
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Demystifying GPU Reliability: Comparing and Combining Beam Experiments, Fault Simulation, and Profiling / Fernandes
dos Santos, Fernando; Kumas Sastry Hari, Siva; Martins Basso, Pedro; Carro, Luigi; Rech, Paolo. - (In corso di stampa).
(Intervento presentato al convegno 35th IEEE International Parallel & Distributed Processing Symposium (IPDPS)).

Original

Demystifying GPU Reliability: Comparing and Combining Beam Experiments, Fault Simulation, and
Profiling

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

©9999 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2888519 since: 2021-04-11T12:01:50Z

ieee

Demystifying GPU Reliability:
Comparing and Combining Beam Experiments,

Fault Simulation, and Profiling

Fernando Fernandes dos Santos∗, Siva Kumar Sastry Hari?, Pedro Martins Basso∗, Luigi Carro∗, and Paolo Rech†
∗UFRGS, Brazil ?NVIDIA Corporation, United States †Politecnico di Torino, Italy

Abstract—Graphics Processing Units (GPUs) have moved from
being dedicated devices for multimedia and gaming applications
to general-purpose accelerators employed in High-Performance
Computing (HPC) and safety-critical applications such as au-
tonomous vehicles. This market shift led to a burst in the GPU’s
computing capabilities and efficiency, significant improvements in
the programming frameworks and performance evaluation tools,
and a concern about their hardware reliability.

In this paper, we compare and combine high-energy neutron
beam experiments that account for more than 13 million years
of natural terrestrial exposure, extensive architectural-level fault
simulations that required more than 350 GPU hours (using
SASSIFI and NVBitFI), and detailed application-level profiling.
Our main goal is to answer one of the fundamental open questions
in GPU reliability evaluation: whether fault simulation provides
representative results that can be used to predict the failure rates
of workloads running on GPUs. We show that, in most cases, fault
simulation-based prediction for silent data corruptions is suffi-
ciently close (differences lower than 5×) to the experimentally
measured rates. We also analyze the reliability of some of the
main GPU functional units (including mixed-precision and tensor
cores). We find that the way GPU resources are instantiated plays
a critical role in the overall system reliability and that faults
outside the functional units generate most detectable errors.

I. INTRODUCTION

GPUs have evolved from supporting hardware for user
applications and graphics rendering to general-purpose ac-
celerators extensively employed in HPC and safety-critical
applications such as autonomous driving for the automotive
and aerospace markets. The GPU architecture fits the compu-
tational characteristic of most HPC codes and is efficient in ex-
ecuting matrix multiplication, which is the computing core of
Convolutional Neural Networks (CNNs) used to detect objects
in autonomous vehicles. The most recent GPU architecture
advances, such as tensor core and mixed-precision functional
units, move toward improving the performances and software
flexibility for HPC and deep learning applications.

Focusing on HPC and safety-critical applications, GPU
vendors have worked to improve the reliability of the memory
cell [1]. They are working on platforms compliant with strict
automotive reliability standards, such as the ISO26262 [2].
The research community has been carefully studying GPU
reliability with both fault simulation [3], [4], and beam exper-
iments [5]. Beam experiments provide a very realistic analysis
but lack visibility as it is hard to associate observed behaviors
with the source of the fault and identify the most vulnerable

GPU resources. In contrast, fault simulation provides full vis-
ibility of the fault propagation, thus identifying the resources
or code portions that, once corrupted, are more likely to affect
the computation. However, faults usually can only be injected
on a subset of resources, and the adopted fault-model risks to
be unrealistic if not tuned with experiments.

The comparison between beam experiments and fault sim-
ulation is an essential missing piece in the GPU reliability
evaluation puzzle that this paper intends to find. It is still
mostly unclear whether a reliability evaluation based only
on fault simulation is realistic. Evaluating the effectiveness
of many error mitigation techniques requires fault injection.
However, data based on fault simulations alone does not imply
that the method will be useful in the field. To evaluate at
which level and under which assumptions fault simulation can
provide a realistic reliability evaluation for GPUs, we compare
the codes’ Failure In Time (FIT) rates measured through beam
experiments with the FIT rates predicted using fault injections.

To characterize Kepler [6] and Volta [7] architectures’
reliability, we measure, through beam experiments, the FIT
rates of the main functional units (including mixed-precision
and tensor core) and register file. We also measure the FIT
rates of 15 representative codes for HPC and safety-critical
applications, including two CNNs. Some codes have been
executed using different data types (e.g., double-, single-, or
half-precision floating point and integer) to understand the im-
pact of mixed-precision on code’s reliability. For most codes,
we run experiments both with Error Correcting Code (ECC)
enabled and disabled to evaluate the efficacy of GPUs’ built-in
reliability solutions and distinguish between the contribution
of logic and memory faults to the codes error rate. Then,
thanks to the fault injection analysis, we identify the most
likely sources for the observed Silent Data Corruptions (SDCs)
and Detected Unrecoverable Errors (DUEs). We find out that
integer codes have higher Architectural Vulnerability Factor
(AVF) than floating point codes while different floating point
precisions do not seem to affect the code AVF.

To compare fault simulation with beam experiments, we
predict the codes FIT rate by multiplying the experimentally
measured FIT rates of the functional units and memory
resources (the latter only when ECC is disabled) with the
AVF of the respective hardware resource. To account for

GPU’s parallelism management, in the FIT rate prediction
we consider both the GPU occupancy and code IPC (i.e.,
how many threads are active and how many functional units
are being used) obtained through kernel profiling. We show
that our method can provide a reasonable prediction of the
SDC FIT rate for most codes (differences lower than 5×).
Thanks to our analysis, we can understand the impact of
hidden GPU resources (parallelism management, scheduler,
dispatcher, queues, etc.) and identify the code/architecture
characteristics/metrics that have a significant impact on the
GPUs error rate. Additionally, we show that the DUE FIT
rate is dominated by faults in resources that are not accessible
through architecture-level fault simulations. As a result, high-
level fault simulation-based methods underestimate GPU’s
DUE FIT rate by orders of magnitude.

To make our results reproducible and to provide a reference
for third party analysis, all reported data, including kernels
profiling, fault injection, and beam experiments result, is made
available in a GitHub repository1. The remainder of the paper
is structured as follows. Section II presents the past works
related to our research. The experiments and the tools that we
used are described in Section III. In Section IV, we propose
a simplification of the FIT rate prediction based on the error
probability. Section V details how we measure the FIT rate of
micro-instructions. The fault simulation and beam experiments
results are discussed in Section VI. The prediction results
using our model and the fault simulation-beam comparison are
presented in Section VII. Section VIII concludes the paper.

II. BACKGROUND AND RELATED WORK

Ionizing particles strike may generate a bit-flip in memory
or produce current spikes in logic circuits that, if latched, lead
to a fault [8]. A transient fault may propagate through the stack
of system layers leading to a Silent Data Corruption (SDC,
i.e., undetected output corruption) or Detected Unrecoverable
Errors (DUEs, i.e., program or system crash) or no effect to
the program output (i.e., the fault is masked).

The error rate of computing devices, including GPUs, run-
ning specific applications has already been measured through-
beam experiments in previous work [9], [10]. The accelerated
particle beam induces transient faults in the device hardware
and, counting the manifestations of errors at the output, it
is possible to measure the realistic error rate of the device
running a code. Beam experiments, while providing the real-
istic error rate, jointly consider all the factors that influence
the device error rate, impeding the distinction of each factor’s
contribution and making it very challenging to identify the
most vulnerable parts of the system.

Fault simulation is used to understand the fault’s probability
to propagate, generating an error. Faults can be injected by the
user at different levels of abstractions: from Register-Transfer
Level (RTL) [11], [12] to microarchitecture [13], [14] and
software [15], [16]. Fault simulation assumes that the fault
had occurred and tracks its propagation without giving any

1https://github.com/UFRGS-CAROL/ipdps2021.git

TABLE I: Codes characteristics on Kepler and Volta GPUs.
Kepler Volta

SHARED RF IPC Occupancy SHARED RF IPC Occupancy
CCL INT 123B 34 0.14 0.11

Lava
FP16 8KB 255 0.26 0.1

BFS INT 0B 21 1.22 0.81 FP32 8KB 255 0.12 0.1
Lava FP32 7KB 37 4.12 0.57 FP64 16KB 254 0.07 0.1
Hotspot FP32 3KB 23 3.89 0.94

Hotspot
FP16 16KB 26 0.48 0.94

Gaussian FP32 0B 14 0.51 0.34 FP32 32KB 27 0.32 0.95
LUD FP32 8.6KB 27 0.58 0.37 FP64 64KB 30 0.18 0.96
NW INT 8.2KB 32 0.2 0.08

MxM
FP16 0B 27 2.84 1

MXM FP32 8KB 25 1.5 1 FP32 0B 25 2.62 1
GEMM FP32 31KB 248 4.94 0.19 FP64 0B 29 2.3 1
Mergesort INT 2.5KB 16 2.11 0.97

GEMM
FP16 64KB 127 2.34 0.25

Quicksort INT 328B 27 1.97 0.96 FP32 64KB 134 2.36 0.13
Yolov2 FP32 8KB 97 2.84 0.59 FP64 64KB 234 1.22 0.13
Yolov3 FP32 9.1KB 100 3.11 0.65 Yolov3 FP16 21.5KB 55 0.06 0.7

– FP32 34.2KB 39 0.09 0.7

information about the probability for the fault to originate.
Fault simulation has two main limitations: (1) the fault model
and fault injection probabilities are defined/modeled by the
user and/or the simulator, thus the obtained results risk to be
unrealistic. (2) faults can be injected only in that subset of
available and accessible resources.

A recent study [17] tried to predict application SDC rate
using micro-architectural fault injection on ARM CPUs. How-
ever, the paper does not perform analysis on the application
level. On GPUs, Hari et. al [18] tried to predict the FIT rate
at implementation and application-level. The low-level im-
plementation considered beam experiments, and application-
level analysis employed fault injection. The results show that
the SDC prediction is plausible. However, the paper did not
provide insights into the impact of hidden GPU resources
(parallelism management) on the SDC rate or identifying
the code/architecture characteristics/metrics that significantly
impact GPUs. We show that analyzing multiple GPU architec-
tures and compiler versions are crucial for application failure
rate analysis. We also investigated models with ECC and
without ECC to reveal new insights.

To the best of our knowledge, this is the first paper that (1)
combines beam experiments and fault simulation to deeply
understand the reliability of GPUs and (2) provides essential
information to ensure that fault simulation derives a realistic
GPU reliability evaluation.

III. METRICS AND EVALUATION METHODOLOGY

This section describes the devices and codes we charac-
terize, the metrics adopted for the reliability evaluation of
computing devices, and how we measure them for GPUs.

A. Devices

Devices: We consider Kepler (Tesla K40c) and Volta (Titan
V and Tesla V100) NVIDIA GPU architectures. The tested
NVIDIA K40c is based on the Kepler architecture and has
2,880 CUDA cores divided into 15 Streaming Multiproces-
sors (SMs). Single Error Correction Double Error Detection
(SECDED) ECC protects the register file, shared memory, and
caches. The Titan V and Tesla V100 GPUs are based on Volta
architecture. Volta GPUs support three IEEE754 float point
precisions: double, float, and half. Each of the 80 Volta SMs
has 64 FP32 cores, 64 INT32 cores, 32 FP64 cores [19]. Volta
also includes eight tensor cores, i.e., specific hardware that
performs the Matrix Multiplication and Accumulate (MMA)
operation. ECC can be disabled or enabled by the user on both
K40c and V100.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
FL
A
V
A

H
LA

V
A

FL
A
V
A

D
LA

V
A

FM
X
M

H
M
X
M

FM
X
M

D
M
X
M

FG
EM

M

H
G
EM

M

FG
EM

M

D
G
EM

M

H
G
EM

M
-M

M
A

FG
EM

M
-M

M
A

FH
O
TS
P
O
T

H
H
O
TS
P
O
T

FH
O
TS
P
O
T

D
H
O
TS
P
O
T

FY
O
LO

V
2

FY
O
LO

V
3

H
Y
O
LO

V
3

FY
O
LO

V
3

Q
U
IC
K
SO

R
T

M
ER

G
ES
O
R
T

FG
A
U
SS
IA
N

B
FS

FL
U
D

C
C
L

N
W

FMA MUL ADD INT MMA LDST OTHERS
Kepler Volta

In
st

ru
ct

io
n

s
%

Fig. 1: Instruction type per code for Kepler and Volta GPUs.

B. Tested Codes

To increase our results’ quality, we chose fifteen represen-
tative codes, listed in Table I, that come from broad domains,
from HPC to deep learning. We pay particular attention to
Matrix Multiplication because of its importance in CNNs and
HPC. We test both the naive version (MxM) and optimized
version that digests data in the most suitable way for GPUs
as General Matrix Multiplication (GEMM) from the NVIDIA
CUBLAS libraries. To be highly efficient, GEMM kernel is
tuned for selected input size, precision, and device configura-
tion.

We identify the codes that are more vulnerable and discuss
if the code reliability characteristic is due to the sensitivity
of resources, the number of resources used for computation,
and/or the fault propagation probability (AVF). Table I also
lists the metrics that we use to consider the GPU parallel
management in the FIT rate prediction: the amount of shared
memory, the average number of registers used for computation,
the IPC, and occupancy (details in Section IV-B).

For each code listed in Table I, we profile the kernel using
NVPROF and NSIGHT-COMPUTE. Profiling the codes gives
us insights in to the instructions that significantly contribute to
the benchmark execution. Figure 1 shows, in percentage, the
instructions that compose each code. Each floating-point code
has the precision made explicit in the first letter of its name – D
for double-precision (64 bits), F for single-precision (32 bits),
and H for half-precision (16 bits). For example, HHOTSPOT is
Hotspot executed using half-precision and DGEMM is GEMM
using double-precision floating-point data type. INT32 based
codes do not have their name modified.

Based on the profile, we divide the instructions into: (1)
common arithmetic instructions (i.e., FMA, MUL, ADD, INT,
MMA), (2) data movement instructions (LDST), (3) ”OTH-
ERS”, which are the ones that have a minor contribution
to the final benchmark (i.e., transcendental functions, branch,
inter-thread communication, thread barrier, NOP, and atomic
directives). As testing all the instructions would be unfeasible
due to beam time restrictions (NVIDIA ISA has more than
20 different instructions classes), we measured through-beam
experiments the FIT rate of only the former set of instructions,
as they are the most likely to be corrupted and the most
common in a wide range of codes. As we demonstrate in

Fig. 2: Beam experiment setup at ChipIR.

Section VII, even considering a (large but not exhaustive)
subset of instructions allows a reasonable FIT rate estimation
for the codes executed in the GPU.

C. Beam Experiment Setup

Beam experiments allows to measure the FIT rate of
a computing device running a code by dividing the num-
ber of observed errors by the received particles fluence
(neutrons/cm2). Our experiments are performed at the
ChipIR facility of the Rutherford Appleton Laboratory, UK,
and at the LANSCE facility of the Los Alamos National Lab-
oratory, USA. Figure 2 shows the setup mounted at ChipIR.
Both facilities deliver a beam of neutrons with a spectrum
of energies that resembles the atmospheric neutrons [20].
The available neutron flux was about 3.5 × 106n/(cm2/s),
∼8 orders of magnitude higher than the terrestrial flux (13
neutrons/(cm2 · h) [21]). Since the terrestrial neutron flux
is low, it is improbable to see more than a single corruption
during program execution in a realistic application. We have
carefully designed the experiments to maintain this property
(observed error rates were lower than 1 error per 1,000 exe-
cutions). Experimental data can then be scaled to the natural
terrestrial environment without introducing artifacts. We test at
least ten codes and seven microbenchmarks per device. Each
code was tested for at least 72 hours, not including the setup,
result check, initialization, and recovery from the crash time.
When scaled to the natural exposure, the 1,224 accelerated
beam hours account for more than 13 million years.

It is worth noting that the FIT rates do not depend on a
code’s execution time, but only on the number of resources
used during computation, their sensitivity (probability for the
fault to occur), and criticality (probability with which a fault
in the resource propagates to affect the calculation). If the
same amount of memory is exposed for a given time t or
2× t, its FIT rate will not change. In fact, in 2× t, we expect
twice the errors and twice the neutrons (i.e., twice the fluence).
Similarly, under the assumption that at most one fault can
affect the GPU during code execution (because the natural flux
is very low), executing x or 2×x sequential ADD instructions
does not change the probability of having one ADD corrupted
by neutrons. However, what can change is the probability with
which an error in one of the ADDs propagates to the output of

the sequence of the operations (i.e., the AVF). If the additional
x ADDs are executed in parallel with the original sequence,
the FIT rate is expected to double (same execution time, same
fluence, but doubled the error rate). We use these observations
in Section IV-B to account for GPU parallelism management
in the FIT rate prediction based on fault injection.

D. Fault Simulation Frameworks

Software fault injectors can help us understand how a fault
propagates by providing the AVF (number of observed errors
divided by the number of injected faults) [22], which is the
probability of a fault leading to a failure and identifies which
instruction or resource, once corrupted, is more likely to affect
the GPU computation. We use SASSIFI and NVBitFI frame-
works that can inject transient errors in the GPU’s architecture
state, which is also visible to the GPU’s native instruction
set, such as general-purpose registers, predicate registers,
condition instructions, and arithmetic instructions [3], [23].
SASSIFI supports NVIDIA’s Kepler and Maxwell architec-
tures, whereas NVBitFI supports Kepler, Maxwell, Pascal,
Volta, and Turing architectures. SASSIFI and NVBitFI are the
most suitable fault injectors for this work since it is possible
to instruct the kernels at the SASS level (SASS is the name of
NVIDIA’s native instruction set). Other fault injectors such as
GPUQin, CAROL-FI, Kayotee, GPGPU-SIM [10], [24]–[26],
either do not allow to inject faults at the SASS level or they
offer support for Kepler and Volta architectures. We inject at
least 4,000 single bit flip faults per code using NVBitIF and
10,000 single bit flip faults per application using SASSIFI
(1,000 for each instruction kind), for a total of more than
50,000 faults per ISA that took 350 GPU hours, ensuring 95%
confidence intervals to be lower than 5% [3].

SASSIFI can inject faults in the output of the floating-
point, integer, and load instructions. SASSIFI also has the
capability to injects faults in the predicate registers, general
purpose registers, and instruction address. In contrast, the
current NVBitFI version can inject faults only at double, float,
load instructions, and instructions that write in the general-
purpose registers. The differences between the fault injectors
can lead to differences in the application AVF along with other
factors (e.g., compiler version), as discussed in Section VI.

Unfortunately, neither SASSIFI nor NVBitFI (nor any other
fault injector) supports fault injection on NVIDIA proprietary
libraries on Kepler at the time of this publication. However,
NVBitFI can inject faults in proprietary libraries on Volta.
So we use the AVF measured with NVBitFI on Volta for
applications using pre-compiled libraries as predictions for
the AVF for the application running on Kepler. As shown in
Section VI, on the codes that do not use proprietary libraries
executed on Kepler, the AVF measured with SASSIFI is 18%
smaller than NVBitFI, on average. As shown in Section VII,
this still allows the accurate prediction of the SDC FIT rates.

IV. FIT RATE PREDICTION THROUGH FAULT SIMULATION

Based on the definition and observations of Section III, we
predict the FIT rate of codes running on a GPU using the AVFs

and FIT rates of the primary resources used for computation.

A. Contributions to codes FIT rate

We can assume that the cause of the observed code output
error is a single neutron strike (that can produce a single or
multiple bit-flips, as we evaluate in Section V) in a single
resource. This is justified by the observation that, with the
current technology and the low intensity of natural flux of
particles, the probability for more than one neutron to generate
faults during a code execution is negligible. The neutron-
induced error rate of a bit of a 28nm SRAM cache memory,
for instance, is in the order of of 10−15 - 10−16errors/h [27].
Even on a hypothetical GPU with 1Gbit of these SRAM
internal memories (caches, shared memory, etc.), we expect at
most 1×10−6errors/h, making it unlikely for more than one
fault to occur during one application execution. Additionally,
all neutron-induced events are transient and not cumulative:
the resource’s sensitivity does not depend on the number of
faults it has undergone [9]. A code can then be affected only
by a corruption during its execution, independently of previous
computations. If the code uses previously computed corrupted
data as input, the error must be attributed to the previous
computation and not counted while deriving the FIT rate.

Neutron-induced errors are uncorrelated and stochastic
events. Thus, a device’s probability of being corrupted by a
neutron is the sum of the probabilities of having a neutron-
induced corruption in one of its resources. Consequently, the
FIT rate of a code is the sum of the probabilities of having
a neutron-induced fault in each of the resources used for its
computation, multiplied by the probability for the fault in that
resource to propagate to the output (the resource AVF).

Knowing the AVF and FIT rate of every resource used
for computation, in principle, would allow a perfect esti-
mation of the FIT rate of a code. Unfortunately, even if
each GPU resource were accessible by the user, it would be
infeasible to measure each resource’s FIT and AVF given that
the architectures today integrate many resources on a single
chip. So, we decided to limit our study to the contribution
of the main functional units and memories of GPUs. We
measure with beam experiments the FIT rates of most common
functional units (arithmetical instructions) and of register file
(details in Section V). We calculate, through fault injection,
the probability for a fault in each instruction or used memory
to affect the code output. Then, we estimate a code’s FIT rate
(†FIT) by adding the expected contribution of each instruction
P (EINSTi) and memory level P (EMEMi), as shown in
Equation 1.

†FIT =

n∑
i=1

P (EINSTi
) +

m∑
i=1

P (EMEMi
) (1)

Consequently, the contributions to the FIT rate of the code,
P (EINSTi

) and P (EMEMi
), rely upon the number of re-

sources used for computation, the probability of a fault to be
generated (the resource cross-section or FIT), and the proba-

bility for the fault in that resource to affect the computation
(AVF) as formalized in the following Equations 2 and 3.

P (EINSTi) = f(INSTi) ·AV FINSTi · FITINSTi (2)

P (EMEMi
) = f(MEMi) ·AV FMEMi

· FITMEMi
(3)

Where f(INSTi) and f(MEMi) are the probabilities of
having one instance of an instruction INSTi or a bit of mem-
ory level MEMi used in the computation of the benchmark;
AV FINSTi

and AV FMEMi
, FITINSTi

, and FITMEMi
are

the average AVF and FIT of an instruction INSTi and a bit
of memory MEMi, respectively.
f(MEMi) is the number of bits of memory level i in-

stantiated for computation. When ECC is enabled in memory
MEMi, we can assume AV FMEMi ≈ 0 and consequently
P (EMEMi) ≈ 0, simplifying Equation 1 to only its first
summation. On a GPU, the FIT rate can vary significantly
based on a code’s degree of parallelism and how the GPU
scheduler allocates the available functional units. Next subsec-
tion discusses a way to account for these using kernel profiling.

B. Profiling kernel dynamic instructions

On GPUs, the probability for a neutron to corrupt an
operation in a specific thread depends on how many threads are
active and how many parallel operations are being executed.
The higher the number of instructions a thread is allowed to
schedule, or the higher the number of active threads in an
SM, the higher the number of functional units that become
susceptible to a particle strike. To understand how many
computing resources are exposed, and thus considered in
Equation 2, we need to profile the codes on a target GPU.

In an NVIDIA GPU, the basic unit of execution is the warp,
which is a collection of threads (e.g., 32 threads) that are
executed simultaneously by an SM. The active warps in an
SM can be in three different states: stalled, eligible (ready
but waiting), and selected (executing). Each SM has four
warp schedulers that pick the instructions from warps based
on their state. Then, each scheduler determines the eligible
warp to execute up to 2 instructions, limiting the instruction
issue parallelism to 4 per SM [28]. The number of cycles
a warp requires to be ready to execute the next instruction
is the warp’s latency. During these cycles, the active warp
instructions are exposed and could be corrupted. Thus, it is
necessary to consider the number of active warps (i.e., the
Achieved Occupancy in NVIDIA profiling tools) to model the
number of resources that could be corrupted.

The GPU’s occupancy alone is not sufficient to model
the number of used resources. In fact, the number of active
threads could be limited by resource utilization (commonly, the
amount of registers and shared memory). If the instructions in
these active threads do not have dependencies, they could be
scheduled in parallel, saturating the available functional units.
This is the case of GEMM, for instance, that has a very low
occupancy (see Table I) but imposes massive stress on the
functional units. Other codes (e.g., sort) have high occupancy
but suffer from long latencies. Then, to account for (in)efficient

utilization of resources, we also consider the Instructions Per
Cycle (IPC) of the code in our prediction model. A high IPC
indicates that many instructions are executing and retiring per
cycle, with implies that a high number of functional units
are exercised. To consider the contribution of parallelism of
GPUs, then, we multiply P (EINSTi) in Equation 2 by a factor
(ϕINST) defined as follows:

ϕINST = AchievedOccupancyb ∗ IPCb (4)

High occupancy and IPC indicate that many resources are
employed for computation, which increases the probability of
having a corruption.

V. SYNTHETIC MICRO BENCHMARKS

To measure the FIT rate of Kepler and Volta architectures’
functional units and main atomic instructions, we have de-
signed seven classes of synthetic micro-benchmarks. Results
collected based on these micro-benchmarks are used to predict
the FIT rates of applications on the target device and are
valuable to compare the reliability of the different functional
units that compose the GPU.

A. Synthetic micro-benchmarks design

RF micro-benchmark measures the FIT rate of the Register
File (RF) storage, which we consider is representative for
other on-chip memory structures. In this micro-benchmark,
each thread in an SM writes a known pattern in all accessible
registers (255 registers per thread) and reads back the values
after a pre-defined time to count bit-flips. We instantiate the
lowest possible number of threads while fully utilizing the
RF to reduce the probability of having errors in resources
besides the targeted registers. The time between a write and
read should be long enough to ensure that the setup/read-
back time is negligible and short enough to prevent more
than one neutron from generating faults. This latter constraint
is necessary to detect eventual Multiple Bit Upsets (MBUs),
more than one bit corrupted in a single word. We heuristically
set the exposure time to 1s. We anticipate the MBU rate is
about 2% for the RF [1].

LDST performs a sequence of memory movements in global
memory (Load followed by Store) with ECC enabled. The
LDST kernel reads a memory region from global memory
that contains a unique pattern and stores it in another location
of the global memory. Each kernel consists of 4M threads,
each performing 210 memory movements. In total, this micro-
benchmark allocates 2GB of memory. The host CPU setup
compares if the expected pattern is correct on the output mem-
ory and counts the number of corruptions. CPU verification
time is not considered for FIT calculation.

Each thread in FMA (Fused Multiply and Add), ADD (Ad-
dition), MUL (Multiplication), and MAD (Integer Multiply
and Accumulate) micro-benchmarks executes 108 operations,
while MMA performs 107 16x16 matrix multiplications (with
FP16 on HMMA or FP32 casted to FP16 for FMMA). We
choose a lower number of operations for MMA to keep
the exposure time, and so the statistic, similar to the other

0

10

20

30

40

50

60

70
FA

D
D

FM
U
L

FF
M
A

IA
D
D

IM
U
L

IM
A
D

LD
ST

R
F/
M
B

H
A
D
D

H
M
U
L

H
FM

A

FA
D
D

FM
U
L

FF
M
A

D
A
D
D

D
M
U
L

D
FM

A

IA
D
D

IM
U
L

IM
A
D

H
M
M
A

FM
M
A

R
F/
M
B

Fa
ilu

re
 In

 T
im

e
 [

a.
u

.]

Kepler Volta

160
165

SDC DUE

Memories

Fig. 3: Measured micro-benchmarks FIT rates, normalized
to each device’s lowest measured value – FADD’s DUE on
Kepler, HFMA’s DUE on Volta. RF FIT rate is shown per
megabyte. ECC was ON for all micro-benchmarks but RF.

micro-benchmarks. The inputs are pre-defined and have been
randomly generated off-line. These inputs avoid overflow. We
tested the integer and float versions of the micro-benchmarks
on the Kepler and the integer (INT32), double (FP64), float
(FP32), and half (FP16) versions of the micro-benchmarks on
the Volta GPUs. The number of instantiated threads is tuned to
occupy all the GPU’s available functional units (3,840 threads
for Kepler, 20,480 threads for Volta).

Errors are identified by comparing the result with the pre-
computed fault-free output after completion of each thread’s
operations. We do not check for errors at each operation to
avoid excessive overhead and to make the probability for a
fault in the comparison negligible. However, if two different
neutrons corrupt two different instructions during the 108 op-
erations, we would count it as one error, thus underestimating
the functional unit FIT rate. Nevertheless, in each hour, we
observe <10 events. Considering that an average of 2 seconds
is necessary to execute 108 operations, the probability of
having two corruptions is a single execution is lower than 1%.
Moreover, we found more than one thread being corrupted
(more than one sequence of operations with incorrect data)
in a few cases. If we checked at each instruction, we would
catch all the errors but, as we check only after a sequence of
operations, some errors might be logically masked, reducing
the FIT rate. To consider the masking effect of subsequent
operations, we run fault injection on the micro-benchmarks
and found that the AVF is always higher than 70% (being
100% for the integer versions). To have the most accurate
prediction, in Section VII, we multiply the micro-benchmark’s
FIT by the AVF measured from simulations.

B. Micro-benchmarks’ profile and error rates

Figure 3 shows the SDC and DUE normalized FIT rate for
all micro-benchmarks on Kepler and Volta GPUs. FIT rates are
normalized and shown in arbitrary units (a.u.) to allow compar-
ison without revealing business-sensitive data. We test FMA,
ADD, MUL, and MAD both with ECC ON and OFF and
found that the error rates are comparable (differences lower
than 20%). These mico-benchmarks use very little memory

(few registers). Figure 3 shows that for all the tested float
instructions (FADD, FMUL, FFMA) on Kepler, both SDC
and DUE rates are similar. The measured FIT rates for INT32
micro-benchmarks are 4× higher on average compared to the
respective FP32 ones. This is probably because, on Kepler,
the integer operations are executed in the same hardware
as the FP32 operations with evident lower efficiency that
can increase the vulnerability. The error rates for INT32
micro-benchmarks vary based on the type of the instruction,
following the operation’s complexity. For example, IMUL’s
FIT rate is approximately 30% higher than that of IADD.
These results suggest that an integer addition is less complex
and demands less hardware than integer multiplication. Since
IMAD performs integer multiplication and addition, its FIT
rate is higher than both IMUL (10% higher) and IADD.

LDST on Kepler was run only with ECC enabled. LDST is
the only micro-benchmark for which the DUE rate is higher
(7.1×) than the SDC rate, which is expected because the
critical operand in the LDST micro-benchmark is a memory
address. An incorrect address can either be valid or invalid.
The likelihood of a corrupted address being valid is low if
the total memory allocated is small, which is our case. Hence,
the chances of invalid addresses is higher and such accesses
trigger a device or CUDA API exception.

For the Volta GPU, we focus on mixed-precision cores
reliability as this is a novelty in the newer architectures.
These results are also shown in Figure 3. The differences in
the FIT rates between int, double, float, and half precision
operations in Figure 3 rely on the different Volta mixed-
precision cores’ complexities. Since a multiplication requires
more resources than a sum, its FIT rate is expected to be
higher, and FMA (fused multiply and addition) is expected
to have FIT rate higher than ADD and MUL, which is
in accordance with our results. Additionally, the higher the
operation precision, the higher the FIT rate (again, higher
precision implies higher resource utilization). Contrary to the
Kepler GPU, integer operations on the Volta GPU are executed
on dedicated cores [6].

Figure 3 also shows the FIT rate of micro-benchmark
focussing on Matrix Multiplication and Addition (MMA), also
known as Tensor Core, for Volta architecture (MMA is not
available for Kepler). Hardware MMA operations can be used
via CUDA on 16x16 input matrices. The introduction of a
specific (sophisticated) hardware to execute matrix multiplica-
tions in mixed-precision was driven by the importance of this
operation in DNN training and interference.

As the complexity of MMA is higher than those of other
functional units and so is the utilization, its FIT rate is
expected to be higher than all other micro-benchmarks on
Volta. As shown in Figure 3, Half and Float MMA have
FIT rates that are 12× higher than that of DFMA, which
has the highest FIT rate among the others micro-benchmarks.
It is worth noting that, as one and only one neutron can
generate an error in the 107 or 108 operations each thread
performs (details in Section V-A), the number of operations
each thread executes does not impact the FIT rate. A higher

0

0.2

0.4

0.6

0.8

1

AV
F

FH
ot
sp
ot

FL
av
a

FM
xM

FL
U
D

FG
au
ss
ia
n

C
C
L

BF
S

N
W

M
er
ge
so
rt

Q
ui
ck
so
rt

SDC DUE Masked
SASSIFI NVBitFI

0

0.2

0.4

0.6

0.8

1

FH
ot
sp
ot

DH
ot
sp
ot

FL
av
a

DL
av
a

FM
xM

DM
xM

FG
EM

M

DG
EM

M

FY
O
LO

V2

FY
O
LO

V3

AV
F

Kepler: Volta: NVBitFI
SDC DUE Masked

Fig. 4: AVF for the Kepler GPUs on the left (using SASSIFI and NVBitFI) and Volta GPUs on the right (using NVBitFI).

number of sequential operations increases the number of errors
because it increases the execution (i.e., exposure) time and,
thus, the neutron fluence, not because the hardware is more
vulnerable. If more operations are executed in parallel, the FIT
rate is expected to increase as we perform more operations but
roughly the same execution time.

One interesting observation is that, while being more sensi-
tive, the MMA core performs, in one operation, the equivalent
of 4x4 FMA or 4x4 ADD, MUL, and the loop control
variables needed to implement MxM in software (these latter
instructions can economize with a loop-unrolling). From our
data, we know that the FIT of each HMMA and FMMA
micro-benchmarks is 9× and 12× higher than an FMA micro-
benchmarks (we recall that FMMA uses the HMMA core after
a cast). As 64 MMA instructions are required to multiply two
16x16 matrices, and for each warp-wide MMA instruction we
could instead execute a warp of 32 FMAs, we can deduce
that the use of MMA is 2× (64/32, where 32 is the number
of threads in a warp) more reliable than the combination
of operations needed to execute a software MxM. The use
of MMA eliminates repeated fetches of the multiply-and-add
operations and reduces activity in instruction memory and
pipelines. As the size of the matrix multiplication supported by
the MMA increases the reliability (and performance) benefit
will also increase. Figure 3 shows the error rate of a megabyte
stored in the Register File (RF). The result indicates RF (and
memory in general) as a critical GPU resource, when ECC is
OFF. This result confirms previously published research [5].
While we do not show the Kepler vs. Volta FIT rates (we use
different normalization for the two boards in Figure 3), we
find that the fabrication process plays a significant role. Kepler
RF (28nm planar CMOS) has an approximately an order of
magnitude higher error rate than Volta RF (16nm FinFET), in
accordance with previous work [29].

VI. AVF AND NEUTRON BEAM EXPERIMENTS RESULTS

AVF: Figure 4 shows the AVF for all the codes we consid-
ered. On the Kepler GPU, we inject faults with both SASSIFI
and NVBitFI, while on the Volta GPU faults can be injected
only with NVBitFI. We recall that a higher AVF (probability
for a fault to affect computation) does not necessarily imply
a higher error rate (as shown in Equations 2 and 3).

We discover, from Kepler data in Figure 4, that SASSIFI
and NVBitFI AVF results are different. For most of the

benchmarks, the AVF is higher while using NVBitFI than
SASSIFI. On average, the AVF was 18% higher for NVBitFI.
The differences between SASSIFI and NVBitFI on the Kepler
GPU is particularly high for CCL (2.6×), Gaussian (1.9×),
Quicksort (1.4×), and Hotspot (0.4×). SASSIFI is relatively
older than NVBitFI and supports CUDA 7.0, while NVBitFI
supports CUDA 10.1+. As NVIDIA compiler has been im-
proved throughout the versions, the generated SASS code
changes with the versions of the compiler when compiled
with default options even for the older architectures (e.g.,
Kepler). NVIDIA compiler has two main parts. The front-
end compiler takes the code written in a high-level language
(e.g., CUDA) and generates intermediate code in a virtual
ISA called parallel thread execution (PTX). The back-end
compiler takes the target-independent PTX code and applies
many code optimizations (e.g., unrolling, loop-invariant code
motion, dead code elimination) before generating SASS code
that can run on the target GPU. Significant updates are often
made to the front-end and back-end compiler infrastructure to
support new features and future target SASS versions. As a
result, while both fault injectors support similar fault models
and similarly instrument the SASS code, the generated code
can itself be different due to the compiler version and have a
significant impact on the code’s AVF.

Gaussian, LUD, MxM, and Lava have the highest AVF
on the Kepler GPU, for both SASSIFI and NVBitFI. All
these benchmarks are floating point-based applications (see
Figure 1). The smaller AVFs comes from integer applications:
Quicksort, Mergesort, CCL, and NW. The resource utilization
for the benchmarks that use only integer data and operations
can be more efficient than for floating point-based benchmarks.
CUDA compiler can use optimizations such as code reordering
on integer arithmetic, but may have limited flexibility for
floating point arithmetic. The optimizations can hence be
impacting the error propagation when using SASSIFI versus
NVBitFI, and it seems that a more optimized code increases
the AVF. This is in accordance with previously published ob-
servations [30]–[32]. The main reason that has been identified
for optimized code to have a higher AVF is the reduction
of latencies and inefficient instructions. In optimized codes,
more instructions are expected to contribute to the output
calculation and once corrupted may also increase the chance of
corrupting the output. For example, the reduction in dead code

0

20

40

60

80

100

120

140

160

180
FH

O
TS

P
O

T
FL

A
V

A
FM

X
M

N
W

M
ER

G
ES

O
R

T
Q

U
IC

K
SO

R
T

FG
EM

M
FY

O
LO

V
2

FY
O

LO
V

3
FH

O
TS

P
O

T
FL

A
V

A
FM

X
M

FL
U

D
FG

A
U

SS
IA

N
C

C
L

B
FS

N
W

M
ER

G
ES

O
R

T
Q

U
IC

K
SO

R
T

FG
EM

M
FY

O
LO

V
2

FY
O

LO
V

3

H
H

O
TS

P
O

T
FH

O
TS

P
O

T
D

H
O

TS
P

O
T

H
LA

V
A

FL
A

V
A

D
LA

V
A

H
M

X
M

FM
X

M
D

M
X

M
H

G
EM

M
FG

EM
M

D
G

EM
M

H
G

EM
M

-M
M

A
FG

EM
M

-M
M

A
H

Y
O

LO
V

3
FY

O
LO

V
3

Fa
ilu

re
 In

 T
im

e
 [

a.
u

.]

Kepler Volta

ECC OFF ECC ON

SDC DUE

Fig. 5: FIT rates for the Kepler and Volta GPUs, normalized
to the DUE rates of FADD and HFMA micro-benchmarks,
respectively.

(with aggressive dead-code elimination) and increase in reuse
(with aggressive loop invariant code motion) can increase the
likelihood of an error propagating to the output.

Figure 4 shows the AVF for the Volta GPU obtained
with NVBitFI, focusing on mixed-precision hardware. Half
precision fault injection is not shown because NVBitFI tool
does not support injections into half instructions as of the
date of this submission (October 2020). As Hotspot, Lava, and
MxM execute the same kernel for all precisions, their SDC
AVF is independent of data precision (the variation between
double and float is lower than 4%).

GEMM (and thus YOLO that relies on GEMM for convo-
lution) executes a different kernel for each input and precision
configuration. For each GEMM configuration, the data is orga-
nized to fit each CUDA group (block, warp, and threads). For
each group level, there is a different memory tile configuration
that will try to adapt to better use the caches, maximizing
and balancing the computational and memory throughputs.
Consequently, different kernels will generate different instru-
mentation, which will impact the AVF. As shown in Figure 4,
FGEMM has 30% higher AVF than DGEMM. YOLOv3 is
an improved version of YOLOv2, being more accurate and
complex (YOLOv3 has 113 layers, YOLOv2 has only 32).
On CNNs, some faults that propagate to the output are not
considered errors since they do not modify the classification
result [33]. Thus, the framework’s complexity will impact the
AVF, as a less precise CNN can tolerate more incorrect results
than a more precise one. Faults in YOLOv2 are then less likely
to affect the output as it is less accurate than YOLOv3.

FIT: Figure 5 shows the experimentally measured SDC
and DUE FIT rates for the GPUs executing the codes with
ECC disabled and enabled. We report normalized values not
to reveal business-sensitive data. Values are reported with 95%
confidence intervals considering a Poisson distribution.

Not surprisingly, the ECC reduces the SDC FIT rate sig-
nificantly. For K40c, the average SDC FIT rate with ECC
OFF is up to 21× higher than with ECC ON. For V100,
we were not able to test the same codes with ECC enabled
and disabled due to beam time restrictions. The DUE FIT
rate increased up to 5× when ECC was enabled. The DUE

increase is exacerbated for NW and FGEMM, because of the
frequent accesses to the main memory. NW is a component
labeling algorithm that processes different parts of the input
simultaneously and FGEMM uses lots of global memory and
highly utilizes the memory bandwidth, which may result in
more ECC detections (or DUEs).

Matrix multiplication (either MxM or GEMM) is the code
with the highest SDC FIT rate on K40c or V100. The SDC FIT
rate of matrix multiplication is particularly significant when
ECC is OFF (2 to 3× higher than the other codes). Matrix mul-
tiplication heavily relies on FMA operation which, according
to the data in Section V-A, is among the most vulnerable func-
tional units. Moreover, as the code is easily parallelizable, most
GPU functional units are used for computation, which exacer-
bates the probability of faults being activated. Additionally, as
shown in Figure 4, matrix multiplication has the highest AVF
(i.e., higher likelihood of propagating the activated faults to
outputs). In CNNs YOLOV2 and YOLOV3, more than 75%
of the operations are similar to matrix multiplications [34].
CNNs share with matrix multiplication the problem of using
a high amount of the most sensitive functional units. However,
as shown in Figure 4, CNN’s AVF is extremely low, reducing
the probability of the (likely) faults to propagate to the output.

For the Volta GPU, we focus our analysis on comparing
the FIT rates of codes executed with different precisions
(double, single, and half). For all the codes, independent of
the ECC status, increasing the precision increases the code
FIT rate. While the probability of a fault propagation through
an application does not significantly depend on the operation’s
precision (see Figure 3), a higher precision functional unit
has a higher area and, thus, a higher probability of being hit
by a neutron. According to Equation 2, increasing precision,
then, increases FITINSTi keeping AV FINSTi and f(INSTi)
almost constant, resulting in a higher FIT rate. When ECC
is disabled, the trend is exacerbated as higher precision also
implies a higher number of bits to be stored in memory and
this has a linear dependence with the FIT rate (Equation 3).

VII. BEAM VS FAULT INJECTION

After having detailed the reliability characteristics of Kepler
and Volta architectures and several codes, we now compare the
codes’ FIT rates measured with beam experiments against the
ones predicted with fault simulation and profiling. Following
the methodology described in Section IV to predict the codes’
FIT rate on a target device, we combine fault injection
results (detailed in Section VI), application profiling, and
results from beam experiments on functional units (detailed
in Section V-A). This comparison’s main scope is to evaluate
whether the reliability analysis based on fault simulation can
be considered realistic. Recall that we use both SASSIFI and
NVBitFI on Kepler, but only NVBitFI on Volta as SASSIFI
is not supported. Moreover, on Kepler, neither SASSIFI nor
NVBitFI supports fault injection on NVIDIA proprietary li-
braries such as cuDNN and CUBLAS. For the codes based on
NVIDIA libraries (GEMM and YOLO), we chose to use the
AVF measured with NVBitFI on Volta as AVF predictions for

-40

-30

-20

-10

0

10

20

30

40

FY
O

LO
V

3

FY
O

LO
V

2

FG
EM

M

Q
U

IC
K

SO
R

T

M
ER

G
ES

O
R

T

N
W

FM
X

M

FL
A

V
A

FH
O

TS
P

O
T

A
ve

ra
ge

FY
O

LO
V

3

FY
O

LO
V

2

FG
EM

M

Q
U

IC
K

SO
R

T

M
ER

G
ES

O
R

T

N
W

B
FS

C
C

L

FG
A

U
SS

IA
N

FL
U

D

FM
X

M

FL
A

V
A

FH
O

TS
P

O
T

A
ve

ra
ge

Fa
u

lt
 s

im
u

la
ti

o
n

 v
s

B
e

am
 r

at
io

ECC OFF ECC ON

SASSIFI NVBITFI

142x

167x

(a) K40c (Kepler)

-40

-30

-20

-10

0

10

20

30

40

D
M

X
M

FM
X

M

H
M

X
M

D
LA

V
A

FL
A

V
A

H
LA

V
A

D
H

O
TS

P
O

T

FH
O

TS
P

O
T

H
H

O
TS

P
O

T

A
ve

ra
ge

FY
O

LO
V

3

H
Y

O
LO

V
3

D
G

EM
M

FG
EM

M

FG
EM

M
-M

M
A

H
G

EM
M

-M
M

A

A
ve

ra
ge

Fa
u

lt
 s

im
u

la
ti

o
n

 v
s

B
e

am
 r

at
io

ECC OFF ECC ON

(b) V100 (Volta)

Fig. 6: Comparison between the SDC FIT rates measured with the beam and predicted with fault injection.

Kepler. As discussed in Section VI, NVBitFI and SASSIFI
provide SDC AVFs that differ, on average, by ∼18%. This
difference slightly reduces the accuracy of the prediction for
GEMM and YOLO on Kepler.

A. SDC

Figure 6 compares different codes’ SDC FIT rate as mea-
sured with beam experiments and predictions from fault injec-
tions and profiling. For visualization and analysis, we divide
the measured FIT rate using beam experiments with the FIT
rate prediction using our fault injection based method. We plot
the ratio whenever the measured FIT rate is higher than the
predicted value. If the measured FIT rate is lower than the
predicted value, we plot the negative of the inverse (i.e., -
1×predicted FIT/measured FIT). For example, on K40c with
ECC disabled, beam experiments for FYOLOv2 report a 12×
higher FIT rates than the predicted value from fault injections.
For FYOLOv3, fault simulation predicts a FIT rate that is 7×
higher than that measured with beam experiments.

A promising result that emerges from Figure 6 is the SDC
FIT rate prediction is reasonably close to the measured rate in
most cases, despite the simplifications used in the fault simu-
lation based method and the two methods being significantly
different. The average difference between fault simulation and
beam experiments, on K40c, is 0.5× for SASSIFI and 1.8×
for NVBitFI, with ECC disabled. When ECC is enabled, the
average difference is 7.9× for SASSIFI and 2.7× for NVBitFI.
For the V100, the average difference is -2.2× when ECC is
disabled and 10.2× when ECC is enabled.

For 25 out of 38 predictions, the fault injection underes-
timates the SDC FIT rate. One limitation of our model is
that not all resources are accessible for architecture-level fault
simulation, preventing us from considering all the possible
sites for faults. As discussed in Section V, we contemplate
only the most common instructions as testing all 20 instruc-
tions classes is infeasible. While the considered instructions
cover more than 70% of instructions that compose the codes
(see Figure 1), it is still possible that some faults in the
unconsidered instructions generate an error, which the beam
experiments inherently account for. When ECC is disabled, the

prediction model will consider the memory error rate (Eq. 1)
that has already been shown to dominate GPUs’ FIT rate [35].
On the average, when ECC is disabled, fault injection can
better predict the beam SDC FIT rate, as the contribution to the
FIT rate of the not modeled functional units and instructions
is much smaller than the memory contribution.

For some applications, e.g., NW and CCL on K40c (Kepler)
and HHotspot on V100 (Volta), the fault injection based
prediction is significantly different from the measured rates.
The kernels used in NW and CCL are not optimized well
for GPUs. They under-utilize the available resources and have
poor memory access patterns (Table I). We suspect that these
inefficiencies reduce the possibilities of having corruptions in
functional units (as they are not stressed) and increase the error
rate due to other sources of errors, like threads and memory
management. Our model does not consider these sources
of errors yet, resulting in an underestimation for not well-
parallelized codes. HHotspot on V100 (Volta) overestimation
(fault injection FIT rate is 27× higher than beam FIT rate)
relies on the impossibility to inject faults in half-precision
functional units (intrinsic limitation of NVBitFI). We use
the float functional units AVF also for the half precision.
This simplification is acceptable for most codes (HGEMM
and HLava prediction is sufficient) but not for HHostspot,
probably because of its intrinsic characteristic of iterating the
computation that can smooth the faulty value [36].

While we measured the FIT rates of functional units through
beam experiments, an estimation of the FIT rate based on
micro-architectural models can also be sufficiently precise as
demonstrated in [17] for ARM CPUs. Our model can then be
applied to predict the fault rate of codes executed in future
GPUs once the micro-architectural model is available.

B. DUE

Our analysis can be used to derive exciting insights on the
origins of DUEs as well. DUEs can be caused by several fac-
tors, which include interrupts triggered by ECC, a corruption
during device-host synchronizations, illegal memory accesses,
corruption in the hardware scheduler, changes in the program
flow (such as corruption in the instruction cache or the jump

destination address), or faults in hardware resources that stuck
the device. Most of these causes for DUEs are independent of
the arithmetical operation executed and are not modeled with
our prediction strategy.

We characterized the arithmetical functional units, memo-
ries, and Load/Store instructions of GPUs with beam experi-
ments. In our prediction model, we include only a subset of the
causes for DUEs, and a significant underestimation of the code
DUE FIT rate is to be expected. We find that the beam DUE
FIT rate is 120× higher, on average, than the predicted DUE
FIT rate for K40c ECC OFF and 629× higher with ECC ON.
For V100, the measured rates are 60× and 46,700× higher
with ECC OFF and on, respectively. This high divergence
attests that a large portion of DUEs does not originate from
errors in arithmetic instructions. Thus, modeling instructions
and memories are not sufficient to predict the GPU DUE rate.

VIII. CONCLUSIONS

We compared the FIT rates obtained from beam experiments
and fault simulation prediction for 15 codes, using Kepler and
Volta based NVIDIA GPUs and two fault injection frameworks
(SASSIFI and NVBitFI). If we consider the GPU parallelism
management (GPU occupancy and IPC), fault simulation
provides SDC FIT rates that are comparable with the beam
test results. The result holds for two GPUs for a broad set
of codes. Unfortunately, fault simulation alone is not enough
to evaluate the probability of DUEs, as faults in inaccessible
resources probably are the leading cause of these events. We
also investigated the source of the SDC FIT rates of codes
executed on GPUs. We combined beam and fault simulation
data to understand if the FIT rate of a code is due to the
high resource usage, the high criticality of resources (AVF),
or a combination of the two. Finally, we compared the main
GPUs’ functional units sensitivity, including mixed-precision
and tensor cores. This data can be used to tune future fault
simulation frameworks.

IX. ACKNOWLEDGMENTS

This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Sklodowska-Curie grant agreement No 886202
and from The Coordenação de Aperfeiçoamento de Pessoal de
Nı́vel Superior, Brazil (Finance Code 001). Neutron beam time
was provided by ChipIR (DOI: 10.5286/ISIS.E.RB2000161)
thanks to S. Malde, C. Cazzaniga, and C. Frost and by
LANSCE thanks to S. Wender and G. Sinnis. Authors also
thank P. Racunas, NVIDIA, for donating the V100 GPU.

REFERENCES

[1] P. Rech et al., “Measuring the Radiation Reliability of SRAM Structures
in GPUS Designed for HPC,” in IEEE 10th Workshop on Silicon Errors
in Logic - System Effects (SELSE), 2014.

[2] NVIDIA, “NVIDIA Announces World’s First Functionally Safe
AI Self-Driving Platform.” ”https://nvidianews.nvidia.com/news/nvidia-
announces-worlds-first-functionally-safe-ai-self-driving-platform”.

[3] S. K. S. Hari et al., “SASSIFI: An architecture-level fault injection tool
for GPU application resilience evaluation,” in 2017 IEEE International
Symposium on Performance Analysis of Systems and Software (ISPASS).

[4] J. Wei et al., “Quantifying the Accuracy of High-Level Fault Injection
Techniques for Hardware Faults,” in 2014 44th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, 2014.

[5] D. A. G. Goncalves de Oliveira et al., “Evaluation and mitigation
of radiation-induced soft errors in graphics processing units,” IEEE
Transactions on Computers, 2016.

[6] NVIDIA, “Whitepaper: Nvidia’s next generation cuda compute archi-
tecture:kepler gk110/210,”

[7] NVIDIA, “Whitepaper:nvidia tesla v100 gpu architecturethe world’s
most advanced data center gpu,”

[8] N. Mahatme et al., “Comparison of Combinational and Sequential Error
Rates for a Deep Submicron Process,” IEEE T. on Nuclear Science.

[9] R. Baumann, “Soft errors in advanced computer systems,” IEEE Design
Test of Computers, vol. 22, 2005.

[10] D. Oliveira et al., “Experimental and analytical study of xeon phi
reliability,” in 2017 SC.

[11] X. Iturbe et al., “Soft error vulnerability assessment of the real-time
safety-related ARM cortex-r5 CPU,” in 2016 International Symposium
on Defect and Fault Tolerance in VLSI and Nanotechnology Systems.

[12] H. Cho et al., “Quantitative evaluation of soft error injection techniques
for robust system design,” in Proceedings of the 50th DAC, 2013.

[13] A. Chatzidimitriou et al., “RT level vs. microarchitecture-level reliability
assessment: Case study on ARM(r) cortex(r)-a9 CPU,” in 2017 DSN-W.

[14] C. Constantinescu et al., “Error injection-based study of soft error
propagation in amd bulldozer microprocessor module,” in DSN, 2012.

[15] D. Ferraretto et al., “Simulation-based fault injection with QEMU for
speeding-up dependability analysis of embedded software,” Journal of
Electronic Testing.

[16] Z. Chen et al., “Binfi: An efficient fault injector for safety-critical
machine learning systems,” in ACM Supercomputing Conference, 2019.

[17] A. Chatzidimitriou et al., “Demystifying soft error assessment strate-
gies on arm cpus: Microarchitectural fault injection vs. neutron beam
experiments,” in Annual IEEE/IFIP DSN, 2019.

[18] S. K. S. Hari et al., “Estimating silent data corruption rates using a
two-level model,” 2020.

[19] N. Ho et al., “Exploiting half precision arithmetic in nvidia gpus,” in
2017 IEEE High Performance Extreme Computing Conference (HPEC).

[20] C. Cazzaniga et al., “Progress of the scientific commissioning of a fast
neutron beamline for chip irradiation,” Journal of Physics: Conf. Series.

[21] JEDEC, “Measurement and Reporting of Alpha Particle and Terrestrial
Cosmic Ray-Induced Soft Errors in Semiconductor Devices,” Tech. Rep.
JESD89A, JEDEC Standard, 2006.

[22] S. S. Mukherjee et al., “A Systematic Methodology to Compute the
Architectural Vulnerability Factors for a High-Performance Micropro-
cessor,” IEEE Computer Society, 2003.

[23] NVLABS, “Nvbitfi: An architecture-level fault injection tool for gpu
application resilience evaluations.” https://github.com/NVlabs/nvbitfi.

[24] B. Fang et al., “Gpu-qin: A methodology for evaluating the error
resilience of gpgpu applications,” in IEEE ISPASS, 2014.

[25] S. Jha et al., “Kayotee: A fault injection-based system to assess the
safety and reliability of autonomous vehicles to faults and errors.”

[26] M. Khairy et al., “Accel-sim: An extensible simulation framework for
validated gpu modeling,” in 2020 ISCA.

[27] J. Baggio et al., “Analysis of proton/neutron SEU sensitivity of com-
mercial SRAMs-application to the terrestrial environment test method,”
IEEE Transactions on Nuclear Science, 2004.

[28] NVIDIA, “GameWorks documentation - Issue Efficiency.” https://docs.
nvidia.com/gameworks/index.html.

[29] J. Noh et al., “Study of neutron soft error rate (ser) sensitivity:
Investigation of upset mechanisms by comparative simulation of finfet
and planar mosfet srams,” Nuclear Science, IEEE Transactions on.

[30] R. A. Ashraf et al., “Exploring the effect of compiler optimizations on
the reliability of hpc applications,” in 2017 IEEE IPDPSW.

[31] F. M. Lins et al., “Register file criticality and compiler optimization
effects on embedded microprocessor reliability,” IEEE TNS, 2017.

[32] L. L. Pilla et al., “Memory access time and input size effects on parallel
processors reliability,” IEEE Transactions on Nuclear Science.

[33] F. F. d. Santos et al., “Analyzing and increasing the reliability of con-
volutional neural networks on gpus,” IEEE Transactions on Reliability.

[34] J. Redmon et al., “Yolo9000: Better, faster, stronger,” arXiv:1612.08242.
[35] I. S. Haque et al., “Hard data on soft errors: A large-scale assessment

of real-world error rates in gpgpu,” in 2010 10th CCGRID.
[36] D. A. G. Oliveira et al., “Radiation-induced error criticality in modern

hpc parallel accelerators,” in 2017 IEEE HPCA.

