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Abstract

The concept design of a soft sensor for measuring cardiovascular risk of a pa-

tient in real time is reported. Biosignals such as electrocardiogram, blood oxy-

genation, and body temperature are acquired through non-invasive wearable

transducers. Together with data acquired from patientsâĂŹ interviews, these

are processed to extract features characterizing each patient. These are finally

classified in order to assess the cardiovascular risk. The soft sensor design relies

on a publicly available dataset. Several classifiers were evaluated. Experimental

results show that patients’ classification accuracy can be as high as 80% when

employing a random forest classifier, even with few data employed for training.

This result is compared with a previous study on the same dataset, where re-

port accuracy was 73%, achieved by also exploiting invasive measures. Finally, a

noise robustness test was carried out and the results show that the classification

accuracy remains above 73% even when 10% of noise is added.

Keywords: Machine learning, cardiovascular status, soft sensor, non-invasive

measurements, wearable sensor.
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1. Introduction

Worldwide, the number of elderly people is increasing. According to the20

World Health Organization, the population expecting to live into their sixties

and beyond will nearly double between 2015 and 2050 [1]. With the aim of

contributing to a healthy ageing of population, heart health is a major issue.

Current clinical practice indicates risk calculators as the key tools for cardiovas-

cular risk assessment. They are recommended to select the most appropriate25

primary prevention measures for each specific patient [2, 3].

Different risk calculators rely on different models built from data acquired

and stored over time, such as age, gender, blood pressure, smoking status, and

cholesterol [4–7]. Therefore, a model is derived by studying the impact of risk

factors on the surveyed population. Typically, the long-term risk is assessed30

through the conditional probability of mortality from cardiovascular risk dis-

ease over a 10-years period. The output of different calculators often varies

significantly according to the data set, owing to the specific characteristics of

the population, risk factors, mathematical formulations, and events to be pre-

dicted [8]. Moreover, the main role in determining the risk is usually undertaken35

by few parameters, with a poor resolution due to the consideration of only severe

events.

A recent trend in cardiovascular risk assessment foresees the employment of

further parameters to enhance the resolution [9]. A wearable system helps in

recording secondary risk markers, non-detectable in the current clinical practice.40

To this aim, several systems have been proposed to collect biosignals directly

at patient’s home [10–15]. On the other hand, the strength of the currently

adopted calculators relies on the big data amount. Therefore, wearable systems

should not only aim to measure the cardiovascular risk in real time, but also to

create a database of biosignals over time.45

The literature reports several contributions with artificial intelligence algo-

rithms for diagnosing or predicting cardiovascular diseases. Machine learning

techniques are generally applied to imaging examinations [16–19], such as com-
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puter tomography, or to the classification of cardiac diseases [20–24]. Conversely,

with particular reference to wearable systems, machine learning is usually em-50

ployed to process data. Measurements and patient records are collected and sent

to a central platform, so that their analysis allow the physician to telemonitor

the patient status [12–14, 25, 26]. For instance, in 2010, a wearable platform

based on smartphones was proposed for real-time detection of cardiovascular

diseases trough an electrocardiogram (ECG) [27]. The platform only exploits55

the ECG analysis through a feed-forward multilayer perceptron for the detec-

tion of four types of arrhythmia by using a single-channel transducer connected

to a smartphone. In 2013, a detector of atrial fibrillation was also proposed. It

exploits signals related to cardiac vibration, namely a ballistocardiogram com-

plementary to an ECG analysis. The system is integrated into the patient’s bed60

for telemonitoring a cardiovascular disease, and signals are analyzed by means

of time-frequency-domain or time-domain features and a random forest classi-

fier [28]. Both works refer only to a particular type of cardiovascular disease,

while the measurement of cardiovascular risk involves multiple factors. As a

final example, in 2018, a wearable system was proposed for the cardiovascular65

risk assessment [29]. Data from multiple transducers are here exploited, namely

electrocardiography, heart rate, blood oxygen, body temperature, and the gal-

vanic skin response for the emotional state assessment . The dataset produced

by the authors is available on request. However, the risk is assessed by emo-

tional dynamics, and the patient is required to watch some videos and carry out70

a self-assessment of the emotive response to these videos.

In this paper, a soft transducer is proposed for measuring the cardiovascular

risk in real time, by exploiting biosignals from non-invasive wearable sensors.

Results from single patient interviews are also taken into account in order to

enhance the accuracy. Measurement non-invasiveness guarantees both everyday75

usability and rare event detection. Cardiovascular risk is assessed by extending

an algorithm of a previous feasibility study reported in [30]. The dataset in [29]

is exploited, but the above-mentioned drawbacks are avoided by non considering

emotional dynamics.
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In particular, Section 2 discusses the basic ideas, the architecture of the soft80

transducer, the features extraction, and the classification step. Then, Section 3

reports the experimental procedure and the results of the classifier comparison,

together with a noise robustness test of the optimal classifier.

2. Proposal

2.1. Basic Ideas85

The present study is part of a broader project with two main aims: (i) assess

the cardiovascular risk in real-time, and (ii) telemonitoring an eventual rehabil-

itation protocol. A soft transducer is here proposed for the real-time accurate

assessment of cardiovascular risk by means of non-invasive measurements. The

assessment is based on a model for classifying patients in risk classes.90

The input data are obtained by both wearable transducers and patient in-

terview. The classification of the patient according to the heart health status

helps both the patient and the physician to take proper countermeasures. Non-

invasive measures are processed to obtain features given as input, together with

the patient interview, to a decision forest classifier. In particular, [29] demon-95

strated that this is an optimal machine learning technique to classify these data.

The model is trained and calibrated by reference data labeled by an expert car-

diologist. The advantage would thus be the avoidance of crowded hospitals and,

consequently, of psychological stress for both the patients and the physicians.

This will in turn enhance patient care possibilities.100

In comparison with the state of the art, this study considers only signals from

wearable transducers, without any self-assessment of emotive response to videos

watching. Furthermore, the case in which the patient interview is employed was

compared to the case in which no clinical data is exploited. Then, a noise

robustness test was also carried out in order to generalize the proposed model105

in absence of new data.
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Figure 1: Architecture of the soft transducer for assessing cardiovascular risk.

2.2. Architecture

The architecture of the soft transducer is illustrated in Fig. 1. In the data ac-

quisition section, ECG electrodes, a temperature transducer, and a pulse oxime-

ter collect biosignals. Furthermore, the patient has to answer to some questions110

regarding his/her life style. These data are the input of the cardiovascular risk

soft transducer. In this main block, each signal follows a different path with the

aim to extract relevant features: (i) the interview results are directly employed

as features, (ii) the ECG signal is filtered, the complex "Preview, Question,

Read, Summary, Test" (PQRST) is detected, and the features are extracted,115

(iii) a time average of the body temperature is carried out, and (iv) the time

average of blood oxygenation is calculated together with its standard deviation.

Then, the features go in input to the classifier that, once trained, is able to

assess the cardiovascular risk of the patient by assigning each patient to a risk

class.120

2.3. Features extraction

A crucial aspect in the soft transducing is the extraction of features from

the available data. Features resulting from each patient’s interview are 18: age,

gender (’M’ or ’F’), body mass index, number of stents (0-7), bypass (’yes’ or

’no’), smoking status (0-4), metabolic syndrome (’yes’ or ’no’), diabetes status125
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(0-2), angina or heart attack in a 1st degree relative (0-3), chronic kidney disease

(0-3), atrial fibrillation (’yes’ or ’no’), on blood pressure treatment (’yes’ or ’no’),

migraines (’yes’ or ’no’), rheumatoid arthritis (’yes’ or ’no’), three measures of

systolic blood pressure, and diastolic pressure. Features resulting from wearable

transducers are instead extracted by processing the electrocardiogram (ECG),130

the blood oxygenation (SpO2), and the body temperature. These features are

all well-established factors influencing the patient cardiovascular risk. They

are already used in currently available cardiovascular risk calculators and are

discussed in detail in the most recent clinical practice guidelines [31].

The biosignals are acquired when the patient is in a resting state, over a135

time window of about 10 min. The total number of features from wearable

transducers is 35: 32 features are extracted from the ECG, while the remaining

3 features are the mean SpO2 with its standard deviation, and the mean body

temperature. The features extracted from the ECG signal are related to the

PQRST complex of the ECG signal (Fig. 2) [32], namely the mean and standard140

deviation of the R-peaks, P-peaks, Q-peaks, S-peaks, J-peaks, and T-peaks,

of the segments JS, QRS, QT , and PR, the heart rate, the mean, standard

deviation, minimum and maximum of RR distances, the quantities RMSSD,

NN50, pNN50, HRVI, SD1, SD2, and the ratio SD1/SD2 related to the RR

distances (eq. (1)),145

RMSSD =

√√√√ 1

N − 1

N−1∑
i=1

(RRi+1 −RRi)2

NN50 = count(|RRi+1 −RRi| > 50ms)

pNN50 = 100 · NN50

N − 1

HRV I =
N

max [D(RR)]

SD1 =

√
1

2
σ
(
RRi+1 −RRi

)
SD2 =

√
1

2
σ
(
RRi+1 +RRi

)

(1)
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Figure 2: Points of measurement on the ECG curve [32].

In eq. (1), N is the number of RR distances extracted from the ECG record,

count( ) is a function that counts the element satisfying the condition specified

in the argument, D(RR) is the density distribution of the RR distances, and σ( )

is the function that calculates the standard deviation of the specified argument.

The described features are computed by finding the points of measurement150

on the ECG signal, as shown in Fig. 2. They are extracted from the ECG

curve as reported in [33]. In particular, the baseline of the ECG signal is firstly

removed, and the noise is smoothed by a low-pass and high-pass filtering. Then,

the peaks of the complex are detected. The R peaks are detected first, because

they should assume the maximum value in the PQRST complex. False peaks155

are rejected by considering the distance of adjacent peaks and their amplitude.

Subsequently, starting from the R peaks, the other peaks can be detected, and

the distances of interest between peaks are calculated.

2.4. Classification

The extracted features constitute the input of a classifier. Different classifiers160

were evaluated for discriminating the cardiovascular risk classes: A multiclass
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support vector machine (SVM) with linear kernel or Gaussian kernel, a random

forest, and a shallow neural network.

The SVM classifier relies on a hyperplane that guarantees the best separation

between features of two different classes [34]. The input features are usually165

mapped to a higher dimension space through a “kernel function” to deal with

non-linear separability of classes. In the present case, a linear kernel and a

Gaussian kernel are taken into account. Errors are allowed during separation,

but minimizing the separation error is the key for the SVM training. Although

the SVM is normally employed for binary classification, multiclass extensions170

are possible.

A random forest is a collection of decision trees [35]. Each tree decides

the class of a data according to a random subset of features, selected from the

overall features set. The strength of the classifier derives both from this random

selection and from the usage of "bagging" (bootstrap aggregating). The scope is175

to create a forest of uncorrelated trees, whose prediction is more accurate than

the prediction of an individual tree itself.

Shallow neural networks are universal approximators [36], consisting of three

layers: input, with the input features, hidden, and a single output layer. The

hidden and output layer are composed of elementary computing units, usually180

said nodes or neurons. Each neuron receives connections from all the elements

of the previous layer only. These connections are weighted, and the weights

are found during training. Also, the only hidden layer nodes contain non-linear

transfer functions, while a post-processing is possible at the output. Hence, the

output can be interpreted as a weighted linear combination of parametric non-185

linear functions [36]. During the training phase both the parameters (weights)

of the non-linear functions and the weights of the linear combination are learned.

In building the soft transducer, the classifier is trained thanks to the labels

associated to each patient by a cardiologist. According to their risk class, these

labels are "healthy" (0), "unhealthy non-critical" (1), or "unhealthy critical"190

(2) patient. The above classifiers are selected by means of a repeated stratified

k-fold procedure [37]. Each classifier has also a number of specific hyperpa-
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rameters to be set (for example, the number of hidden nodes of the shallow

neural network). Thus, for each of them, suitable hyperparameters values were

selected among a specified subset of the hyperparameters space. Classification195

metrics such as accuracy, accuracy per class, precision, and recall are taken into

account. However, the best performing classifier is chosen according to the only

classification accuracy. The type A uncertainty, associated to the accuracy, is

also taken into account for the best model selection. This is calculated as the

ratio between the standard deviation resulting from the cross-validation and the200

square root of the number of iterations.

The design was completed by investigating also features normalization and

principal component analysis (PCA) in trying to enhance the performance of

each classifier. The performance of the classifiers for the present case study were

compared experimentally. The metrological performance of the optimal classifier205

was assessed not only in terms of the classification performance metrics, but also

with a noise robustness test.

3. Experimental procedure and results

In this section, after a brief description of the dataset, the experimental com-

parison between different classifiers for the cardiovascular risk assessment is re-210

ported. For each benchmark classifier, the optimal hyper-parameters are found

by also considering features normalization and Principal Component Analysis

(PCA). These hyper-parameters are optimal in the sense of maximizing the

classification accuracy, namely the classifier’s ability to distinguish the 3 classes

of patients. Finally, a noise robustness test was carried out for the best clas-215

sifier in order to assess the capability of classifying new incoming data. These

results are reported and discussed in the following. For comparison purposes,

the only classification accuracy was taken into account as performance metric.

Moreover, metrics like accuracy per class, precision, and recall were considered

also to complete the performance analysis of the optimal classier.220
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3.1. Dataset description

Data from 30 patients were considered [29]: 16 healthy patients, 10 unhealthy

non-critical patients, and only 4 unhealthy critical patients. Their health sta-

tus was labeled by an expert cardiologist. For each patient, the data acquired

through an interview (clinical data) and the data recorded from wearable trans-225

ducers are furnished. Data are stored into files associated to the different pa-

tients. From each file, the ECG signal, blood oxygenation, and body temper-

ature are extracted. Files related to 4 different states per patient are present:

namely, 10 minutes resting state, 6-minutes walking test (6MWT), and watching

two 6 minutes videos. However, in the present study, only the resting state was230

taken into account. Among clinical data, some invasive measures were also fur-

nished, such as the results of blood examination. But, with the aim of building

a non-invasive system, they were not taken into account.

In the classification step, only 12 patients were considered with the aim to

exploit a balanced dataset. In particular, balanced classes were obtained by tak-235

ing into account 4 healthy subjects, 4 unhealthy non-critical subjects, and the

4 unhealthy critical subjects. For each of them, 10 minutes of registered biosig-

nals and non-invasive clinical data are available. These data were processed in

Python according to the features extraction steps described in subsection 2.3.

For the classifier identification, the features can be arranged in a matrix where240

each row of features corresponds to a different patient.

3.2. Classifiers comparison

The selected classifiers were compared by a repeated stratified k-fold, with 4

splits and 16 repetitions, thus exploiting all the 64 possible combinations when

one patient per class is considered for the test set. A grid-search method was245

adopted for selecting the values of the classifier hyperparameters. The above

steps are schematically represented in Fig. 3. The hyperparameters taken in

account for the Gaussian SVM were the regularization parameter C and the

kernel coefficient γ. Three values were chosen for C, namely 1, 10, and 100.

Meanwhile, two options were possible for γ, the inverse of the number of features250
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Figure 3: Procedure of classifier model identification: all the combinations of hyperparameters

values are selected for the cross-validation and the set leading to the optimal performance score

is identified.

("auto"), or the inverse of the number of features times their variance ("scale").

Instead, the only C is taken into account for the linear SVM.

The hyperparameters for the random forest classifier and their ranges are

reported in Tab. 1. The “bootstrap” is a re-sampling technique where data are

Hyperparameters Ranges/values

Trees in the forest from 50 to 400 with a step of 50

Maximum depth of the tree from 10 to 100 with a step of 10

Minimum number of samples required to split an internal node from 2 to 10 with a step of 1

Number of features to consider when looking for the best split
All the features, or its square root,

or again its logarithm with base 2

Bootstrap True/False

Class weight Balanced/ Balanced subsample

Function to measure the quality of a split Gini/Entropy

Table 1: Hyperparameters of the random forest classifier and their ranges or specific possible

values.

sampled with replacement to estimate statistics on a population. In accordance255

to that, the class weight has twofold modes: (i) “balanced”, where the labels are

used to automatically adjust weights that are inversely proportional to class fre-

quencies, and (ii) “balanced_subsample”, where weights are computed according

to the bootstrap sample for every grown tree.

The ranges for the number of trees, the maximum depth, and the minimum260

number of samples were established after some preliminary simulations, in order

to estimate the order of magnitude of each parameter.
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Finally, the shallow neural network was built with a hyperbolic tangent

activation function ("tanh") for the hidden nodes, and identity function at the

output nodes. The output layer is composed of three nodes, namely one node265

per class. "Cross-entropy" was employed as cost function, and "soft-max" as

post-processing of the network output, while the training algorithm was the

resilient propagation (RProp) [38].

The hyperparameters taken into account are the learning rates η− and η+,

and the number of hidden nodes. The learning rates assess the change between270

subsequent steps of the network training. The first was set equal to 0.50, while

an optimal value was searched for η+. In particular, this was varied between

1.05 and 1.30, with step of 0.05. Lastly, the number of hidden nodes was varied

between 20 and 220 with step of 40.

For each classifier, the hyperparameter values are searched and the optimal275

models are reported in Tab. 2. The performance score taken into account to

Classifier Optimal hyperparameters Accuracy (%)
Accuracy (%)

(normalized features)

linear SVM C = 1.0 65 ± 3 60 ± 2

Gaussian SVM
C = 1.0

γ: scale
52 ± 3 59 ± 2

random forest

n_estimators = 250

max_depth = 30

min_samples_split = 7

max_features = None

bootstrap = True

class_weight = balanced

criterion = entropy

80 ± 2 80 ± 2

shallow neural network
number of hidden nodes = 220

η+ = 1.20
51 ± 3 61 ± 3

Table 2: Performance of different cardiovascular risk models: for each classifier, optimal

hyperparameters, classification accuracy, and results with normalized features are reported.

choice the best classifier is the mean classification accuracy among the cross-

validation iterations and its associated type-A uncertainty.

The performance of each model was also assessed with features normalized
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between 0 and 1. This was done because some features change in a range that is280

much wider than others. The results show that the best classifier is the random

forest, which is also the only classifier not affected by the input normalization.

3.3. PCA Analysis

The performance of the classifiers different from the random forest was im-

proved by processing the features by means of Principal Component Analysis285

(PCA) [39] prior to the classification step. In particular, the first p principal

components were calculated on the training data for each iteration of the cross-

validation. Then, both training and test data were projected according to the

new components space. Finally, the reduced representations of both datasets

go in input to the classifier. The number of principal components p was varied290

(p ∈ {1, 2, . . . , 11}), and the results are reported in Tab. 3 and in Tab. 4, for

non-normalized and normalized features, respectively. Best results are high-

number of PCA Components

Classifiers 1 2 3 4 5 6 7 8 9 10 11

linear SVM 45 ± 3 56 ± 3 57 ± 3 64 ± 3 64 ± 3 65 ± 3 65 ± 3 65 ± 3 65 ± 3 65 ± 3 65 ± 3

Gaussian SVM 48 ± 4 48 ± 4 48 ± 4 48 ± 4 48 ± 4 48 ± 4 48 ± 4 48 ± 4 48 ± 4 48 ± 4 48 ± 4

shallow neural network 46 ± 2 54 ± 3 53 ± 2 63 ± 3 66 ± 3 64 ± 3 63 ± 3 65 ± 2 62 ± 3 59 ± 3 62 ± 3

Table 3: Cardiovascular risk models (Accuracy and type A uncertainty %) obtained by pre-

processing input features with Principal Component Analysis (PCA).

number of PCA Components

Classifiers 1 2 3 4 5 6 7 8 9 10 11

linear SVM 49 ± 2 52 ± 2 51 ± 2 58 ± 2 62 ± 2 63 ± 2 64 ± 2 60 ± 2 60 ± 2 60 ± 2 60 ± 2

Gaussian SVM 41 ± 2 47 ± 2 56 ± 2 56 ± 2 54 ± 1 56 ± 2 58 ± 2 61 ± 2 61 ± 2 61 ± 2 61 ± 2

shallow neural network 52 ± 2 56 ± 2 60 ± 3 66 ± 2 70 ± 3 70 ± 3 65 ± 2 69 ± 3 61 ± 3 62 ± 3 63 ± 3

Table 4: Cardiovascular risk models performance (Accuracy and type A uncertainty %) ob-

tained by pre-processing input normalized features with Principal Component Analysis (PCA).

lighted in gray. In case of non-normalized features and PCA (Tab. 3), there

is an enhancement for the only shallow neural network, while the linear SVM

performance remains the same and the Gaussian SVM are even worse. In the295

mean time, if features are normalized (Tab. 4), PCA enhances the performance
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for each classifier. Notably, the shallow neural network classification accuracy

reaches 70%. Nonetheless, the better performance is still achieved with the

random forest (without PCA).

3.4. Discussion300

The comparison between different classifiers has shown that the best per-

formance in classifying patient into three cardiovascular risk classes is achieved

with the random forest. In particular, the mean cross-validation accuracy is

80% with a 2% type A uncertainty. This result is to be compared to a recent

study employing the same dataset [29]. This study considered features extracted305

from heart rate variability analysis in resting state condition, demographic data,

biochemical and blood tests results, and other physiological values. The pre-

diction of cardiovascular health status for the patients was possible with a 73%

accuracy [29].

Hence, an improvement in terms of performance has been achieved even by310

employing only non-invasive data. It is also worth noting that misclassified pa-

tients can belong to any class, namely there is not a bias in terms of misclassified

class. This is reported in Tab. 5, where the accuracy performance is reported

per class, together with precision and recall.

Class 0 Class 1 Class 2

Accuracy (%) (95 ± 2) (68 ± 5) (78 ± 5)

Precision (%) (95 ± 2) (58 ± 5) (61 ± 5)

Recall (%) (95 ± 2) (69 ± 5) (78 ± 5)

Table 5: Random forest performance scores for each class.

The random forest is well-known in the recent scientific literature not only for315

its classification performance, but also for its advantage to be interpretable [40].

In particular, the importance of each feature in classification can be derived. In

the present case, the 15 most important features are reported in Fig. 4.

The figure highlights that the most important feature is "diabetes status",

followed by "age". This is in accordance with the current clinical practice be-320
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Figure 4: The top 15 most important features for the random forest.

cause, as discussed in the introduction, the two highlighted features are also

employed by classical cardiovascular risk calculators. On the other hand, the

results of Fig. 4 give some hints about other important factors to assess the

cardiovascular risk. Nevertheless, further investigations are needed, especially

by exploiting data from more patients.325

3.5. Noise robustness

Training a machine learning algorithm with a small dataset can cause the

algorithm to merely memorize training samples, thus leading to over-fitting and

poor performance on new uncorrelated data. Nevertheless, the model must

be capable of properly classifying new data in order to be useful. It is thus330

necessary to validate the model for new incoming data. If there is no further

data for this validation, the creation of synthetic data could be a solution.

However, if the starting sample is too small, the synthetic data would result

highly correlated to the starting one. A possible solution is to add noise to

input variables during training in order to possibility to generalize the model.335

Such a noise robustness test is executed by adding noise only on test data, while

no noise must be added on training data [36]. In this work, a Gaussian noise

was added. This was generated with the randn Python function, which gives

back normally distributed random numbers. Five noise levels were investigated,

namely 2%, 4%, 6%, 8%, and 10%. Each level fixes the amplitude of the added340

15



noise. Thirty iterations were performed for each noise level, and in each iteration

random noise is added to continuous features, while discrete features remain

unchanged. Finally, for each noise level, the mean and standard deviation of the

thirty resulting classification accuracies were calculated. The results are shown

in Fig. 5. As expected, by adding noise the classifier performance decreases, but

0 2 4 6 8 10

Noise level [%]

70

75

80

85

A
c
c
u

ra
c
y
 [

%
]

Figure 5: Results of the noise robustness test in terms of classification accuracy and related

uncertainty as a function of noise level.

345

the accuracy is still 75% with 10% of superimposed noise, which is even higher

than the abovementioned reference result.

4. Conclusion

The concept design of a soft sensor for accurate assessment of the cardio-

vascular risk of a patient in real time was reported. The system processes350

measures from wearable transducer and results of patients’ interviews. In order

to deal with the few available data, different classifier models were compared by

a k-fold procedure [37]. The data consisted of measures from just 12 patients,

equally divided between healthy, non-critical unhealthy, and critical unhealthy

cardiovascular status.355

It has been shown that the classification accuracy goes up to 80% with 2%

type A uncertainty when a random forest is employed for classification, and this

was obtained by merely considering the measures acquired during 10 minutes

of patients monitoring in resting state together with other non-invasive data.
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These results are also to compare with a recent study reporting 73% accuracy by360

employing invasive and non-invasive measures. Furthermore, a noise robustness

test has shown that, even by adding Gaussian noise to training data, accuracy

still remains around 75% with 10% noise level. Thus, the results of this work

can be employed for a non-invasive telemonitoring of patients, directly at their

home.365

In the next future, the system will have the two-fold advantages of both fur-

nishing a real-time measure of the cardiovascular risk of a patient and providing

data to create a database for further studies. A mong the other advantages,

accuracy improvements will be possible with more data for the model identifi-

cation.370
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