̇Hu(Au) + α(Ru − R̄u)(1− πu(Au)), and

Hu+1(a)=̇Hu(a)− α(Ru − R̄u)πu(a), ∀a 6= Au

(9)

where R̄u is the current average of rewards obtained that far, which serves as

a baseline for the immediate reward Ru, stabilising training and reducing the390

variance in the updates. The variable α instead represents the learning rate (or

step size), which can assume any real value, preferably in the set (0,1]. Bigger

values of α will make the agent converge faster towards a solution; however, very

large steps make it less probable that the found solution effectively approximates

the global optimum of the problem.395

Among all MAB algorithms, gradient bandit has been mainly chosen because

it allows the update of the utility values associated with each action, thus their

probabilities, to be performed simultaneously for each building present in the

network. In general, in fact, MAB algorithms are devised to tackle simpler

problems in which one and only one action can be considered at once [36]. This400

would make them hardly applicable to our case as, in our use-case scenario,

the agent at the cogeneration plant level is required to simultaneously update

the actions’ preferences for all buildings at the same time. The overall amount

of possible sets of actions that can be taken in our case is in the order of NQ

different possibilities, which makes practically impossible to apply a different405

MAB algorithm. On the other hand, with the Gradient Bandit Algorithm,
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once a reward is gathered from the thermodynamic model, the central agent

can directly update the whole preference table, indicating the utility value for

each of the N actions taken and each of the remaining (N × (Q− 1)) unchosen

actions. Another reason to choose the GBA is that it has also been proven to410

be an instance of stochastic gradient ascent, a well-known optimisation method

with very desirable convergence properties [36]. In a nutshell, such properties

ensure that each step taken by the algorithm goes into the direction of the best

possible solution, even though this might be reached at approximately infinite

time, depending on the complexity of the task. The fact that gradient bandit415

relies on a stochastic method to approximate the best solution is a convenient

characteristic, since the high dimensionality of the problem investigated implies

the need for a very thorough exploration of the action-space.

Algorithm 1 Gradient Bandit: single day scenario

1: inputs: initial thermal profile E, initial aggregation P and initial indoor temperatures T ,

comfort threshold K and maximum time imax

2: initialise preferences Hu=1(A) ← 0, cycle counter u ← 1 and initial time iinit ←

current time

3: i← 0

4: while i < imax do

5: u← u+ 1

6: update πu(Au) according to equation 8

7: with probability πu(Au), sample set of actions au

8: apply au to E to get the new profile E′

9: feed E′ to model M and get new aggregated profile P ′, and temperature variation T ′

10: calculate penalty d according to equation 5

11: obtain reward R according to equation 7

12: update Hu+1(A) according to equation 9

13: update the step size α

14: i← current time− iinit

15: end while

In our experiments a second scenario is also considered. In this scenario,

every 2 hours of training, the initial energy profile is updated and it is set to be420

the best energy profile found by our central plant agent in such 2 hours interval.
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Concurrently to the update of the initial energy profile, the preference table is

reset to zero in order to facilitate the training on the new profile without biases,

as shown in Algorithm 2. The main reasons for including this second scenario

are more clearly detailed in Section 3.2.

Algorithm 2 Gradient Bandit: iterative scenario

1: inputs: initial thermal profile E, initial aggregation P and initial indoor temperatures T ,

comfort threshold K, time between reset ireset and maximum time imax

2: initialise preferences Hu=1(A) ← 0, Rbest ← 0, Ebest ← E, cycle counter u ← 1 and

starting time iinit ← current time

3: i← 0

4: while i < imax do

5: u← u+ 1

6: update πu(Au) according to equation 8

7: with probability πu(Au), sample set of actions au

8: apply au to E to get the new profile E′

9: feed E′ to model M and get new aggregated profile P ′, and temperature variation T ′

10: calculate penalty d according to equation 5

11: obtain reward R according to equation 7

12: update Hu+1(A) according to equation 9

13: update the step size α

14: if R > Rbest then Ebest ← E′

15: end if

16: i← current time− iinit

17: if i >= ireset then u← 1 E ← Ebest and Hu(A)← 0

18: end if

19: end while

425

3. Experimental Results

Our solution, based on the Gradient Bandit Algorithm (GBA) above pre-

sented, is evaluated and compared with a Genetic Algorithm (GA), taken as a

baseline for its proven satisfactory results in the peak-shaving problem context

[30]. Genetic Algorithms are powerful methods of optimization [37], based on430

the subsequent generation of population of strategies, which are iteratively eval-

uated and selected according to a fitness score (the reward, in our case). The
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two methods will be evaluated on two scenarios. In the first one, the basic case

is considered, where the optimisation is always performed on the same initial

energy profile. In the second case, the initial profile is updated, applying actions435

to it iteratively. The criteria upon which a strategy is evaluated are the overall

peak reduction and the respect of the thermal comfort of users. A satisfactory

result would simply be one in which a significant peak reduction (i.e. larger

than 30%) comes along with the respect of most users’ thermal thresholds. In

general, a very good improvement in the overall thermal peak load, combined440

with a poor result regarding the comfort of users, would be deemed as a failure.

The initial energy profiles used in the experiments correspond to real data

gathered on a winter day in the city of Torino, which hosts the largest district

heating network of Italy. Such demand profiles have been provided by the local445

heating provider.

The thermal comfort thresholds K for the N = 66 end-users in the network

are randomly sampled once, before the experiments start, and are kept con-

stant across them so that the methods tested could be compared upon the

same users’ conditions and sensitivity. The overall results obtained at each trial450

strongly depend on the way in which the users’ thermal thresholds are modeled,

so it is important to keep them constant. The results can indeed be slightly

better if the thresholds are more permissive, and, vice-versa, slightly poorer.

However, the comparison of the proposed methods and the general dynamics

of the outcome are not affected by a particular choice of thresholds if these are455

held constant across the experiments.

Since genetic and gradient bandit algorithms have a very different training pro-

cess, with heterogeneous components, the two will be tested against each other

using as a common scale their computational times. These are calculated on

the same machine, without using parallelization or any other time-optimization460

technique during the test of the algorithms. Even though our solution and GA

work differently, they are both based on one main training loop, which roughly

takes the same amount of seconds to be computed. More specifically, the ra-
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tio between individuals in a generation for GA and preferences update in our

algorithm is roughly 1:1. It is fundamental to compare the methods against465

their relative times because one approach might yield the same results as the

other one but in a significantly smaller amount of time, making it an overall

better technique for a real-life application. In fact, the possibility of quickly

retraining the algorithm, adapting it to several different startup conditions, is

indeed a very desirable property, which would allow a wide-spread application470

of this method to a variety of real-life scenarios.

The server’s CPU on which all the experiments have been carried out consists

of 2 Intel(R) Xeon(R) E5-2630v3 @2.40GHz CPU (8 cores, 16 threads each).

As said, the data-set taken as input consists of 66 energy profiles, divided into

288 5-minutes time-steps.475

3.1. Single step scenario

This is the standard case, as presented in the previous section. Our proposed

algorithm and the Genetic Algorithm train always on the same energy profile

from the same winter day and, after each generation or preferences update, the

input is reset to be the initial profile. A reward as calculated in Equation (7)480

is gathered at each step. Training time is 10 hours of computation for both

methods, corresponding to roughly 200 generations for GA and 20,000 prefer-

ences update for our solution. In Fig. 5, the raw results for both methods are

shown in terms of reward, and their hourly moving average is calculated. It can

be seen that our solution maintains a better average and variance during the485

whole experiment. The higher instability for GA is due by the way it updates

the strategies: many inferior strategies are able to persist over the generations

despite being selected among the best 20%, while mutations are random and

only rarely improve the fitness of the strategies. Our solution, instead, quickly

approaches a local optimum, rapidly increasing the overall reward in the first490

handful of steps, and then converges around a few best solutions with smaller

variance and in general much more consistency than GA. Since our solution is

based on a Gradient Bandit algorithm, a stochastic method, some variance is
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Figure 5: The overall results and the moving average per hour (a) for our solution,

and (b) for GA.

inherent to the method itself and can only be reduced in time with a higher

learning rate α, at the cost of a convergence to poorer results.495
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Average and variance show how well a strategy is performing throughout time,

but are not indicative of the best results achieved by such a method. The pur-

pose of this optimisation, however, is that of finding the strategy that better

tackles the peak-shaving problem disregarding how many times such strategy500

appears during the simulation.

It can be argued that in order to be applicable to real-life scenarios, these

methods need to quickly adapt and understand the environment at hand, finding

the best way to quickly reduce the peak respecting the users’ thermal comfort.

In Fig. 6, the maximum reward obtained per hour is represented in the top505

graph. This is calculated by taking the best result obtained in each hour bucket

of training time. Again, it can be observed that our solution consistently does

better than GA at any moment of the simulation. To further illustrate this

difference, the graph at the bottom compares the initial energy profile, in blue,

with the profiles associated with the best strategies discovered by the two meth-510

ods after the first 30 minutes of training. Our solution reaches a 63% reduction

in the peak and GA remains under 55%. If in the long term their relative dis-

tance closens, in the first few minutes of training our algorithm shows much

bigger improvements and a faster convergence rate. In order to achieve higher

percentage of peak reduction, it is necessary to make slight and precise adjust-515

ments to avoid harming the thermal comfort of users while further reducing the

peak. The reward, indeed, takes into account the penalty received by the net-

work of users, therefore every attempt at improving the peak reduction cannot

ignore the individual sensitivity of the users. GA seems to be much slower and

limited at this task, as its high variance slower slope of the curve illustrate.520

While our solution is able to avoid heavy penalties after the first few iterations,

GA, because of the way populations are formed, tends to incur in this problem

even at later stages of this experiment.

The fast adaptability of the proposed solution can be greatly helpful in real-life

applications, in case, for instance, that the energy provider wants to find fitted525

strategies on a daily basis, providing the algorithm with a new energy profile

every day and expecting solutions to be discovered in a small amount of time.
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Figure 6: (a) The maximum reward per hour for our solution and GA, and (b) the

peak-shaving dynamics for the best results after 30 minutes of training.

Summarizing, while both methods provide satisfactory results at the end of the

10 hours training on the simpler scenario, our solution converges to a higher530

result than GA, with much better performances, especially in the first couple

of hours of training. Also, it is important to mention that the best strategies
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discovered by both methods do not harm the thermal comfort of users, as the

maximum temperature difference induced in buildings by these optimal strate-

gies is well under their comfort thresholds.535

3.2. Multiple steps scenario

In this scenario, everything works as before. However, every 2 hours of

computation, the initial energy profile is substituted by the energy profile cor-

responding to the best reward obtained in that specific training interval. To

be clear, consider the aggregated energy profile in orange of Fig. 6, produced540

by the strategy found by our solution. If after the first 2 hours that would be

the best profile found, then from the 2nd to the 4th hour of training it would

become the new initial profile to which actions are applied. After switching

the profile, both algorithms reset, by sampling a new random population or by

setting the preferences table to zero, causing the training to slow down in the545

first few iterations after a switch happens.This iterative scenario then outputs a

series of sets of anticipations and delays, to be applied sequentially to the initial

energy profiles.

One reason to include or even to prefer this approach is that it gives the learn-

ing agent at the central plant level much more freedom to apply anticipations550

and delays iteratively to the heating startup times of buildings, meaning that a

stronger peak-reduction can theoretically be obtained. However, greater antic-

ipations and delays can also mean that the end-users might suffer from higher

thermal deviation and thus experience discomfort. This scenario gives then

more space to improve over the previous results, at a possibly higher cost for555

the end-users thermal comfort. Fig. 7 shows the optimal strategies found after

10 hours of training for both methods. The difference, in this case, is much more

evident than in the first scenario, because the iterative optimisation greatly en-

hances the gap between the convergence speeds of the two algorithms. On the

one hand, our solution is able to level the peak almost perfectly, reducing it by560

around 80% of its previous height; on the other hand, there is still space for

improvements for the strategy found by GA, which reaches a reduction of 75%.
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Figure 7: The best strategies found in 10 hours of multi-day training for our solution

and GA.

This different ability for exploiting the multi-optimisation scenario can be

observed more clearly in Fig. 8, where the maximum reward per 30 minutes is

represented. In the first 2 hours, the difference is not significant, but it gets565

wider after successive updates of the energy profiles. This, as explained before,

is due to the much faster convergence rate of the proposed solution with respect

to GA, and its capability for quickly optimising under new conditions. It is

worth nothing that, at each update, the chances of harming the users’ thermal

comfort increase, as it can be seen by the sudden drops in reward, which, as570

explained before, is a compound measure of the overall peak reduction and the

comfort of end-users. Also note that, despite representing the best reward found

every 30 minutes of training, the curve is not necessarily monotonic for GBA,

because of the way its algorithm works. This happens because the stochastic

gradient update performed in the GBA does not guarantee that, once reached,575

a so-far best solution is then always followed by a better one. In most scenarios,

this is a desirable property that enables the algorithm to explore stochastically
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the action-space, thus reducing the risk of “getting stuck” in a local optimum

solution. The curve is monotonic however for GA because GA keeps a sub-

set the best solutions across the development of successive generations, which580

guarantees that its best solutions are incrementing monotonically over time.

Our solution is more consistent in choosing strategies that respect the agents

comfort thresholds, as it is able to train on the new profile much more quickly,

thus having less drops in performances overall.

Fig. 9 shows a comparison between the best strategies found after 10 hours

Figure 8: The maximum reward for our solution and GA in multi-step training, as

calculated every 30 minutes.
585

of training for the single and the multiple step scenario. The greater freedom

allowed in the multi-step case enables the Central Plant Agent to reduce the

peak even more significantly.

Since in this scenario it is almost possible to reach the optimal solution to

the peak-shaving problem, one might wonder if the thermal comfort of users is590

respected by the algorithm. Even very good results can be indeed invalidated

if one or more users would be in thermal discomfort. Fig. 10 compares the
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Figure 9: The best strategies found in 10 hours of training for the single step and the

multi step scenario.

maximum temperature difference, per user, caused by the application of our

solution in the second iterative scenario (shown in Fig. 7) and the thermal

comfort thresholds of the users as modelled in these experiments. For each595

user, a lower value than the thresholds means that the user’s thermal comfort

has not been harmed, according to the chosen standard settings for thermal

comfort [35], as explained in Section 2.2.1. It is remarkable how in the case

of at least five users, the algorithm shows a significant capability for correctly

identifying different kinds of users. For example, in three cases (i.e. building600

number 8, 25 and 52 in Fig. 10), the proposed algorithm exploits this knowledge

by maximising the increase of the temperature in those buildings whose users

are less sensitive. In two other cases (building 28 and 49 in Fig. 10), instead, an

unusually low thermal threshold is met by a very small temperature increase.

This shows a capability for learning the thermal sensitivity of each user, which605

is coupled with the thermal peak reduction at the aggregate level. It is even

more remarkable considering that the thermal thresholds are arbitrarily sampled
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from a random distribution and the algorithm has to adapt to them and to

the thermodynamics of the model simultaneously. Anticipations, delays and

thermal comfort are different components of a unique system and are strongly610

correlated, forcing the algorithm to learn how to combine all these factors and

their consequences at the same time.

Figure 10: Maximum temperature difference per building (orange) caused by the best

strategy for our solution and thermal comfort thresholds per building (blue).

In conclusion, the proposed technique allows to tackle effectively the problem

described in this work. In particular, results have shown that, for the considered615

DH network, the proposed solution is able to outperform the Genetic Algorithm

baseline in both overall results and speed of convergence. One reason for which

the GBA is consistently faster than the Genetic Algorithm (GA) might be due

to the way the two algorithms optimize the set of strategies. GA, after creating

a population of different possible strategies, selects a set (around 10% in our620

case) of best performing strategies, which are randomly mutated and mixed
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together, and added to new random strategies to form a new population to be

evaluated. Doing so, GA also spends a lot of computational effort in creating

and evaluating random and, thus, possibly inferior strategies. The Gradient

Bandit Algorithm, on the other hand, associates a numerical value, the utility625

or preference, to each possible action that can be performed on every building,

and then updates this value directly through the gradient bandit update rule.

This enables for a great deal of computational saving compared to GA.

Even though both algorithms are able to mediate between the reduction of

the thermal request’s peak and the comfort of users, only our solution is able630

to fully exploit the properties of the users’ network maximising the reduction

of the peak under the constraint given by the users’ thermal comfort. These re-

sults suggest that agent based modelling and reinforcement learning are mature

technologies that can contribute to the optimisation of district heating systems

in real-life applications, providing energy and monetary savings.635

4. Concluding Remarks

In this paper, a novel approach to the peak-shaving problem in District

Heating systems has been presented. Differently from the main method adopted

in the literature [30], namely Genetic Algorithms, here the problem is tackled

with the help of two different techniques. On the one hand, a Reinforcement640

Learning algorithm is responsible for modifying the energy profiles of buildings,

mediating between the reduction of the thermal request peak at the central

level and the temperature modifications at the buildings’ level. On the other

hand, a simple agent-based model monitors the internal thermal variations of

the network of buildings, giving feedback to the central plant learning agent645

about the thermal discomfort that the end-users inhabiting the network might

experience.

The purpose of this study was that of developing a method able to reduce the

thermal request peak in morning hours, while respecting the thermal comfort

of users. Carrying out two similar kinds of experiment, it has been found that650
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our proposed solution, based on a Gradient Bandit algorithm, delivers superior

results in both scenarios compared to the Genetic Algorithm baseline, in terms

of overall performance and speed of convergence.

There might be two, possibly coexisting, approaches to translate the method-

ology presented here into real-life applications. On one side, the whole process655

might be carried out offline, in a thermodynamic environment, which would

have to be an accurate representation of the real District Heating network to be

optimised. Furthermore, the agent-based model should represent faithfully the

end-users of the real network, in terms of sensitivity to variations of tempera-

ture. This could be done by investigating the real end-users with questionnaires660

about their thermal sensitivity and by rewarding them if they agree to be part

of such trial.

On the other side, primarily due to the difficulty in accurately modelling

the end-users network, this process might take place online. In this case, the

real end-users can provide the learning agent with live accurate feedback about665

their thermal comfort, allowing for a continuous online optimisation of the sys-

tem. In order to avoid drastic falls in thermal comfort for the users during

the early stages of the learning process, an intermediate setting is probably the

best option: at first, the central plant agent is provided with an accurate ther-

modynamic simulation and a provisional agent-based model, then, after a few670

learning iterations, its best strategy is applied to the real environment and it is

refined online, using live feedback gathered from the real end-users.
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