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“If people do not believe 
that mathematics is simple, 

it is only because they do not 
realize how complicated life is” 

John von Neumann 
 
 

 
 
 
  



 
 
 
 
 
 
 
 

Abstract 
 

Nowadays, the biomedical signal processing and classification and medical 
image interpretation play an essential role in the detection and diagnosis of several 
human diseases. The problem of high variability and heterogeneity of information, 
which is extracted from digital data, can be addressed with the separation of single 
components from non-stationary signals and multi-stained images. In this context, 
signal decomposition and stain separation techniques can be useful approaches to 
highlight hidden patterns or rhythms in biological signals and specific cellular 
structures in histological color images, respectively. The decomposition strategy is 
often a pre-processing step that enables the effective extraction of quantitative data 
from biomedical signals and medical images in the development of computer-
assisted diagnosis (CAD) systems to overcome the limitation of time-consuming 
manual processes which are also subjected to intra- and inter-operator variability. 

This thesis work can be divided into two macro-sections: firstly, a novel 
automatic sleep stage classification (ASSC) system based on single-channel 
electroencephalographic (EEG) signals and recurrent neural network (RNN) 
architecture is presented and several signal decomposition techniques are employed 
to extract significant features from sub-signals with different frequency content. 
Secondly, a novel multi-tissue and multiscale automated solution for the separation 
and normalization of histological stains in the field of digital histopathology image 
analysis is proposed and validated. 

In the first part (Part I), a novel cascaded RNN model based on long short-term 
memory (LSTM) blocks is presented with the aim to classify sleep stages 
automatically. Sleep scoring is a time-consuming and difficult task which is 
manually performed by sleep experts. A general workflow based on single-channel 
EEG signals is developed to enhance the low performance in staging N1 sleep 
without reducing the performances in the other sleep stages (i.e. Wake, N2, N3 and 
REM). In the same context, several signal decomposition techniques and time-
frequency representations are deployed for the analysis of EEG signals. All 
extracted features are analyzed by using a novel correlation-based timestep feature 
selection and finally the selected features are fed to a bidirectional RNN model. The 
results of network architectures are tested by performing a robust stratified cross-
validation strategy. 



In the second part (Part II), a fully automated method named SCAN (Stain 
Color Adaptive Normalization) is proposed for the separation and normalization of 
staining in digital pathology. This normalization system allows to standardize 
digitally, automatically and in a few seconds, the color intensity of a tissue slide 
with respect to that of a target image considered as a gold standard. The stain 
normalization strategy is useful to increase the speed and accuracy of the 
pathologist’s diagnosis, to reduce delays due to re-staining of histological 
preparations and can be considered as a pre-processing method for subsequent CAD 
systems developed for accurate cellular structure segmentation, classification and 
quantification of histological prognostic parameters, due to the reduction of 
enormous variability of non-optimal tissue color intensity. Multiscale evaluation 
and multi-tissue comparison are performed for assessing the robustness of the 
proposed method. In addition, a stain normalization based on a novel mathematical 
technique, named ICD (Inverse Color Deconvolution) is developed for 
immunohistochemical (IHC) staining in histopathological images. 

In conclusion, the proposed techniques achieve satisfactory results compared 
to state-of-the-art methods in the same research field. The workflow proposed in 
this thesis work and the developed algorithms can be employed for the analysis and 
interpretation of other biomedical signals and for digital medical image analysis. 
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Chapter 1 

Introduction - Part I 

1.1 Sleep Analysis 

Humans spend about one third of their existence sleeping and when deprived 
of it, they feel an urgent need, just like drinking or eating. It was shown that 
deprivation of sleep, also known as sleeplessness, leads to death faster than food 
deprivation, although the mechanisms are still unknown [1]. Sleep can therefore be 
considered a fully-fledged vital function, like nutrition, reproduction and so on, 
even if its functional role has not been clarified yet. The sleep quality can be 
compromised by sleep-related disorders such as sleep apnea, depression, insomnia, 
narcolepsy, breathing-related and circadian rhythm disorders [2], [3]. In addition, 
the chronic restriction of sleep has in fact serious negative consequences both on 
the health of the individual (e.g. at the level of metabolic, immune, and psychiatric 
balance) and on public security [4]. There are several accidents at work and when 
driving due to slow reflexes caused by drowsiness [5]. The National Highway 
Traffic Safety Administration had proved that during driving the main consequence 
of drowsiness was the reduction of reaction times and this caused between 56,000 
and 100,000 car accidents, with more than 71,000 injuries and 1500 deaths each 
year in USA [6]. In recent decades, the development of new technologies in the 
field of neuroscience has allowed a more detailed study on the mechanisms that 
regulate human sleep. The relationship between alertness level and sleepiness, 
which is well known at the experience level by anyone, has been proven and 
clinically studied using several techniques and indicators. There are objective and 
validated assessments of vigilance state, which can be measured by numerous 
psychological tests. A widely used alertness index for its simple execution is the 
measurement of reaction times. There are several devices and tests dedicated to the 
measurement of reaction times, including the psychomotor vigilance task (PVT), 
developed in 1985, which measures over a period of time the rapidity of the 
subject’s response to a visual stimulus [7]. On the other hand, a difference exists 
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between subjectively perceived sleepiness, measurable with various validated and 
internationally diffused questionnaires, and the drowsiness objectively measurable 
in the sleep laboratory, thanks to the detection of parameters such as heart rate, 
respiratory rate, blood pressure, eye movements, muscle tone and others, but above 
all with the study of the encephalographic (EEG) signals. In fact, specific markers 
of sleepiness have been identified in the EEG signal, including the presence of slow 
frequencies, specific waveforms and variations in the power spectrum of the various 
frequencies both globally and focused on individual brain areas [8]. 

The EEG signal is the electrical biopotential recorded on the scalp due to the 
variation of the electric field generated by cortical neurons. The functioning of 
neurons is poorly synchronized in a normal condition, and for this reason the EEG 
is considered a highly nonlinear and non-stationary random process and the 
recognition of specific patterns in time domain is very complex [9]. The EEG signal 
can be employed for the monitoring of brain activity since it can be accessible in a 
non-invasive way and due to its high temporal resolution. The information extracted 
in time domain form the EEG signals is not as significant as that contained in 
frequency domain since EEG has a limited frequency bandwidth in the range of 0.3-
80 Hz. From a clinical point of view and for the sleep analysis, the interesting band 
is between 0.5 and 45 Hz and is split into six psychological sub-bands: delta (0.5-4 
Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma or the sleep spindle sub-band (12-16 
Hz), beta (16-30 Hz) and gamma sub-band (> 30 Hz). The lower the frequency 
range of a sub-band, the higher the amplitude of the EEG signal, and the more 
mental activity associated to that sub-band is reduced. Therefore delta and theta 
sub-bands are related to sleep, drowsiness or pathological conditions, instead alpha 
sub-band occurs when the subject is relaxed or starts to fall asleep and finally beta 
and gamma sub-bands are recorded during concentration or attention related 
processes [10]. There is also a high inter-subject variability for the non-stationary 
characteristics of this signal. 

The process of falling asleep cannot be considered as an abrupt transition from 
wakefulness to sleep but as a process that involves a series of steps and gradual 
changes between the relaxed waking state and deep sleep. The macrostructure of 
sleep refers to the various sleep stages that occur and repeat in relatively regular 
cycles during sleep [11]. These stages, and the characteristics that allow them to be 
detected and scored are by convention accepted and used worldwide, to ensure 
diagnostic and therapeutic uniformity. These sleep scoring guidelines were 
proposed in 1968 by Rechtschaffen and Kales (R&K) [12] and were updated in 
2007 by the American Academy of Sleep Medicine (AASM) [13]. The process of 
sleep scoring is a time-consuming and difficult task which is manually performed 
by sleep experts. A sleep expert is a professional figure in the sleep laboratory 
which is trained in sleep technology and relevant aspects of sleep medicine. The 
classification of sleep stages is performed through the analysis and interpretation of 
polysomnographic (PSG) signals: the EEG signals for the study of brain activity, 
the electrooculographic (EOG) signals used to detect the amplitude and rapidity of 
eye movements and the electromyographic (EMG) signals to quantify mylohyoid 
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muscle tone. In addition, other biomedical signals can be recorded to study 
respiration, heart rate, oxygen saturation, body temperature and limb movements 
since they can provide useful information on the diagnosis of sleep-related diseases. 

The main difference between the guidelines proposed by R&K and the AASM 
manual is the number of scored sleep phases: the AASM manual classifies sleep 
into 5 stages, one less than R&K’s guidelines, since in the AASM manual the two 
R&K stages S3 and S4 are merged into a single sleep class, named slow wave sleep 
(SWS) stage [14]. The summary diagram for the sleep cycle according to R&K and 
the EEG signals for each sleep stage, is reported in Figure 1.1. 
 

 
Fig. 1.1 Summary diagram of the sleep cycle (a) and EEG signals for each of the 6 sleep stages 
scored according to the R&K’s standard (b). 
 
The more recent sleep scoring system proposed by the AASM classified sleep into 
three main types of phases: wakefulness (stage W), non-rapid eye movement 
(NREM) sleep and rapid eye movement (REM) sleep. NREM sleep, which 
represents almost 75-80% of the whole sleep cycle duration of a healthy individual, 
is in turn split into three stages (N1, N2 and N3) each of which is denoted by specific 
PSG patterns, although the distinction between one stage and another is not always 
well defined. For a healthy human subject, the N1 sleep is the shortest phase in 
sleep cycle (about 2-5%), while stage N2 constitutes the most lasting one (about 
45-55% of the total sleep episode) [15]. By convention, a single PSG epoch scored 
by the sleep expert according to the AASM manual [16] lasts 30 seconds and the 
staging refers to the following indications: 

• Stage W: more than 50% of the EEG activity in a single epoch at the occipital 
level must consist of alpha rhythm (i.e. with a frequency between 8 and 12 Hz, 
typical of wakefulness with closed eyes). In the EOG recording, movements 
typical of wakefulness, i.e. rapid and irregular, are noted and muscle tone is 
high. However, it should be noted that this phase includes both active 
wakefulness related to concentration and attention (characterized by high-
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frequency beta waves) and early stages of falling asleep, so the EEG 
morphology is found to be extremely variable depending on the condition of 
the subject. 

• Stage N1: represents the transition between awake state and sleep, where the 
alpha activity is replaced by mixed frequency waves (mostly in theta rhythm, 
between 4 and 8 Hz) with low amplitude. This must be present for more than 
50% of the whole 30 s epoch. Eye movements are slower and more rhythmic 
than in stage W and muscle tone decreases. In EEG recording may be identified 
some sharply contoured and negative-going bursts called vertex sharp waves, 
lasting less than 0.5 s, particularly pronounced on the central brain regions and 
distinguishable from the underlying activity. 

• Stage N2: at the EEG level a rhythm continues to be found mainly of theta 
type, with low voltage waves and mixed frequencies but predominantly 
between 4 and 8 Hz. The muscle tone continues to decrease, and the eyes 
present slow and wide movements. The presence of specific EEG patterns is 
what distinguishes this stage from the previous one. These waves are the sleep 
spindles (i.e. a train of visible waves especially at central level with frequency 
between 12 and 16 Hz and duration greater than 0.5 s) and the K-complexes 
(visible at the frontal level, are characterized by a positive deflection followed 
immediately by a negative component of duration greater than 0.5 s and clearly 
distinguishable from normal background activity). 

• Stage N3: also called SWS stage, represents the deep sleep and EEG activity 
must be dominated by low-frequency delta rhythms and high amplitude (i.e. 
greater than 75 µV) waves. The delta rhythm must represent more than 20% of 
the scored epoch. Nevertheless, sleep spindles may be still found. Typically, 
there are no eye movements and muscle activity is very low. 

• Stage REM: low voltage and mixed frequency EEG activity must be present; 
muscle tone must be almost abolished and the presence of rapid and irregular 
eye movements typical of this phase must be identified. Sawtooth waves (i.e. 
sharp wave trains with a rhythm between 2 and 6 Hz) may be found in the EEG 
signal, especially at central level. In addition, very short myoclonic jerks (less 
than 0.25 s) may be superimposed on existing background muscle atony. Other 
physiological variables such as blood pressure, heart and respiratory rate are 
highly irregular during REM sleep. 

The typical patterns for each sleep stage according to the AASM rules are listed in 
Table 1.1. As evident in Table 1.1, sleep scoring is a very difficult and complex 
procedure, because a robust discrimination between the five different sleep stages 
is not provided. In addition, the EEG patterns may be present or not in the scored 
epoch (is not a necessary or sufficient condition) and they are not mutually 
exclusive for each stage; hence this represents a crucial issue in the context. AASM 
manual can be used as a methodology to standardize the sleep scoring but the 
expertise of the neurologists and sleep specialists makes the difference in most of 
critical aspects of diagnosis. 
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Table. 1.1 Characteristic waves for each sleep stage. 
Stage Scoring criteria (EEG) 

W (Wakefulness) Alpha waves (8-12 Hz), Beta waves (16-30 Hz) 

N1 (NREM 1) Theta waves (4-8 Hz), Vertex sharp waves may be present 

N2 (NREM 2) Theta waves, high voltage biphasic waves (K-complexes), 
Sleep spindles (12-16 Hz) 

N3 (NREM 3) High amplitude (> 75 µV) Delta waves (0.5-4 Hz) 

REM Theta waves, Alpha and Sawtooth waves (2-6 Hz) may be present 
 

From the study of the sequence and duration of the various sleep stages 
throughout the night, the sleep expert obtains the hypnogram, which is a graphical 
representation of the sleep stages as function of time and allows to obtain 
quantitative data related to subject’s sleep. Among these, the parameters that are 
most clinically evaluated are the total time of sleep, time of falling asleep, duration 
of nocturnal wakefulness, the latency of the first REM phase, the total number of 
REM phases and the percentage of sleep spent in the various stages [16]. An 
example of the hypnogram is shown in Figure 1.2. 
 

 
Fig. 1.2 Manually labelled hypnogram of a whole night. 
 
Typically, during the night, 75-80% is represented by NREM sleep and the 
remaining part (i.e. 20-25%) constitutes REM sleep. In generally, an adult subject 
has between 4 and 6 successive sleep cycles every night. Every cycle lasts between 
70 and 120 minutes, but its relative composition varies during the time. The first 
cycles are dominated by the stages of deep sleep, while REM lasts a few minutes at 
the beginning and gradually increases over the subsequent cycles until the final part 
of the night, where the sleep cycles are composed predominantly of stage N2 and 
stage REM [15]. As evident form Figure 1.2, there are several epochs scored as 
wakefulness in addition to the initial and final part of the hypnogram; thus, the 
subject wakes up during the night and the number of nocturnal W epochs is very 
important for the diagnosis of sleep-related disorders. In addition, stage N1 rarely 
occurs during the night. 

A novel and interesting topic in neurology and for research applications is the 
assessment of a subject’s neurocognitive performance (NCP). The NCP can be 
defined as the process or mental action through which a subject acquires 
knowledge, perception, intuition, and reasoning [17]. An example of NCP linked to 
sleep deprivation is the case of a human subject who, while driving a vehicle, 
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decreases his alertness and becomes a danger to himself and others. The change in 
NCP is related to changes in brain activity in the phases of falling asleep, which are 
evaluated through the analysis of the EEG signal. For this reason, the study of the 
variation of NCP starts with the analysis of the variations in the EEG signal during 
the sleep stages (according to the previously described AASM standard) and then 
moves on to a more detailed analysis of the hypnagogic state of the subject, i.e. the 
transition between wakefulness and the first stage of sleep. In this context, Hori et 
al. proposed in 1994 a novel classification system for the hypnagogic state and 
defined an indicator called sleep onset period (SOP) which quantifies the time in 
the transition from alertness to drowsiness [18]. In their work, they introduced nine 
EEG hypnagogic stages, where the first two stages belonged to the awake state, the 
subsequent six stages were referred to stage N1 and the last one was the stage N2 
according to the AASM gold standard. Hori and Tanaka focused their attention on 
the first stage of sleep (i.e. stage N1 in the AASM manual) since it represents the 
first moments when a subject changes his/her NCP by decreasing attention levels 
and reaction times consequently [18]. The problem of this new scoring is that the 
classification rules are not very robust and the EEG patterns are not discriminatory 
in each phase; in fact in the following years this new standard for the hypnagogic 
state has not been considered by sleep experts a sleep standard as the guidelines 
proposed by R&K and updated by the AASM. 

1.2 Automatic Sleep Stage Classification system 

Sleep scoring is a complex process performed by sleep experts or sleep 
technologists who, according to the AASM criteria, assign a score (between W, N1, 
N2, N3 or REM) to a 30 s epoch, after having visually examined the PSG signals 
of a human subject. This process is repeated for all the 30 s epochs within the whole 
night recording. The time employed by the expert to score a full night is about 1-3 
hours. In addition, the expert may sometimes request a second opinion for scoring 
agreement or to diagnose a sleep-related disease. Hence, sleep scoring is time-
consuming, often tedious and suffers from intra- and inter-operator variability [19]. 
For this reason, in literature, several authors have proposed automatic sleep stage 
classification (ASSC) systems with low computational times to support sleep 
experts in this difficult and complex task. The main structure of these automated 
systems consists of four modules for the analysis and classification of PSG signals: 
i) data acquisition and signal pre-processing, ii) feature extraction, iii) feature 
selection or dimensionality reduction and iv) classification [20]. All these steps are 
deepened in the following sections. In addition, the ASSC systems can be based on 
multi-channel or single-channel approach. In the multi-channel approach, several 
EEG channels corresponding to the electrodes placed on the subject’s scalp during 
the acquisition are employed for the subsequent classification process and in 
addition the EOG or EMG recording may be added to the processing. This kind of 
solution has the shortcoming of limiting the movement of the subjects during the 
signal acquisition. On the other hand, in the single-channel approach, it is very 
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important the choice of the channel to use, in order to be able to extract the most 
significant information from the data, while the experimental setup can be 
simplified and the crosstalk effect due to multiple electrodes can be reduced. 

1.2.1 Data acquisition and signal pre-processing 

The international standard 10-20 system is used for the electrode placement for 
the EEG signal acquisition in the sleep laboratory. The 10-20 system is based on 
the following anatomical landmarks: nasion, inion and right/left preauricular points 
used as reference points. All the electrodes are positioned at different distances 
equal to 10 or 20% of the length of the curve that connects nasion and inion. The 
electrodes placed in the left and right hemispheres are denoted with odd and even 
numbers, respectively. High numbers are related to lateral parts of the scalp, while 
low numbers are closer to midline. Mid-sagittal positions are denoted with the 
subscript z (e.g. Fz, Cz, Pz, Oz electrode locations) [14]. Figure 1.3 shows the 
electrode placement according to the standard 10-20 system. 
 

 
Fig. 1.3 Electrode placements in a 32-channel layout according to the 10–20 system. 
 
Several electrodes are applied on the scalp, at pre-frontal, frontal, temporal, central 
parietal, and occipital level bilaterally, and referential electrodes are typically 
placed on mastoid, ear or chin for the EEG recording. The EEG signal acquisition 
can be bipolar if voltage difference is recorded between adjacent electrodes or 
referential if the recording is performed with respect to a common reference. For 
the EMG signal, mental or submental placements are employed, while two 
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electrodes for the EOG recording are placed on the outer canthus of the eye, offset 
1 cm below and 1 cm above the horizon [14]. 

The analog signals are converted in a digital form and stored in the European 
Data Format (EDF), which is the standard file format intended for storage of 
multichannel physical and biological signals. Finally, all EEG time-series data are 
band-pass filtered in the range of 0.5 - 45 Hz to retain only physiological bandwidth 
relevant for sleep analysis and to attenuate the power line interference. The whole 
night recording is time-segmented into 30 s epochs for sleep scoring and the epochs 
which contain artifacts (e.g. eye blinking) are rejected. 

1.2.2 Feature extraction 

Features are employed to summarize raw data with the aim to minimize the loss 
of relevant information. The feature extraction process consists in computing 
mathematical parameters which contain quantitative information about the signal 
in different domains. The feature vector is a set of characteristics used to describe 
signal patterns with the aim of reducing the dimensional space necessary to explain 
EEG data. These characteristics are called handcrafted features and can be extracted 
from the whole 30 s epoch or can be computed over a smaller time period and then 
averaged or concatenated. The time duration of the EEG signals from which to 
extract information is defined by searching a window where the EEG can be at least 
considered a wide-sense stationary process and, at the same time, satisfying the 
frequency resolution according to Heisenberg's uncertainty principle. The extracted 
features are subsequently fed to an automated classifier which tries to find a relation 
between these features in order to correctly classify the five sleep stages. The main 
crucial point is the link between the extracted handcrafted features and the clinical 
problem. Independently on the used classifier, there could be a set of features that 
are more significant. Such features contain the “signature” of the physiological 
system and, if present, of the pathology. 

Several domains can be used to extract quantitative information from the pre-
processed signals. The most used in literature are four: time, frequency, time-
frequency and nonlinear/complexity domain [20]. Features extracted in time 
domain (e.g. statistical moments, signal energy, etc.) are parameters extracted from 
the pre-processed EEG signals without any transformation in a new space but 
simply as function of time. Frequency-domain features (e.g. relative spectral power, 
mean frequency, etc.) are parameters extracted after estimating the power spectral 
density (PSD) which associates the relative power to each frequency component 
included in the original signal [21]. The frequency domain can be very useful for 
sleep analysis since each frequency sub-band of the EEG signal corresponds to a 
particular physiological condition of the subject, i.e. awake, drowsiness or deep 
sleep. Time-frequency distributions (e.g. Choi-Williams distribution, continuous 
wavelet transform, etc.)  are mathematical tools of spectral analysis which represent 
the signal spectrum instantaneously, i.e. as a function of time and are intended for 
non-stationary signals. Features are extracted from a bidimensional plane where the 
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horizontal axis is the time and the vertical axis denotes the frequency [22]. Finally, 
nonlinear/complexity domain features (e.g. approximate entropy, Lyapunov 
exponent, correlation dimension, etc.) can be extracted from the EEG signals in the 
phase space. These features are complexity measures which quantify the nonlinear 
dynamics and the chaotic behavior of a non-stationary signal [23]. 

Typically, all these features are extracted from the EEG signals, especially in 
ASSC systems based on single-channel architecture. The EMG or EOG signals are 
excluded from the analysis, since the aim is to extract information only from the 
EEG which is regarded as the principal indicator of NCP. 

1.2.3 Feature selection or Dimensionality reduction 

The objective of this step is to come up with the smallest set of features that 
best captures the characteristics of the problem being addressed. However, not all 
ASSC systems contain this step in their workflow but when the number of extracted 
features is very high, this step is necessary to reduce the computational time of the 
classification algorithm. In addition, the removal of not significant features could 
increase the classification accuracy since redundant features can be seen as an 
additive noise on the data and consequently are prone to misclassifications [20]. 
Features are selected both on the basis of how they represent a given class (e.g. a 
specific sleep stage) and on the basis of how they can distinguish between two or 
multiple classes (e.g. the five sleep stages scored with AASM manual). There must 
be a balance between expressiveness and compactness of the feature set. 

There are two main types of techniques to consider in selecting features: either 
by removing irrelevant and redundant information (feature selection) or by finding 
a combination of the previously extracted feature set (dimensionality reduction). 
Sequential forward selection (SFS) and its counterpart sequential backward 
selection (SBS) methods [24], ReliefF and RReliefF algorithms [25] and minimum 
redundancy maximum relevance (mRMR) technique [26] are examples of feature 
selection algorithms. On the other hand, linear discriminant analysis (LDA) [27] 
and principal component analysis (PCA) [28] are two most common methods with 
the goal of finding a new lower dimensional subset that can effectively summarize 
the data. 

The feature selection or dimensionality reduction step could be very useful for 
the following classification task since as the dimensionality increases, the searching 
space grows exponentially, and the input data fed to classifier become increasingly 
sparse. 

1.2.4 Classification 

Various classification algorithms have been proposed to automatically score 
the 30 s EEG epoch as stage W, N1, N2, N3 or REM. These classifiers are able to 
build boundaries, which can be linear or nonlinear, around feature vectors in order 
to separate the features which belong to different classes. In addition, some of them 
try to minimize a cost function which quantifies the difference between the 
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predicted output and the true label. Some of the popular machine learning 
algorithms are the following: gaussian mixture model (GMM) [29], support vector 
machine (SVM) [30]–[33], K-means clustering [34], J-means clustering [35], 
random forest classifier [22], bootstrap aggregating (Bagging) [36], [37] and 
artificial neural networks (ANNs) [38], [39]. In recent years, with the advent of 
deep learning, which is a subset of artificial intelligence (AI), new algorithms have 
been proposed with the aim of simulating human like decision making. The main 
applications of deep learning are speech recognition, natural language processing 
(NLP) and image recognition [40]. Recurrent neural networks (RNNs) are used to 
process and classify sequential data such as text, genomes, handwriting and also 
time series [21], [41], [42]. Special architectures of RNNs have been designed to 
learn long-term dependencies: RNNs with gated recurrent units (GRUs) [43], with 
long short-term memory (LSTM) blocks [21], [44] and bidirectional RNNs 
(BRNNs) [45], [46]. On the other hand, convolutional neural networks (CNNs) are 
employed for image segmentation and classification and in the context of sleep 
staging, time-frequency transforms can be treated as bidimensional images for 
CNN-based applications [47], [48]. 

1.3 Aim of the Thesis - Part I 

The aim of the work presented here is to develop and validate an automatic 
sleep stage classification (ASSC) system based on single-channel 
electroencephalographic (EEG) signals and recurrent neural network (RNN) 
architecture. The workflow proposed in this part (Part I) consists of four main 
modules (i.e. data acquisition and pre-processing, feature extraction, feature 
selection and classification) and can also be applied to other biomedical signals with 
the aim of extracting relevant patterns for classification purposes. 

The ASSC systems with low computational times are intended to support sleep 
experts in scoring sleep, which is a complex process, time-consuming (e.g. the time 
employed by the expert to score a full night is about 1-3 hours), often tedious and 
suffers from intra- and inter-operator variability. The single-channel approach 
alleviates the number of wire connections during the recording process with the 
consequence of reducing sleep disturbances and avoiding any limits for the 
movement of the subject during signal acquisition. Consequently, the experimental 
setup can be simplified especially when multi-channel recording is not suitable for 
particular patients or situations and the crosstalk effect due to multiple electrodes 
can be reduced. 

In Chapter 2, a novel cascaded RNN with long short-term memory (LSTM) 
units is presented with the aim of automatically classifying sleep stages. To the best 
of our knowledge, this was the first study published in literature which employed a 
cascaded RNN architecture based on LSTM units for the automatic scoring of sleep. 
The aim is to define a general workflow based on single-channel EEG signals to 
enhance the low performance in staging N1 sleep without reducing the 
performances in the other four sleep stages (i.e. W, N2, N3 and REM). The question 



11 
 

related to N1 stage detection emerges in the context of neurocognitive performance 
(NCP) evaluation; in fact, the first step in testing the capabilities to track subtle 
NCP changes should be the analysis of the hypnagogic state of the subject, i.e. the 
transition between wakefulness and the first stage of sleep (i.e. stage N1) [18]. In 
fact, from a clinical point of view, the sleep onset period (SOP) which quantifies 
the time in the transition from alertness to drowsiness represents a potential 
physiological indicator of sleep quality which can be compromised by sleep-related 
disorders such as sleep apnea, depression, insomnia, narcolepsy, breathing-related 
and circadian rhythm disorders [11]. 

In Chapter 3, in the same context of EEG sleep scoring, several signal 
decomposition techniques were analyzed and employed in order to extract 
significant features from sub-signals with different frequency content. In addition, 
two time-frequency representations were deployed for the analysis of EEG signals. 
The segmentation of time-frequency transforms has been performed based on the 
frequency bands of the rhythms of EEG signals (i.e. delta, theta, alpha, sigma, beta 
and gamma sub-band) and for each sub-band were extracted several features in 
time-frequency domain. The entire set of features was analyzed by using a novel 
correlation-based timestep feature selection strategy and finally the selected 
features were fed to bidirectional RNN model. 

The conclusions and final remarks of this work are reported in the last section 
of the thesis. 
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2.1 Introduction 

As discussed in Chapter 1, an interesting topic in clinical and 
neurophysiological studies is the automated assessment of the neurocognitive 
performance (NCP) of a human subject. The NCP can be defined as the process or 
mental action through which a subject acquires knowledge, perception, intuition, 
and reasoning [1]. The critical issue is the development of study or research 
protocols in which the change of subject’s NCP is clearly predictable and 
repeatable. The different phases of falling asleep may be considered as an example 
of temporal changes of NCP; hence sleep represents a suitable test case for 
developing NCP techniques. Humans spend about one third of their existence 
sleeping and when deprived of it, they feel an urgent need, just like drinking or 
eating. Sleep can therefore be considered a fully-fledged vital function, like 
nutrition, reproduction and so on, even if its functional role has not been clarified 
yet. The sleep quality can be compromised by sleep-related disorders such as sleep 
apnea, depression, insomnia, narcolepsy, breathing-related and circadian rhythm 
disorders [2]. The chronic restriction of sleep has serious negative consequences 
both on the health of the individual (e.g. at the level of metabolic, immune, and 
psychiatric balance) and on public security [3]. There are several accidents at work 
and when driving due to slow reflexes caused by drowsiness [4], [5]. In this context, 
the concept of sleep onset period (SOP) which is the time that elapses between the 
awake state and the drowsiness, becomes relevant for NCP studies [6]. 

Sleep scoring, considered a tedious, complex and time-consuming task 
performed by sleep technologists, consists in classifying the 30 s epochs contained 
in a subject’s full night recording into five classes according to the recent rules 
introduced by the American Academy of Sleep Medicine (AASM) in 2007 [7] 
which update the manual written in 1968 by Rechtschaffen and Kales (R&K) [8]. 
In this manual, sleep is split into three main phases: wakefulness (stage W), non-
rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. NREM 
sleep is in turn split into three sub-stages (N1, N2 and N3). The five sleep stages 
are described in detail in Chapter 1. For the classification of sleep, a set of 
polysomnographic (PSG) signals are recorded, i.e. eye movements (EOG signals), 
muscle tone (EMG signals) and others, but above all, the encephalographic (EEG) 
signals. In fact, specific markers of sleepiness have been identified in the EEG 
signal, including the presence of slow frequencies, specific waveforms, and 
variations in the power spectrum of the various frequencies both globally and 
focused on individual brain areas. In addition, the information extracted from EEG 
signals and its classification and interpretation reflects primary NCP changes [9]. 

The AASM rules define some typical EEG patterns related to each of five sleep 
stages as listed in Chapter 1 and reported in Figure 2.1. The problem is that the 
distinction between one stage and another is not always well defined. For this 
reason, in literature, several authors have proposed automatic sleep stage 
classification (ASSC) systems with low computational times to support sleep 
experts in this difficult and complex task. 
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Fig. 2.1 EEG patterns (Sleep Spindle, K-complex and Sawtooth waves). 
 

The main structure of ASSC systems consists of four modules for the analysis 
and classification of EEG signals: i) data acquisition and signal pre-processing, ii) 
feature extraction, iii) feature selection or dimensionality reduction and iv) 
classification [10]. The first phase i), is the electrode placement on the human scalp 
according to the international 10-20 system and multiple-channel EEG signals are 
recorded and converted into digital form [11]. The standard format designed for 
storing multichannel physical and biological signals is the European Data Format 
(EDF). A pre-processing step is typically applied to reduce frequency components 
which are beyond the range of interest from a clinical point of view. In the second 
phase ii), a set of mathematical parameters are extracted form EEG signals and in 
the third phase iii) only the most significant and relevant for sleep analysis 
information is retained. In the last phase iv) a robust classification model is 
implemented to automatically score the 30 s EEG epoch as stage W, N1, N2, N3 or 
REM (i.e. it mimics the manual process performed by sleep experts). The 
robustness of the classification model must be assessed in order to face the high 
inter-subject variability typical of sleep acquisitions. The first step consists in 
splitting the original dataset into training and test sets: the test set is employed to 
estimate how well the model trained on the training data would generalize to new 
unseen data. The test set represents the unseen data but belongs to the same 
underlying distribution as the training set. Three main types of validation methods 
can be applied to test the performances of a classification model: “hold-out” 
validation, leave-one-out cross-validation (LOOCV) and k-fold cross-validation. 
The simplest form of validation, called “hold-out” validation consists in a random 
separation of the available data into a single training and test set. This approach is 
not a good choice because an unlucky subdivision of the dataset could cause an 
ineffective network. In the LOOCV, only one subject is retained in the test set and 



19 
 

the remaining subjects are employed to predict the model; the process is repeated 
until every single sample in the dataset has been used in the test set. This approach 
has very high computational times when the number of subjects increases. Finally, 
in k-fold cross-validation, data are randomly split into k mutually exclusive 
partitions of equal size, and the classification process is repeated k times using in 
turn different data partitions. This last method gives more robust and reliable 
estimates by running multiple different training test splits, instead of relying 
entirely on a single particular training set [12]. 

The ASSC systems can be multi-channel or single-channel signal based. In the 
multi-channel approach, several EEG channels corresponding to the electrodes 
placed on the subject’s scalp during the acquisition are employed for the 
classification process and in addition the EOG or EMG recording could be added 
to the processing. This solution could be a problem for a portable device for the 
automatic NCP assessment, for example during driving a car. On the other hand, 
the single-channel approach alleviates the number of wire connections during the 
recording process with the consequence of reducing sleep disturbances and 
avoiding any limits for the movement of the subject during signal acquisition. 
Consequently, the experimental setup can be simplified especially when multi-
channel recording is not suitable for particular patients or situations and the 
crosstalk effect due to multiple electrodes can be reduced. Therefore, with the use 
of single-channel EEG signals remains very difficult to improve the performances 
of sleep stages without relevant information, which is hidden in EOG and EMG 
signals, but with this approach, the acquisition setup is simpler with less noise 
interference and it may be used for NCP assessment in real-time applications, e.g. 
the detection of driver drowsiness. 

As described in Chapter 1, various research studies have been proposed with 
the aim of developing ASSC systems to support sleep specialists in this difficult 
and time-consuming task. The critical issue in most of these works is the accuracy 
of stage N1 which is the most difficult phase to detect. In this chapter, a novel 
cascaded recurrent neural network (RNN) with long short-term memory (LSTM) 
units is presented with the aim of outperforming the limitations of multiple channel 
recordings and improving the accuracy for N1 sleep. A single EEG channel 
approach was employed; thus, the choice of the channel was very important to 
detect most of the EEG patterns for the classification of different sleep stages. To 
the best of our knowledge, this was the first study published in literature which 
employed LSTM blocks for the automatic scoring of sleep. 

The question related the N1 stage detection emerges in the research field of 
NCP evaluation; in fact, the first step in testing the capabilities to track subtle NCP 
changes should be the analysis of the hypnagogic state of the subject, i.e. the 
transition between wakefulness and the first stage of sleep (i.e. stage N1). In this 
context, Hori et al. proposed in 1994 a novel classification system for the 
hypnagogic state and defined stage N1 as the center of the SOP [6]. In their work, 
they introduced nine EEG hypnagogic stages, where the first two stages belonged 
to the awake state, the subsequent six stages (i.e. 3-8) were referred to stage N1 and 
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the last one was the stage N2 according to the AASM gold standard. In fact, from 
a clinical point of view, the SOP represents a potential physiological indicator of 
sleep quality which can be compromised by sleep-related disorders such as sleep 
apnea, depression, insomnia, narcolepsy, breathing-related and circadian rhythm 
disorders [13]. Therefore, the goal of this work is to define a general workflow to 
enhance the low performance in staging N1 sleep without reducing the 
performances in the other four sleep stages (i.e. W, N2, N3 and REM). 

2.2 Materials and Methods 

The proposed approach follows in the first part the standard ASSC workflow, 
as described in Chapter 1, while in the final part a cascaded network architecture 
was implemented. The workflow of the proposed study is reported in Figure 2.2. 
 

 
Fig. 2.2 Workflow of the proposed automatic sleep stage classification system (mRMR: minimum 
redundancy maximum relevance, PCA: principal component analysis, LSTM RNN: recurrent neural 
network with long short-term memory units). 
 
After the first steps of data acquisition, signal pre-processing and feature extraction, 
two different approaches were developed: for a 4-class classification problem (i.e. 
W vs N1-REM vs N2 vs N3) with the merging of stages N1 and REM into a single 
sleep phase N1-REM, the minimum redundancy maximum relevance (mRMR) 
algorithm was employed for feature selection, while for a 2-class classification 
problem (N1 vs REM), a dimensionality reduction technique named principal 
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component analysis (PCA) was used. For both problems, RNNs with LSTM blocks 
were used for classification purposes. Finally, for the scoring of five sleep stages 
according to AASM, a cascaded structure for the connection of two RNNs was 
defined: only the epochs N1-REM correctly classified from the 4-class RNN were 
fed to the 2-class RNN which performed binary classification. In the following 
sections, all these steps are described in detail. 

2.2.1 Data acquisition 

The publicly available Sleep-EDF database v1.0.0 published in 2002 and 
updated in 2007  was used for this study [14], [15]. This database is a collection of 
PSG signals with corresponding hypnograms annotated by sleep experts. The 
hypnogram files contained annotations of sleep stages referred to 30 s epochs. The 
annotation could be sleep stage W, 1, 2, 3, 4 or REM, movement time and unscored. 
Trained sleep experts manually produced the hypnograms according to the R&K’s 
manual. Sleep EDF signals were relative to full night PSG recording, including 
EEG (from the Fpz-Cz and Pz-Oz electrode locations according to the international 
10-20 system [11]), EOG, oro-nasal respiration, submental chin EMG and rectal 
body temperature. The EEG signals were sampled with a sampling rate of 100 Hz. 
The SC (Sleep Cassette) files (SC4ssnE0-PSG.edf) contained the PSG signals of 
subject ss (00 ≤ ss ≤ 19) for night n (n=1 or 2). In this study, 12 recordings 
(SC4001E0, SC4002E0, SC4011E0, SC4012E0, SC4021E0, SC4031E0, 
SC4051E0, SC4061E0, SC4112E0, SC4122E0, SC4131E0, SC4182E0) of 10 
healthy Caucasians for age groups between 26 and 33 were selected. The remining 
subjects were removed from the analysis due to the presence of several movement 
and unscored epochs in their recordings. In addition, stage 3 and 4 were merged 
into stage N3, as the AASM recommends. In this work, only the Fpz-Cz EEG 
channel was chosen to perform automatic sleep classification tasks, because EEG 
patterns such as sleep spindles, vertex sharp waves and K-complexes can be noted 
in frontal/central brain regions as reported in the AASM manual. In addition, the 
majority of research studies has reported better performances for this channel. In 
Table 2.1, the number of epochs of 30 seconds fixed duration for each sleep stage, 
is shown. 
 
Table. 2.1 Dataset composition in various sleep stages. 

Sleep stage W N1 N2 N3 REM Total 
# Epochs 850 920 4960 1690 1860 10280 

 
As can be seen in Table 2.1, the number of W epochs is relatively small (8.3%) 
compared to other sleep stages. These epochs were chosen randomly between the 
subjects and this choice was made since this stage presents EEG patterns and 
especially EEG frequency content very different with respect to other sleep phases 
and for this reason, they are easy to classify without the need for selecting too many 
epochs. 
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2.2.2 Signal pre-processing 

After signal acquisition, a pre-processing step is typically employed to reduce 
the signal frequency bandwidth in the range of 0.5-45 Hz, which, from a clinical 
point of view, is the most significant. For this purpose, an infinite impulse response 
(IIR) Butterworth band-pass filter was used. Subsequently, a time-segmentation 
step was employed to split each EEG epoch into 30 segments of one second duration 
and in the following feature extraction, a set of features was extracted from these 
sub-signals. The time duration of the EEG signals from which to extract information 
was defined by searching a window where the EEG can be at least considered a 
wide-sense stationary process and, at the same time, satisfying the frequency 
resolution (i.e. 1 Hz) according to Heisenberg's uncertainty principle. The number 
of timesteps for the RNN was set equal to 30, accordingly. 

2.2.3 Feature extraction 

The feature extraction process consists in computing mathematical parameters 
which contain quantitative information about the signal in different domains. In this 
work we extracted 29 time-domain and 26 frequency-domain features (in total 55 
parameters) from the EEG signals relative to Fpz-Cz channel. Features extracted in 
time domain are parameters extracted from the pre-processed EEG signals without 
any transformation in a new space but as function of time. Frequency-domain 
features are parameters extracted after estimating the power spectral density (PSD) 
which associates the relative power to each frequency component included in the 
original signal. 

Features concerning time domain are the following. Statistical moments were 
firstly extracted from the data, i.e. the 1st raw moment or the mean, mathematically 
defined as 

�̅�𝑥 =
1
𝑁𝑁
�𝑥𝑥𝑖𝑖
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 (Eq. 2.1) 

the 2nd central moment or the variance, defined as 

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥) =
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 (Eq. 2.2) 

the normalized 3rd central moment or the skewness, defined as 

𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑥𝑥) =
1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)3𝑁𝑁
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the normalized 4th central moment or the kurtosis, defined as 

𝑠𝑠𝑘𝑘𝑣𝑣𝑘𝑘(𝑥𝑥) =
1
𝑁𝑁∑ (𝑥𝑥𝑖𝑖 − �̅�𝑥)4𝑁𝑁

𝑖𝑖=1

𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥)2
 (Eq. 2.4) 

and the median value. Other parameters were the peak-to-peak amplitude defined 
as the difference between the wave peak and the wave trough, the absolute 
maximum value, the number of zero crossings (i.e. the number of points where the 
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signal has a zero amplitude after changing the sign from negative to positive and 
vice versa), the root mean square (RMS), defined as 

𝑅𝑅𝑅𝑅𝑅𝑅(𝑥𝑥) = �
1
𝑁𝑁
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 (Eq. 2.5) 

the average rectified value (ARV), defined as 

𝐴𝐴𝑅𝑅𝐴𝐴(𝑥𝑥) =
1
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 (Eq. 2.6) 

and the parameters proposed by Hjorth in 1970 [16] called Hjorth mobility (HM), 
defined as 

𝐻𝐻𝑅𝑅(𝑥𝑥) = �
𝑣𝑣𝑣𝑣𝑣𝑣(𝑑𝑑𝑥𝑥 𝑑𝑑𝑘𝑘⁄ )
𝑣𝑣𝑣𝑣𝑣𝑣(𝑥𝑥)

 (Eq. 2.7) 

and Hjorth complexity (HC), defined as 

𝐻𝐻𝐻𝐻(𝑥𝑥) =
𝐻𝐻𝑅𝑅(𝑑𝑑𝑥𝑥 𝑑𝑑𝑘𝑘⁄ )
𝐻𝐻𝑅𝑅(𝑥𝑥)

 (Eq. 2.8) 

Subsequently, as discussed in Chapter 1, the interesting band of EEG signals is 
between 0.5 and 45 Hz and is split into six psychological sub-bands: delta (0.5-4 
Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma or the sleep spindle sub-band (12-16 
Hz), beta (16-30 Hz) and gamma sub-band (30-45 Hz). Therefore, six different IIR 
Butterworth band-pass filters were implemented to decompose the 1 s signal into 6 
sub-signals relative to the corresponding sub-bands. For each sub-signal was 
computed the peak-to-peak amplitude obtaining 𝐴𝐴𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝐴𝐴𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑, 𝐴𝐴𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑, 𝐴𝐴𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑, 
𝐴𝐴𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐴𝐴𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑 respectively and the same process was repeated for the signal 
energy, according to this expression 

𝐸𝐸𝐸𝐸𝑠𝑠𝑣𝑣𝐸𝐸𝐸𝐸 = �|𝑥𝑥𝑖𝑖|2
𝑁𝑁

𝑖𝑖=1

 (Eq. 2.9) 

obtaining 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝐸𝐸𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑, 𝐸𝐸𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑, 𝐸𝐸𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑, 𝐸𝐸𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 and 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑 respectively. The last 
time-domain features were five energy ratios computed as the signal energy in each 
sub-band (except gamma sub-band) normalized to the energy related to gamma sub-
band. A total of 29 time-domain features were extracted for the subsequent analysis. 

Frequency-domain features are described in the following paragraph. The first 
step was the computation of PSD starting with the signal in time domain. The non-
parametric method proposed by Welch for spectrum estimation [17] was used for 
this purpose. Then, the mean frequency (MNF) or the spectral centroid defined as 

𝑅𝑅𝑁𝑁𝑀𝑀 =
∑ 𝑃𝑃𝑖𝑖 ∙ 𝑓𝑓𝑖𝑖𝑖𝑖

∑ 𝑃𝑃𝑖𝑖𝑖𝑖
 (Eq. 2.10) 

and the following two entropies called spectral entropy (SE) and Renyi entropy 
(RE) [18] were employed. The mathematical definitions are reported here: 
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� (Eq. 2.12) 

In the previous equations, 𝑃𝑃 denotes the PSD vector and 𝑝𝑝 is the power spectrum 
normalized with respect to its area. 
 
Table. 2.2 List of 55 time- and frequency-domain parameters extracted from the EEG signal. 

N Feature N Feature N Feature N Feature 

1 
Peak-to-peak 
amplitude 

15 
Amplitude 
(alpha sub-band) 

29 𝐸𝐸𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  43 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  

2 
Arithmetic 
mean 

16 
Amplitude 
(sigma sub-band) 

30 Mean frequency 44 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑⁄  

3 
Absolute 
maximum value 

17 
Amplitude 
(beta sub-band) 

31 Spectral entropy 45 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑⁄  

4 Median 18 
Amplitude 
(gamma subband) 

32 Renyi entropy 46 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑⁄  

5 Variance 19 
Energy 
(delta sub-band) 

33 
Power (delta 
sub-band) 

47 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  

6 Skewness 20 
Energy 
(theta sub-band) 

34 
Power (theta 
sub-band) 

48 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑 𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑⁄  

7 Kurtosis 21 
Energy 
(alpha sub-band) 

35 
Power (alpha 
sub-band) 

49 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑 𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑⁄  

8 
Root mean 
square 

22 
Energy 
(sigma sub-band) 

36 
Power (sigma 
sub-band) 

50 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑 𝑃𝑃𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  

9 
Average 
rectified value 

23 
Energy 
(beta sub-band) 

37 
Power (beta 
sub-band) 

51 𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑 𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑⁄  

10 
Number of zero 
crossings 

24 
Energy 
(gamma subband) 

38 
Power (gamma 
sub-band) 

52 𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑 𝑃𝑃𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  

11 Hjorth mobility 25 𝐸𝐸𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  39 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑⁄  53 𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  

12 
Hjorth 
complexity 

26 𝐸𝐸𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  40 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑⁄  54 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑 

13 
Amplitude 
(delta sub-band) 

27 𝐸𝐸𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  41 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑⁄  55 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑 ∙ 𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 

14 
Amplitude 
(theta sub-band) 

28 𝐸𝐸𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  42 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑⁄    

 
In addition, six relative spectral powers, defined as the ratio between the absolute 
power in a specific sub-band and the total signal power, were evaluated for the six 
EEG sub-bands previously described, obtaining 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑, 𝑃𝑃𝑑𝑑𝑑𝑑𝑎𝑎ℎ𝑑𝑑, 𝑃𝑃𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑑𝑑, 
𝑃𝑃𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 and 𝑃𝑃𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑. From these relative spectral powers, fifteen power ratios were 
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computed. The last features in frequency domain were defined as the products of 
spectral powers in low and high frequency sub-bands, respectively. A total of 26 
frequency-domain features were extracted. 

All extracted features are listed in Table 2.2. At the end of the feature extraction 
process, a feature matrix of size 55×30 (i.e. 55 features and 30 timesteps) for each 
30 s EEG epoch, was obtained and used as input for the following steps. 

2.2.4 Feature selection 

The objective of this step is to come up with the smallest set of features that 
best captures the characteristics of the problem being addressed. The minimum 
redundancy maximum relevance (mRMR) algorithm was employed for this 
purpose with the aim of retaining all significant features for sleep scoring and 
removing all features strongly cross-correlated with each other. This strategy is 
based on the information theory according to which the mutual information is 
defined by considering the probability mass functions 𝑝𝑝(𝑥𝑥) and 𝑝𝑝(𝐸𝐸) of two random 
variables 𝑋𝑋 and 𝑌𝑌 respectively and the joint probability mass function 𝑝𝑝(𝑥𝑥,𝐸𝐸). 
Therefore, the mutual information 𝐼𝐼(𝑋𝑋;𝑌𝑌) is expressed as: 

𝐼𝐼(𝑋𝑋;𝑌𝑌) = ��𝑝𝑝(𝑥𝑥,𝐸𝐸) ∙ log2
𝑝𝑝(𝑥𝑥,𝐸𝐸)

𝑝𝑝(𝑥𝑥) ∙ 𝑝𝑝(𝐸𝐸)
𝑦𝑦∈𝑌𝑌𝑥𝑥∈𝑋𝑋

 (Eq. 2.13) 

A value equals to zero means that the joint probability can be simply expressed as 
the product of marginal probabilities with the consequence that the two random 
variables are independent, while a higher value (the mutual information is not 
bounded above) denotes an increasing statistical dependence [19]. The goal of 
mRMR algorithm is to find a subset 𝑅𝑅 of features which maximizes the following 
mutual information-based cost function: 

𝜙𝜙𝑠𝑠𝑚𝑚𝑚𝑚𝑚𝑚 =
1

|𝑅𝑅| � 𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑐𝑐)
𝑥𝑥𝑖𝑖∈𝑆𝑆

−
1

|𝑅𝑅|2 � 𝐼𝐼(𝑥𝑥𝑖𝑖; 𝑥𝑥𝑗𝑗)
𝑥𝑥𝑖𝑖 ,𝑥𝑥𝑗𝑗∈𝑆𝑆

 (Eq. 2.14) 

where the operator |∙| denotes the feature cardinality. In Eq. 2.14, the first term, 
called relevance, is the mean of the mutual information values between each feature 
𝑥𝑥𝑖𝑖 and the label class 𝑐𝑐 (i.e. the sleep stage), while the second term, called 
redundancy denotes the cross mutual information between features. The 
maximization of this function means to have a high relevance and a low redundancy 
of the feature subset [20]. In this work, the input matrices (features on the rows and 
timesteps on the columns) for all epochs in the training set were concatenated and 
with the corresponding class label vector were fed to mRMR algorithm. The most 
relevant features were selected according to this strategy for ascending numbers of 
subset (i.e. from 2 to 55) and the optimal feature cardinality was chosen as the 
global maximum point, as shown in Figure 2.3. As can be seen in Figure 2.3, eleven 
features were selected for the 4-class classification problem. These features are the 
following: median value, skewness, RMS, HM, peak-to-peak amplitudes of theta, 
sigma, beta and gamma sub-band, the energy ratio 𝐸𝐸𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑 𝐸𝐸𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  and the relative 
spectral powers in theta and beta sub-bands. 
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Fig. 2.3 The mRMR value as a function of number of feature subset. The local maxima are 
highlighted with a red downward-pointing triangle. 

2.2.5 Dimensionality reduction 

The dimensionality reduction strategy tries to define a combination of the 
previously extracted feature set with the goal of finding a new lower dimensional 
subset that can effectively summarize the data. In this study, the unsupervised 
technique called principal component analysis (PCA) was performed for the 2-class 
classification problem. PCA is a statistical procedure that transforms several 
correlated variables into uncorrelated principal components. This procedure allows 
to select a few new variables which contain most of the variation of the data and for 
this reason can be defined as a dimensionality reduction technique. The first step 
was the data centering: given an input feature matrix for the 𝑖𝑖-th 30s EEG epoch 
and after having computed the mean matrix 𝜇𝜇 and the standard deviation matrix 𝜎𝜎, 
the following feature scaling can be performed: 

𝑋𝑋𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠
(𝑖𝑖) =

𝑋𝑋(𝑖𝑖) − 𝜇𝜇
𝜎𝜎

 (Eq. 2.15) 

Subsequently, this normalized matrix was used as input for PCA, which is based on 
the singular value decomposition applied to the covariance matrix of data [21]. 
Dimensionality reduction consists in the selection of a smaller number of principal 
components, by retaining the eigenvectors corresponding to highest eigenvalues. In 
this work the 95% was set for the variance criterion and consequently 27 principal 
components were retained and stored in the transformation matrix 𝑈𝑈; hence, the 
new data matrix for the 𝑖𝑖-th 30s epoch was expressed as [21]: 

𝑋𝑋𝑎𝑎𝑝𝑝𝑑𝑑
(𝑖𝑖) = 𝑈𝑈𝑇𝑇 ∙ 𝑋𝑋(𝑖𝑖) (Eq. 2.16) 

PCA, differently form the mRMR algorithm, is an unsupervised strategy because it 
uses as input unlabeled data. The reduced format matrix was fed to the classifier 
which performed 2-class classification (N1 vs REM). PCA was applied to our 
dataset and the principal components coefficients with a highest correlation with 
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the target are reported in Figure 2.4; the normalized value (between 0 and 1) of the 
weight coefficients of the linear combination of input features is reported. 
 

 
Fig. 2.4 Weight coefficients of the three most significant principal components with respect to the 
original extracted features. 

2.2.6 Recurrent Neural Networks 

In recent years, with the advent of deep learning, which is a subset of artificial 
intelligence (AI), new algorithms have been proposed with the aim of simulating 
human like decision making. Deep learning approaches exploit deep neural 
networks for the processing and recognition of nonlinear information inside input 
data for pattern analysis and classification. These types of networks are often 
constructed with a layer-by-layer method and their architecture is much more 
complex and deeper than traditional networks [22]. The main applications of deep 
learning are speech recognition, natural language processing (NLP) [23] and image 
object detection [24]. Recurrent neural networks (RNNs) are powerful deep 
learning models especially used to process and classify sequential data such as text, 
genomes, handwriting and also time series [25], [26]. The RNN represents the 
temporal extension of the basic artificial neural network (ANN) and it is capable of 
handling time series as digital signals and interpreting structural dependencies for 
long range applications [27]. 

The structure of a standard ANN is generally composed of one input layer, 
several interposed hidden layers and one output layer. Each layer is activated by a 
transfer function (called activation function), that may be linear or, more frequently 
nonlinear, and it is composed by several hidden units (also called neurons) which 
receive inputs, change their internal activation state and produce output. This 
process is called forward propagation. The ANN is trained by computing the error 
between the prediction and the desired output, also known as the cost function. In 
the training phase, the weights and bias term (parameters of each neuron) are 
iteratively adjusted to minimize the error between the true label and the prediction, 
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by computing the partial derivatives of the cost function with respect to weights and 
bias term, starting from the output and propagating back to the input; this process 
is called backward propagation [28]. 

In the RNN structure, an input sequence {𝑥𝑥<1>, … , 𝑥𝑥<𝑑𝑑>, … , 𝑥𝑥<𝑇𝑇>} with the 
previously selected features for each time step (from 1 to the last timestep 𝑇𝑇) is used 
as input from which the model computes the hidden activation sequence 
{𝑣𝑣<1>, … , 𝑣𝑣<𝑑𝑑>, … , 𝑣𝑣<𝑇𝑇>} and the predicted output sequence 
{𝐸𝐸�<1>, … ,𝐸𝐸�<𝑑𝑑>, … ,𝐸𝐸�<𝑇𝑇>} for each timestep. The first activation 𝑣𝑣<0> is 
conventionally set to zero. Then, the activation and the output prediction for each 
timestep are computed using the following equations: 

𝑣𝑣<𝑑𝑑> = 𝐸𝐸(𝑊𝑊𝑑𝑑 ∙ [𝑣𝑣<𝑑𝑑−1>, 𝑥𝑥<𝑑𝑑>] + 𝑏𝑏𝑑𝑑) (Eq. 2.17) 

𝐸𝐸�<𝑑𝑑> = 𝐸𝐸�𝑊𝑊𝑦𝑦 ∙ 𝑣𝑣<𝑑𝑑> + 𝑏𝑏𝑦𝑦� (Eq. 2.18) 

where the operator 𝐸𝐸 denotes the activation function (which may be different in the 
two equations), 𝑊𝑊𝑑𝑑,𝑏𝑏𝑑𝑑 and 𝑊𝑊𝑦𝑦,𝑏𝑏𝑦𝑦 are the weight matrices and bias terms for the 
activation and the output, respectively. As can be seen in Eq. 2.17, the new 
activation is a function not only of the input at current timestep but also of the 
activation computed at the previous timestep and for this reason the advantage of 
RNN respect to standard ANN is to retain information of past temporal series. This 
structure is called unidirectional RNN which is the first form of RNN proposed for 
research studies, but also exists the bidirectional form of RNN which combines the 
forward and backward connection in time for the output prediction [29]. The 
forward propagation in RNN is described by Eq. 2.17 and Eq. 2.18. The 
backpropagation process is similar to that of standard ANN where the partial 
derivatives of cost function are computed in order to update the weights matrices 
and bias terms for each hidden layer propagating back until the input layer. The 
difference in RNN architecture is that the backpropagation is performed also going 
back in time for all timesteps and therefore is called backpropagation through time 
(BPTT). There are two different types of RNN models: sequence-to-sequence and 
sequence-to-label architecture. In the first model, the network receives a temporal 
sequence as input and produces a temporal sequence as output (i.e. one output for 
each timestep) as previously described, while in the second model the input is the 
same, but the network produces in output a single label after processing all 
timesteps. Figure 2.5 shows the basic representation of these two types of RNN 
models. 
 

 
Fig. 2.5 Sequence-to-label (left) and sequence-to-sequence (right) architecture. 
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The main issue related to the network training phase is due to the vanishing 

gradient, i.e. the partial derivatives through time assume very small values and the 
unknown variables (i.e. weights and the bias) remains similar to the previous state, 
the network cannot change its learning performance and consequently the training 
phase is stopped [30]. The solution to this problem is to replace the standard gated 
recurrent units (GRUs) of the RNN with long short-term memory (LSTM) units 
introduced by Hochreiter in 1997 [31]. The LSTM block is composed of five main 
elements: the memory cell 𝑐𝑐<𝑑𝑑>, the candidate value �̃�𝑐<𝑑𝑑> and three new gates 
denoted as 𝛤𝛤𝑓𝑓 ,𝛤𝛤𝑢𝑢,𝛤𝛤𝑛𝑛 and called forget, update and output gate, respectively. The 
function of memory cell is to store for a long-time information useful for the 
training process; the candidate value at each time step replaces the memory cell and 
the gates, normalized between 0 and 1, are updated by using specific weight 
matrices and bias terms, as follows: 

Γf = σ(Wf ∙ [a<t−1>, x<t>] + bf) (Eq. 2.19) 

Γu = σ(Wu ∙ [a<t−1>, x<t>] + bu) (Eq. 2.20) 

Γo = σ(Wo ∙ [a<t−1>, x<t>] + bo) (Eq. 2.21) 

where the operator 𝜎𝜎 denotes the sigmoid activation function. Next, the LSTM 
equations to update the candidate value, the memory cell and the activation state 
are the following: 

c�<t> = tanh(Wc ∙ [a<t−1>, x<t>] + bc) (Eq. 2.22) 

c<t> = Γu ∗ c�<t> + Γf ∗ c<t−1> (Eq. 2.23) 

a<t> = Γo ∗ tanh(c<t>) (Eq. 2.24) 

where the operator ∗ is the element-wise product and Wc, bc are the weight matrix 
and bias term relative to the cell, respectively. The graphical representation of 
LSTM block is reported in Figure 2.6. 

The EEG is considered a highly nonlinear and non-stationary random process 
and the recognition of specific patterns in time domain is very complex [32]; thus 
the choice of using RNNs with LSTM units becomes relevant in this context for 
their capability of retaining past temporal information. In this study, cascaded 
LSTM RNNs were implemented to perform 4-class classification and 2-class 
classification tasks. The first RNN employed the mRMR selected features to 
classify stage W, N1-REM, N2 and N3, while the second RNN employed as input 
the principal components to distinguish N1 epoch vs REM epochs. The second 
network became more specific to classify the two most complex sleep stages, while 
in the first phase of the process these two classes were merged into the N1-REM 
class. The two LSTM RNNs had the same architecture: a sequence input layer with 
30 timesteps, the hidden LSTM layers which analyzed through time the selected 
features; the fully connected (FC) layer used for the conversion of previous layer 
information into the correct output dimension (i.e. the number of sleep stages); the 
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softmax layer which estimated the probability map for each predicted output and 
finally the classification layer which quantified the cost function. Figure 2.7 
represents the structure for both RNNs employed in this work. 
 

 
Fig. 2.6 Graphical representation of long short-term memory (LSTM) operations. 
 
As can be seen in Figure 2.7, the 2-class LSTM RNN is more complex since it is 
composed of a sequence-to-sequence LSTM layer connected to the input layer, 
differently from the 4-class LSTM RNN which consists only of a sequence-to-label 
architecture. The softmax activation function has the useful mathematical property 
to provide values between 0 and 1 as a cumulative distribution function; its 
mathematical definition is: 

y�j
(i) =

ezj
(i)

∑ ezj
(i)

C
j=1

 (Eq. 2.25) 

where the superscript 𝑖𝑖 denotes the generic training epoch, 𝑧𝑧𝑗𝑗 denotes the output of  
the 𝑗𝑗-th neuron of the FC layer and 𝐻𝐻 is the total number of classes. In this study, 
the loss function to minimize was the cross-entropy function for 𝐻𝐻 mutually 
exclusive classes, defined as follows: 

J(W, b) = −
1
M
� � yj

(i) ∙
C

j=1

M

i=1
log �y�j

(i)� (Eq. 2.26) 

where 𝑅𝑅 is the total number of epochs used for training, 𝐸𝐸 is the true class and 𝐸𝐸� is 
the output value predicted by the network. As can be seen in Eq. 2.26, the objective 
expression depends on the unknown parameters 𝑊𝑊 and 𝑏𝑏, which were updated by 
using the adaptive moment estimation (ADAM) optimization method [33]. ADAM 
algorithm combines the properties of gradient descent with momentum method and 
the advantage of root mean square propagation (RMSProp) to work well for non-
stationary processes. The ADAM hyperparameters employed in this study were: 
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learning rate (𝛼𝛼 = 0.001), gradient decay and squared gradient decay factors (𝛽𝛽1 =
0.9,𝛽𝛽2 = 0.999) and, for numerical stability, epsilon (𝜖𝜖 = 10−8). 
 

 
Fig. 2.7 Structure of the LSTM RNN which performs 4-class classification (a) and LSTM RNN 
which performs binary classification (b). 

2.3 Results 

The processing was performed in MATLAB (The MathWorks, Inc., Natick, 
MA, USA) environment on a workstation with 16 GB of RAM, 2.5 GHz quad-core 
CPU and 64-bit Windows version. Several RNNs with LSTM blocks were tested 
for 4-class and 2-class classification problems. The input size was defined for the 
two networks according to the number of mRMR features (i.e. 11) and the number 
of principal components (i.e. 27), respectively. The numbers of LSTM layers and 
units in each layer were different in all tested architectures and only for the second 
network, different thresholds for the softmax activation function were tested to 
assign the predicted class to N1 or REM stage. The default value, of course, was 
0.5. The following quantitative metrics were computed to assess the performance 
of the classifiers: the percentage of correct classification (PCC) defined as the ratio 
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between the correctly classified data and the total amount of data, and the well-
known per-class metrics, i.e. recall or sensitivity (Se), selectivity or specificity (Sp) 
and accuracy (Acc) for each EEG sleep stage. The best RNN for 4-class 
classification was chosen in terms of the highest sensitivity for the merged class 
N1-REM, while the best second network was selected with the aim of obtaining the 
highest classification performance in stage N1. The best architectures for the 4-class 
and 2-class LSTM RNN are reported in Table 2.3 and Table 2.4, respectively. 
 
Table. 2.3 Layer structure for the RNN which identified 4 classes (W vs N1-REM vs N2 vs N3). 

Layer number Layer type Properties 

Layer 1 Sequence input layer 11 input features 

Layer 2 LSTM layer 101 hidden units, 
sequence-to-label architecture 

Layer 3 Fully connected layer 4 units 

Layer 4 Softmax layer softmax activation function 

Layer 5 Classification output layer 4 classes 
 
Table. 2.4 Layer structure for the RNN which identified 2 classes (N1 vs REM). 

Layer number Layer type Properties 

Layer 1 Sequence input layer 27 principal components 

Layer 2 LSTM layer 
125 hidden units, 
sequence-to-sequence architecture 

Layer 3 LSTM layer 98 hidden units, 
sequence-to-label architecture 

Layer 4 Fully connected layer 2 units 

Layer 5 Softmax layer softmax activation function 
(threshold = 0.6) 

Layer 6 Classification output layer 2 classes 

 
The entire dataset was partitioned into three different parts called training, 

validation or development and test set. The network learnt using only the training 
set, then the validation set was used to assess performances and the training was 
stopped when a maximum number of iterations was reached or when validation 
error started to increase to avoid data overfitting [28]. The final performance was 
then assessed on the test set, which the network had never previously seen. To test 
the performance of the RNN models, we assessed the classification metrics by 10-
fold stratified cross-validation strategy. The simplest form of cross-validation, 
called “hold-out” validation consists in a random separation of the available data 
into a single training and test set. This approach is not a good choice because an 
unlucky subdivision of the dataset could cause an ineffective network. In k-fold 
cross-validation, the data are randomly split into k mutually exclusive partitions of 
equal size, and the classification process is repeated k times using in turn different 
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data partitions. The stratification is performed to ensure that each class is 
proportionally represented in the training, validation, and test set. In this study by 
applying 10 folds, the 80% of data (i.e. 8224 epochs) was used in the training set, 
the 10% of data (i.e. 1028 epochs) was used in the validation set and the remaining 
10% of data in the test set (i.e. 1028 epochs) randomly. Smaller subsets, named 
mini batches, were used in the ADAM optimization algorithm to speed up the 
training process. A value of 512 and 256 for the mini-batch size was set in the 
training phase for the first and second network, respectively. The plots for training 
and validation accuracy as function of iterations is reported in Figure 2.8 for both 
networks. 
 

 
Fig. 2.8 Training (in blue) and validation (in red) accuracy of RNN which performs 4-class 
classification (a) and RNN which performs binary classification (b). The solid line is used to indicate 
the average value and the shaded area for training and the symmetrical error bars for validation 
denote the standard deviation within 10 folds. 
 
The feature selection and dimensionality reduction techniques were performed only 
on training and validation set and subsequently the mRMR selected features and 
the PCA coefficients were applied to the test data for each fold. The confusion 
matrix for each network obtained as the sum of the performances in each fold and 
the per-class metrics are reported in Table 2.5 and Table 2.6. In Table 2.6, only the 
N1-REM epochs correctly classified by the first network are considered for the 
performance assessment. The PCC of the first and second RNN with LSTM units 
are 90.8% and 83.56% respectively. Finally, considering the cascading connection 
of the two networks, the performances in terms of sensitivity for the five sleep 
stages are: 95.29% for stage W, 61.09% for stage N1, 89.48% for stage N2, 91.66% 
for stage N3 and 83.76% for stage REM. The final performances for N1 and REM 
are computed as the ratio between the number of epochs correctly classified by the 
2-class RNN and the total number of epochs in the dataset (i.e. 920 and 1860 for 
stage N1 and REM, respectively). The overall PCC is 86.74%. 
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Table. 2.5 Classification performances for 4-class RNN. 

 Predicted Per-class [%] 

True W N1-REM N2 N3 Se Sp Acc 

W 810 28 3 9 95.29 99.77 99.40 

N1-REM 10 2537 231 2 91.26 95.21 94.14 

N2 4 331 4438 187 89.48 93.10 91.35 

N3 8 0 133 1549 91.66 97.69 96.70 

Percentage of correct classification (PCC) = 90.80% 
 
Table. 2.6 Classification performances for 2-class RNN. 

 Predicted Per-class [%] 

True N1 REM Se Sp Acc 

N1 562 202 73.56 87.87 83.56 

REM 215 1558 87.87 73.56 83.56 

Percentage of correct classification (PCC) = 83.56% 

2.4 Discussion and Conclusion 

Sleep scoring, considered as a tedious, complex and time-consuming task 
carried out by sleep technologists, consists in classifying the 30 s epochs contained 
in a subject’s full night recording into five classes according to the guidelines 
proposed by AASM. The proposed approach is a novel ASSC system based on the 
first traditional steps of data acquisition, pre-processing and feature extraction, 
while in the final part of the workflow a cascaded network architecture was 
implemented. Most of published works in literature are based on single-channel 
architecture in order to limit the number of wire connections during the recording 
process with the consequence of reducing sleep disturbances. In addition, in the 
majority of studies, the publicly available Sleep-EDF database [14], [15] was used 
for performance comparison. In Table 2.7, the per-class sensitivity and the total 
PCC of the proposed method and other state-of-the-art single-channel based 
approaches are reported for comparison (in bold are highlighted the best 
performances for each sleep stage). 

A brief description of each state-of-the-art method is reported in the following. 
Hsu et al. [26], employed Elman RNN for automatically scoring sleep stages and 
features based on signal energy were computed from the Fpz-Cz EEG signals. They 
obtained the best performances in stage N2 and REM. Hassan et al. in their first 
study [34], used bootstrap aggregating (Bagging) as classifier and time-domain 
statistical parameters and frequency-domain spectral features were extracted from 
single-channel EEG signals. They performed feature selection using the non-
parametric Kruskal-Wallis statistic and obtained a PCC of 86.53%. In their second 
study [35], the classifier was the same but, with the application of signal 
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decomposition technique, which decomposed the EEG signals into intrinsic mode 
functions (IMFs) using a novel modified version of empirical mode decomposition 
(EMD), they reached a PCC of 90.69%. Fraiwan et al. [36], extracted entropy 
features from time-frequency distributions, which were fed to random forest 
classifier and obtained a PCC of 82.57%. Seifpour et al. [37], employed a multi-
class support vector machine (SVM) and a novel statistical parameter, called 
statistical behavior of local extrema, was extracted from Fpz-Cz signals. They 
obtained the best classification rate in stage W and consequently the best overall 
PCC since the percentage of W epochs used in their work was 53% of the entire 
dataset. Sors et al. [38], proposed a 1D convolutional neural network (CNN) which 
took as inputs the raw EEG signals without the feature extraction process and a 
PCC of 86.79% was obtained. Wei et al. [39] estimated time-frequency spectra 
which were directly fed to CNN for classification purposes and they reached a PCC 
of 83.93%. In the work of Sharma et al. [40], a feature set based on wavelet 
decomposition was extracted and the SVM was used as classifier. The 
performances were robust only for stage W while in the other sleep stages the results 
were not satisfactory. 
 
Table. 2.7 Comparison table of state-of-the-art single-channel based methods (results are reported 
in terms of per-class sensitivity and overall percentage of correct classification in the last column). 

Single-channel methods Results [%] 

Authors Classifier W N1 N2 N3 REM PCC 

Hsu et al. [26] Elman RNN 70.80 36.70 97.30 89.70 89.50 87.20 

Hassan et al. [34] Bagging 96.60 27.48 82.93 76.92 69.57 86.53 

Hassan et al. [35] Bagging 95.28 47.02 92.38 90.00 80.87 90.69 

Fraiwan et al. [36] Random forest 93.33 43.22 84.76 68.37 76.41 82.57 

Seifpour et al. [37] Multi-class SVM 98.76 40.07 90.94 85.08 83.98 91.82 

Sors et al. [38] CNN 91.40 34.92 89.24 85.08 85.82 86.79 

Wei et al. [39] CNN 92.70 26.66 87.40 87.05 82.74 83.93 

Sharma et al. [40] Multi-class SVM 95.41 17.39 76.38 57.11 36.46 83.92 

Proposed method [41] LSTM RNN 95.29 61.09 89.48 91.66 83.76 86.74 

 
In the proposed work [41], the goal was to define a general workflow based on 

single-channel EEG signals to improve the low performance in staging N1 sleep 
without reducing the performances in the other four sleep stages (i.e. W, N2, N3 
and REM). After the first traditional steps of data acquisition, signal pre-processing 
and feature extraction in time and frequency domain, two different approaches were 
developed: for a 4-class classification problem (i.e. W vs N1-REM vs N2 vs N3) 
with the merging of stages N1 and REM into a single sleep phase N1-REM, the 
mRMR algorithm was employed for feature selection, while for a 2-class 
classification problem (N1 vs REM), the PCA was used as dimensionality reduction 
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technique. For both problems, RNNs with LSTM blocks were used for 
classification purpose. Finally, for the sleep scoring of five sleep stages according 
to AASM, a cascading connection of two previous RNNs was defined. To the best 
of our knowledge, this was the first study published in literature which employed a 
cascaded RNN architecture based on LSTM units for the automatic scoring of sleep. 

In the pre-processing step, time-segmentation was applied to EEG signals in 
order to obtain 30 segments of 1s time duration for each 30 s EEG epoch, because 
of the non-stationary nature of the EEG signals. The feature extraction process in 
time and frequency domain was performed for each time segment. The main crucial 
point is the link between the extracted handcrafted features and the clinical problem. 
Independently on the used classifier, there could be a set of features that are more 
significant. Such features contain the “signature” of the physiological system and, 
if present, of the pathology. Therefore, the feature selection process is useful to 
select only significant and relevant variables for sleep scoring. For the 4-class 
classification problem (W vs N1-REM vs N2 vs N3) the mRMR method selected 
the following significant features: the peak-to-peak amplitude, signal energy and 
relative spectral power in beta sub-band which is a high frequency band typical of 
stage W, the peak-to-peak amplitude of sleep spindles or sigma sub-band which 
occurs during N2 sleep, the peak-to-peak amplitude and relative spectral power of 
theta sub-band which is present during REM, N1 and N2 sleep and finally the 
Hjorth mobility parameter which assumes a low value for N3 sleep since the high-
pass effect of time derivative attenuates the low-frequency components of delta sub-
band. For the 2-class classification problem (N1 vs REM) the unsupervised strategy 
of PCA was implemented and in Figure 2.4 are reported the most significant 
principal coefficients as function of original feature set. The highest values of 
weight coefficients in the linear combination can be noted for indices 8, 9 and 13 
for PC1, index 54 for PC4 and index 43 for PC6. According to Table 2.2, these 
indices correspond to RMS value, ARV, peak-to-peak amplitude of delta sub-band, 
the product 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 ∙ 𝑃𝑃𝑑𝑑ℎ𝑑𝑑𝑑𝑑𝑑𝑑 and the ratio 𝑃𝑃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑃𝑃𝑠𝑠𝑑𝑑𝑠𝑠𝑠𝑠𝑑𝑑⁄  respectively. The presence 
of delta sub-band features in the linear combination of PCA is justified by the low-
frequency vertex waves that can occur during N1 sleep with respect to the waves 
typical of stage REM. The quantitative performances, as can be seen in Table 2.5 
and Table 2.6, show low classification rates in stage N1 and REM. The issue is that 
stage N1 is the most difficult phase to detect since no specific and repeatable EEG 
patterns can be observed in this phase and, for a healthy human subject, the N1 
sleep is the shortest phase in sleep cycle (about 2-5%) [42]. On the other hand, REM 
sleep is characterized by high eye movement activity recorded by EOG and hence 
with a single EEG channel, the detection process becomes more complex [43]. In 
addition, the muscle tone recorded by EMG could be useful for the detection of 
REM sleep since during this stage the muscle activity is lower than other sleep 
stages. In a future work, a higher number of N1 epochs might be considered for the 
training but there is a risk that the classification performances of the network on the 
test set were reduced since in the typical human sleep cycle the occurrence of this 
phase is the lowest. Moreover, features in time-frequency or nonlinear/complexity 
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domain [44] could be extracted from the EEG signals, in order to reveal specific 
patterns in N1 or REM sleep. Table 2.7 shows that the proposed approach obtained 
the highest value in the detection of N1 and N3 sleep with respect to other single-
channel based state-of-the-art methods and at the same time the performances in 
the other three sleep stages are superior to 83%. In addition, very satisfactory results 
were obtained in the stage W detection, by using a smaller number of epochs for 
the training process with respect to other studies. 

The limitation of the proposed method is due to the cascaded architecture: from 
the point of view of N1 detection, the cascaded approach is useful, but on the other 
hand, the classification error for REM stage can propagate through the second 
RNN. Another shortcoming with respect to machine learning techniques, is that the 
computational times of training deep networks can be higher. Nevertheless, the 
advantage of RNNs is to handle temporal feature sequences and add nonlinear 
functions in the classification model. In fact, in recent works, several authors have 
employed the RNNs with LSTM units for the automatic classification of other 
biomedical signals (e.g. electrocardiographic signal), obtaining high performances 
[45]–[47]. 

The question related to N1 stage detection emerges in the context of 
neurocognitive performance (NCP) evaluation; in fact, the first step in testing the 
capabilities to track subtle NCP changes should be the analysis of the hypnagogic 
state of the subject, i.e. the transition between wakefulness and the first stage of 
sleep (i.e. stage N1). In this context, a novel classification system for the 
hypnagogic state becomes crucial [6]. In a future work, the proposed approach 
based on RNNs could be employed for the detection of sleep onset period (SOP) 
which is the time that elapses between the awake state and the drowsiness and 
becomes relevant for studies about alertness and reaction times. Therefore, the 
classification results obtained for stages W and N1 should be improved in order to 
define an automated system for the assessment of NCP. 
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Chapter 3 

Analysis of Signal Decomposition 
methods and timestep Feature     
Selection 

3.1 Introduction 

As discussed in Chapter 2, recurrent neural networks (RNNs) can be considered 
a powerful approach for the automatic classification of biomedical signals, in 
particular non-stationary and nonlinear time series, because of their property of 
handling temporal feature vectors and employing nonlinear activation functions in 
the model architecture. In addition, the main crucial point is the link between the 
extracted handcrafted features and the clinical problem. Independently on the used 
classifier, there could be a set of features that are more significant. Such features 
contain the “signature” of the physiological system and, if present, of the pathology. 
On the other hand, in the convolutional neural networks (CNNs), which are the 
most powerful deep learning networks suitable for image recognition and 
classification, the problem of feature extraction is bypassed. In fact, the 
fundamental building block of CNN is the convolution operation: several filters 
with different filter sizes are employed to detect feature maps from the input image 
and the filter coefficients are treated as parameters which are updated using 
backward propagation, as explained in Chapter 2. The features are learned by the 
network directly from the data and the big advantage is the parameter sharing and 
the sparsity of connections [1]. CNNs are employed for image segmentation and 
classification and in the context of sleep staging, time-frequency transforms can be 
treated as bidimensional images for CNN-based applications, but there is not an 
explainable relation between learning patterns detected by the network during the 
training process and the subject’s conditions [2]. In addition, the number of 
hypermeters to set is higher with respect to RNN with a consequence of a higher 
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computational time. Moreover, the advantage of RNNs is to handle directly 
temporal sequences such as time series, as discussed in Chapter 2. 

In this chapter, a novel timestep feature selection approach is proposed to select 
only significant and relevant variables for classification purposes. Several features 
in time, frequency and time-frequency domain are fed to RNN architectures for the 
problem of sleep scoring, already described in detail in Chapter 1 and 2. This 
approach should be seen as a general workflow for the automatic classification of 
non-stationary biomedical signals. 

The sleep scoring process is briefly recalled in the following. Sleep scoring is 
a complex process performed by sleep experts who, according to the American 
Academy of Sleep Medicine (AASM) criteria [3], [4], assign a score (between W, 
N1, N2, N3 or REM) to a 30 s epoch, after having visually examined the 
electroencephalographic (EEG) signals of a human subject. The time employed by 
the expert to score a full night is about 1-3 hours. In addition, the expert may 
sometimes request a second opinion for scoring agreement or to diagnose a sleep-
related disease [5]. Hence, sleep scoring is time-consuming, often tedious and 
suffers from intra- and inter-operator variability. For this reason, automatic sleep 
stage classification (ASSC) systems with low computational times are intended to 
support sleep experts in this difficult and complex task. The main structure of these 
automated systems consists of four modules for the analysis and classification of 
EEG signals: i) data acquisition and signal pre-processing, ii) feature extraction, iii) 
feature selection and iv) classification [6]. From the study of the sequence and 
duration of the various sleep stages throughout the night, the sleep expert obtains 
the hypnogram, which is a graphical representation of the sleep stages as function 
of time and allows to obtain quantitative data related to subject’s sleep [4]. A critical 
issue is that, during sleep, there are several epochs scored as wakefulness in addition 
to the initial and final part of the hypnogram; thus, the subject wakes up during the 
night and the number of nocturnal wake epochs is very important for the diagnosis 
of sleep-related disorders [7]. 

The EEG signal can be employed for the monitoring of brain activity since it 
can be accessible in a non-invasive way and due to its high temporal resolution. The 
information extracted in time domain form the EEG signals is not as significant as 
that contained in frequency domain since EEG has a limited frequency bandwidth 
in the range of 0.3-80 Hz. From a clinical point of view and for the sleep analysis, 
the interesting band is between 0.5 and 45 Hz and is split into six psychological 
sub-bands: delta (0.5-4 Hz), theta (4-8 Hz), alpha (8-12 Hz), sigma or the sleep 
spindle sub-band (12-16 Hz), beta (16-30 Hz) and gamma sub-band (> 30 Hz). The 
lower the frequency range of a sub-band, the higher the amplitude of the EEG 
signal, and the more mental activity associated to that sub-band is reduced. 
Therefore delta and theta sub-bands are related to sleep, drowsiness or pathological 
conditions, instead alpha sub-band occurs when the subject is relaxed or starts to 
fall asleep and finally beta and gamma sub-bands are recorded during concentration 
or attention related processes [8]. Nevertheless, these sub-bands are not to be 
considered physiologically separate and well distinct and the frequency range may 
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vary between subjects, hence, in this work, several signal decomposition techniques 
were analyzed and employed in order to extract significant features from sub-
signals with different frequency content. In addition, two time-frequency 
distributions were used for the analysis of single-channel EEG signals. The 
segmentation of time-frequency transforms has been performed based on the 
frequency-bands of the rhythms of EEG and for each sub-band were extracted 
several features in time-frequency domain. A novel correlation-based timestep 
feature selection method was proposed and finally the selected features were fed to 
bidirectional RNN model. In the discussion section of this chapter, future directions 
about this novel approach are discussed. 

3.2 Materials and Methods 

The proposed workflow is reported in Figure 3.1. After the data acquisition and 
pre-processing step, several decomposition techniques were applied to single-
channel EEG signals and features in time and frequency domain were computed for 
each sub-signal; on the other hand, two time-frequency transforms were employed 
and features in time-frequency domain were extracted after frequency segmentation 
of physiological EEG sub-bands. Finally, a novel correlation-based feature 
selection was performed, and the selected features were fed to a cascaded 
architecture based on bidirectional RNNs (BRNNs) with long short-term memory 
(LSTM) units for the automatic scoring of sleep. 
 

 
Fig. 3.1 Workflow of the proposed automatic sleep stage classification system. 
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3.2.1 Data acquisition and pre-processing 

The publicly available Sleep-EDF database expanded v1.0.0 published in 2013 
and updated in 2018 was used for this study [9], [10]. This database is a collection 
of polysomnographic (PSG) signals with corresponding hypnograms annotated by 
sleep experts. Trained sleep technicians manually produced hypnograms with 
annotations of sleep stages referred to 30 s epochs, according to the guidelines 
introduced by Rechtschaffen and Kales (R&K) [11]. Sleep signals in European data 
format (EDF) were whole-night PSG recordings including EEG (from the Fpz-Cz 
and Pz-Oz electrode locations according to the international 10-20 system [12]), 
electrooculogram (EOG), oro-nasal respiration, submental chin electromyogram 
(EMG) and rectal body temperature. The EEG signals were sampled with a 
frequency of 100 Hz. The SC (Sleep Cassette) files (SC4ssnE0-PSG.edf) contained 
the PSG signals of subject ss (00 ≤ ss ≤ 19) for night n (n=1 or 2). In this study 
thirty-nine recordings of 20 healthy young subjects (age: 28.6 ± 3 years, range: 25-
34 years, 10 males and 10 females) were used. In addition, stage 3 and 4 were 
merged into stage N3, as AASM recommended. The channel chosen for this study 
was the Fpz-Cz for the same reason discussed in Chapter 2 and for performance 
comparison with other state-of-the-art methods. This extended dataset contained 
more epochs with respect to the database described in Chapter 2, and there was also 
a higher inter-subject variability for the non-stationary characteristics of the EEG 
signal. For each subject’s recording, in addition to nocturnal W epochs which 
occurred during the night, only the first 50 epochs (i.e. 25 minutes) of stage W were 
retained in the first part of the hypnogram, in order to assess the performances of 
the classifier in W epochs related to the transition between wakefulness and the first 
stage of sleep (i.e. stage N1) [13]. In Table 3.1, the number of epochs of 30 s fixed 
duration and the relative sleep percentage for each sleep stage, is shown. 
 
Table. 3.1 Dataset composition in various sleep stages. 

Sleep stage W N1 N2 N3 REM Total 
# Epochs 6507 2804 17799 5703 7717 40530 
Sleep percentage (%) 16 7 44 14 19 100 

 
After signal acquisition, a pre-processing step was employed to reduce the EEG 

signal frequency bandwidth in the range of 0.5-45 Hz, which, from a clinical point 
of view, is the most significant. In addition, a time-segmentation with an overlap of 
50% was employed to split each EEG epoch into 11 overlapped segments of 5 s 
duration. The time duration of the EEG signals from which to extract information 
was defined by searching a window where the EEG can be at least considered a 
wide-sense stationary process and, at the same time, satisfying the frequency 
resolution (i.e. 200 mHz) according to Heisenberg's uncertainty principle. The 
number of timesteps for the BRNN was set equal to 11, accordingly. 
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3.2.2 Signal decomposition 

In this study, five different signal decomposition techniques were employed: 
Butterworth filter decomposition (BFD), discrete wavelet transform (DWT), 
empirical mode decomposition (EMD), local mean decomposition (LMD) and 
variational mode decomposition (VMD). 

The first decomposition strategy was based on the implementation of six 
infinite impulse response (IIR) 8th-order band-pass Butterworth digital filters [14] 
in order to decompose each 30 s EEG signal into six sub-signals in delta (0.5-4 Hz), 
theta (4-8 Hz), alpha (8-12 Hz), sigma (12-16 Hz), beta (16-30 Hz) and gamma sub-
band (30-45 Hz), respectively. An example of the application of BFD to EEG signal 
is reported in Figure 3.2 (a). 

The second decomposition strategy was the discrete wavelet transform (DWT). 
DWT is a powerful multiresolution strategy which employs filter banks for the 
decomposition and subsequent reconstruction of a non-stationary signal. The 
decomposition scheme consists in the implementation of low-pass and high-pass 
filters and consequently the signal is simultaneously passed through these filters in 
order to obtain the approximation and detail coefficients of the wavelet 
decomposition [15], [16]. These filters are finite impulse response (FIR) filters with 
the property of quadrature mirroring: the impulse response of the high-pass filter is 
obtained by reversing and alternating the signs of the low-pass filter impulse 
response. The decomposition and reconstruction filters are associated with several 
wavelet (for high-pass) and scaling (for low-pass) functions and are obtained using 
a lifting scheme implementation [17]. Each type of wavelet function (e.g. the most 
commonly used Daubechies wavelets) can be defined with an order (e.g. second, 
fourth, tenth order Daubechies wavelet). A function with order N has the first N 
moments equal to zero (i.e. vanishing moments) and a sequence length of the 
corresponding filter impulse response equal to 2N [16]. In general, a wavelet with 
a greater number of vanishing moments is a more complex function and has the 
ability to represent a complex signal more accurately (it is capable of representing 
a polynomial signal of degree equal or greater than N). The disadvantage is that a 
wavelet with a higher number of vanishing moments has a higher temporal support, 
therefore a worse temporal localization. In this study, Daubechies wavelet and 
scaling functions were employed since were commonly used for the analysis of 
EEG signals [18]–[20] and an order equal to ten (i.e. “db10”) was selected to find 
a compromise between vanishing moments and compact support. Starting from the 
original signal, two set of coefficients were evaluated: the approximation 
coefficients (cA) were computed by convolving the signal with the impulse 
response of the low-pass decomposition (LoD) filter, while the detail coefficients 
(cD) were computed by convolving the signal with the impulse response of the 
high-pass decomposition (HiD) filter. During each filtering process, the coefficient 
sequence must be dyadic decimated due to the output size of each convolution 
operation without increasing the sampling rate. The process can be recursively 
repeated until the desired number of decomposition levels is reached. In this study 
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a fifth level decomposition scheme was adopted, in order to separate delta, theta, 
alpha, sigma, beta and gamma sub-bands. In Figure 3.3, the fifth level filter bank 
structure is reported for DWT. After the decomposition, 
𝑐𝑐𝐴𝐴5, 𝑐𝑐𝑐𝑐5, 𝑐𝑐𝑐𝑐4, 𝑐𝑐𝑐𝑐3, 𝑐𝑐𝑐𝑐2, 𝑐𝑐𝑐𝑐1 were retained for their frequency content in delta, theta, 
alpha, sigma, beta, and gamma sub-band, respectively. An example of the 
application of DWT to EEG signal is reported in Figure 3.2 (b). 
 

 
Fig. 3.3 Wavelet decomposition scheme: approximation (cA) and detail coefficients (cD) using a 5th 
level decomposition. The coefficients used for the EEG decomposition are highlighted in red. 
 

The third decomposition strategy was the empirical mode decomposition 
(EMD). The goal of EMD is to decompose an input signal 𝑥𝑥(𝑘𝑘) into a finite number 
(𝑁𝑁) of sub-signals called intrinsic mode functions (IMFs) plus a residual term 𝑣𝑣𝑁𝑁(𝑘𝑘). 
Subsequently, the signal can be reconstructed as: 

𝑥𝑥(𝑘𝑘) = �𝐼𝐼𝑅𝑅𝑀𝑀𝑖𝑖(𝑘𝑘)
𝑁𝑁

𝑖𝑖=1

+ 𝑣𝑣𝑁𝑁(𝑘𝑘) (Eq. 3.1) 

IMFs are signal components based on the local temporal features of the input signal, 
which must satisfy the following properties: i) the number of local maxima and 
minima and the number of zero crossings must be equal or must vary no more than 
one; ii) the average value of the lower and upper envelope must be locally equal to 
zero. A single IMF can be considered a non-stationary signal since its amplitude 
and frequency can vary as function of time [21]. The decomposition procedure in 
EMD is based on the sifting process: there is an outer loop which iterates until either 
a fixed number of IMFs is obtained, or the residual becomes a monotonic function 
(i.e. no local maxima or minima can be defined for the computation of the upper 
and lower envelope) and an inner loop which iterates until a stopping criterion based 
on the difference between two consecutive sifting components is reached. The 
stopping criterion is necessary to create a true IMF and at the same time to avoid 
generating constant amplitude components [21]. The first IMFs, obtained with the 
sifting process, capture the high-frequency waves of the signal, while the last IMFs 
are referred to low-frequency components. The final residual is typically the signal 
trend. In this study, five IMFs were sufficient to decompose the EEG signals, since 
the residual term assumed very small amplitude values. In the EMD, there was no 
relation between IMFs and physiological EEG sub-bands (i.e. delta, theta, alpha, 
sigma, beta, and gamma sub-band), since the power spectrum of an IMF could 
include more than one sub-band or could be interposed between two sub-bands. An 
example of the application of EMD to EEG signal is reported in Figure 3.2 (c). 
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The fourth decomposition technique was the local mean decomposition (LMD). 

LMD is a decomposition method employed for the analysis of amplitude and 
frequency modulated biomedical signals. This strategy consists in the derivation of 
a pure frequency modulated (FM) signal and the corresponding amplitude 
modulated (AM) envelope signal in order to obtain the first product function (PF). 
The process is repeated until a fixed number (𝑁𝑁) of mono-component PFs is reached 
and consequently the original signal can be expressed as: 

𝑥𝑥(𝑘𝑘) = �𝑃𝑃𝑀𝑀𝑖𝑖(𝑘𝑘)
𝑁𝑁

𝑖𝑖=1

+ 𝑘𝑘𝑁𝑁(𝑘𝑘) (Eq. 3.2) 

𝑃𝑃𝑀𝑀𝑖𝑖(𝑘𝑘) = 𝐴𝐴𝑅𝑅𝑖𝑖(𝑘𝑘) ∙ 𝑀𝑀𝑅𝑅𝑖𝑖(𝑘𝑘) (Eq. 3.3) 
where 𝑘𝑘𝑁𝑁(𝑘𝑘) represents the residual signal [22]. The implementation strategy is 
similar to the sifting algorithm used in EMD: there is an outer loop which iterates 
until a fixed number of PFs is reached or when the residual presents no oscillations, 
and an inner loop which iterates until a pure FM component (i.e. until a flat 
envelope is satisfied) is extracted from the input signal. A recent improved version 
of the LMD was proposed and implemented by Liu et al. [23]. In this study, a 
number of five PFs was sufficient to decompose the EEG signals, since the residual 
term assumed very small amplitude values. In the LMD, just as in EMD, there was 
no relation between PFs and physiological EEG sub-bands (i.e. delta, theta, alpha, 
sigma, beta, and gamma sub-band), since the power spectrum of a PF could include 
more than one sub-band or could be interposed between two sub-bands. An example 
of the application of LMD to EEG signal is reported in Figure 3.2 (d). 

The last decomposition method analyzed in this chapter is the variational mode 
decomposition (VMD). VMD is a novel adaptive method proposed by 
Dragomiretskiy and Zosso [24] with the aim of decomposing an input signal into 
sub-signals compactly centered around their characteristic frequency, named 
principal modes. The authors proposed an iterative optimization algorithm to solve 
the following minimization problem: 

min
𝑢𝑢𝑘𝑘,𝜔𝜔𝑘𝑘

 ���
𝑑𝑑
𝑑𝑑𝑘𝑘
��𝛿𝛿(𝑘𝑘) +

𝑗𝑗
𝜋𝜋𝑘𝑘
� ∗ 𝑘𝑘𝑘𝑘(𝑘𝑘)� ∙ 𝑠𝑠−𝑗𝑗𝜔𝜔𝑘𝑘𝑑𝑑�

2

2𝐾𝐾

𝑘𝑘=1

� (Eq. 3.4) 

subjected to the following constraint: 𝑥𝑥(𝑘𝑘) = ∑ 𝑘𝑘𝑘𝑘(𝑘𝑘)𝐾𝐾
𝑘𝑘=1 , where 𝑥𝑥(𝑘𝑘) is the input 

signal, 𝑘𝑘𝑘𝑘 is the 𝑠𝑠-th mode and 𝐾𝐾 is the number of all modes involved in the 
decomposition. In Eq. 3.4, the objective is to minimize the sum of the bandwidths 
of each mode; in fact, firstly the analytic form (that has a unilateral spectrum with 
no negative frequency components) of each mode is computed using the Hilbert 
transform, next the exponential factor is useful to shift the Fourier transform to 
center pulsation 𝜔𝜔𝑘𝑘 and finally the squared norm of the time derivative estimates 
the mode bandwidth. The convergence of this method was proved, and the optimal 
principal modes and the corresponding central frequencies were obtained. In this 
study, a number of six modes was sufficient to decompose the EEG signals, since 
the residual term assumed very small amplitude values. An example of the 
application of VMD to EEG signal is reported in Figure 3.2 (e). 
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Fig. 3.2 Signal decomposition techniques: the original EEG signal (in black), the decomposed sub-
signals (in blue) and the corresponding normalized power spectra (in red) using Butterworth filter 
decomposition (a), discrete wavelet transform (b), empirical mode decomposition (c), local mean 
decomposition (d) and variational mode decomposition (e). 
 

Subsequently, for each sub-signal obtained by using the previously described 
signal separation methods, 12 features were extracted in time domain and 7 features 
in frequency domain. The features were extracted from each 5 s time segment, 
repeating the procedure for 11 windows (50% of overlap) of the 30 s original input 
EEG signal and the decomposed sub-signals obtained with different techniques (i.e. 
BFD, DWT, EMD, LMD and VMD). The time-domain features were the following: 
average rectified value (ARV), min and max amplitude, root mean square (RMS) 
value, median value, standard deviation, skewness, kurtosis, energy ratio (i.e. the 
energy of each sub-signal normalized to the total energy of the input signal), number 
of zero crossings, Hjorth mobility (HM) and Hjorth complexity (HC). The 
frequency-domain features were the following: power ratio (i.e. the power of each 
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sub-signal normalized to the total power of the input signal), mean frequency 
(MNF), dominant or center frequency (i.e. the frequency associated to the highest 
power), spectral edge frequency (SEF) at 50% (i.e. the lowest frequency below 
which 50% of the total power is present), SEF at 95% (i.e. the lowest frequency 
below which 95% of the total power is present), spectral and Renyi entropy. The 
mathematical expressions of these parameters are reported in Chapter 2. The total 
number of features extracted from each signal decomposition method is reported in 
Table 3.2. 
 
Table. 3.2 Number of time- and frequency-domain features for each decomposition technique. 

Signal Decomposition BFD DWT EMD LMD VMD 
Time domain 84 84 72 72 84 
Frequency domain 49 49 42 42 49 
Total 133 133 114 114 133 

3.2.3 Time-Frequency distributions 

In this study, two time-frequency representations (TFRs) were employed for 
the analysis of EEG signals: Choi-Williams distribution (CWD) and continuous 
wavelet transform (CWT). Time-frequency distributions are specific tools of 
spectral analysis useful to treat non-stationary signals since they represent the signal 
power spectrum instantaneously, i.e. as a function of time. The most frequently used 
TFR is the short-time Fourier transform (STFT) but it suffers from the problem that 
the maximum frequency resolution cannot be guaranteed otherwise the time 
window should be too large and the signal can no longer be considered stationary. 
On the other hand bilinear time-frequency distributions were introduced with the 
aim of working at full frequency resolution without breaking the Wiener-Khinchin 
theorem [25]. The Wigner-Ville distribution (WVD) was the first time-frequency 
distribution which maintained the time dependence of the autocorrelation function, 
introducing the concept of instantaneous autocorrelation function of a signal 𝑥𝑥(𝑘𝑘), 
using the following mathematical relation: 

𝑊𝑊𝐴𝐴𝑐𝑐(𝑘𝑘,𝑓𝑓) = � 𝑥𝑥 �𝑘𝑘 +
𝜏𝜏
2
�

+∞

−∞

∙ 𝑥𝑥∗ �𝑘𝑘 −
𝜏𝜏
2
� ∙ 𝑠𝑠−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋 𝑑𝑑𝜏𝜏 (Eq. 3.5) 

where 𝜏𝜏 is the time delay and the asterisk denotes the complex conjugate [25]. The 
problem of WVD is that suffers from the interference or cross terms (i.e. terms 
related to frequency mixing). The solution to this problem was solved by the Choi-
Williams distribution (CWD) which employed a kernel in the ambiguity function 
domain with the purpose of attenuating the interference terms. The mathematical 
expression of CWD is reported in the following: 

𝐻𝐻𝑊𝑊𝑐𝑐(𝑘𝑘, 𝑓𝑓) = �𝑥𝑥�𝑘𝑘′ +
𝜏𝜏
2
� 𝑥𝑥∗

+∞

−∞

�𝑘𝑘′ −
𝜏𝜏
2
� 𝐸𝐸(𝜃𝜃, 𝜏𝜏) 𝑠𝑠−𝑗𝑗2𝜋𝜋𝜋𝜋(𝑑𝑑−𝑑𝑑′) 𝑠𝑠−𝑗𝑗2𝜋𝜋𝑓𝑓𝜋𝜋𝑑𝑑𝑘𝑘′𝑑𝑑𝜃𝜃𝑑𝑑𝜏𝜏 (Eq. 3.6) 
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𝐸𝐸(𝜃𝜃, 𝜏𝜏) = 𝑠𝑠− 𝜋𝜋
2 𝜋𝜋2
𝜎𝜎  (Eq. 3.7) 

where 𝜃𝜃 is the frequency delay, 𝐸𝐸(𝜃𝜃, 𝜏𝜏) is the Choi-Williams kernel defined in the 
ambiguity function domain and 𝜎𝜎 is the kernel width. In this study, the kernel width 
of CWD was set equal to 1. 

The second TFR used in this study was the continuous wavelet transform 
(CWT). The STFT was found to be inadequate for processing highly non-stationary 
signals since it is not possible to locate rapidly and slowly evolving phenomena 
with the same precision. Therefore, in order to obtain an analysis with variable 
resolution, a set of basic functions called wavelet family was introduced by 
translation and scaling of a mother wavelet 𝜓𝜓(𝑘𝑘): 

𝜓𝜓𝑑𝑑,𝑏𝑏(𝑘𝑘) =
1
√𝑣𝑣

𝜓𝜓 �
𝑘𝑘 − 𝑏𝑏
𝑣𝑣

� (Eq. 3.8) 

where 𝑣𝑣, 𝑏𝑏 are the scale and shift parameters, respectively. The coefficient 1 √𝑣𝑣⁄  is 
useful to normalize the different wavelets which must have the same energy [26]. 
The CWT can be defined as the inner product between the signal 𝑥𝑥(𝑘𝑘) and the 
wavelet family as: 

𝐻𝐻𝑊𝑊𝑇𝑇(𝑣𝑣, 𝑏𝑏) = � 𝑥𝑥(𝑘𝑘) ∙
+∞

−∞

𝜓𝜓𝑑𝑑,𝑏𝑏
∗ (𝑘𝑘) 𝑑𝑑𝑘𝑘 (Eq. 3.9) 

The squared magnitude of the CWT is called scalogram. The scalogram is a time-
scale representation (since the parameter 𝑏𝑏 is expressed in time units) that can be 
converted in a TFR by remembering that the relation between scale and frequency 
is related to the central or dominant frequency of the mother wavelet [26]. The 
wavelet functions present a good frequency localization at low frequencies and, at 
the same time, a good temporal localization at high frequency [27]. The classical 
implementation of Eq. 3.9 is computationally expensive, for this reason, in recent 
years, an efficient and fast algorithm for the CWT computation has been proposed. 
The definition in Eq. 3.9 can also be treated as the cross-correlation of the signal 
and the wavelet, and according to the convolution theorem, the cross-correlation 
can be expressed in frequency domain; consequently the CWT can also be 
expressed in terms of inverse Fourier transform which can be implemented using 
the fast Fourier transform (FFT) algorithm. All the mathematical derivations of the 
fast algorithm for the computation of CWT are reported in the work of Komorowski 
and Pietraszek [26]. Different mother wavelet can be employed for the analysis, in 
this study the analytic Morlet wavelet was employed since has obtained the best 
performances in the processing of EEG signals [28], [29] and other biomedical 
signals [26]. 

Subsequently, both CWD and CWT were computed for each EEG epoch; then 
the TFRs were segmented in order to separate delta (0.5-4 Hz), theta (4-8 Hz), alpha 
(8-12 Hz), sigma (12-16 Hz), beta (16-30 Hz) and gamma (30-45 Hz) EEG sub-
bands in the time-frequency plane. The TFRs were subdivided into six sub-images 
corresponding to each frequency sub-band and 25 time-frequency domain features 
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were extracted from each sub-image. An example of the subdivision of TFR is 
reported in Figure 3.4. 
 

 
Fig. 3.4 Time-frequency sub-images corresponding to delta (a), theta (b), alpha (c), sigma (d), beta 
(e) and gamma (f) EEG rhythms. 
 

In the following, a detailed description of the time-frequency features is 
reported. Let 𝑇𝑇𝑀𝑀[𝑚𝑚, 𝐸𝐸] be a generic TFR, where 1 < 𝑚𝑚 < 𝑅𝑅 represents the index 
of frequency vector and 1 < 𝐸𝐸 < 𝑁𝑁 represents the index of time vector. Firstly, the 
relative power was computed as the ratio between the power (averaged over time) 
in each sub-band and the total power of the entire TFR. Then, the following four 
statistical features for each sub-band were computed as the average over frequency: 
RMS value, standard deviation, skewness, and kurtosis. The marginal mean time 
(MNT) and mean frequency (MNF) can be defined as: 

𝑅𝑅𝑁𝑁𝑇𝑇 =
∑ (∑ 𝑇𝑇𝑀𝑀[𝑚𝑚,𝐸𝐸]𝑚𝑚

𝑠𝑠=1 ) ∙ 𝑘𝑘[𝐸𝐸]𝑁𝑁
𝑛𝑛=1

∑ ∑ 𝑇𝑇𝑀𝑀[𝑚𝑚,𝐸𝐸]𝑁𝑁
𝑛𝑛=1

𝑚𝑚
𝑠𝑠=1

 (Eq. 3.10) 

𝑅𝑅𝑁𝑁𝑀𝑀 =
∑ (∑ 𝑇𝑇𝑀𝑀[𝑚𝑚,𝐸𝐸]𝑁𝑁

𝑛𝑛=1 ) ∙ 𝑓𝑓[𝑚𝑚]𝑚𝑚
𝑠𝑠=1

∑ ∑ 𝑇𝑇𝑀𝑀[𝑚𝑚,𝐸𝐸]𝑁𝑁
𝑛𝑛=1

𝑚𝑚
𝑠𝑠=1

 (Eq. 3.11) 

The time-frequency fluxes can be defined along three directions: 

𝑇𝑇𝑀𝑀𝑖𝑖,𝑗𝑗
𝑓𝑓𝑑𝑑𝑢𝑢𝑥𝑥 = � �𝑇𝑇𝑀𝑀[𝑚𝑚 + 𝑖𝑖,𝐸𝐸 + 𝑗𝑗] − 𝑇𝑇𝑀𝑀[𝑚𝑚,𝐸𝐸]

𝑁𝑁−𝑗𝑗

𝑛𝑛=1

𝑚𝑚−𝑖𝑖

𝑠𝑠=1

 (Eq. 3.12) 

where 𝑖𝑖 = 0, 𝑗𝑗 = 1 denotes the flux along the time direction, 𝑖𝑖 = 1, 𝑗𝑗 = 0 denotes 
the flux along the frequency direction and 𝑖𝑖 = 1, 𝑗𝑗 = 1 is the flux along the diagonal 
axis. The time-frequency flatness is defined as the ratio between the geometric 
mean and the arithmetic mean of the TFR (values lower than 10% of the maximum 
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were excluded from the computation) [30]. The time-frequency energy 
concentration is defined as: 

𝑇𝑇𝑀𝑀𝑝𝑝𝑛𝑛𝑛𝑛𝑝𝑝 = �� ��𝑇𝑇𝑀𝑀[𝑚𝑚,𝐸𝐸]
𝑁𝑁

𝑛𝑛=1

𝑚𝑚

𝑠𝑠=1

�

2

 (Eq. 3.13) 

The Shannon entropy (SE) and Renyi entropy (RE) can be computed as: 

𝑅𝑅𝐸𝐸 = − � �
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 (Eq. 3.14) 
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� (Eq. 3.15) 

In the computation of time-frequency entropies, the zero values were excluded from 
the analysis. Next, the following four instantaneous frequency (IF) related statistical 
features were computed: mean, variance, skewness, and kurtosis. The mathematical 
definition is reported here [30]. Finally, each TFR was considered as an image and 
histogram-based features and binary image features were extracted. The gray-level 
histogram of each time-frequency sub-image was computed and the following 
features were extracted: the Renyi entropy (the entropy order was equal to 2) 
computed on the histogram distribution [31], maximum count of pixel intensity and 
spread in the histogram, as reported here [29]. The binary image was obtained by 
applying Otsu’s threshold [32] to the original TFR and the following features were 
extracted: aspect ratio [29] and area, perimeter and compactness of the largest 
connected component in the binary image [30]. 

To summarize, 25 time-frequency domain features were extracted from each 
time-frequency sub-image related to each of the six EEG sub-bands, i.e. a total of 
150 features both for CWD and CWT. 

3.2.4 Correlation-based timestep feature selection 

In this section, a novel supervised correlation-based feature selection is 
proposed for the selection of features in a multiclass problem. The strategy is based 
on a timestep implementation, since each set of features was computed for a 5 s 
EEG epoch and the procedure was repeated for 11 time-segments (with an overlap 
of 50%) for each 30 s signal. Consequently, the number of timesteps 𝑇𝑇 for the 
classification network was set to 11. The flowchart of the proposed feature selection 
strategy is reported in Figure 3.5. 

The proposed strategy was based on the computation of Pearson correlation 
coefficient defined as the ratio between the covariance of two random variables 𝑋𝑋 
and 𝑌𝑌 and the product of their standard deviations: 

𝑣𝑣 =
𝑐𝑐𝑐𝑐𝑣𝑣(𝑋𝑋,𝑌𝑌)
𝜎𝜎𝑋𝑋 ∙ 𝜎𝜎𝑌𝑌

 (Eq. 3.16) 
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This coefficient is bounded between -1 and 1 and an increasing positive or negative 
value means a higher positive or negative linear correlation respectively, while 
values close to zero denote the absence of linear correlation. 
 

 
Fig. 3.5 Flowchart of the correlation-based timestep feature selection. 
 
The first step was the loading of input feature data matrix for each timestep and the 
corresponding target vector. The feature data matrix contained on the rows the 
features and on the columns the observations. The target was a column vector with 
the corresponding label class for each observation. Next, Pearson correlation with 
the target was computed and features which presented a NaN (not a number) 
correlation value were removed since this means that the covariance was zero and 
at the same time the standard deviation of the feature was zero. In addition, all the 
features with a high intra-class standard deviation (in this work a threshold value of 
5 was set) were removed since they are not representative of a specific class. Then, 
Pearson correlation with target for each class was computed and features with a 
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value lower than a threshold 𝑇𝑇ℎ1 in all classes were removed since they were 
considered not relevant. After that, the cross-correlation matrix (i.e. Pearson 
correlation between features) was obtained and all pairs of features with a value 
higher than a threshold 𝑇𝑇ℎ2 were analyzed only in the upper triangular part since 
the matrix is symmetric. For each pair of features, that one with a highest correlation 
with target was retained and the other was removed since it was considered 
redundant. The values of thresholds 𝑇𝑇ℎ1, 𝑇𝑇ℎ2 are heavily dependent on the 
application and are determined empirically. Finally, this process was repeated for 
all timesteps (in this study, the number of timesteps 𝑇𝑇 = 11) and only the features 
selected according to the previous procedure in most of timesteps were retained for 
the subsequent classification process. In the result section, the thresholds values 
employed in this study are reported. 

3.2.5 Bidirectional Recurrent Neural Networks 

The classification structure employed in this chapter was the same as that 
described in Chapter 2. A cascaded architecture based on RNNs with LSTM units, 
in order to reduce the vanishing gradient problem, was implemented: the first 
network employed the selected features to classify four stages (i.e. W, N1-REM, 
N2 and N3), while N1 vs REM epochs were discriminated by the second network. 
The second network became more specific to classify the two most complex sleep 
stages, while in the first phase of the process these two classes were merged into 
the N1-REM class. In this chapter, the only difference with respect to the 
architecture reported in Chapter 2, is that a sequence-to-sequence architecture based 
on bidirectional RNNs (BRNNs) was used. The BRNN consists of forward and 
backward recurrent components; thus it takes information both earlier and later in 
the sequence and has been proved to provide better results than unidirectional RNN 
[33], [34]. In the BRNN, there is a forward layer with LSTM units based on the 
mathematical equations reported in Chapter 2 and a backward layer with LSTM 
units which employs the same updating equations in the opposite direction. The 
basic structure of BRNN with LSTM blocks is reported here [33]. Finally the 
outputs of the forward and backward pass are combined and fed to subsequent fully 
connected (FC) layers [34]. In the sequence-to-sequence architecture, the network 
receives a temporal sequence as input and produces a temporal sequence as output; 
thus the FC layer produces a number of predictions equal to the number of timesteps 
of the network. The softmax activation function computes the probability of 
belonging to a given class and the final output was defined as the statistical mode 
(i.e. the value that most often appears) of the outputs predicted by each block. The 
cost function to minimize during the training process was the cross-entropy function 
for mutually exclusive classes and the optimization method was the adaptive 
moment estimation (ADAM) [35], as described in Chapter 2. 
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3.3 Results 

The processing was performed in MATLAB (The MathWorks, Inc., Natick, 
MA, USA) environment on a workstation with 16 GB of RAM, 2.5 GHz quad-core 
CPU and 64-bit Windows version. Several BRNN configurations were tested and 
the performances for each signal decomposition technique were analyzed. The best 
performances were obtained for VMD and the selected features according to the 
previously described correlation-based technique are reported in Table 3.3 and 
Table 3.4. For the 4-class classification problem, 25 features were selected using 
the following thresholds: 𝑇𝑇ℎ1 = 0.3,𝑇𝑇ℎ2 = 0.8 and only the features which 
occurred in at least 75% of timesteps were retained. For the 2-class classification 
problem, 33 features were selected using the following thresholds: 𝑇𝑇ℎ1 =
0.15,𝑇𝑇ℎ2 = 0.9 and only the features which occurred in at least 65% of timesteps 
were retained. The thresholds for the second network were less selective since the 
stages to classify (N1 vs REM) were more complex and the features showed less 
relevance and a higher correlation between each other. The best architectures for 
the 4-class and 2-class LSTM BRNN are reported in Table 3.5 and Table 3.6, 
respectively. A value of 256 for the mini-batch size was set in the training phase. 
The entire dataset was partitioned into three different sets called training, validation, 
and test set. The network was trained using only the training set, then the validation 
set was used to assess the performances and the training was stopped when a 
maximum number of iterations was reached or when validation error started to 
increase to avoid data overfitting. The final performance was then evaluated using 
the test set, which the network had never previously seen. The following 
quantitative metrics were computed to assess the performance of the classifiers: the 
percentage of correct classification (PCC) defined as the ratio between the correctly 
classified data and the total amount of data, and the well-known per-class metrics, 
i.e. recall or sensitivity (Se), selectivity or specificity (Sp) and accuracy (Acc) for 
each EEG sleep stage. To test the performance of the BRNN models, we assessed 
the classification metrics by 10-fold stratified cross-validation strategy; thus in each 
fold, 80% of data were used in the training set, the 10% of data were used in the 
validation set and the remaining 10% of data in the test set, randomly. The 
confusion matrix for each network obtained as the sum of the performances in each 
fold and the per-class metrics are reported in Table 3.7 and Table 3.8. In Table 3.8, 
only the epochs correctly classified by the first network are considered for the 
performance assessment. 
 
Table. 3.3 Number of selected features for the 4-class classification network. 

VMD raw signal 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 
Time 1 0 2 1 2 0 0 
Frequency 1 0 0 0 0 1 0 

TFR delta theta alpha sigma beta gamma  
CWD 1 0 1 2 3 2  
CWT 1 1 1 2 1 2  

(VMD: variational mode decomposition, TFR: time-frequency representation, CWD: Choi-Williams 
distribution, CWT: continuous wavelet transform) 
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Table. 3.4 Number of selected features for the 2-class classification network. 
VMD raw signal 1st mode 2nd mode 3rd mode 4th mode 5th mode 6th mode 

Time 0 0 0 0 0 1 0 
Frequency 0 0 1 1 0 0 0 

TFR delta theta alpha sigma beta gamma  
CWD 3 4 2 2 1 1  
CWT 3 3 3 2 2 4  

(VMD: variational mode decomposition, TFR: time-frequency representation, CWD: Choi-Williams 
distribution, CWT: continuous wavelet transform) 
 
Table. 3.5 Layer structure for the BRNN which identifies 4 classes (W vs N1-REM vs N2 vs N3). 

Layer number Layer type Properties 
Layer 1 Sequence input layer 25 input features 

Layer 2 Bidirectional LSTM layer 
123 hidden units, 
sequence-to-sequence architecture 

Layer 3 Fully connected layer 4 units 
Layer 4 Softmax layer softmax activation function 
Layer 5 Classification output layer 4 classes 

 
Table. 3.6 Layer structure for the BRNN which identifies 2 classes (N1 vs REM). 

Layer number Layer type Properties 
Layer 1 Sequence input layer 33 input features 

Layer 2 Bidirectional LSTM layer 146 hidden units, 
sequence-to-sequence architecture 

Layer 3 Fully connected layer 48 units 
Layer 4 Fully connected layer 2 units 

Layer 5 Softmax layer 
softmax activation function 
(threshold = 0.7) 

Layer 6 Classification output layer 2 classes 
 
Table. 3.7 Classification performances for 4-class BRNN. 

 Predicted Per-class [%] 
True W N1-REM N2 N3 Se Sp Acc 
W 5753 682 50 22 88.41 98.12 96.56 
N1-REM 465 9329 718 9 88.67 92.07 91.19 
N2 135 1688 15078 898 84.71 94.88 90.42 
N3 39 10 395 5259 92.21 97.33 96.61 
Percentage of correct classification (PCC) = 87.39% 

 
Table. 3.8 Classification performances for 2-class BRNN. 

 Predicted Per-class [%] 
True N1 REM Se Sp Acc 
N1 1566 539 74.39 86.41 83.70 
REM 982 6242 86.41 74.39 83.70 
Percentage of correct classification (PCC) = 83.70% 
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The PCC of the first and second BRNN with LSTM units are 87.39% and 83.7% 
respectively. Finally, considering the cascading connection of the two networks, the 
performances, in terms of sensitivity, for the five sleep stages are: 88.41% for stage 
W, 55.85% for stage N1, 84.71% for stage N2, 92.21% for stage N3 and 80.89% 
for stage REM. The final performances for N1 and REM are computed as the ratio 
between the number of epochs correctly classified by the 2-class BRNN and the 
total number of epochs in the dataset (i.e. 2804 and 7717 for stage N1 and REM, 
respectively). The overall PCC is 83.64%. 

3.4 Discussion and Conclusion 

The proposed approach should be seen as a general workflow for the automatic 
classification of non-stationary biomedical signals. The common objective is to 
extract mono-component sub-signals from multicomponent input signal using 
signal separation or signal decomposition methods. In addition, a novel timestep 
feature selection approach is proposed to select only significant and relevant 
variables for classification purposes. Several features in time, frequency and time-
frequency domain were fed to BRNN architectures for the problem of sleep scoring. 
In this context, recent studies have tested their performances using the publicly 
available Sleep-EDF database expanded [9], [10]. In Table 3.9, the per-class 
sensitivity and the total PCC of the proposed method and other state-of-the-art 
approaches are reported for comparison (in bold are highlighted the best 
performances for each sleep stage). 
 
Table. 3.9 Performance comparison of state-of-the-art methods (results are reported in terms of per-
class sensitivity and overall percentage of correct classification in the last column). 

Methods Results [%] 

Authors Classifier W N1 N2 N3 REM PCC 

Zhu et al. [36] 
CNN with 
attention layer 

88.37 53.39 82.01 88.41 84.55 82.68 

Phan et al. [37] CNN 75.47 31.86 86.84 86.75 90.56 82.25 

Humayun et al. [38] Residual CNN 96.38 44.23 79.72 76.58 75.97 91.40 

Cai et al. [39] 
Graph-temporal 
fused CNN 

98.13 33.11 90.57 72.35 79.74 89.10 

Proposed method LSTM BRNN 88.41 55.85 84.71 92.21 80.89 83.64 

 
A brief description of each state-of-the-art method is reported in the following. Zhu 
et al. [36], analyzed the same subjects used in this chapter and single-channel Fpz-
Cz EEG signals were fed to a deep CNN and feature learning was performed by 
using attention mechanism for sleep scoring. Phan et al. [37], employed the Fpz-Cz 
EEG channel and the horizontal EOG signals to compute time-frequency STFTs 
which were used as input images for multi-task CNN. They obtained the best 
performances in stage REM due to the use of EOG signals. Humayun et al. [38], 
implemented a 1D CNN-based residual architecture with skip connections which 
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took as input raw single-channel (Fpz-Cz) EEG signals. They reported the best 
overall PCC, but the per-class metrics were not satisfactory except for stage W since 
their dataset was composed of 68% of W epochs. Cai et al. [39], employed a graph 
representation based on limited penetrable visibility graph (LPVG) and both the 
signal-channel (Fpz-Cz) raw EEG signals and the graph representations were fed to 
a dual-input CNN for automatic sleep staging. They reported the best performances 
in stage W and N2. The high performance in stage W was due to the highest number 
of W epochs (53% of dataset) used for training. 

In this study, a cascaded architecture based on BRNN with LSTM blocks was 
employed for classification purposes and a large feature set was analyzed. Time- 
and frequency-domain parameters were computed for different sub-signals 
obtained through several signal decomposition techniques. In addition time-
frequency domain features were extracted from each of six EEG rhythms (i.e. delta, 
theta, alpha, sigma, beta, and gamma). Finally, a novel correlation-based feature 
selection strategy, based on a timestep implementation, was proposed for the 
selection of most relevant features. The cascading connection was composed of a 
first BRNN which classified four classes (W vs N1-REM vs N2 vs N3) and a second 
BRNN which performed binary classification (N1 vs REM). 

The classification performances between different signal decomposition 
methods were quite close, since most of features were selected in time-frequency 
domain as can be shown in Table 3.3 and 3.4, but the highest performance was 
obtained for VMD. For the 4-class classification problem, features were mostly 
selected in high frequency sub-bands for the presence of stage W, while in the 2-
class problem, this difference between high and low frequency features was not 
observed due to the complex EEG patterns present in stage N1 and REM according 
to AASM rules. Table 3.9 shows that the proposed approach obtained the highest 
value in the detection of N1 and N3 sleep with respect to other state-of-the-art 
methods and at the same time the performances in the other three sleep stages are 
superior to 80%. In addition, except in the works which used a huge number of W 
epochs for training [38], [39], this method obtained the highest classification rate 
in wake detection if only nocturnal W epochs, which occurred during the night, 
were considered. These epochs are very different in frequency content with respect 
to wake epochs in the first and last part of a human subject’s sleep cycle, since they 
are related to the transition between wakefulness and the first stages of sleep [13]. 
The loss of attention that accompanies the transition from wakefulness to sleep is 
associated with changes in other physiological parameters in addition to the EEG 
signal. Among these, there are the so-called slow eye movements (SEMs), whose 
presence is maximum in the final phases of wakefulness, when alpha rhythms are 
still present and a reduction in neurocognitive performance (NCP) is observed. In 
addition, the phenomenon of eye blinking changes with the variation of attention, 
as it has been observed that, with the decrease of alertness, it becomes less frequent 
and slower, but with blinking bursts, probably due to the mechanisms for trying to 
stay awake [40]. This can also be explained with the difference between the 
sensitivity in stage W reported in Chapter 2 and in this chapter (i.e. 95% vs 88%). 
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Another issue is related to REM sleep, which is characterized by high eye 
movement activity recorded by EOG and hence with a single EEG channel, the 
detection process becomes more complex [41]. 

The problem of low performances in stage N1 is mainly due to the absence of 
specific and repeatable EEG patterns that can be observed in this phase and to the 
low number of epochs in the dataset compared to the other sleep stages, since for a 
healthy human subject, the N1 sleep is the shortest phase in sleep cycle (about 2-
5%) [7]. For this reason, the performances of the classification model were also 
tested after having balanced the dataset: the results were negatively affected by the 
operation of class balancing since the number of training epochs in the other sleep 
stages was reduced to balance the number of N1 epochs and especially, when the 
network was validated on the test set, which represents a generic subject’s recording 
with the typical physiological percentages of each sleep phase in the human sleep 
cycle, the performances were not satisfactory. This problem may be addressed by 
using data augmentation techniques to address class imbalance. 

In the context of data augmentation, a novel strategy could be the development 
of generative adversarial networks (GANs). GANs are an emergent class of deep 
learning networks with the aim of generating artificial signals to feed to learning 
algorithms. There are two models behind the GAN, the generator and the 
discriminator. The generator model is learned to synthesize realistic data samples, 
while the discriminator is a model typically used for classification in machine and 
deep learning with the task of distinguishing between different classes. Generative 
models try to learn how to make a realistic representation of a certain class and 
discriminative models are simultaneously trained to distinguish real training data 
samples from artificially generated ones. These models compete against each other 
which is why they are called adversarial networks [42], [43]. To the best of our 
knowledge, no robust ASSC methods based on GANs have been published in 
literature. Recently, a novel method which employs GANs and RNNs with LSTM 
blocks, has been published with the aim of detecting sleepiness during driving by 
employing EEG and EOG signals [44]. Another strategy of data augmentation is 
the application of Fourier transform-based methods for the generation of surrogate 
data that approximate real examples [45]. In literature, has also been proposed a 
novel cross-entropy loss function, named focal loss (FL), employed as the loss 
function between the true labels and the network predictions, where the inliers (easy 
examples) are down-weighted such that their contribution to the total loss is small 
even if their number is large [46]. Our research group is currently working on the 
implementation, in a deep learning framework, of architectures based on GANs in 
Python environment both for biomedical signal processing and medical image 
classification. 

Another unresolved issue emerges in the following context: single-channel vs 
multichannel approach. From one side, with the use of single-channel EEG signals 
remains very difficult to improve the performances of stages N1 and REM due to 
their heterogeneity and as relevant information is hidden in EOG and EMG signals, 
but with this approach the acquisition setup is more simple with less noise 
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interference and it may be used for NCP assessment in real-time applications, e.g. 
the detection of driver drowsiness [47]. On the other side, multichannel recording 
can be used only as a support for clinical diagnosis but the performances in sleep 
scoring may be improved, especially with the advent of deep learning frameworks. 
In a future study the same workflow described in this chapter may be used by taking 
into account also several EEG channels, EOG and EMG signals, especially for 
nocturnal W, stage N1 and REM sleep detection. All the signal decomposition 
techniques and time-frequency distributions could also be evaluated for the analysis 
and interpretation of other biomedical signals (e.g. EMG, ECG, heart rate 
variability or evoked potentials). 

In this moment, the advantage of using CNNs over RNNs for biomedical signal 
processing and classification is not seen for several reasons: the performances are 
not superior, the number of hypermeters to set is higher and the relation between 
handcrafted features and subject’s condition cannot be taken into account into a 
CNN framework. Moreover, the advantage of RNNs is to handle directly temporal 
sequences such as time series. The disadvantage of BRNNs with respect to 
unidirectional RNNs is that the entire sequence of data is taken into account to make 
predictions and for this reason is not intended for real-time applications. A recent 
technique belonging to the class of XAI (eXplainable Artificial Intelligence) is the 
layer-wise relevance propagation (LRP) which aims to explain which features are 
responsible of class prediction [48]. LRP technique can be considered a post-
processing method since it can be applied on already trained classifiers and will be 
evaluated in a future study. 
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Chapter 4 

Introduction - Part II 

4.1 Digital Pathology 

Anatomic pathology is the branch of medicine with the aim to detect and 
identify human diseases by macroscopic examination of organs and microscopic 
examination of tissues and cells. Within the diagnostic process, it plays a 
fundamental role and aims to develop a complete and accurate clinical diagnosis. 
The identification of abnormalities is the primary role of anatomic pathology since 
it can help to diagnose diseases and plan treatment. Anatomic pathology is split into 
two main categories: histology (or histopathology) and cytology (or 
cytopathology). In histopathological images several specimens are visible: isolated 
cells, cell nuclei, cell clusters and more extensive structures such as epithelium, 
gland lumen and dense connective tissue or stroma. On the other hand, cytology, 
also called cell biology, is the branch of biology which studies the structure and the 
chemistry of cells from a functional point of view. The difference is reflected in the 
image content which consists of simpler structures compared to histopathology [1]. 

The traditional process based on the evaluation of glass slide samples under a 
light microscope is time consuming and includes a risk of damaging cell structures 
of biological tissue associated with the transfer of the physical slides. In addition, 
there is a lack of concordance, between different pathologists, in the final diagnosis 
of cancer and the cost of physical shipping slides for a second opinion or external 
consultation is high. A report of the UK’s National Patient Safety Agency (March 
2010) found that delays in decision making in pathology account for 41% of delays 
in cancer diagnosis [2]. 

Digital pathology is one of the new declinations of digital healthcare. It is 
proposed to use digital technology to improve the diagnostic and predictive process 
of anatomic pathology. The advent of whole slide digital scanners has allowed the 
digitalization of the optically scanned tissue slides which can now be stored in 
digital image form, visualized on desktop computers, laptops, tablets, and even 
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smartphones and interpreted using advanced software for diagnostic or research 
purposes. Digital images can be analyzed with software to quantify 
histopathological parameters (e.g. the percentage of cells that are proliferating) with 
the advent of computational pathology. In addition, digital pathology exploits 
algorithms, based on Artificial Intelligence (AI), with a growing capability in 
managing big data and speeding up the pathologist’s work but, in perspective, they 
may be able to formulate diagnostics to be presented directly to the oncologist [3]. 
The workflow of digital pathology is summarized in Figure 4.1. 
 

 
Fig. 4.1 Workflow of Digital Pathology. 
 

In digital pathology, the process consists generally of the following steps: 
firstly, the tissue removal is performed by the surgeon, then the sample is prepared 
for the microscopic examination in the histology laboratory; this phase involves a 
series of complex operations. Tissue block thick about 1 cm are subjected to i) 
chemical fixation with 4% aqueous solution of formaldehyde in order to stabilize 
and maintain the structure of the tissue, kill bacteria and inactivate enzymes that 
otherwise might degrade the tissue. The aim is to leave tissues as close as their 
living state as possible. Subsequently, specimen is ii) dehydrated by gradually 
replacing water in the sample with alcohol and cleared (i.e. the alcohol is replaced 
with xylene which is a paraffin solvent). Then, the tissue is iii) embedded in warm 
paraffin wax; the aim of this process is the tissue embedding in a solid medium stiff 
enough to support the tissue during the subsequent step of section cutting. The 
following phase is iv) section cutting using a microtome, which is a mechanical 
instrument used to cut biological specimens into very thin slices (2-10 µm) to allow 
light to pass through. Finally, the sections are v) stained to make cell structures 
visible and mounted on a glass slide to keep specimens pressed flat and protect them 
from accidental contact or dust [4]. The histology technician, which is a specialized 
medical lab worker, performs all the previous tasks involving the acquisition, 
processing and preparation of patient tissue specimens. Subsequently, the 
pathologist analyzes the optically scanned tissue slides and finally the oncologist 
may proceed with therapy accordingly. 

The human eye can distinguish two points as distinct only if they are at least 
0.2 mm apart; hence the visual examination of biological tissues under light 
microscope is necessary. In histological specimens, erythrocytes are commonly 
used as a “histological ruler” to measure the size of other cells and structures found 
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in the tissue section, since they are uniform in size, 7 to 8 µm in diameter [4]. The 
basic optical microscope elements are shown in Figure 4.2 (a). The modern 
microscope has also a digital camera connected to a workstation. The resolution of 
light microscope is 0.2 µm, while the transmission electron microscope (TEM) has 
a three orders of magnitude higher resolution. Electrons have shorter wavelength 
than visible light (i.e. from about 380 to 740 nm) and therefore permit several 
million times magnification. TEM is employed only for specific applications which 
require a higher level of microscopy (e.g. to visualize very small tissue structures 
such as some organelles, membranes, macromolecular complexes or viruses). The 
analysis and interpretation of most histopathological images can be performed at 
different magnifications. Most commonly, scanned tissue slides in routine histology 
are viewed at 10×, 20× or 40× magnification, regardless of the scanning and 
focusing method [3]. 

The staining process is necessary since cell structures are transparent and 
colorless, thus tissue sections are prepared using colored stains that bind selectively 
to cellular components. The techniques used can either be non-specific, i.e. most of 
the cells are stained in the same way, or specific, i.e. particular cell components are 
stained with a bright color and the rest of the tissue with a different color by using 
a counterstain [5]. Histological staining techniques are split into two main 
categories: histochemistry and immunohistochemistry. Histochemistry refers to 
histological stains which bind selectively to cell constituents and highlight chemical 
features. Hematoxylin and Eosin (H&E), periodic acid–Schiff (PAS) and trichrome 
staining (e.g. Mallory's and Masson's trichrome) are the most frequently used stains 
which belong to this first group [6]. In routine histology, the most widely used 
staining method is H&E. Hematoxylin is a basic and positively charged dye which 
stains acid molecules such as nuclei of cells with a blue or purple color, while eosin 
is an anionic and acidic dye which stains with a pinkish color cytoplasmatic 
structures such as cell stroma [7]. 

On the other hand, immunohistochemistry (IHC) is an immunology-based 
method which employs tissue-based biomarkers (i.e. antibodies marked with 
specific reagents) for the localization of specific tissue components (generally these 
are proteins) that act as antigens. Thus, IHC technique is based on antigen-antibody 
interaction combined with enzymatic or fluorescent detection systems that make 
the reaction visible under a light microscope [8]. For this reason, pathologists select 
specific antibodies in order to identify cellular structures or elements that are 
associated with certain human diseases for diagnostic, prognostic, and therapeutic 
purposes. The tissue stains differently in the presence of cancer, inflammatory 
response, infections or autoimmune diseases. IHC staining is widely used in the 
diagnosis of cancerous tumors, especially for breast cancer [9]. 

The manual processes currently in place within the laboratories may be 
subjected to errors as they depend solely on the control of individual operators. The 
process is complex and consists of several steps that involve the transfer of the 
biological sample in different forms, each of which represents a potential source of 
error. In addition, the histological tissue can take on different staining intensities 
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depending on the following factors: i) the concentration, the pH and the degree of 
deterioration of the staining dye, ii) the staining exposure time; iii) the ability of 
histology technician, iv) the illumination condition and v) the scanner performances 
and specifications [10]. An example of stain variability in H&E stained slides is 
reported in Figure 4.2 (b). 
 

 
Fig. 4.2 (a) The light microscope. (b) Staining variability of tissue specimens stained with 
Hematoxylin and Eosin (H&E). 
 

Thus, there is a need for an automated system that can help the operator in the 
management and standardization of the process by eliminating possible errors. The 
diagnosis based on histological images is often influenced by the staining quality 
of the histological preparation. If the quality of the staining is not satisfactory for 
the pathologist, an additional portion of the tissue will be sectioned and stained with 
a consequent loss of time and financial resources. This variability in the color of the 
histological preparation affects both the pathologist's diagnostic process and the 
performance of computer-assisted diagnosis (CAD) systems [1]. In this context, a 
standardization procedure of histological slides becomes relevant. To address this 
problem, a color (stain) normalization method is proposed in the second part of this 
thesis work. This method allows to standardize color of an original image with 
respect to that of a reference image (gold standard) which contains correct and 
uniform stain intensities according to an expert pathologist. The color 
standardization and normalization of histological slides may be useful to increase 
the speed and accuracy of the diagnosis made by the pathologist, eliminate delays 
due to a potential re-staining and increase the performances of an automated 
algorithm employed for the processing of histological images. 

4.2 Color Deconvolution 

Stain separation assumes great importance in the development of automatic 
solutions for digital histopathology image analysis, as it allows a correct separation 
of cell structures. As discussed before, staining dye molecules bind selectively to 
cell components which are highlighted during the staining process. This is useful 
for the pathologist who performs the subsequent analysis for diagnosis purposes. 
The structures that have bound to one stain are separated form other cell 
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components which have bound to another stain. More specifically, the different 
contributions related to two or more stains are isolated in a digital histological 
image. This process is called stain separation and is based on the mathematical 
technique defined as Color Deconvolution [11]. 

The tissue slides exposed to incident light are converted in digital form by using 
a slide scanner and stored as RGB (red (R), green (G) and blue (B) color) images, 
by using a 3-sensor RGB camera. Color deconvolution allows to isolate in an RGB 
image, two or more channels related to different stain concentrations which assume 
a specific color after light exposure. Color deconvolution is based on a similar 
technical basis to that of signal decomposition in the field of signal processing. A 
generic signal can be decomposed using a digital filter or a specific decomposition 
technique in different sub-bands related to frequency content, while an RGB stained 
image can be decomposed into different channels related to stain concentration. 

The stain color intensity is related to the stain concentration through the well-
known physical Beer-Lambert (BL) law. According to BL law, the absorbance 𝐴𝐴 
of an absorbing medium can be computed as the ratio of the transmitted light 
intensity 𝐼𝐼 (i.e. the number of photons who pass through the sample along the 
incident direction without being completely absorbed or diffused) with respect to 
the incident light intensity 𝐼𝐼0. In optics, the absorbance is also called decadic 
absorbance, since a common logarithm is used in the mathematical expression: 

𝐴𝐴 = − log10 �
𝐼𝐼
𝐼𝐼0
� = 𝜀𝜀 ∙ 𝑐𝑐 ∙ 𝑙𝑙 (Eq. 4.1) 

The absorbance can also be expressed as the product of the molar extinction 
coefficient 𝜀𝜀, which quantifies how strongly a chemical specimen absorbs light at a 
specific wavelength, the molar concentration 𝑐𝑐, i.e. the amount of absorbing species 
dissolved in a solution and the optical path length 𝑙𝑙 [12]. 

From a numerical point of view, the input RGB histological image with 
dimensions 𝐸𝐸𝐻𝐻 × 𝐸𝐸𝑊𝑊 × 3, where 𝐸𝐸𝐻𝐻, 𝐸𝐸𝑊𝑊, 3 are the number of rows, columns and 
RGB channels respectively is reshaped in a vectorized form where each column 
represents all the grayscale pixel intensities for a specific channel (R, G or B). Thus, 
the input image can be treated as a matrix 𝐼𝐼 ∈ ℝ𝑁𝑁×3 with 𝑁𝑁 = 𝐸𝐸𝐻𝐻 ∙ 𝐸𝐸𝑊𝑊. The incident 
light intensity 𝐼𝐼0 is set to a constant, which is 255 for images with a dynamic range 
of 8 bits [13]. 

The absorption of the tissue depends on the tissue itself but also on its 
instantaneous characteristics. The BL law is reported in a standard form without the 
term related to the scattering phenomenon, which is not relevant in digital histology 
image analysis, since tissue sections are very thin slices (i.e. 2-10 µm). The image 
intensity or equivalently the transmission of light, as shown in Eq. 4.1, is related to 
the absorbance in a nonlinear way, while the absorbance is directly proportional to 
the molar concentration of absorbing species [14]. In routine histology, the 
thickness of the sample assumes a very small value and is almost the same for all 
tissue sections, thus the concept of optical density has been introduced [15]. The 
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Optical Density (OD) is defined as the absorbance per unit path length and it can 
be expressed as the product of two non-negative matrices: 

𝐴𝐴 = 𝐻𝐻 ∙ 𝑊𝑊 (Eq. 4.2) 

where 𝐴𝐴 is the OD matrix, 𝑊𝑊 is called stain color appearance matrix, which contains 
the molar extinction coefficients and 𝐻𝐻 is the stain density map or concentration 
map which contains the molar concentration values. Both matrices cannot assume 
negative values due to their real physical significance. The stain color appearance 
matrix 𝑊𝑊 ∈ ℝ𝑛𝑛×3, the stain density map 𝐻𝐻 ∈ ℝ𝑁𝑁×𝑛𝑛 and 𝑣𝑣 is the number of stains 
(e.g. in H&E stained images 𝑣𝑣 equals two). Of course, 𝐴𝐴 is the vectorized image 
converted in OD space, hence 𝐴𝐴 ∈ ℝ𝑁𝑁×3 [13]. In Figure 4.3, the structure of 
matrices 𝑊𝑊 and 𝐻𝐻 involved in the image decomposition in OD space is reported. 
 

 
Fig. 4.3 Structure of stain color appearance matrix (left) and stain density map (right) when the 
number of stains is equal to 2. 
 
The rows of matrix 𝑊𝑊 are also called stain vectors since each row contains the RGB 
triplet of a specific stain. These rows are normalized in order to obtain stain vectors 
with unit Euclidean norm to achieve the correct relative factor for each separate 
stain [14]. On the other hand, each column of matrix 𝐻𝐻 refers to the concentration 
of a specific stain, for all pixels in the image. 

In the color deconvolution technique, the first step is the conversion of 
grayscale intensity of the input image, for each channel (R, G or B), into OD space 
using the following equation: 

𝐴𝐴(: ,𝑠𝑠) = − log10 �
𝐼𝐼(: ,𝑠𝑠)
𝐼𝐼0

� ,        𝑠𝑠 = 1,2,3 (Eq. 4.3) 

Subsequently the problem is the estimation of the stain color appearance matrix 𝑊𝑊. 
In the literature, several state-of-the-art methods have been proposed with the 
purpose of estimating this matrix and they are discussed in detail in Chapter 5. The 
matrix 𝐻𝐻 can be computed through the inversion of matrix 𝑊𝑊 in the linear system 
of Eq. 4.2. If the number of stains is different from 3 (e.g. in H&E stained images 
the number of stains is 2), matrix 𝑊𝑊 results in a non-square matrix and for this 
reason a Moore-Penrose pseudoinverse must be computed or equivalently a third 
stain vector must be defined as the cross product of the first two rows (i.e. the first 
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and second stain vector) [16]. The mathematical expression of matrix 𝐻𝐻 is obtained 
as follows: 

𝐴𝐴𝑇𝑇 = 𝑊𝑊𝑇𝑇 ∙ 𝐻𝐻𝑇𝑇 
𝐻𝐻𝑇𝑇 = (𝑊𝑊𝑇𝑇)−1 ∙ 𝐴𝐴𝑇𝑇 

𝐻𝐻 = ((𝑊𝑊 ∙𝑊𝑊𝑇𝑇)−1 ∙ 𝑊𝑊 ∙ 𝐴𝐴𝑇𝑇)𝑇𝑇 
(Eq. 4.4) 

where the superscript 𝑇𝑇 denotes the transpose operator. The issue is that the linear 
system reported in Eq. 4.2 is unconstrained, hence 𝐻𝐻, in Eq. 4.4, can assume 
negative values but this is impossible due to its physical meaning (in the previous 
works these negative values were simply set to zero). In this thesis work a solution 
to this problem was proposed and discussed in Chapter 5. After estimating and 
computing respectively the two matrices 𝑊𝑊 and 𝐻𝐻, the input image is decomposed 
into two separate channels (if the number of stains is equal to 2) using the following 
equation: 

𝐴𝐴𝑗𝑗 = 𝐻𝐻(: , 𝑗𝑗) ∙ 𝑊𝑊(𝑗𝑗, : ),        𝑗𝑗 = 1,2 (Eq. 4.5) 

Finally, the separate channels in RGB color space are computed by inverting the 
BL law reported in Eq. 4.3 as: 

𝐼𝐼𝑗𝑗 = 𝐼𝐼0 ∙ 10−𝑉𝑉𝑗𝑗 ,        𝑗𝑗 = 1,2 (Eq. 4.6) 

In Figure 4.4 an example of color deconvolution technique applied to an H&E 
stained histological image is reported. On the first row (a-c) the original image and 
the two decomposed channels are shown; while on the second row, the 
concentration values of matrix 𝐻𝐻 are displayed with their corresponding colorbar. 
The stain density values are bounded below, as can be seen in the colorbar, since 
negative value for concentration are not physically allowed. 
 

 
Fig. 4.4 Example of color deconvolution technique: (a) input RGB H&E stained image; (b) first 
decomposed channel (i.e. cell nuclei); (c) second decomposed channel (i.e. cell stroma); (d-e) stain 
density map for hematoxylin and eosin respectively. 
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Color deconvolution is useful to convert multiple stained biological samples 

into images representing the individual stain concentrations (e.g. structures stained 
only with hematoxylin and structures stained only with eosin dye) in OD space 
since the absorbance (normalized to the optical path length) assumes a linear 
relationship with concentration under monochromatic conditions. However, the 
concentrations of multiple stains are not mutually exclusive since certain cell 
structures absorb both hematoxylin and eosin dye at some wavelengths. The 
problem of stain mixtures represents an open issue for this image decomposition 
technique [17]. Stain separation performed by color deconvolution is the basic for 
the more advanced strategy of stain normalization proposed in this thesis and 
described in the following chapters. 

4.3 Aim of the Thesis - Part II 

The aim of the work presented here is to develop and validate a set of multi-
tissue and multiscale automated solutions for the separation and normalization of 
histological stains in the field of medical imaging and more specifically in digital 
histopathology image analysis. 

In digital pathology, the diagnosis of histological images is based on the visual 
examination of small tissue portions under an optical microscope. Cellular 
structures, which are transparent to visible light wavelength, are make visible by 
using histological stains which bind selectively to specific biological structures and 
components within the tissue with the aim to create a relevant contrast. The 
reproducibility of histological specimens is affected by color intensity variation of 
stained images due to several factors: i) the concentration, the pH and the degree of 
deterioration of the staining dye, ii) the staining exposure time, iii) the ability of 
histology technician, iv) the illumination condition and v) the scanner 
specifications. 

The solution to this problem is the standardization of color appearance in digital 
pathology. This concept can be addressed through a stain normalization method 
which adapts the color intensity of histological images to a reference template, 
chosen by an expert pathologist, which presents optimal characteristics in terms of 
stain distribution, illuminant conditions and color intensity saturation. The aim of 
the stain normalization strategy is twofold: firstly the standardization of stain color 
appearance in digital pathology could improve the pathologist’s work in the 
diagnosis of biological diseases; secondly this method could be used as a pre-
processing step for subsequent computer-assisted diagnosis (CAD) systems for 
accurate cellular structure segmentation, classification and quantification of 
histological prognostic parameters. In this second part (Part II), two completely 
automated stain separation and normalization strategies, which were both 
quantitatively and qualitatively assessed and compared to other state-of-the-art 
methods in the same research field yielding promising results, are proposed. 

In Chapter 5, a novel image processing approach of stain separation and 
normalization for histological images stained with histochemical Hematoxylin and 
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Eosin (H&E), is proposed. The algorithm called SCAN (Stain Color Adaptive 
Normalization) consists in the development of segmentation and clustering 
strategies for cellular structures detection and standardizes the color of a 
histological image with respect to the stain color of a target image with a consequent 
increase of the contrast between tissue regions and background. In addition, the 
cellular structures of the original image are not distorted and preserved. 

In Chapter 6, an automated strategy for the estimation of stain color appearance 
matrix for immunohistochemical (IHC) staining dyes, is proposed and a stain 
normalization approach, applied to IHC stained histopathological images, is 
developed. The method is based on stain estimation using chromaticity plane and 
blue ratio image and the normalization is performed on stain channels, separately. 
Finally, the normalized image is reconstructed using a novel proposed mathematical 
technique named Inverse Color Deconvolution (ICD) and the unstained structures 
such as gland lumen and background are preserved. 

The conclusions and final remarks of this work are reported in the last section 
of the thesis. 
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Chapter 5 

Stain Separation and 
Normalization of Histological 
Images in Digital Pathology 

 
Part of this chapter has been published as: 
 
M. Salvi, N. Michielli and F. Molinari. "Stain Color Adaptive Normalization 
(SCAN) algorithm: Separation and standardization of histological stains in 
digital pathology." Computer Methods and Programs in Biomedicine 193 (2020): 
105506. 
 
  



79 
 

5.1 Introduction 

As discussed in Chapter 4, the diagnosis of histological and histopathological 
images is based on the visual examination of small tissue portions of under an 
optical microscope. Cellular structures, which are transparent to visible light 
wavelength, are make visible by using histological stains which bind selectively to 
specific biological structures and components within the tissue with the aim to 
create a relevant contrast. The pathologist analyzes optically scanned tissue glass 
slides to formulate a diagnosis and subsequently the oncologist prescribes a therapy 
accordingly. With the advent of digital pathology, tissue glass slides, with different 
magnifications, can be stored in a digital form and evaluated using advanced 
software solutions, with the advantage of speeding up the pathologist’s work and 
reducing errors due to the transit of physical slides in the traditional manual process. 

The analysis of histopathological images represents the gold standard for 
several kinds of human diseases including different types of cancer [1], [2]. In fact, 
the tumor aggressiveness, i.e. the rapidity of growth and spreading to other organs, 
is evaluated conventionally trough a standard scoring. Currently, the prostate cancer 
malignancy degree is evaluated via visual examination of stained microscope 
images and the cancer staging is performed according to the Gleason Score. Briefly, 
this system classifies the architecture of prostate glands into 5 Gleason Grade 
Groups, according to the recent guidelines from the 2014 International Society of 
Urological Pathology (ISUP) Consensus Conference on Gleason Grading of 
Prostatic Carcinoma [3]. 

A major issue in this process is that intra- and inter-operator variability may 
negatively affect the manual evaluation of histological images [4], [5]. To solve this 
problem, automated solutions for digital histopathology image analysis have been 
proposed with the aim to reduce the human variability and to make the pathologist’s 
work less time-consuming. In addition, the reproducibility of histological 
specimens is affected by color intensity variation of stained images due to several 
factors: i) the concentration, the pH and the degree of deterioration of the staining 
dye, ii) the staining exposure time, iii) the ability of histology technician, iv) the 
illumination condition and v) the scanner performances and specifications [6], [7]. 
The solution to this problem is the standardization of color appearance in digital 
pathology. In this context, emerges the stain normalization technique which adapts 
the color intensity of histological images to a reference template, chosen by an 
expert pathologist, which presents optimal characteristics in terms of stain 
distribution, illuminant conditions and color intensity saturation. The stain 
normalization strategy is based on the stain separation method described in detail 
in Chapter 4. 

In routine histology, the most commonly used staining procedure is based on 
Hematoxylin and Eosin (H&E) stain. Hematoxylin is a basic and positively charged 
dye which stains acid molecules such as nuclei of cells with a blue or purple color, 
while eosin is an anionic and acidic dye which stains with a pinkish color 
cytoplasmatic structures such as cell stroma [8]. In H&E stained digital images, the 
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stain separation method based on the mathematical technique called color 
deconvolution, as described in Chapter 4, decomposes the histological image into 
two separate channels: the first is the hematoxylin channel where cell nuclei are 
highlighted while the second one is the eosin channel where cell stroma is isolated 
[9]. The concept behind the stain normalization method is the adaptive color 
transfer between source image and target image. The source image is the original 
scanned image which presents a non-optimal stain color appearance; on the other 
hand, the target image is a reference image with uniform stain color distribution, 
selected by an expert pathologist. The stain normalization method tries to adapt the 
hematoxylin color of the source image to the color of the hematoxylin stained 
structures in the target image; the same process is repeated for the eosin channel. 

The aim of the stain normalization strategy is twofold: firstly the 
standardization of stain color appearance in digital pathology could improve the 
pathologist’s work in the diagnosis of biological diseases; secondly this method 
could be used as a pre-processing step for subsequent computer-assisted diagnosis 
(CAD) systems for accurate cellular structure segmentation and classification based 
on deep learning framework [1], [2], [10]. 

Several state-of-the-art methods have been proposed with the purpose of 
normalization of histological images stained with H&E, which is the most widely 
used staining technique. According to the strategy employed, these methods can be 
classified into three main classes: i) color deconvolution-based, ii) histogram 
transformation-based and iii) iterative optimization-based methods. Most of these 
methods exploited the decomposed matrices 𝑊𝑊 and 𝐻𝐻, which are called stain color 
appearance matrix and stain density map respectively, whose mathematical 
definition is reported in Chapter 4. 

In this chapter a novel image processing approach of stain separation and 
normalization for H&E stained histological images is proposed. The algorithm 
called Stain Color Adaptive Normalization (SCAN), standardizes the color of a 
histological image with respect to the stain color of a target image with a consequent 
increase of the contrast between tissue regions and background. In addition, the 
cellular structures of the original image are not distorted and preserved. In the 
following, a detailed description of the SCAN algorithm is reported. 

5.1.1 Color deconvolution-based methods 

Ruifrok et al. [9] were the first authors to propose a stain color image approach 
in histology. Their method is based on the assumption that histological images 
present an average stain color for hematoxylin and eosin with a very small variation 
from one image to another. Hence, they proposed a fixed value of matrix 𝑊𝑊 and the 
matrix 𝐻𝐻 was computed by inverting the following linear system: 

𝐴𝐴 = − log10 �
𝐼𝐼
𝐼𝐼0
� = 𝐻𝐻 ∙ 𝑊𝑊 (Eq. 5.1) 
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as discussed in Chapter 4. This was the first attempt to separate H&E stains using 
the mathematical basis of color deconvolution technique. This method is a non-
adaptive method and obtains low performances when the source image to be 
normalized presents a different stain color from the average RGB triplet set by the 
authors. In routine histology the stain color variation is a condition that is frequently 
repeated and represents a problem for this method. 

Macenko et al. [11] employed the principal component analysis (PCA) [12] in 
optical density (OD) space, where the relation between absorbance and stain 
concentration is linear. The idea is to project the OD triplets onto the plane 
identified by the singular value decomposition (SVD) directions corresponding to 
the two largest eigenvalues. The directions with angles (with respect to the first 
SVD direction) closer to robust extreme percentiles (e.g. 1st and 99th percentile) of 
whole angle distribution are retained and the final stain vectors are obtained 
converting back to the OD plane. The first advantage of this method is the adaptive 
estimation of matrix 𝑊𝑊, which is computed by exploiting the SVD-geodesic 
method in OD space, instead of determining stain vectors experimentally. The 
second advantage with respect to Ruifrok’s method [9] is that all the OD triplets 
with an intensity value less than a fixed threshold 𝛽𝛽 (in the original manuscript 
𝛽𝛽=0.15) were removed; thus, with this gimmick, all white values corresponding to 
unstained regions in the histological image (e.g. gland lumen, background, etc.) are 
removed from the estimation of matrix 𝑊𝑊. In practice, this choice can be too 
selective and in presence of non-uniform illuminant conditions, the stain estimation 
may be negatively affected. 

Khan et al. [13] employed a stain color descriptor (SCD) based on a supervised 
method and exploited the advantages of color deconvolution technique using a 
nonlinear mapping between source and target image. Their work consists of a 
classification framework based on a training set of quantized histograms. They 
introduced a SCD useful to estimate stain concentrations and relevance vector 
machine (RVM) [14] is used to classify stain color. The normalization of the source 
image with respect to target image is performed using spline-based nonlinear 
functions. The big limitation of this approach is the high computational time to 
perform image normalization. 

5.1.2 Histogram transformation-based methods 

Reinhard et al. [15] proposed a method of color transfer based on the 
computation of image statistics (i.e. mean and standard deviation) of the source 
image and target image in 𝑙𝑙𝛼𝛼𝛽𝛽 color space [16]. This method, differently from the 
previous strategies based on color devolution, performs a stain normalization 
without the initial step of stain estimation (i.e. computation of matrix 𝑊𝑊). The color 
correction of the source image was performed using the following expression for 
each of the three channels in 𝑙𝑙𝛼𝛼𝛽𝛽 color space. 
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𝐼𝐼𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 = �𝐼𝐼𝑗𝑗𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑝𝑝𝑑𝑑 − 𝜇𝜇𝑗𝑗𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑝𝑝𝑑𝑑� ∙ �
𝜎𝜎𝑗𝑗
𝑑𝑑𝑑𝑑𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑

𝜎𝜎𝑗𝑗𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑝𝑝𝑑𝑑
� + 𝜇𝜇𝑗𝑗

𝑑𝑑𝑑𝑑𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑,     𝑗𝑗 = 1,2,3 (Eq. 5.2) 

where the notations 𝜇𝜇 and 𝜎𝜎 denote mean and standard deviation of each channel, 
respectively. Finally, the normalized image in the original RGB space, was obtained 
by performing a 𝑙𝑙𝛼𝛼𝛽𝛽-RGB conversion of each channel computed with Eq. 5.2. The 
limitations of this method are that the contrast after the normalization is not 
increased and stain colors in 𝑙𝑙𝛼𝛼𝛽𝛽 color space are not optimally separated as in OD 
space. In addition, the color matching, based on the computation of basic statistics 
such as a single mean and standard deviation, performs correctly only when the 
pixel distribution is unimodal, but this is not true in histological image analysis due 
to stain color variability. As a result, the unstained regions of the source image (i.e. 
where the absorbance is zero) assume an incorrect stain color in the normalized 
image and a low-pass filter effect is caused. 

5.1.3 Iterative optimization-based methods 

Rabinovich et al. [17] compared two unsupervised methods for stain 
normalization. The first is based on independent component analysis (ICA) [18] 
while the second strategy employed the algorithm of non-negative matrix 
factorization (NMF) [19]. ICA is a computational strategy used to separate 
multivariate data into independent components assuming that there is a mutual 
statistical independence of signal sources (i.e. stain vectors for this purpose). In 
histological image analysis, this means that each dye binds tissue components 
irrespective of all the other dyes, which is wrong. On the other hand, NMF is a more 
interesting strategy for this purpose, since it is a factorization technique which 
decomposes the original OD image into the product of two non-negative matrices 
(i.e.  the stain color appearance and the stain density map). In the work of 
Rabinovich et al. [17], NMF strategy obtained better performances than ICA, in 
terms of relative percent error between the estimate and the ground truth, applied 
to histological images derived from human biopsies. The NMF strategy consists of 
the minimization of the following error norm in terms of matrices 𝑊𝑊 and 𝐻𝐻, by 
solving a constrained problem: 

𝑓𝑓(𝑊𝑊,𝐻𝐻) =
1
2
‖𝐴𝐴 − 𝐻𝐻 ∙ 𝑊𝑊‖𝐹𝐹2        𝑠𝑠𝑘𝑘𝑐𝑐ℎ 𝑘𝑘ℎ𝑣𝑣𝑘𝑘      𝑊𝑊,𝐻𝐻 ≥ 0 (Eq. 5.3) 

The definition of the matrices involved in this expression are the same reported in 
Chapter 4, while the subscript 𝑀𝑀 denotes the Frobenius error norm between the OD 
image 𝐴𝐴 and its low rank approximation (i.e. the product 𝐻𝐻 ∙ 𝑊𝑊). The advantage of 
this method is to find a solution of a constrained problem: in fact, the non-negative 
constraint is useful to obtain physically interpreted values for stain color and stain 
concentration which cannot assume negative values (i.e. negative color or 
concentration makes no physical sense). The cost function in Eq. 5.3 is not convex 
in both input variables but only in 𝑊𝑊 or 𝐻𝐻, separately. Therefore, closed-form 
solutions to find a global minimum are not available, thus numerical iterative 
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optimization algorithms were proposed to find local minima. The most used are the 
alternating least squares and the multiplicative update algorithm [20]. In these 
algorithms, the initialization of unknown matrices is performed by using non-
negative random values for matrices 𝑊𝑊 and 𝐻𝐻, and after a certain number of 
iterations the convergence is proved [19]. 

Vahadane et al. [21], in their work added a sparseness term in the NMF cost 
function reported in Eq. 5.3 for the regularization of the stain density map 𝐻𝐻, to 
reduce the solution space. For this reason, this method is called sparse non-negative 
matrix factorization (SNMF). In addition, they required, in their optimization 
method, stain vectors in the stain color appearance matrix 𝑊𝑊 had unit Euclidean 
norm, in order to obtain a correct balance for each separate stain [9]. The principal 
advantage of this method is that using the new cost function, the performances of 
stain normalization and the correctness of the estimate of stain colors are superior 
than the standard NMF algorithm proposed by Rabinovich et al [17]. In addition, 
cellular structures of the original image are preserved and not distorted after the 
normalization. Nevertheless, the problem of local minima remains, and numerical 
solutions were forced for this purpose. 

Finally, Zheng et al. [22] introduced a novel adaptive color deconvolution 
(ACD) strategy for stain normalization of H&E stained slides. An integrated 
optimization method was employed to find optimal stain vectors by minimizing an 
objective function which is a linear combination of three terms: the first term 
minimizes the residual of the stain separation, the second controls the ratio of 
hematoxylin and eosin proportion in the image and finally the third one controls the 
overall energy of stains. The normalization is obtained by recombining the solution 
matrices which minimize the objective function with the target stain color 
appearance matrix. The shortcoming of this method is the estimate of stain 
separation matrices which is not robust; indeed, the quantitative metric employed 
to validate their work is not robust, as argued in the discussion section of this 
chapter. 

5.2 Materials and Methods 

In this section, a detailed description of the SCAN (Stain Color Adaptive 
Normalization) algorithm is reported. The proposed technique is a fully automated 
method which performs stain separation and normalization of histological and 
histopathological H&E stained tissue slides. This method from one side belongs to 
color deconvolution-based approaches but from another side is an iterative adaptive 
refinement which tries to estimate the optimal color appearance and for this reason 
can also be referred to iterative optimization-based approaches. The flowchart of 
the proposed strategy is reported in Figure 5.1. 

The method is composed of four main modules: i) white detection and 
preliminary stain separation, ii) cellular structures segmentation, iii) final stain 
separation and iv) image normalization. The proposed strategy is an adaptive 
refinement of the SVD-geodesic method proposed by Macenko et al. [11] with an 
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additional pre-processing step useful for unstained regions. This refinement 
consists of an accurate detection of hematoxylin nuclei and eosin stroma regions in 
order to compute stain vectors; in addition, a novel strategy for stain density map 
estimation is proposed. Finally, the input matrices 𝑊𝑊 and 𝐻𝐻 of the original image 
are adapted to target information and the OD image is converted back in RGB space 
with a result of stain normalization. 
 

 
Fig. 5.1 Graphical representation of SCAN algorithm: (a) original image and white mask (in blue); 
(b) preliminary stain separation based on SVD-geodesic approach; (c) cellular structures 
segmentation (cell nuclei in green and stroma in yellow); (d) final stain separation; (e) stain 
normalization of the original image with respect to target image. 
 

The automated method was tested on a multiscale and multi-tissue image 
dataset which consists of 270 optically scanned H&E stained histological images 
acquired with Aperio Scanscope (Leica Biosystems). Each digital slide is a RGB 
image with a size of 1024×2048 pixels. The same input size for all images was only 
used to standardize the procedure, but the image input dimension is not relevant for 
the processing. The histological sections were extracted from five different tissues 
(adrenal gland, breast, colon, liver and prostate), scanned at three magnifications 
(10×, 20× and 40×) and stained with H&E staining method, as described in Chapter 
4. The overall dataset distribution is listed in Table 5.1. In addition, five template 
histological slides, one for each tissue were selected by an expert pathologist as 
target images. The target image is a reference image with an optimal and 
reproducible staining distribution (i.e. with a quasi-unimodal distribution of 
concentration for each stain), with a homogeneous illuminant condition and which 
has stain intensities as expected by the clinician. 
 
Table. 5.1 Image dataset composition. 

Tissue Magnifications # Images 
Adrenal gland 10× 20×  50 
Breast 10× 20×  50 
Colon  20× 40× 40 
Liver 10× 20× 40× 60 
Prostate 10× 20×  70 
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5.2.1 Preliminary stain separation 

The first step of the proposed algorithm is the detection of unstained regions 
(e.g. background, gland lumen, etc.) which assume white colors in the original RGB 
image since the light has passed through without absorption. A white detection 
strategy is proposed since a simple thresholding used in the work of Macenko et al. 
[11] is not enough in the presence of non-uniform illuminant conditions or image 
artifacts. Therefore, the input image is convolved with a 2D Gabor function, 
expressed as the product of a Gaussian and a cosine function: 

𝐸𝐸𝜆𝜆,𝜋𝜋,𝜑𝜑,𝜎𝜎,𝛾𝛾(𝑥𝑥,𝐸𝐸) = 𝑠𝑠−�
𝑥𝑥′2 + 𝛾𝛾2𝑦𝑦′2

2𝜎𝜎2 � ∙ cos�2𝜋𝜋
𝑥𝑥′

𝜆𝜆
+ 𝜑𝜑� 

𝑥𝑥′ = 𝑥𝑥 cos 𝜃𝜃 + 𝐸𝐸 sin 𝜃𝜃 ;     𝐸𝐸′ = −𝑥𝑥 sin𝜃𝜃 + 𝐸𝐸 cos𝜃𝜃 

(Eq. 5.4) 

where 𝛾𝛾 is the spatial aspect ratio which denotes the kernel ellipticity, 𝜎𝜎 is the 
standard deviation of the Gaussian term (i.e. the kernel width), 𝜆𝜆 and 𝜑𝜑 are the 
wavelength and the phase offset of the cosine term respectively and 𝜃𝜃 denotes the 
normal orientation to the parallel stripes of the Gabor function [23]. In this work 
the following values for Gabor parameters were set: 𝛾𝛾 = 1.2, 𝜎𝜎 = 1, 𝜆𝜆 = 10, 𝜑𝜑 = 0 
and 8 directions (𝜃𝜃) between 0 and 360 degrees were considered. Finally, each 
filtered image (one for each orientation) was segmented using a threshold of 90% 
of the image maximum intensity to obtain the background mask; all these masks 
were combined using a logical union. An example of white detection applied to 
histological image is reported in Figure 5.2 (a). 

The detection of white regions is useful for the subsequent preliminary stain 
estimation based on the SVD-geodesic method prosed by Macenko et al. [11]. The 
stain color appearance matrix 𝑊𝑊 was estimated using this strategy with an 
additional pre-processing step of removal from the analysis all white regions 
detected using the previous white detection. Then a color deconvolution was 
applied to sperate hematoxylin and eosin channel, as shown in Figure 5.2 (b-c). 
 

 
Fig. 5.2 (a) White detection mask (in blue). Preliminary stain separation of hematoxylin channel (b) 
and eosin channel (c) using SVD-geodesic method. 
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5.2.2 Cellular structures segmentation 

The following step of SCAN algorithm is based on cellular structures 
segmentation with the aim to estimate optimal stain color of hematoxylin stained 
nuclei and eosin stained stroma. Two different image processing techniques were 
applied for cell nuclei and stroma detection. Firstly, the hematoxylin density map 
was normalized by employing min-max scaling and filtered using a lowpass Wiener 
filter in order to smooth high concentration values. Wiener filter applied to image 
processing is an adaptive noise-removal 2D filtering which uses pixel 
neighborhoods to estimate the local image mean and variance [24]. Subsequently, 
an improved version of Multiscale Adaptive Nuclei Analysis (MANA) algorithm 
[25] was developed for nuclei segmentation. Firstly, the probability mass function 
(PMF) was estimated by normalizing the whole image histogram and its weighted 
variance 𝜎𝜎2 was computed. Then, several thresholds between 0 and 256 with a step 
of 2 (i.e. 129 overall values) were set and the following energy function was 
computed for each threshold 𝑇𝑇: 

𝐸𝐸(𝑇𝑇) = −𝜎𝜎2 ∙ log(𝜎𝜎2)  +  𝑝𝑝02(𝑇𝑇) ∙ 𝜎𝜎02(𝑇𝑇) ∙ log�𝜎𝜎02(𝑇𝑇)�  
               + 𝑝𝑝12(𝑇𝑇) ∙ 𝜎𝜎12(𝑇𝑇) ∙ log(𝜎𝜎12(𝑇𝑇)) 

(Eq. 5.5) 

where 𝑝𝑝0 is the cumulative distribution function for each threshold value, 𝑝𝑝1 is the 
probability of complementary event. Hence, 𝑝𝑝0 represents the probability of having 
background with low absorption, while 𝑝𝑝1 is related to nuclei distribution. The 
weighted variances of PMF for each threshold are denoted as 𝜎𝜎02 and 𝜎𝜎12 
respectively. Finally, Wiener filtered image was segmented using an optimal 
threshold which minimized the energy function in Eq. 5.5. Subsequently, the 
hematoxylin density map was subtracted from the eosin density map and the 
difference, after fixing any negative values to zero, is fed to a fast k-means 
clustering algorithm which classified grayscale image intensity into 2 classes (k=2) 
and stroma mask was defined as the cluster with highest mean intensity. The 
algorithm was initialized with pixels which had the lowest and the highest intensity 
in the image obtained as difference. The use of histogram intensity values instead 
of raw image data during the clustering process reduced the computational time. 
The result of cellular structures segmentation is reported in Figure 5.3. 

 
Fig. 5.3 Cellular structures segmentation: hematoxylin nuclei detection (in green, on the left) and 
eosin stroma detection (in yellow, on the right). 
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5.2.3 Final stain separation 

After having segmented nuclei and stroma regions, a median value of RGB 
color intensity was computed and converted into OD space, using Eq. 5.1. The final 
stain color appearance matrix 𝑊𝑊 was estimated by employing an iterative algorithm 
which compared at each iteration the previous and the current values of stain 
vectors. When the Euclidean norm of the difference between two successive 
estimates of stain vectors was less than 0.10, then the iteration stopped. The new 
stain color appearance matrix 𝑊𝑊 was normalized so that each row (i.e. stain vector) 
had unit Euclidean norm [9]. A new strategy for stain density map 𝐻𝐻 was proposed 
in this thesis work. Several state-of-the-art methods [9], [11], [13] derived this 
matrix by solving the linear system with a Moore-Penrose pseudoinverse 
computation [26]: 

𝐻𝐻 = ((𝑊𝑊 ∙𝑊𝑊𝑇𝑇)−1 ∙ 𝑊𝑊 ∙ 𝐴𝐴𝑇𝑇)𝑇𝑇 (Eq. 5.6) 

The issue is that the linear system is unconstrained, hence 𝐻𝐻, using the numerical 
inversion, can assume negative values but this is impossible due to its physical 
meaning. This problem was solved by computing matrix 𝐻𝐻 using its physical 
definition of concentration map in OD space. Therefore, the first column 𝐻𝐻(: ,1) 
was computed as the median value of the ratio between hematoxylin triplets and 
first stain vector 𝑊𝑊(1, : ). The same process was carried out for the second column 
𝐻𝐻(: ,2) in order to obtain eosin concentration values [27]. 
 

 
Fig. 5.4 Stain density maps using the new strategy for nuclei (a) and stroma (b) are shown in the 
first row. In the second row final stain separation is reported for 1st channel (c) and 2nd channel (d). 
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Finally, a color deconvolution was performed using new stain color appearance 
matrix 𝑊𝑊 and stain density map 𝐻𝐻, as shown in Figure 5.4. 

5.2.4 Stain normalization 

The last step of SCAN method is the stain normalization process. The 
computation of matrices 𝑊𝑊 and 𝐻𝐻, as described in the previous sections, was 
repeated, in the same way, for an input image (also called source image) and a 
reference image (also called target image) chosen by an expert pathologist. The 
source image was normalized using the information extracted from the target image 
using the mathematical procedure described in the work of Vahadane et al. [21]. 
The stain density map of the source image 𝐻𝐻𝑠𝑠 which contained the concentration 
values of each stain for all pixels, was normalized in order to obtain the same 
dynamic range of stain density map of the target image 𝐻𝐻𝑑𝑑. The dynamic range was 
estimated as the robust pseudo maximum (i.e. 99th percentile) of 𝐻𝐻𝑠𝑠 and 𝐻𝐻𝑑𝑑 
distribution; the scaling procedure for the minimum is unnecessary since the lowest 
limit for stain density map is zero (with the new strategy proposed in this thesis 
work), which means no absorption. From a mathematical point of view, the 
definition of the scaled version of stain density map of the source image (defined 
as 𝐻𝐻𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠) is: 

𝐻𝐻𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(: , 𝑗𝑗) = 𝐻𝐻𝑠𝑠(: , 𝑗𝑗) ∙
𝐻𝐻𝑑𝑑𝑚𝑚𝑚𝑚(𝑗𝑗)
𝐻𝐻𝑠𝑠𝑚𝑚𝑚𝑚(𝑗𝑗)

,         𝑗𝑗 = 1,2 (Eq. 5.7) 

where the superscript 𝑅𝑅𝑅𝑅 is the robust maximum (i.e. 99th percentile) of each 
column (1st column: hematoxylin concentration; 2nd column: eosin concentration). 
Then, 𝐻𝐻𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 was combined with the stain color appearance matrix of the target 
image 𝑊𝑊𝑑𝑑 instead of that of the source image, and by converting back in the original 
RGB color space, the final normalized image was obtained as: 

𝐼𝐼𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 = 𝐼𝐼0 ∙ 10−(𝐻𝐻𝑠𝑠𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∙𝑊𝑊𝑡𝑡) (Eq. 5.8) 

where the incident light intensity 𝐼𝐼0 was set to 255 for images with a dynamic range 
of 8 bits. The final result of stain normalization performed by SCAN algorithm is 
reported in Figure 5.5. After applying SCAN algorithm, the intensity distribution 
of the normalized image, for each of the 3 RGB channels, resembles more closely 
the color distribution of the target image; in addition, the cellular structures within 
the tissue of the source image are preserved and not distorted in the normalized 
image. 
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Fig. 5.5 Stain normalization of a H&E stained tissue slide: source image (left), target image (center) 
and normalized image performed by SCAN algorithm (right). The digital RGB images are reported 
in the first row, while the normalized histogram intensity distributions (i.e. probability density 
functions) for each of the R, G, B color channels, are shown in the second row. 

5.3 Experiments and Results 

The SCAN algorithm was developed and implemented in MATLAB 
environment (MATLAB, The MathWorks, Inc., Natick, MA, USA). The proposed 
approach was validated by computing several performance measures and compared 
with several state-of-the-art methods [9], [11], [13], [15], [17], [21], [22] in the 
same research application, as described in Chapter 5.1. The ground truth stain 
vectors for the source and target image were generated with a manual procedure 
performed by an expert pathologist (with 20 years of experience). For each source 
and target image, the manual operator selected at least 100 points in tissue regions 
which belonged to nuclei and stroma portions, in order to find a robust ground truth 
stain color appearance estimation. The manual points were carefully annotated in 
the areas where presumably only one stain bound to cellular structures. For the 
validation procedure five optimal template histological slides, one for each tissue 
(adrenal gland, breast, colon, liver and prostate) were selected by the expert as target 
images. Then, the following relative Square Error (rSE) was employed: 

𝑣𝑣𝑅𝑅𝐸𝐸 =
‖(𝑊𝑊 −𝑊𝑊𝐺𝐺𝑇𝑇)𝑇𝑇 ∙ (𝑊𝑊−𝑊𝑊𝐺𝐺𝑇𝑇)‖

�‖𝑊𝑊𝑇𝑇 ∙ 𝑊𝑊‖ ∙ ‖𝑊𝑊𝐺𝐺𝑇𝑇
𝑇𝑇 ∙ 𝑊𝑊𝐺𝐺𝑇𝑇‖

 (Eq. 5.9) 

where ‖∙‖ is the matrix trace, 𝑊𝑊 represents the stain color appearance matrix 
estimated by SCAN algorithm and 𝑊𝑊𝐺𝐺𝑇𝑇 is the ground truth stain color matrix 
computed on the tissue areas manually identified by the expert pathologist [21]. If 
the ground truth matrix and the estimate are equal, this error is zero, which means, 
of course, perfect estimation. According to the mathematical relation between 
matrix trace and Frobenius norm, this error can also be expressed in the following 
percentage form: 
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𝑣𝑣𝑅𝑅𝐸𝐸(%) =
‖𝑊𝑊 −𝑊𝑊𝐺𝐺𝑇𝑇‖𝐹𝐹2

‖𝑊𝑊‖𝐹𝐹 ∙ ‖𝑊𝑊𝐺𝐺𝑇𝑇‖𝐹𝐹
∙ 100 (Eq. 5.10) 

This error quantitively assesses the capacity of an automated method to estimate 
correct stain vectors. If only the first/second row of 𝑊𝑊 matrix was considered, the 
Frobenius norm reduced to vector Euclidean norm and the estimation of 
hematoxylin/eosin stain color could be evaluated individually. More specifically, if 
unit norm was applied to 𝑊𝑊 matrix estimation, the denominator of rSE was equal 
to two. The performance measures were computed both for the validation of stain 
separation and stain normalization process. To the best of our knowledge, this was 
the first published work which attempted to quantitively assess not only the 
normalization technique but also the previous stain estimation strategy, which can 
be considered a necessary step for a correct color deconvolution of histological 
channels. In addition, in this thesis work we tried to compare other performance 
measures in order to find the most robust one. 

5.3.1 Stain separation performance 

The first metric to validate stain separation performance was the rSE reported 
in Eq. 5.10. For this purpose, 𝑊𝑊 was the stain color appearance matrix estimated 
by SCAN algorithm at the end of final stain separation and 𝑊𝑊𝐺𝐺𝑇𝑇 is the ground truth 
matrix for the source image (i.e. true stain colors manually selected by the expert). 
The rSE metric was computed for the whole matrix to evaluate global performances 
(𝑣𝑣𝑅𝑅𝐸𝐸 𝐸𝐸𝑙𝑙𝑐𝑐𝑏𝑏) and by considering the first/second column of matrix 𝑊𝑊 to evaluate the 
error for hematoxylin (𝑣𝑣𝑅𝑅𝐸𝐸 𝐻𝐻𝑠𝑠𝑚𝑚) and eosin (𝑣𝑣𝑅𝑅𝐸𝐸 𝐸𝐸𝑐𝑐𝑠𝑠) individually. The rSE for 
stain separation is denoted in the following figures as 𝑣𝑣𝑅𝑅𝐸𝐸𝑠𝑠𝑑𝑑𝑎𝑎(%). The results of 
rSE for the validation of stain separation methods were reported in Figure 5.6 for 
performance comparison at different magnifications and in Figure 5.7 for multi-
tissue evaluation. The methods proposed by Ruifrok et al. [9] and Zheng et al. [22] 
were excluded from the bar graphs due to their worst stain separation performances 
with respect to the other methods, in terms of rSE. 

Other measures to quantitively assess the performances of stain separation are 
proposed in this thesis. The first metric is the Frobenius norm of the error between 
the original source image and the reconstructed image after the color deconvolution 
technique, defined as follows: 

�𝐼𝐼 − 𝐼𝐼0 ∙ 10−(𝐻𝐻∙𝑊𝑊)�
𝐹𝐹
 (Eq. 5.11) 

Moreover, the histogram-based errors between the color intensity distribution of the 
original RGB image and the deconvolved channels, after the color deconvolution 
were computed. To quantify this error two statistics were defined: mode (i.e. the 
value at which the histogram takes its maximum value) and skewness (i.e. the 
normalized third central moment). The Euclidean norm of the error between the 
mode of each R, G, B color distribution of the original and decomposed image was 
computed and the same was done for the skewness parameter. The perceptual 
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contrast in 𝑙𝑙𝛼𝛼𝛽𝛽 color space was computed for both channels (i.e. hematoxylin and 
eosin) by using the following definition: 

𝐻𝐻𝑗𝑗 = ��∆𝑙𝑙𝑗𝑗�
2

+ �∆𝛼𝛼𝑗𝑗�
2

+ �∆𝛽𝛽𝑗𝑗�
2

,           𝑗𝑗 = 1,2 

∆𝑙𝑙𝑗𝑗 = 〈𝑙𝑙𝑗𝑗〉𝑛𝑛𝑏𝑏𝑗𝑗 − 〈𝑙𝑙𝑗𝑗〉𝑏𝑏𝑠𝑠;   ∆𝛼𝛼𝑗𝑗 = 〈𝛼𝛼𝑗𝑗〉𝑛𝑛𝑏𝑏𝑗𝑗 − 〈𝛼𝛼𝑗𝑗〉𝑏𝑏𝑠𝑠;   ∆𝛽𝛽𝑗𝑗 = 〈𝛽𝛽𝑗𝑗〉𝑛𝑛𝑏𝑏𝑗𝑗 − 〈𝛽𝛽𝑗𝑗〉𝑏𝑏𝑠𝑠 
(Eq. 5.12) 

where 〈∙〉 denotes the mean value and the superscripts 𝑐𝑐𝑏𝑏𝑗𝑗 and 𝑏𝑏𝐸𝐸 indicate the object 
(i.e. tissue) and background (i.e. unstained tissue) regions, respectively. The 
contrast was defined in 𝑙𝑙𝛼𝛼𝛽𝛽 color space since Euclidean distances between colors 
in this perceptually uniform space are related to the color difference perceived by a 
human observer [28]. Finally, the color separation error, defined as the mean 
difference of color intensity between the original image and the deconvolved 
channels (i.e. hematoxylin and eosin), was computed. In Figure 5.8, the results 
related to the previously described quantitative metrics are reported for the entire 
dataset. For all metrics reported in Figure 5.8, a lower value may be expected for 
correct stain separation process except for the perceptual contrast, which may be 
high in both channels for a better stain separation. 
 

 
Fig. 5.6 Quantitative comparison at different magnifications, between SCAN algorithm and other 
state-of-the-art methods in terms of global rSE (in blue), hematoxylin rSE (in purple) and eosin rSE 
(in pink) for stain separation. 
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Fig. 5.7 Quantitative multi-tissue comparison between SCAN algorithm and other state-of-the-art 
methods in terms of global rSE (in blue), hematoxylin rSE (in purple) and eosin rSE (in pink) for 
stain separation. 
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Fig. 5.8 Other quantitative measures of stain separation for the comparison between SCAN 
algorithm and other state-of-the-art methods. (a) Frobenius norm of the error between the original 
and reconstructed image. (b) Histogram-based errors: error for mode (in blue) and for skewness (in 
red). (c) Perceptual contrast in hematoxylin (in blue) and eosin (in red) channels. (d) Color 
separation error for hematoxylin (in blue) and eosin (in red). All bar graphs are reported with mean 
value and symmetrical error bars for standard deviation. 
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5.3.2 Stain normalization performance 

The stain normalization process was evaluated by using the same rSE definition 
reported in Eq. 5.10, changing the roles of the matrices involved. In the rSE 
definition for stain normalization, 𝑊𝑊 contained the stain colors computed on the 
manual points in the normalized image which corresponded to the manual points 
annotated by the expert pathologist in source image, since the structures were not 
distorted by SCAN method after the normalization. On the other hand, 𝑊𝑊𝐺𝐺𝑇𝑇 was the 
ground truth matrix for the target image (i.e. true stain colors manually selected by 
the expert on the target image). The rSE for stain normalization is denoted in the 
following figures as 𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%). As discussed in the previous section, the rSE 
can be computed on the entire stain color appearance matrix (𝑣𝑣𝑅𝑅𝐸𝐸 𝐸𝐸𝑙𝑙𝑐𝑐𝑏𝑏) or retaining 
only the first/second row, in order to compute the 𝑣𝑣𝑅𝑅𝐸𝐸 𝐻𝐻𝑠𝑠𝑚𝑚/𝑣𝑣𝑅𝑅𝐸𝐸 𝐸𝐸𝑐𝑐𝑠𝑠 respectively. 
The lower the error, the better the performance of the stain normalization method, 
since the normalized image assumes a stain color similar to that of target image 
(which is the aim of the standardization). The results for stain normalization are 
reported in Figure 5.9 for multiscale evaluation and in Figure 5.10 for multi-tissue 
comparison. The method proposed by Ruifrok et al. [9] was excluded from the bar 
graphs due to its worst stain separation performances. 

In the last few years, several measures for the evaluation of stain normalization 
have been proposed. The normalized median intensity (NMI) was used to 
quantitatively evaluate to constancy of the stain normalization. Its mathematical 
definition, reported in the work of Zheng et al. [22] is: 

𝑁𝑁𝑅𝑅𝐼𝐼 = 𝑅𝑅𝑠𝑠𝑑𝑑
𝑖𝑖∈𝐼𝐼

(𝑘𝑘𝑖𝑖)/𝑃𝑃95
𝑖𝑖∈𝐼𝐼

(𝑘𝑘𝑖𝑖) (Eq. 5.13) 

where 𝐼𝐼 is the image after the normalization process and 𝑘𝑘𝑖𝑖 denotes the mean value 
of the RGB triplet related to the 𝑖𝑖-th pixel. In the numerator there is a median value 
and, in the denominator, the 95th percentile. Typically, this value is not significant 
and the standard deviation (NMI SD) and the coefficient of variation (NMI CV) of 
the NMI values are computed. The lower the NMI SD and NMI CV, the more 
consistent the normalization process [22]. Structural similarity (SSIM) and 
quaternion SSIM (QSSIM) indices were proposed to evaluate the degradation of 
structural information. SSIM for a RGB image was computed as the mean of the 
SSIM of each grayscale R, G, B channel and its mathematical definition is derived 
in the work of Wang et al. [29]. QSSIM is a vectorial expansion of SSIM based on 
the quaternion theory, which tried to solve the problem of color cross correlation 
terms. QSSIM index measures the combination of image degradation in luminance 
and chrominance [30]. The histogram-based errors between the color intensity 
distribution of the normalized and target image were computed. To quantify this 
error two statistics were defined in the same way of stain separation: mode and 
skewness. The Euclidean norm of the error between the mode of each R, G, B color 
distribution of the normalized and target image was computed and the same was 
done for the skewness parameter.  Finally, using the same definition reported in Eq. 
5.12, the perceptual contrast between normalized tissue and background was 
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evaluated. The results are reported in Figure 5.11, where a low value of NMI SD, 
NMI CV and histogram-based errors may be expected for correct stain 
normalization process, while for the SSIM, QSSIM index and perceptual contrast, 
a high value corresponds to a better stain normalization. 

In addition to quantitative performance measures, a qualitative visual 
comparison was reported in Figure 5.12, between three state-of-the-art methods 
about stain normalization and the SCAN algorithm, with respect to the same target 
image for each tissue. The tree methods that obtained the lowest 𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%) were 
chosen for the comparison (i.e. Macenko et al. [11], Khan et al. [13] and Vahadane 
et al. [21]). 

Another most important aspect for the evaluation of an automated algorithm for 
stain normalization is the computational time. In Figure 5.13, a joint plot of 
𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%) vs average running time to process a single histological image, 
expressed in seconds, is reported for several state-of-the-art methods. SCAN 
algorithm employed around 4.5 seconds to estimate source and target stain vectors 
and to perform stain normalization of the source image with respect to the target. 
The processing was performed on a workstation with 16 GB of RAM, 2.5 GHz 
quad-core CPU and 64-bit version of Windows. 
 

 
Fig. 5.9 Quantitative comparison at different magnification, between SCAN algorithm and other 
state-of-the-art methods in terms of global rSE (in blue), hematoxylin rSE (in purple) and eosin rSE 
(in pink) for stain normalization. 
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Fig. 5.10 Quantitative multi-tissue comparison between SCAN algorithm and other state-of-the-art 
methods in terms of global rSE (in blue), hematoxylin rSE (in purple) and eosin rSE (in pink) for 
stain normalization. 
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Fig. 5.11 Other quantitative measures of stain normalization for the comparison between SCAN 
algorithm and other state-of-the-art methods. (a) Standard deviation (in blue) and coefficient of 
variation (in red) of NMI. (b) SSIM (in blue) and QSSIM (in red) index. (c) Histogram-based errors: 
error for mode (in blue) and for skewness (in red). (d) Perceptual contrast between normalized tissue 
and unstained regions. All bar graphs, except for the NMI (a), are reported with mean value and 
symmetrical error bars for standard deviation. 
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Fig. 5.12 Visual performance comparison between the proposed SCAN algorithm and other state-
of-the-art methods. First column shows the original images while the second column displays the 
target images. Normalization methods are reported from the third to the sixth column and SCAN 
algorithm is displayed in the last one. Orange boxes denote images with visual artifacts. 
 

 
Fig. 5.13 Joint plot of rSE for stain normalization (y-axis) and average running time (x-axis) to 
normalize a single RGB histological image, for different automated methods. 
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5.4 Discussion and Conclusion 

A novel fully automated stain separation and normalization approach for H&E 
stained histological slides was developed. The proposed algorithm, named SCAN, 
employed segmentation and clustering strategies for cellular structures detection. 
To the best of our knowledge, SCAN is the first method which employs cellular 
structures segmentation to estimate true stain colors of H&E for stain separation 
and successive stain normalization. In addition, a novel strategy for the computation 
of stain density matrix is proposed in this thesis work, with the aim of retaining the 
physical meaning of concentration map. 

The most commonly used staining method in routine histology is the 
histochemical H&E, which is a bichrome staining and allows the constituents of a 
cell (i.e. nuclei and stroma) to be differently highlighted. By observing the 
histological slide, the pathologist provides the diagnosis for the specific patient. 
However, diagnosis based on histological images is often influenced by the staining 
quality of the histological preparation. In cases where the quality of the staining is 
not satisfactory for the pathologist, an additional portion of the tissue will be 
sectioned and stained with a consequent loss of time and financial resources. The 
reproducibility of histological specimens is affected by color intensity variation of 
stained images due to several factors such as the staining concentration and 
exposure time, the ability of histology technician, the non-uniform slide thickness, 
and the scanner specifications. The solution to this problem is the standardization 
of color appearance in digital pathology. In this context, emerges a stain 
normalization method which adapts the color intensity of histological images to a 
reference template, chosen by an expert pathologist, which presents optimal 
characteristics in terms of stain distribution, illuminant conditions and color 
intensity saturation. In fact, after applying SCAN algorithm, the intensity 
distribution of the normalized image, for each of the 3 RGB channels, resembles 
more closely the color distribution of the target image, as shown in Figure 5.5. 

In this chapter, stain separation and normalization strategies are proposed with 
the aim of improving the performances with respect to other state-of-the-art 
approaches and preserving the unstained structures such as the lumen and the 
background. The proposed method was assessed on a multi-tissue (i.e. five different 
tissues were analyzed: adrenal gland, breast, colon, liver and prostate) and 
multiscale (i.e. at different magnifications) dataset and obtained better performance 
measures than other published methods. In literature, the stain estimation process 
is not validated but only the final stain normalization process was evaluated. To the 
best of our knowledge, this is the first work which attempted to quantitively assess 
not only the normalization technique but also the previous stain estimation strategy, 
which can be considered a necessary step for a correct color deconvolution of 
histological channels. 

The most robust performance metric employed in this work for the evaluation 
of stain separation is the relative square error (denoted as 𝑣𝑣𝑅𝑅𝐸𝐸𝑠𝑠𝑑𝑑𝑎𝑎(%)) which 
represents the error distance in OD space between the stain color appearance matrix 
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of original image after the statin estimation and the ground truth matrix computed 
on the manual coordinates annotated by an expert pathologist. SCAN method 
obtained a lower average value for all tissue and magnifications both for global and 
H&E channels except for the liver where the model of Khan et al. [13] showed a 
better value only for eosin, as reported in Figure 5.6 and 5.7. As reported in Figure 
5.8, for the other metrics proposed for stain separation, the NMF [17] and SNMF 
[21] methods obtained better performance in terms of Frobenius norm of the 
deconvolution error since these mathematical methods tried to minimize this metric 
in their optimization algorithm, while SCAN method tried to obtain better stain 
vectors in terms of perceptual contrast and color separation error. Moreover, the 
minimum solved by the NMF or SNMF method may be a local minimum. Only the 
method developed by Khan et al. [13] reported a slightly better value of the 
perceptual contrast than SCAN. On the other hand, SCAN algorithm outperformed 
all methods in terms of color separation error (both mean value and standard 
deviation) in H&E deconvolved channels since it adopted segmentation strategies 
to estimate stain vectors. 

For the evaluation of stain normalization performances, the most robust metric 
is the 𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%) since it quantifies the similarity between normalized and target 
image, which is the aim of stain color standardization. SCAN method exhibited 
excellent results since it obtained a better global 𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%) for all tissues and 
magnifications, as shown in Figure 5.9 and 5.10. The second best method was the 
SNMF strategy proposed by Vahadane et al. [21]. In Figure 5.11 other performance 
metrics proposed in literature were reported: the NMI measure, the SSIM and 
QSSIM index are intended only to measure the intensity degradation and no 
information of target color appearance is retained. Similarity measures are slightly 
lower for SCAN since we prefer preserving the white color of the unstained regions 
of the source image that were left unaltered in the normalized image rather than 
normalize them and create a blurring effect on the image. The histogram-based error 
metrics cannot be considered as robust measures due to their high variability. The 
perceptual contrast of the final normalized image is very similar to different 
methods except for Ruifrok et al. [9] which obtained a better value although it 
showed the worst values in the other performance metrics. Figure 5.13 shows a joint 
plot between the computational times and the relative square error, which is the 
most robust metric to quantitatively assess stain normalization, where SCAN hits 
the point at minimum distance from the origin. Hence, SCAN method is fast and 
accurate at the same time compared to other approaches. 

A qualitative visual comparison is also reported in Figure 5.12; the results show 
that SCAN method reported less image artifacts with respect to other techniques, 
due to the correct stain vector estimation and computation of stain density map with 
the proposed novel strategy. The SNMF method [21] stained cell nuclei in the 
normalized image of prostate tissue with a darker color with respect to target image. 

Finally, a visual comparison between SCAN method and SNMF was carried 
out on a whole-slide image (WSI), since in the original manuscript Vahadane et al. 
[21] also tested their method on a whole tissue section. The results reported in 
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Figure 5.14 are highly satisfactory: SCAN normalization on a WSI took 37 seconds 
vs 247 seconds of SNMF method. The big advantage of the proposed method is that 
all unstained regions were excluded from the analysis by using the white detection 
as a useful pre-processing step and this has a significant impact on computational 
times. 
 

 
Fig. 5.14 Comparison in WSI normalization: the original WSI image (a) was normalized with 
respect to target image (b) by SNMF strategy (c) and SCAN algorithm (d). 
 

The limitation of the proposed method is related to the preliminary stain 
estimation: if one of two stains is missing or poorly represented in the image, the 
method could fail since it is based on the SVD-geodesic method proposed by 
Macenko et al. [11]. In addition, the subsequent cellular structures segmentation 
could struggle to detect nuclei regions if the input image size is too small, e.g. for 
scanned tissue slides acquired at 2× magnification, the cell nuclei are not visible. In 
fact, in routine histology the magnification factor is typically higher than 10× [31]. 

In conclusion, the aim of the stain normalization strategy is twofold: firstly the 
standardization of stain color appearance in digital pathology could improve the 
pathologist’s work in the diagnosis of biological diseases, avoid manual re-staining 
process and reduce intra- and inter-operator variability; secondly this method could 
be used as a pre-processing step for subsequent CAD systems for accurate cellular 
structure segmentation [10] and classification [32] based on deep learning 
framework. In the last few years, deep learning has driven advances in the field of 
biomedical signal and medical image processing; in particular convolutional neural 
networks (CNNs) have obtained satisfactory results in image detection, 
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segmentation and classification tasks [33]. In this context, stain normalization 
strategy could standardize or adapt the WSI color intensity in order to improve the 
accuracy of a pre-trained CNN employed for cancer detection [34]. Our research 
group is currently working on the development of automated solutions based on 
deep learning approaches for image segmentation and classification and, for this 
purpose, the proposed SCAN algorithm can be involved in a future work. 
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6.1 Introduction 

As discussed in Chapter 4, two major types of staining methods in histology 
and histopathology are employed to make cell components visible, under a light 
microscope, in an excised tissue section for diagnosis purposes: histochemical and 
immunohistochemical staining [1]. Histochemistry refers to histological stains 
which bind selectively to cell constituents and highlight chemical features and the 
most widely used histochemical staining in routine histology is hematoxylin and 
eosin (H&E) as discussed in Chapter 5. 

On the other hand, immunohistochemistry (IHC) is an immunology-based 
method which employs tissue-based biomarkers (i.e. antibodies marked with 
specific reagents) for the localization of specific tissue components (generally these 
are proteins) that act as antigens. Thus, IHC technique is based on antigen-antibody 
interaction combined with enzymatic or fluorescent detection systems that make 
the reaction visible under a light microscope. The presence or absence of a certain 
antigen can be easily detected with this staining technique which allows to visualize 
its protein expression by means of autoradiography (i.e. the specimen itself is the 
source of the radiation) if the antibody is radioactively labeled, with a fluorescence 
microscope, if the antibody is labelled with fluorescent material or with an optical 
microscope if the antibody is conjugated to enzymes that cause a chemical reaction 
capable of pigmenting the cell which contains the antigen [2]. For this reason, 
pathologists select specific antibodies in order to identify cellular structures or 
elements that are associated with certain human diseases for diagnostic, prognostic, 
and therapeutic purposes. The tissue stains differently in the presence of cancer, 
inflammatory response, infections or autoimmune diseases. IHC staining is widely 
used in the diagnosis of cancerous tumors, especially for breast cancer [3]. 

In IHC, monoclonal antibodies, i.e. antibodies with an absolute specificity for 
a single epitope on the antigen molecules, are used. Ki-67 is a monoclonal antibody 
specific for KI-67 antigen, also called MKI67 (marker of proliferation Ki-67), 
which is observed in all stages of the cell-division cycle (G1, S, G2 and mitosis), 
except the quiescent phase G0 due to its short half-life [4]. The KI-67 antigen is a 
nuclear protein involved in cell proliferation, therefore it can be considered as a 
useful maker of the growth fraction of a given population of cells [5], [6]. 

However, the antigen must not be altered in its tertiary structure for the 
immunoreaction to take place, otherwise it may lose its ability to react with the 
antigen. Many tissue fixatives such as formaldehyde, as described in Chapter 4, 
alter this structure, with the result of masking the antigenic sites. For this reason, in 
the past, IHC reactions were carried out only on cryostat sections of frozen tissues. 
The advent of various expedients employed to recovery masked antigens through 
the breaking of the aldehyde bond on proteins has allowed the application of IHC 
techniques on paraffin-embedded tissue samples [7]. 

The IHC staining process consists of several steps with the result of an optically 
scanned tissue slide where proliferating cells, i.e. cells which have been marked by 
the antibody are highlighted with respect to the rest of the tissue. Firstly, all the 
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preliminary processes such as chemical fixation, dehydration, embedding in 
paraffin wax and section cutting are applied by the histology technician as described 
in Chapter 4; then antigen retrieval is performed due to alterations during chemical 
fixation and the primary monoclonal antibody specifically binds to the antigen of 
interest, with the antigen-antibody reaction. Then, a secondary antibody is 
necessary for carrying the label enzyme and a chromogen is applied to visualize the 
antigen of interest within the tissue. The enzyme molecules are necessary for the 
chromogen to produce the colorimetric reaction [8]. In IHC, the chromogen 
employed to stain proliferating cells is the 3,3′-Diaminobenzidine (DAB), which is 
a highly thermochemically stable polybenzimidazole that provides brown-colored 
staining [9]. Thus, to summarize, the monoclonal antibody on one side binds to the 
KI-67 antigen (i.e. biomarker of proliferating cells) and on the other hand binds to 
the chromogen DAB, which highlights the nuclei of proliferating cells in brown 
color, as graphically shown in Figure 6.1. In addition, in IHC staining, hematoxylin 
acts as a counterstain (i.e. is used as a dye for contrast) in order to visualize cell 
nuclei, which are not marked by the antibody, and overall tissue architecture (i.e. 
cell stroma and cytoplasmic structures) [10]. 
 

 
Fig. 6.1 Analytical steps of the IHC staining process: a primary monoclonal antibody binds to the 
target antigen (a); the secondary antibody which binds to the primary one carries the label enzyme 
(b); the chromogen (DAB) is applied to highlight the antibody/antigen complex (c). 
 
Subsequently, tissue sections are mounted on a glass slide and finally, the optically 
scanned digital images are analyzed by the pathologist which provides the 
diagnosis, and the oncologist prescribes therapy accordingly. 

Pathologists select specific antibodies (e.g. Ki-67 biomarker) in order to 
identify cellular structures or elements that are associated with certain human 
diseases for diagnostic, prognostic, and therapeutic purposes. The selection of the 
primary antibody has a significant impact on the staining result, with negative 
consequences to diagnostic specificity and sensitivity. The tissue stains differently 
in the presence of cancer, inflammatory response, infections, or autoimmune 
diseases. IHC staining is widely used in the diagnosis of cancerous tumors, 
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especially for breast cancer which is the most common form which affects 
especially women [11]. 

As discussed for H&E staining in Chapter 5, the histological tissue can take on 
different staining intensities depending on the concentration, the pH and the degree 
of deterioration of the staining dye, the staining exposure time, the ability of 
histology technician, the illumination condition and the scanner performances. The 
reproducibility of color appearance recurs in this context with a major impact for 
this pathologist’s diagnosis. An example of stain variability in digital IHC stained 
images is reported in Figure 6.2. 
 

 
Fig. 6.2 Staining variability of Ki-67 positive nuclei stained with DAB and hematoxylin used as 
counterstain. 
 

In this context, the concept of stain standardization becomes relevant for 
medical support, diagnosis improvement, to reduce both time loss and financial 
resources for re-staining and finally this method could be used as a pre-processing 
step for subsequent computer-assisted diagnosis (CAD) systems for the estimation 
of proliferation index (PI). PI is an important parameter used in histopathology, 
defined as the ratio between the number of cell nuclei which are marked with 
chromogen (i.e. the number of tumor nuclei) over the total number of nuclei within 
tissue. The higher the PI, the higher the number of cells which are subjected to cell 
division, which means a higher tumor aggressiveness; thus it represents a 
prognostic marker in cancer detection [12]. 

As evidenced in Chapter 5, the first step in a stain normalization framework is 
the stain separation based on the mathematical technique of color deconvolution. 
The first step consists in the estimation of matrices 𝑊𝑊 and 𝐻𝐻 involved in the 
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decomposition. The physical law employed for the conversion of a RGB image into 
optical density (OD) space is the Beer-Lamber (BL) law, defined as follows: 

𝐴𝐴 = − log10 �
𝐼𝐼
𝐼𝐼0
� = 𝐻𝐻 ∙ 𝑊𝑊 (Eq. 6.1) 

where 𝐼𝐼 and 𝐴𝐴 are the source image in RGB color space and OD space respectively, 
𝐼𝐼𝑛𝑛 is the incident light intensity (set to 255 for 8-bit images), and 𝑊𝑊 and 𝐻𝐻 are 
unknown matrices involved in the factorization. 𝑊𝑊 is the stain color appearance 
matrix which contains in each row a stain vector and 𝐻𝐻 is the stain density map 
which contains in each column the concentration of a specific stain for all pixels in 
the image. 

Several state-of-the-art methods have been proposed for the automated 
estimation of these two matrices especially for H&E stained slides, as discussed in 
Chapter 5. In histology, most of histochemical stains (e.g. hematoxylin and eosin) 
are light-absorbing, while this is not true in IHC. DAB and hematoxylin follow BL 
law at low concentration levels, while for high Ki-67 concentration, the term related 
to photonic light scattering becomes dominant [13]. Actually, there is always a 
combination of attenuation and photonic scattering inside the tissue. Absorbance 
only evaluates the ratio of transmitted over incident light intensity, as shown in Eq. 
6.1, not the mechanism by which light intensity decreases (i.e. pure absorption or 
scattering) [14]. 

To the best of our knowledge, no robust or fully validated methods have been 
employed for the stain normalization in IHC digital images. The most robust 
methods employed in H&E failed for IHC stain separation since polymers, such as 
DAB, do not obey to BL law for their scattering behavior. In this case, the stain 
estimation in OD space, as done in the work of Ruifrok et. al. [15], Macenko et al. 
[16], Vahadane et al. [17] and Zheng et al. [18] is not effective in separating IHC 
stains with the consequence that concentration maps contain incorrect values. Other 
authors [19] proposed to remove DAB stained regions from the analysis prior to 
color deconvolution in order to consider only light absorbing stains, but this cannot 
be considered a solution. 

In this chapter, an automated strategy for the estimation of stain color 
appearance matrix for DAB and hematoxylin is proposed and a novel stain 
normalization approach, applied to IHC stained histopathological images, is 
developed. 

6.2 Materials and Methods 

The proposed method for stain normalization of IHC stained digital 
histopathological images consists of two main steps: i) stain estimation and 
separation of channels related to chromogenic dyes used in IHC, i.e. DAB for nuclei 
of proliferating cells and hematoxylin as counterstaining; ii) stain normalization of 
separate channels and reconstruction of final normalized image by using a novel 
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proposed strategy called Inverse Color Deconvolution (ICD). A graphical flowchart 
of the proposed method is reported in Figure 6.3. 

The automated method was tested on a preliminary image dataset which 
consists of 94 optically scanned IHC stained histological images acquired with 
Aperio Scanscope (Leica Biosystems). Each digital slide is a RGB image with a 
size of 1088×1920 or 1128×2000 pixels; the image input dimension is not relevant 
for the processing. The histological sections belonged to breast cancer tissue, 
scanned at 20× and 40× magnification and stained with IHC staining method, using 
DAB for Ki-67 protein expression and hematoxylin as counterstain. The target or 
template image used for this study belongs to breast tissue, digitized with a 20× 
magnification and presents different DAB and hematoxylin stain hues and 
intensities with a better contrast for the quantification of PI; the choice was 
performed by an expert pathologist. 
 

 
Fig. 6.3 Flowchart of the proposed method: (a) original source (top row) and target image (central 
row); (b) DAB channel of the input (top row) and target image (central row) and normalized channel 
after stain normalization (bottom row); (c) Hematoxylin channel of the input (top row) and target 
image (central row) and normalized channel after stain normalization (bottom row); (d) final 
normalized image (bottom row) using Inverse Color Deconvolution. 

6.2.1 Stain estimation and separation 

The first step of the proposed method consists in the estimation of stain vectors 
for DAB stained nuclei and the rest of the tissue counterstained with hematoxylin. 
The SVD method in OD space, proposed by Macenko et al. [16], which was 
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employed in Chapter 5 for H&E stained histological images, cannot be used in this 
work, since IHC staining dyes not only absorb but also scatter light source, as 
previously described. Hence the separation of Ki-67 positive regions form 
hematoxylin stained tissue is the critical part of the pipeline. 

Firstly, the unstained regions (e.g. gland lumen, background, etc.) which 
assume white colors in the original RGB image since the light has passed through 
without absorption, were detected using the same strategy described in Chapter 5, 
based on 2D Gabor filter. Subsequently, the hue saturation intensity model is 
employed for the segmentation of DAB stained cellular structures and the blue ratio 
space is used for the detection of hematoxylin regions. The hue saturation intensity 
(HSI) model has the advantage of decomposing red, green, and blue colors into 
intensity, which refers to the optical energy absorbed and the chromaticity, which 
is dependent on light color. The chromaticity, in turn, can be expressed as hue and 
saturation in a new coordinate system 𝑐𝑐𝑥𝑥𝑐𝑐𝑦𝑦 [20]. In this work, we employed the 
chromaticity layer 𝑐𝑐𝑥𝑥, from the HSI model, for the detection of DAB stained nuclei 
for their red component which is higher with respect to that of hematoxylin dye. 
The mathematical expression of 𝑐𝑐𝑥𝑥 layer is reported here: 

𝑐𝑐𝑥𝑥 =
3 ∙ 𝐼𝐼𝑚𝑚

𝐼𝐼𝑚𝑚 + 𝐼𝐼𝐺𝐺 + 𝐼𝐼𝐵𝐵
− 1 (Eq. 6.2) 

where 𝐼𝐼𝑚𝑚, 𝐼𝐼𝐺𝐺  and 𝐼𝐼𝐵𝐵 are the original image intensities in red, green, and blue channel, 
respectively. Higher values of this layer refer to DAB cell nuclei. The segmentation 
was obtained by using the nonparametric Otsu’s method which allows to select an 
automatic threshold that maximizes inter-class variance (or equivalently minimizes 
the intra-class variance) in a bimodal gray-level histogram [21]. 

For the detection of hematoxylin healthy nuclei and the rest of the tissue stained 
with hematoxylin, the original RGB image was converted into blue ratio (BR) 
image [22], using the following expression: 

𝐵𝐵𝑅𝑅 =
100 ∙ 𝐼𝐼𝐵𝐵

(1 + 𝐼𝐼𝑚𝑚 + 𝐼𝐼𝐺𝐺) ∙ (1 + 𝐼𝐼𝑚𝑚 + 𝐼𝐼𝐺𝐺 + 𝐼𝐼𝐵𝐵) (Eq. 6.3) 

where 𝐼𝐼𝑚𝑚, 𝐼𝐼𝐺𝐺  and 𝐼𝐼𝐵𝐵 are the original image intensities in red, green, and blue channel, 
respectively. Higher values of BR image refer to hematoxylin stained areas and the 
segmentation was performed using Otsu’s method after removing white unstained 
regions. The results of the detection of DAB and hematoxylin areas is reported in 
Figure 6.4. In addition, a preliminary check was implemented to detect if cell nuclei 
stained with DAB were present in the image; in the negative case, the normalization 
was not performed. 

After having segmented proliferating cell nuclear regions and counterstained 
tissue regions, a median value of color intensity was computed and the final stain 
color appearance matrix 𝑊𝑊 was estimated. This matrix was normalized so that each 
row (i.e. stain vector) had unit Euclidean norm [15]. The stain density map 𝐻𝐻 was 
estimated using the new strategy proposed in Chapter 5 with the aim to maintain 
physical meaning of concertation values. Therefore, the first column 𝐻𝐻(: ,1) was 
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computed as the median value of the ratio between DAB triplets and first stain 
vector 𝑊𝑊(1, : ). The same process was performed for the second column 𝐻𝐻(: ,2) in 
order to obtain hematoxylin concentration values [23]. Finally, a color 
deconvolution was performed to separate DAB and hematoxylin channels, using 
the following expression, as described in Chapter 4: 

𝐼𝐼𝑗𝑗 = 𝐼𝐼0 ∙ 10−[𝐻𝐻(:,𝑗𝑗)∙𝑊𝑊(𝑗𝑗,:)],        𝑗𝑗 = 1,2 (Eq. 6.4) 

where 𝑗𝑗=1 refers to DAB deconvolved channel and 𝑗𝑗=2 denotes the hematoxylin 
deconvolved channel. The deconvolved channels are reported in Figure 6.5. 
 

 
Fig. 6.4 Chromaticity layer (a) and blue ratio image (b) are shown in the first row. In the second 
row, segmentation masks of nuclei stained with DAB (c, in green) and hematoxylin regions (d, in 
yellow) are reported. 
 

 
Fig. 6.5 Original RGB image (a). Stain separation of DAB channel (b) and hematoxylin channel (c). 
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6.2.2 Inverse Color Deconvolution 

In this thesis work, a novel mathematical method for stain normalization of 
separate channels and subsequent reconstruction of the final RGB normalized 
image is proposed. This strategy performs color deconvolution in the opposite 
direction and for this reason is called Inverse Color Deconvolution (ICD). 

After having decomposed the original source image into two separate channels 
using Eq. 6.4, the same process was performed for target image, as reported in 
Figure 6.6, and the corresponding stain density maps were normalized as follows: 

𝐻𝐻𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 = 𝐻𝐻𝑗𝑗𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑝𝑝𝑑𝑑 ∙
𝑅𝑅𝑅𝑅�𝐻𝐻𝑗𝑗

𝑑𝑑𝑑𝑑𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑�
𝑅𝑅𝑅𝑅�𝐻𝐻𝑗𝑗𝑠𝑠𝑛𝑛𝑢𝑢𝑛𝑛𝑝𝑝𝑑𝑑�

,        𝑗𝑗 = 1,2 (Eq. 6.5) 

where the term 𝑅𝑅𝑅𝑅(∙) is the robust maximum (i.e. the 99th percentile). This 
expression is useful to adapt the dynamic range of stain density map of the source 
image with respect to that of target image for each channel individually. 
 

 
Fig. 6.6 Target RGB image (a). Stain separation of DAB channel (b) and hematoxylin channel (c). 
 
Subsequently, the normalized image for each channel was computed using the 
following definition: 

𝐼𝐼𝑗𝑗𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 = 𝐼𝐼0 ∙ 10−�𝐻𝐻𝑗𝑗
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛∙𝑊𝑊𝑗𝑗

𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡�,         𝑗𝑗 = 1,2 (Eq. 6.6) 

where 𝑊𝑊1
𝑑𝑑𝑑𝑑𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑 and 𝑊𝑊2

𝑑𝑑𝑑𝑑𝑛𝑛𝑠𝑠𝑑𝑑𝑑𝑑 are the stain vectors of target image for DAB and 
hematoxylin dye, respectively. From these channels, new stain density maps were 
computed and merged in a new global matrix, denoted as 𝐻𝐻𝑛𝑛𝑑𝑑𝑛𝑛, which was used to 
reconstruct the final normalized image, in RGB color space, as follows: 

𝐼𝐼𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠 = 𝐼𝐼0 ∙ 10−�𝐻𝐻𝑛𝑛𝑡𝑡𝑛𝑛∙𝑊𝑊𝑡𝑡𝑡𝑡𝑛𝑛𝑡𝑡𝑡𝑡𝑡𝑡� (Eq. 6.7) 

The IHC channels that were normalized separately and the final RGB normalized 
image, reconstructed using ICD strategy, are reported in Figure 6.7. 
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Fig. 6.7 Normalized channel of positive cell nuclei stained with DAB (a) and areas stained with 
hematoxylin (b). Final normalized image, in RGB color space, performed by ICD (c). 

6.3 Experiments and Results 

The stain estimation and the ICD strategy were developed and implemented in 
MATLAB environment (MATLAB, The MathWorks, Inc., Natick, MA, USA). The 
proposed approach was both quantitatively and qualitatively validated and 
compared with two state-of-the-art methods. Most of the methods discussed in 
Chapter 5 were based on the BL law for the stain separation with the hypothesis of 
pure absorbance. The crucial issue in IHC is that such dyes as DAB not only absorb 
but also scatter light source and for this reason these methods failed the estimation 
in IHC stained histopathological slides [19]. The histogram transformation-based 
method proposed by Reinhard et al. [24] and the stain color descriptor proposed by 
Khan et al. [25] were compared to ICD strategy. The first method is a color transfer 
based on the computation of image statistics (i.e. mean and standard deviation) of 
the source image and target image in 𝑙𝑙𝛼𝛼𝛽𝛽 color space, while the second one 
introduces a new color descriptor to estimate stain concentrations and relevance 
vector machine is used to classify stain color. The normalization of the source image 
with respect to target image is performed using spline-based nonlinear functions. 

The ground truth stain vectors for the source and target image were generated 
with a manual procedure performed by an expert pathologist (with 20 years of 
experience). For each source and target image, the manual operator selected at least 
100 points in tissue regions which belonged to DAB stained nuclei and hematoxylin 
tissue portions, in order to find a robust ground truth stain color appearance 
estimation. The manual points were carefully annotated in the areas where 
presumably only one stain bound to cellular structures. Then, the following relative 
Square Error (rSE) was employed: 

𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%) =
‖𝑊𝑊 −𝑊𝑊𝐺𝐺𝑇𝑇‖𝐹𝐹2

‖𝑊𝑊‖𝐹𝐹 ∙ ‖𝑊𝑊𝐺𝐺𝑇𝑇‖𝐹𝐹
∙ 100 (Eq. 6.8) 

where the subscript 𝑀𝑀 denotes the Frobenius norm. In Eq. 6.8, the matrix 𝑊𝑊 
contained the stain colors computed on the manual points in the normalized image 
corresponding to the manual points annotated by the expert pathologist in source 
image, since the structures were not distorted by ICD method after the 
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normalization. On the other hand, the matrix 𝑊𝑊𝐺𝐺𝑇𝑇 was the ground truth matrix for 
the target image (i.e. true stain colors manually selected by the expert on the target 
image). In addition, the rSE can be computed on the entire stain color appearance 
matrix (𝑣𝑣𝑅𝑅𝐸𝐸 𝐸𝐸𝑙𝑙𝑐𝑐𝑏𝑏) or retaining only the first/second row, in order to compute the 
𝑣𝑣𝑅𝑅𝐸𝐸 𝑐𝑐𝐴𝐴𝐵𝐵/𝑣𝑣𝑅𝑅𝐸𝐸 𝐻𝐻𝑠𝑠𝑚𝑚 respectively. The lower the error, the better the performance 
of the stain normalization method, since the normalized image assumes a stain color 
similar to that of target image (which is the aim of the standardization). Another 
quantitative metric used for validation was the perceptual contrast between 
normalized tissue and background in 𝑙𝑙𝛼𝛼𝛽𝛽 color space, defined as: 

𝐻𝐻 = �(∆𝑙𝑙)2 + (∆𝛼𝛼)2 + (∆𝛽𝛽)2 

∆𝑙𝑙 = 〈𝑙𝑙〉𝑛𝑛𝑏𝑏𝑗𝑗 − 〈𝑙𝑙〉𝑏𝑏𝑠𝑠;   ∆𝛼𝛼 = 〈𝛼𝛼〉𝑛𝑛𝑏𝑏𝑗𝑗 − 〈𝛼𝛼〉𝑏𝑏𝑠𝑠;   ∆𝛽𝛽 = 〈𝛽𝛽〉𝑛𝑛𝑏𝑏𝑗𝑗 − 〈𝛽𝛽〉𝑏𝑏𝑠𝑠 
(Eq. 6.9) 

where 〈∙〉 denotes the mean value and the superscripts 𝑐𝑐𝑏𝑏𝑗𝑗 and 𝑏𝑏𝐸𝐸 indicate the object 
(i.e. tissue) and background (i.e. unstained tissue) regions, respectively. The 
contrast was defined in 𝑙𝑙𝛼𝛼𝛽𝛽 color space since Euclidean distances between colors 
in this perceptually uniform space are related to the color difference perceived by a 
human observer [26]. The quantitative performance measures for stain 
normalization are reported in Figure 6.8. 
 

 
Fig. 6.8 (a) Quantitative comparison between ICD algorithm and other state-of-the-art methods in 
terms of global rSE (in orange), DAB rSE (in brown) and hematoxylin rSE (in blue) for stain 
normalization. (b) Perceptual contrast between normalized tissue and unstained regions reported 
with mean value and symmetrical error bars for standard deviation. 
 

In addition to quantitative performance measures, a qualitative visual 
comparison was reported in Figure 6.9, between the two published methods about 
stain normalization and the ICD algorithm, with respect to the same target image. 
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Fig. 6.9 Visual performance comparison between the proposed ICD algorithm and other state-of-
the-art methods. First column displays the original IHC stain histopathological image while the 
second column shows the target image. Normalization methods are displayed in the third and fourth 
column while ICD algorithm is reported in the last one. 
 

Another most important aspect for the evaluation of an automated algorithm for 
stain normalization is the computational time. In Figure 6.10, a joint plot of 
𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%) vs average running time to process a single histopathological image, 
expressed in seconds, is reported for different state-of-the-art methods. ICD 
algorithm employed around 2.2 seconds to estimate source and target stain vectors 
and perform stain normalization of the source image with respect to the target. The 
processing was performed on a workstation with 16 GB of RAM, 2.5 GHz quad-
core CPU and 64-bit version of Windows. 
 

 
Fig. 6.10 Joint plot of rSE for stain normalization (y-axis) and average running time (x-axis) to 
normalize a single RGB histopathological image, for different automated methods. 
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6.4 Discussion and Conclusion 

A novel fully automated stain separation and normalization approach for 
immunohistochemical stained tissue slides is presented. The algorithm, named ICD 
(Inverse Color Deconvolution), is based on stain estimation using chromaticity 
layer and blue ratio image and the normalization is performed on stain channels, 
separately. Finally, the normalized image is reconstructed using a novel proposed 
mathematical technique. To the best of our knowledge, this is the first method 
which employs a novel strategy for stain normalization in immunohistochemistry. 

IHC is an immunology-based method which employs tissue-based biomarkers 
(i.e. antibodies marked with specific reagents) for the localization of specific tissue 
components (generally these are proteins) that act as antigens. The tissue stains 
differently in the presence of cancer, inflammatory response, infections, or 
autoimmune diseases. IHC staining is widely used in the diagnosis of cancerous 
tumors, especially for breast cancer [3]. In IHC, the chromogen employed to stain 
proliferating cells is DAB and hematoxylin is used for counterstaining. 

The reproducibility of histological specimens is affected by color intensity 
variation of stained images due to several factors such as the staining concentration 
and exposure time, the ability of histology technician, the non-uniform slide 
thickness, and the scanner specifications. The solution to this problem is the 
standardization of color appearance in digital pathology. In this context emerges 
the stain normalization method which adapts the color intensity of histological 
images to a reference template, chosen by an expert pathologist, which presents 
optimal characteristics in terms of stain distribution, perceptual contrast and color 
intensity saturation. 

In histology, most of histochemical stains (e.g. hematoxylin and eosin) are 
light-absorbing, while this is not true in IHC. DAB and hematoxylin follow BL law 
at low concentration levels, while for high Ki-67 concentration, the term related to 
photonic light scattering becomes dominant [13]. Actually, there is always a 
combination of attenuation and photonic scattering inside the tissue. To the best of 
our knowledge, no robust or fully validated methods have been employed for the 
stain normalization in IHC digital images. The most robust methods employed in 
H&E failed for IHC stain separation since polymers, such as DAB, do not obey to 
BL law for their scattering behavior. In this case, the stain estimation in OD space, 
as done in Chapter 5 for H&E, is not effective in separating IHC stains with the 
consequence that concentration maps contain incorrect values. Other authors [19] 
proposed to remove DAB stained regions from the analysis prior to color 
deconvolution in order to consider only light absorbing stains, but this cannot be 
considered a solution. 

In this chapter, an automated strategy for the estimation of stain color 
appearance matrix for DAB and hematoxylin is proposed and a novel stain 
normalization approach, applied to IHC stained histopathological images, is 
developed whit the aim of preserving the unstained structures such as the lumen 
and the background. 
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The proposed method was validated on a dataset composed of 94 breast cancer 

images and obtained better performance measures than other published methods. 
The most robust performance metric employed in this work for the evaluation of 
stain normalization is the relative square error (denoted as 𝑣𝑣𝑅𝑅𝐸𝐸𝑛𝑛𝑛𝑛𝑛𝑛𝑠𝑠(%)) which 
quantifies the similarity between normalized and target image, which is the aim of 
stain color standardization. ICD method obtained a lower average value both for 
global and separate channels (i.e. DAB and hematoxylin), as shown in Figure 6.8 
(a). Another metric for the evaluation of stain normalization performance is the 
perceptual contrast between the normalized tissue and the unstained regions (e.g. 
background, gland lumen, etc.). ICD outperformed the other methods, as shown in 
Figure 6.8 (b), but the standard deviation is very high, and this represents a problem 
for the contrast uniformity of this procedure. A qualitative visual comparison was 
also reported in Figure 6.9; the results show that the method proposed by Khan et 
al. [25] failed in the estimation of stain colors, while the method of Reinhard et al. 
[24] normalized also the unstained regions with the color of hematoxylin dye. On 
the other hand, ICD method correctly normalized DAB and hematoxylin stained 
areas and preserved white regions due to the correct stain vector estimation and the 
preliminary white detection. Figure 6.10 shows a joint plot between the 
computational times and the relative square error, where ICD hits the point at 
minimum distance from the origin. Hence, ICD method is fast and accurate at the 
same time compared to other approaches. 

The stain normalization strategy becomes relevant for medical support, 
diagnosis improvement, to reduce both time loss and financial resources for re-
staining and this method could be used as a pre-processing step for subsequent 
computer-assisted diagnosis (CAD) systems for the estimation of proliferation 
index (PI). PI is an important parameter used in histopathology, defined as the ratio 
between the number of cell nuclei which are marked with chromogen (i.e. the 
number of tumor nuclei) and the total number of nuclei within tissue. The higher 
the PI, the higher the number of cells which are subjected to cell division, which 
means a higher tumor aggressiveness; thus it represents a prognostic marker in 
cancer detection [12]. 

In IHC, it is sometimes not desired to normalize all stains because the stain 
intensity may indicate the expression or absence of a particular antigen, hence the 
ICD became useful for this purpose. The ICD strategy allows to normalize a single 
stain selected by the clinician, i.e. to normalize DAB stain without affecting 
hematoxylin dye and viceversa; the result is reported in Figure. 6.11. In addition, if 
one of two stains is poorly represented in the image, the ICD may solve this 
problem. 

The limitation of this method is that the strategy for image segmentation of bio-
marked cell nuclei and healthy cellular structures may be too selective for images 
with a heterogeneous color distribution, although the color estimation may be 
equally correct since an average value is enough for the computation of stain 
vectors. In the near future, a more robust classification method will be applied for 
the detection of DAB and hematoxylin regions in chromaticity plane and blue ratio 
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image, respectively. Moreover, the method was validated on a small dataset, 
belonging to a single tissue and for this reason it is considered a preliminary study. 
Analysis of a larger number of images is mandatory to further validate the method. 
The big advantage is the low computational time to perform stain normalization. 
Another shortcoming of the proposed method may be found if red blood cells and 
blood vessels were present in the image; the stain estimation based on chromaticity 
layer could fail due to the higher red color component of this structures. 
Considering this, in future works, a preliminary detection algorithm to identify 
these regions will be implemented for minimizing the influence of bleeding areas 
on the estimation of stain color appearance matrix estimation. 
 

 
Fig. 6.11 Example of ICD algorithm capability to normalize only DAB stained nuclei (c) in a 
histopathological image (a) with respect to a given template (b). 
 

In conclusion, the aim of the stain normalization strategy is twofold. Firstly, the 
standardization of stain color appearance in digital pathology could improve the 
pathologist’s work in the diagnosis of biological diseases, avoid manual re-staining 
process and reduce intra- and inter-operator variability. Secondly, this method 
could be used as a pre-processing step for improving the performances of CAD 
systems employed for automated Ki-67 quantification in IHC stained images [27], 
automatic computation of PI in breast cancer histopathological images [12] and 
carcinoma classification based on deep learning framework [28]. In addition, a 
potential aspect of the proposed ICD strategy is its capability to normalize only a 
single channel which may be useful especially in IHC where pathologists select 
specific antibodies in order to identify biomolecules that are associated with certain 
human diseases for diagnostic, prognostic and therapeutic purposes. 

Our research group is currently working on the development on a more general 
multi-stain separation and normalization approach both for histochemical and 
immunohistochemical staining and, for this purpose, the proposed ICD algorithm 
can be involved in a future work. 
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Conclusions and Final Remarks 

The aim of this thesis is the development and validation of signal and image 
decomposition techniques for biomedical applications. The proposed approaches 
aim to overcome the limitation of time-consuming manual processes which are also 
subjected to intra- and inter-operator variability, through the development of CAD 
systems which become the bridge technology that enables the effective extraction 
of quantitative data from biomedical signals and medical images. 

In the first part, the process of falling asleep which involves gradual changes 
between the relaxed waking state and deep sleep, was addressed. The proposed 
approach based on RNN architecture obtained the highest value in the detection of 
N1 and N3 sleep with respect to other single-channel based approaches and at the 
same time satisfactory performances in the other sleep stages. In the near future 
data augmentation techniques will be employed to address class imbalance. The 
following unresolved issue emerged in this context: single-channel vs multichannel 
approach. From one side, with the use of single-channel EEG signals remains very 
difficult to improve the performances of sleep stages due to their heterogeneity, but 
the acquisition setup is simpler with less noise interference and it may be used for 
NCP assessment in real-time applications (e.g. the detection of driver drowsiness). 
On the other side, multichannel recording can be used only as a support for clinical 
diagnosis but the performances in sleep scoring may be improved. In a future study 
the proposed workflow will be used by taking into account multiple EEG channels, 
EOG and EMG signals in order to understand their robustness. In addition, signal 
decomposition techniques can also be evaluated for the analysis and interpretation 
of other biomedical signals (e.g. ECG, heart rate variability or evoked potentials) 
in a wide range of applications. 

In the second part, the problem of stain color variability in histological and 
histopathological tissue slides was addressed. The proposed method of stain 
separation and normalization was validated on a multi-tissue dataset of H&E 
stained images and achieved better performances than other published methods. 
The same problem was addressed in IHC with greater complexity due to the 
scattering nature of the staining dyes. In IHC, the algorithm was validated on a 
small dataset, belonging to a single tissue and for this reason it is considered a 
preliminary study. The aim of the stain normalization strategy is twofold: firstly the 
standardization of stain color appearance in digital pathology could improve the 
pathologist’s work in the diagnosis of biological diseases, avoid manual re-staining 
process and reduce intra- and inter-operator variability; secondly this method will 
be used, in the near future, as a pre-processing step for subsequent CAD systems 
for accurate cellular structure segmentation and classification based on deep 
learning framework.  
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