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Abstract The surface-initiated Rolling Contact Fatigue (RCF) including pitting and micro-pitting

is one of the key issues affecting the reliability of tribological components such as gears and bear-

ings used in various devices. In this work, a surface-initiated crack Finite Element (FE) model which

considers the effect of lubricant on crack faces was developed to investigate surface-initiated RCF

using an automatic crack propagating Python script. Different lubricating states, initial crack

parameters and loading conditions were simulated to analyze the evolution of crack propagation

and the Stress Intensity Factors (SIFs). The RCF crack propagation path and life were predicted

by employing the Maximum Tangential Stress (MTS) criterion coupled with the Paris’s law. A typ-

ical RCF failure is predicted in the numerical simulation. Results reveal that the lubricating pres-

surization dominates the surface-initiated RCF. In addition, the initial crack angle has a

significant effect on the RCF crack propagation path and the fatigue life.
� 2021 Production and hosting by Elsevier Ltd. on behalf of Chinese Society of Aeronautics and

Astronautics. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/

licenses/by-nc-nd/4.0/).
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1. Introduction

Rolling Contact Fatigue (RCF), as one of the dominating fac-
tors leading to failures of rotating mechanical components

such as gears and bearings, greatly affects the reliability and
safety of high-performance machineries including aero-
engine, wind turbine, car reducers and railway rails. RCF is
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mainly dominated by surface or subsurface-initiated cracks.
The subsurface-initiated failure, such as gear pitting and tooth
internal flank fracture, normally occurs due to material inclu-
sions,1,2 poor material hardness and residual stress gradients,3–
5 etc. The surface-initiated failure type, including micro-pitting
as given in Fig. 1,6–8 is the result of complicated interactions of
loading conditions, surface topography,9,10 lubrication,11–13

material microstructure and inclusions, etc. Currently, the
subsurface-initiated failure is effectively suppressed due to
the strict control of material defects and the improvement of

case-hardening technologies.14 Therefore, the surface-
initiated failure draws more attention as it extremely restricts
the fatigue performance of modern mechanical systems.

Way15 was one of the pioneers to study surface-initiated

failure for rolling contact through the experimental method.
https://



43

44

45

46

47

48

49

50

51

52

Nomenclature

a Crack length, mm

a0 Initial crack length, mm
ath Threshold crack length
b Half contact width, mm
da/dN Crack propagation rate, mm/cycle

f Frictional coefficient
i The i th loading cycle
o Crack mouth

p(x) Contact pressure, Pa
pliq Hydraulic pressure, Pa
pmax Maximum contact pressure, Pa

q(x) Traction distribution, Pa
x, y Axes of the absolute local coordinate system in

crack mouth
x0, y0 Axes of the local coordinate system in crack tip

C, m Material constants, C= 4.71 � 10�14, m = 5.42
E Equivalent elastic modulus, E= 115.4 GPa
K1 Opening mode (Mode Ⅰ) stress intensity factor,

MPa�mm1/2

K2 Shear mode (Mode Ⅱ) stress intensity factor,

MPa�mm1/2

Kc Fracture toughness, Kc = 630 MPa�mm1/2

Keff Effective stress intensity factor, MPa�mm1/2

Nf Fatigue life

Np Fatigue crack propagation life
h Crack propagation direction
h0 Initial crack angle between contact surface and

crack
h1 First crack propagation in the local coordinate
m Poisson’s ratio of the infinite elastic half-plane,

m = 0.3
r1 Maximum principal stress
Da Crack propagation increment, mm
DKeff Amplitude of effective stress intensity factor,

MPa�mm1/2

DKth Stress intensity factor threshold, DKth = 80 -
MPa�mm1/2

DN Corresponding repeated loading cycles for Da
DrFL Fatigue limit, DrFL = 500 MPa

2 H. HE et al.
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He suggested that the hydraulic pressure has a great influence
on the surface crack propagation in lubricated or mixed lubri-
cated rolling contact cases. The penetration of oil into crack

surface leads to the opening mode (Mode Ⅰ) rather than the
shear mode (Mode Ⅱ). Based on the fracture mechanics, Keer
Fig. 1 Pitting, micro-pittin

Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
et al.16–19 extensively studied the surface and subsurface crack
under rolling/sliding conditions in order to predict the crack
propagation behavior. Miller et al.20–22 focused on the short

crack propagation considering the influence of other impacts
such as the crack length, shot-peening, hydrogen element,
g of rolling elements.6–8

agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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Fig. 2 Schematic diagram of surface-initiated crack RCF model.
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etc. Results showed that shot-peening significantly decreases
the short crack growth rate. Then, Bold et al.23 experimentally
and numerically studied the RCF crack propagation for large

cracks (with length more than 10 mm), which mainly occurs in
rails. Guo et al.24 summarized some basic criteria to predict the
crack propagation direction under mixed-mode condition and

pointed out that the Maximum Tangential Stress (MTS) crite-
rion is widely used for opening mode dominated crack. Ren
et al.25 numerically simulated the surface initiated crack prop-

agation path under lubricated contact condition for a rolling
gear. However, the fatigue crack propagation life was missed
in this model. In 2008, Bogdanski and Lewicki26 explored
the Liquid Entrapment Mechanism (LEM) on a surface break-

ing crack based on a three-dimensional Finite Element (FE)
model. In the LEM frame, the entrapped oil volume was
assumed to be constant to calculate the oil hydraulic pressure.

Maya-Johnson et al.27 experientially investigated the crack
growth mechanism of rail steels (R370CrHT) under dry and
lubricated RCF conditions. The effect of material inclusions

on the crack propagation was also explored. Recently, consid-
ering both the fluid pressurization and entrapment effects,
Ancellotti et al.28,29 numerically investigated the lubricated

rolling-sliding contact fatigue. They found that the effect of
pressurization on the crack propagation shows similar phe-
nomenon with that of the entrapment case for short crack.
However, the RCF crack propagation behavior is still not fully

recognized due to the complex non-proportional loading his-
tory in comparison with the simple tensile loading and the
instability of pure shear mode crack propagation.30 Besides,

the fatigue crack growth path and life, as the two important
indicators of the RCF crack, are somewhat ignored in most
previous work. Therefore, a comprehensive investigation on

the fatigue crack growth behavior under lubricated rolling con-
tact case needs to be addressed.

In the current work, a FE model which considers the effect

of lubricant on crack faces is used to investigate the surface-
initiated rolling contact fatigue using an automatic crack prop-
agating Python script. The FE based contact pressure rather
than the ideal Hertzian pressure assumption is adopted to

obtain more accurate results. The uniform hydraulic pressure
coupled with the pressurization mechanism29 are utilized to
investigate the fatigue crack propagation for lubricant contact.

The algorithm of interaction integral is adopted to calculate
the Stress Intensity Factors (SIFs). The MTS criterion and
the Paris’s law are employed to reconstruct the surface-

initiated crack propagation and predict the fatigue life, respec-
tively. This work provides a new surface-initiated crack prop-
agating algorithm and lays a foundation for a further
exploration of more complex RCF crack growth problems.

2. Numerical methodology

2.1. Finite element model

The RCF crack normally occurs in gears, bearings, rails, etc.,

under repeated rolling-sliding. A numerical rolling contact
model carrying a surface inclined crack is developed to inves-
tigate the typical RCF crack growth problem. The commonly

used carburized steel material (18CrNiMo7-6) with the elastic
modulus 210 GPa and the Poisson’s ratio 0.3 is adopted. A
schematic diagram of the surface-initiated crack RCF model
Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
is illustrated in Fig. 2. The equivalent elastic modulus and
Poisson’s ratio of RCF model (with infinite half plane) are
E = 115.4 GPa and m= 0.3 based on the Hertzian contact

theory. In Fig. 2, a surface-initiated crack (crack length
a0 = 0.02 mm) with the inclining angle h0 is utilized to repre-
sent the crack body. x and y are the coordinate axes of the glo-

bal coordinate system; x0 and y0 are the coordinate axes of the
local coordinate system in the crack tip, respectively; h1 is the
crack propagation direction; p(x) and b are the contact pressure

distribution (from �b < x < b) and the half contact width,
respectively; q(x) is the traction distribution; o is crack mouth;
pliq is hydraulic pressure.

The interacting counterpart of the infinite half plane moves

from left to right on the surface. Starting from x = �3b, the
contact pressure p(x), passes through the crack mouth and
finally moves to the position of x = 3b with 100 time-step in

the FE simulation. The total rolling distance 6b ensures a com-
plete loading stress history (from the engage-in to the recess
point) for the crack to simulate a complete meshing cycle. It

is worth noting that the commonly used Hertzian contact pres-
sure is strongly idealistic and deviates from the actual pressure
profile, especially for heavy loading conditions. Therefore,

four contact pressure loading cases based on the FE calcula-
tion, listed in Table 1,31 are programmed in this work.

The effect of surface friction is represented by means of the
traction distribution q(x), which is expressed as

qðxÞ ¼ fpðxÞ ð1Þ
where f is the frictional coefficient between two contacting sur-

faces. pliq represents the hydraulic pressure applied on the
crack faces, and is assumed to correspond with the contact
pressure in the crack lip based on the pressurization mechan-

ics. Therefore, it has

pliq ¼ pðx¼0Þ ð2Þ
The fluid may be sealed in the crack and further results in a
complex crack fluid pressure distribution, especially for long
crack cases.11 However, considering that the initial crack

length is much smaller than the half contact width b, the above
function can be taken as a reasonable simplification of the
pressurization mechanism.11 It should be noted that this is

one of the simplest assumptions for crack pressure and may
overestimate the actual effect of fluid pressure.25 In addition,
the crack face is closed after the contact pressure passing
through the surface crack position. However, considering that

the crack growth is dominated by the pressurization mecha-
nism in the loading process, the crack closure effect32 caused
by the unloading process is neglected.
agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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Table 1 Maximum pressure and half contact width under different loading cases.31

Loading case 1 2 3 4

Maximum contact pressure pmax (MPa) 817 1110 1212 1300

b (mm) 0.60 0.80 1.00 1.20
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Fig. 3 illustrates the FE model with a initial crack. A finite
computational domain 20 mm � 10 mm is employed to repre-

sent the infinite half plane to decrease the calculation expense
while keep the accuracy. A circular region with a radius of
0.008 mm, located in the crack tip, is partitioned for fine ele-

ment meshing. The mesh size in the circular region and the
crack surface is set to be 0.002 mm to ensure convergence.
Gradually coarser meshes away from the critical area are gen-

erated to reduce the computational cost. The element number
for the initial model is 23341. The stress in the crack tip is infi-
nite when the crack is opening and loaded, representing the
stress singularity characteristics.33 Therefore, the singular ele-

ment type specifying to crack calculation is arranged in the
crack tip and the CPE4R element type is set in the remaining
area. The FE model is re-meshed after each crack propagation

step. Hence, the element number increases slightly for each
crack propagation process due to the use of remeshing
method. The loading cycle shown in Fig. 3 is applied in the

FE model for fatigue simulation.

2.2. Determination of crack propagation

Two vital factors, namely the crack propagation direction and
the crack propagation rate, are involved in this solving pro-
cess. Owing to the effect of the oil hydraulic pressure, which
transmits the shear mode dominated crack propagation into

the opening mode, the widely used MTS criterion can be uti-
lized to predict the surface-initiated crack propagation direc-
tion. Based on this assumption, the crack propagation

direction h is supposed to satisfy34
222
K1sinhþ K2 3cosh� 1ð Þ ¼ 0 ð3Þ

224224

Fig. 3 Meshing of s

Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
where K1 and K2 are the opening and shear mode SIFs, respec-
tively. The algorithm of interaction integral is adopted to cal-
culate the SIFs. The derivation procedure is given in the
Appendix. Then, the expected extending angle can be derived

as

h ¼ 2tan�1 �2K2

K1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2

1 þ 8K2
2

q ð4Þ

The other indispensable part, namely the crack propagation
rate da/dN, is calculated by the Paris’s law:35

da

dN
¼ CðDKeffÞm ð5Þ

where C and m are the material constants and are set to be

4.71 � 10�14 and 5.42, respectively;36 DKeff is the amplitude
of the effective SIF Keff and equals to the maximum Keff for
one loading cycle, namely DKeff = max(Keff) � min(Keff). The
effective SIF can be expressed as37

Keff ¼ K1 � 3K2tan
h
2

� �
cos3

h
2

ð6Þ

It should be noted that SIFs vary during one loading cycle,

and further results in the change of crack propagation direc-
tion according to Eq. (3). Therefore, the time-varying angle h
for one loading cycle is determined based on such a criterion

where the crack growth rate reaches to the maximal (da/dN
(h)max).

38

It is worth noting that the classical Paris’s law is only valid
for long fatigue crack growth where the crack length is longer

than the threshold crack length ath:
39,40

ath ¼ 1

p
DKth

DrFL

� �2

ð7Þ
imulation model.

agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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where DrFL is the fatigue limit; DKth is the SIF threshold. The

fully reversed tensile fatigue limit of the steel material used is
measured as about 500 MPa. DKth used is set as36 DKth = 80 -
MPa�mm1/2. Therefore, the Paris’s law can be used when the

crack length exceeds ath = 0.008 mm. After that, the number
of repeated loading cycles DN for a specific crack propagation
length Da can be calculated as

DN ¼ da

dN
Da ð8Þ

where Da is set to be 0.02 mm, equals to the length of the initial
crack. Based on the fracture mechanics, the fatigue failure
occurs when DKeff reaches a critical value Kc, namely the frac-

ture toughness. The magnitude of Kc = 630 MPa�mm1/2 for
the steel material is used.36 Finally, the fatigue crack propaga-
tion life Np for gear RCF can be calculated. During simula-

tion, some more loading cycles have been conducted after
the predefined fatigue failure to form an obvious crack propa-
gation path. However, these repeated loading cycles have neg-

ligibly small effect on the fatigue life according to Eqs. (5) and
(8).

The numerical scheme for the fatigue crack propagation

simulation is depicted in Fig. 4, where superscript i represents
the i th loading cycle. The crack coupled FE model is devel-
oped based upon the parameters of the material and the crack.
The stress and strain responses are captured after the pressure

moves from –3b to 3b. SIFs are calculated in the following step
based on the interaction integrals, and further, the crack prop-
agation direction and growth rate can be obtained. After that,

if DKeff is less than Kc, an updated crack is formed for next
crack propagation. Otherwise, the fatigue crack propagation
simulation is finished.
Fig. 4 Algorithm flow chart of fatig

Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
3. Results and analyses

The singularity characteristic in the crack tip probably leads to
the non-convergence phenomenon of crack tip stress even for

an extremely fine mesh case. Therefore, the simulation model
is verified through the comparison of the SIFs distributions
given in Fig. 5(a) and 5(b) for different local mesh sizes,

namely 1, 2, 4 lm, under Load case 2. The horizontal axis
(x) represents the distance to the crack lip in the contact sur-
face. The difference of the magnitude of K1 decreases from
5.7% to 2.5% when the local mesh size changes from 4 lm
to 2 lm compared with the result of the finest case. This phe-
nomenon presents the convergence of the developed FE model.
Hence, the local mesh size of 2 lm coupled with Load case 2

are adopted for the following simulation.

3.1. Effect of lubricating states

The evolutions of opening and shear mode SIFs during one
loading cycle are depicted in Fig. 6(a) and (b), respectively.
It should be noticed that investigates the effect of the lubricat-

ing states not merely the hydraulic pressure on the crack face.
That is to say, the variation of friction as the lubrication state
changes needs to be considered as well. Therefore, the fric-
tional coefficient f is set to be 0.0841 representing the lubricated

case. The rest different friction coefficients from 0.1 to 0.4 rep-
resent the non-lubricated conditions, where the hydraulic pres-
sure is absent. On one hand, it can be observed that both the

two SIFs display as positive values before approaching the
contact center. Besides, with the increasing of the frictional
coefficient f, the magnitude of both SIFs rises. On the other
ue crack propagation simulation.

agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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Fig. 6 Evolution of two SIF components under different

conditions.

Fig. 7 Amplitude of effective SIF under different conditions.
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hand, K1 rises sharply while K2 declines remarkably for the
lubricated case compared with the non-lubricated condition.
This is because the hydraulic pressure tends to open the crack

faces and further increases the value of K1.
Fig. 7 depicts the amplitude of the effective SIF under these

two conditions. It is clear that the change of DKeff almost lin-

early corresponds to f for non-lubricated cases. A higher value
of f would result in a larger magnitude of DKeff. Nevertheless,
the crack opening effect caused by the lubricant pressure rises

the possibility of crack propagation. For instance, the value of
DKeff for the lubricated case is twice that of the non-lubricated
case with f= 0.1.

3.2. Effects of initial crack parameters

Fig. 8(a) illustrates the evolution of K1 during one loading
cycle for different initial crack angles (h0). According to the

evolutions of K1, a relative larger initial crack degree would
keep the crack faces opening for a longer time during a com-
plete loading cycle. Meanwhile, h0 has a significant effect on

K2, as displayed in Fig. 8(b). The maximum of K2 rises from
Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
16.0 MPa�mm1/2 to 26.5 MPa�mm1/2 when the initial crack
direction changes from 30� to 75�. In addition, the correspond-

ing minimum value increases from –15.5 MPa�mm1/2 to
5.0 MPa�mm1/2. In other words, the positive part of K2

becomes more important as the initial crack direction
increases.
agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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Fig. 9 shows the amplitude of the effective SIF and the pre-
dicted crack propagation direction for different h0. What can
be easily seen is that when the angle between the initial crack

direction and the surface is very small, such as 15� or 165�,
the amplitude of the effective SIF is considerably large com-
pared with other cases. The crack tends to propagate to the

surface for such small initial angles according to the predicted
crack propagation angle h1. This is because the crack faces are
more likely to open for a small initial crack angle and result in

the departure of near surface materials due to the effect of
hydraulic pressure. However, the value of SIF increases from
61.1 MPa�mm1/2 to 66.7 MPa�mm1/2 and then decreases to
43.0 MPa�mm1/2 when the initial crack angle increases from

30� to 150�. The peak value of 66.7 MPa�mm1/2 appears with
the initial crack angle around 60�. The predicted propagation
angle is negative for the range of h0 = 30�–90� and positive

for the range of h0 = 90�–150�. That is to say, the crack would
firstly propagate to the core area beneath the surface for these
cases.

Evolutions of SIFs for different initial crack lengths under
one loading cycle are depicted in Fig. 10. It is obvious to see
Fig. 10 Evolution of SIFs components with different initial

crack lengths.

agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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that the initial crack length a0 has a significant effect on the
amplitude of SIFs with similar evolution curves. The ampli-
tude of K1 dramatically rises from 35 MPa�mm1/2 to

270 MPa�mm1/2 when the initial crack length increases from
0.02 mm to 0.10 mm. The amplitude of K2 also rises from
23.0 MPa�mm1/2 to 96.5 MPa�mm1/2. Besides, the position of

the peak value of SIFs shifts to the right side as the initial
crack length increases.

A comprehensive effect of the initial crack parameters,

including the crack length and the angle, on DKeff is plotted
in Fig. 11. High DKeff is arrested when the angle between
Fig. 12 Maximum principal stress for different load cases when

Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
the initial crack direction and the surface is small. This phe-
nomenon becomes more significant with the increasing of
the initial crack length a0. In addition, the unsymmetrical

characteristic is captured in Fig. 11 even though the pre-
sented angles are symmetric about the initial crack direction
(h0 = 90�), namely a vertical crack. This is because entirely

different stress histories would emerge in the crack tip for
these geometrically symmetric cracks during one complete
loading cycle, which further forms different evolutions of

SIF components.

3.3. Effect of loading condition

The loading amplitude is an extremely vital factor influencing
the RCF behavior. The variation of the normal loading ampli-
tude results in the change of the half contact width b and the
maximum contact pressure pmax. Table 1 gives the correspond-

ing data for different loading cases used.
The maximum principal stress (r1), as a key stress param-

eter to represent the crack opening trend, is illustrated in

Fig. 12 for different loading cases when the contact pressure
reaches x = �b. Despite the singularity characteristic of the
stress response in the crack tip, the stress maps have a similar

shape for all loading cases. Besides, the stress around the
crack tip rises as the loading amplitude increases. In other
words, the crack propagates more easily for a higher loading
amplitude.
contact pressure reaches x = �b and initial angle h0 = 30�.
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Fig. 13 Evolutions of SIFs components under lubricated con-

ditions with different loading amplitudes.
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It is clear from Fig. 13 that the amplitudes for both K1 and
K2 rise sharply as the load increases. This is because the stress
fields near the crack tip encounter a considerable growth for a

heavy load condition. Besides, it is interesting to find that the
positions of the maximum and minimum values for K1 and K2

during one loading cycle are keeping away from the contact
center as the load increases. This phenomenon is caused by

the change of the half contact width. In practical, the extreme
values always occur near the positions where the contact area
approaches or leaves the crack mouth.

3.4. Prediction of RCF crack propagation path and life

The effects of initial crack angle, length and normal loading

amplitude have been investigated in Sections 3.2 and 3.3. Sec-
tion 3.4 focuses on the prediction of the crack propagation
path and life. Several initial crack angles (30�, 45�, 60� and

90�) with the same initial crack length 0.02 mm and load con-
dition (Load case 2) are chosen to investigate the crack prop-
agation. The crack increment has great effect on the predicted
crack path and life. Hence, the crack propagation increment
Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
for the first ten loading cycles is set to be a sufficiently small
value of 0.02 mm and extends to 0.04 mm after the 10th load-
ing cycle to save the time expense.

Fig. 14 depicts the stress maps of r1 for different crack
propagation states when the contact pressure reaches x= �b
under the initial angle h0 = 30�. It is obvious that the maxi-

mum value of r1 increases sharply with the growth of crack
length a. The tremendous growth of r1 indicates that the crack
would propagate much more easily with the increasing of

crack length. It is worth noting that the stress response can
only show the crack opening tread duo to the singular charac-
teristic rather than the real stress response during crack
propagation.

Fig. 15 illustrates the evolutions of the effective SIF ampli-
tude with the increase of crack length for different initial crack
angles. For the initial crack angle h0 = 30� case, DKeff grows

slowly for crack lengths within 0.20 mm while rises dramati-
cally afterwards. In contrast, DKeff in other cases increase very
slowly. That is to say, when DKeff is to be determined, the

branched crack can be approximatively replaced by a straight
crack for short cracks. It is worth noting that when DKeff

exceeds the fracture toughness, the Paris’s law is not applicable

as the rate of crack advance tends towards infinity and the
crack will propagate instantaneously. However, it has a negli-
gibly small effect on the fatigue life.

Evolution of the propagation rates with the increase of

crack length is depicted in Fig. 16. The crack growth rate gen-
erally rises with the crack length for all cases, which has a sim-
ilar tread with the experimental results published in Ref. 42.

Furthermore, according to Eq. (5), the growth rate is strongly
affected by DKeff. Hence, it is reasonable that the growth rate
becomes larger for the initial crack angle h0 = 30� compared

with the rest cases under the same crack length.
Fig. 17 depicts fatigue crack propagation paths for different

initial crack angles and reveals that the initial crack angle

affects the RCF fatigue crack growth path to a large extent.
Cracks propagate to the core for all cases in the first several
propagation steps. While, for the case of h0 = 30�, the crack
begins to grow to the surface after reaching the deepest posi-

tion around 0.072 mm, and finally forms a typical surface-
initiated RCF failure.

The RCF fatigue crack propagation lives (Np) for these

four cases are listed in Table 2. Similar with the crack growth
rate, the initial crack angle h0 significantly affects the fatigue
crack propagation life. For example, Np changes from

1.28 � 107 to 0.87 � 107, with a 32% drop, when the initial
crack angle rises from 30� to 60�. This phenomenon can be
explained through Eq. (4) and Fig. 9. The fatigue crack prop-
agation rate is strongly affected by DKeff. Even a slight increase

of DKeff would sharply increase the propagation rate, and fur-
ther reduce the fatigue life. Besides, the first several crack prop-
agation steps dominate the fatigue life. Hence, according to

Fig. 9, the predicted RCF crack propagation lives are rational.
It is worth noting that the fatigue life is calculated based on the
da/dN(h)max criteria. The simulation result requires verification

through future experimental studies.

4. Discussion

In engineering practice, the initial crack could have some com-
plex shapes such as c-shape crack43 and semi-elliptical crack.44
agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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An idealized initial crack (straight crack)14,45 is utilized for
crack propagation prediction. The difference of crack shapes
would influence the SIFs calculation, and further affect the

crack propagation for long crack. However, the initial crack
length used currently is small enough to minimize the influence
of crack shape. In addition, a straight crack is convenient for

obtaining a general evolution of crack propagation.
Both the surface traction and the hydraulic pressure are

taken into consideration when the effect of lubricating state
is investigated in Fig. 6. This is because during the engineering
Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
doi.org/10.1016/j.cja.2021.03.012
practice, the existence of lubricant would reduce the surface
friction and form the hydraulic pressure on the crack face.

Therefore, it is necessary to consider these two factors rather
than the hydraulic pressure only. In addition, the fact that
K2 decreases for the lubricated condition in Fig. 6 is valid only
for the case that the initial crack length is much smaller than

the half contact width. This is because the lubrication
decreases the friction coefficient between crack faces, and fur-
ther enhances the shear mode crack growth when the crack

length approaches to the contact width. Therefore, the pro-
posed methodology does not take this effect into account.
agation behaviors in lubricated rolling contact, Chin J Aeronaut (2021), https://
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Fig. 17 RCF fatigue crack propagation paths for different initial

crack angles.

Table 2 RCF fatigue crack propagation lives for different

initial crack angles.

h0 (�) Np (107)

30 1.28

45 1.08

60 0.87

90 1.06
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In Fig. 8(a), what is interesting is the phenomenon that the
maximum K1 for all cases occurs near the position of x = �b.

This is because the invasion of lubricant results in the hydrau-
lic pressure on the crack faces, which further dramatically rises
the value of the opening mode SIF when the contact pressure

firstly reaches the crack lip at x = �b. However, the crack
faces changes to closed because the crack length is much less
than the half contact width after that position, leading to the

aforementioned phenomenon.
Fig. 18 Loading state for different crack l

Please cite this article in press as: HE H et al. Numerical study on fatigue crack prop
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The phenomenon that the peak value of DKeff for h0 = 30�–
150� emerges around in 60� is worth discussing. In reality, this
may be the combining result of the hydraulic pressure, the con-

tact pressure and the friction force. The contact pressure
would weaken the influence of the hydraulic pressure on the
crack face when the vector directions of these two pressure

parameters are gradually approaching to each other. There-
fore, the peak value of K1 does not occur for small angles,
for example, h0 = 30� and h0 = 150�. Besides, the friction

force changes the amplitude of K2 for different h0. Hence, cou-
pled with the value of K1, this interesting phenomenon is
finally observed.

In Fig. 16, the difference between h0 = 30� and other cases

become more significant with the increasing of the crack
length. This phenomenon can be explained through Fig. 18.
As the crack growths, shown in Fig. 18(a) and (c), the loading

area for the hydraulic pressure increases, which further arising
the impact of the hydraulic pressure on the crack face consid-
ering that the contact pressure keeps constant. Besides, for a

smaller initial crack angle, the crack tends to open easier com-
pared with Fig. 18(b) and (d). This combined effect results in a
larger DKeff for a small initial angle. In addition, once DKeff

exceeds the fracture toughness, the fatigue crack propagation
failure occurs, and DKeff would encounter dramatic increase
for the following loading cycles.

The developed numerical model is verified based on the

meshing size check without the comparison with experimental
results. Therefore, a robust experimental verification of the
current model is recommended. Another important issue is

that the crack size considered in this work is with the micron
scale, which has the same magnitude with the material
microstructure grain size46 and surface roughness.47 Therefore,

the homogeneous material and smooth surface assumption
may be limitation when predicting the short crack propagation
for RCF problems. A numerical model considering the effect

of material microstructure and surface roughness would be
more preferred.
engths and different initial crack angles.
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5. Conclusions

(1) Under the lubricated condition, the hydraulic pressure
on crack faces caused by lubrication would sharply
increase the opening mode stress intensity factor. Mean-

while, the lubrication between contacting surface
decreases the frictional coefficient and further results
in the decreasing of the shear mode SIF for short crack.

(2) The initial surface-initiated crack angle has a significant
effect on the RCF crack propagation path. With a small
initial crack angle, the crack grows to the core in the

beginning, and then propagates towards the surface till
a typical RCF spalling failure is formed. The crack
may propagate deeper with a larger initial crack angle.

(3) The fatigue life mainly depends on the early propagation
period. Besides, the initial crack angle has a significant
effect on RCF crack propagation life. The RCF crack
propagation life decreases 32% as the initial angle

increases.
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Appendix

SIFs are calculated based on the interaction integrals. A brief
introduction about this method is shown, the detailed deriva-
tion can be found in Ref. 48. Based on the linear elastic frac-

ture mechanics, the present real state (State 1, stress, strain

and displacement are rð1Þ
ij , eð1Þij and u

ð1Þ
i ) coupled with an auxil-

iary state (State 2, rð2Þ
ij , e

ð2Þ
ij and u

ð2Þ
i ) are utilized to obtain SIFs.

The interaction integral I(1+2) in the superimposed state (State

1 + State 2) is expressed as

Ið1þ2Þ ¼
Z
A

rð1Þ
ij

@u
ð2Þ
i

@x1

þ rð2Þ
ij

@u
ð1Þ
i

@x1

� wð1;2Þd1;j

 !
@q

@xi

dA i; j ¼ 1; 2

ðA1Þ
where A is the integral domain which should surrounds the
crack tip; x1 and x2 are the local coordinate axes � and y in

the crack tip; d1,j is the Kronecker’s delta; q is the weight func-
tion and suffers specific values in the crack tip and boundary;49

w(1,2) is the interaction strain energy and can be given as

wð1;2Þ ¼ rð1Þ
ij e

ð2Þ
ij ðA2Þ

Furthermore, SIFs have the following connection with the
interaction integral under the plane strain assumption:

Ið1þ2Þ ¼ 2ð1� m2Þ
E

ðKð1Þ
1 K

ð2Þ
1 þ K

ð1Þ
2 K

ð2Þ
2 Þ ðA3Þ
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Making the auxiliary state satisfy the pure opening mode

asymptotic fields withK
ð2Þ
1 = 1. That is to say

K
ð2Þ
1 ¼ 1

K
ð2Þ
2 ¼ 0

(
ðA4Þ

Then, combining Eqs. (A3) and (A4), the present opening
mode SIF can be derived as

K
ð1Þ
1 ¼ E

2ð1� m2Þ I
ð1þmode IÞ ðA5Þ

Similarly, the model Ⅱ SIF can be obtained as

K
ð1Þ
2 ¼ E

2ð1� m2Þ I
ð1þmode IIÞ ðA6Þ
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