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Abstract: In the last few years, all countries worldwide have fought the spread of SARS-CoV-2
(COVID-19) by exploiting Information and Communication Technologies (ICT) to perform contact
tracing. In parallel, the pandemic has highlighted the relevance of mobility and social distancing
among citizens. The monitoring of such aspects appeared prominent for reactive decision-making
and the effective tracking of the infection chain. In parallel to the proximity sensing among people,
indeed, the concept of social distancing has captured the attention to signal processing algorithms
enabling short-to-medium range distance estimation to provide behavioral models in the emergency.
By exploiting the availability of smart devices, the synergy between mobile network connectivity
and Global Navigation Satellite Systems (GNSS), cooperative ranging approaches allow computing
inter-personal distance measurements in outdoor environments through the exchange of light-weight
navigation data among interconnected users. In this paper, a model for Inter-Agent Ranging (IAR)
is provided and experimentally assessed to offer a naive collaborative distancing technique that
leverages these features. Although the technique provides distance information, it does not imply the
disclosure of the user’s locations being intrinsically prone to protect sensitive user data. A statistical
error model is presented and validated through synthetic simulations and real, on-field experiments
to support implementation in GNSS-equipped mobile devices. Accuracy and precision of IAR
measurements are compared to other consolidated GNSS-based techniques showing comparable
performance at lower complexity and computational effort.

Keywords: Global Navigation Satellite System; collaborative positioning; collaborative measure-
ments; distance estimation; social distancing; mobile devices

1. Introduction

The ongoing SARS-CoV-2 (COVID-19) pandemic is repeatedly pushing our communi-
ties to reduce social contacts and minimize daily mobility. As a consequence, the paralysis
of mobility is dramatically affecting the economy of most of the countries worldwide [1].
In this context, social distancing is of paramount importance to limit the spreading of
the infections, and, despite being a challenging task [2], a diffused capability to monitor
it could orient strategical decisions. Social distancing refers to the non-pharmaceutical
approaches that aim at limiting the frequency and closeness of physical contacts between
people [3]. To this end, technical committees at national-scale have established rules to en-
sure distancing amongst people such as travel restrictions, border control, closure of public
places, and warning their citizens to keep a 1.5 m to 2 m distance from each other when
they have to go outside [4,5]. When social distancing cannot be guaranteed, contact tracing
must be ensured to keep track of new possible infections. A huge effort has been invested
in the development of application-specific mobile apps, thus targeting mobile devices and
their localization data for limiting the spreading of the infection [6–8] and supporting an
effective digital epidemiological surveillance [9]. In parallel, a set of open ethical issues
and challenges have been raised regarding privacy-preservation, scheduling, and incentive
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mechanisms for the massive implementation of such solutions [10,11]. A comprehensive
survey about contact tracing in the COVID-19 pandemic is provided in [6].

In such a scenario, distance estimation technologies can facilitate social distancing
and support contact tracing solutions, becoming a key enabler for effective mitigation
of the spreading of the infection. Therefore, several technologies have been proposed
in the last months not only to assess inter-personal distances but also to cover different
aspects of interest such as real-time monitoring for crowd detection and avoiding [3,12,13].
In particular, several radio-frequency wireless technologies [3] and emerging methods
exploiting Aritifical Intelligence (AI) and Machine Learning (ML) [12] have been analyzed
in recent surveys for distance estimation and social distancing.

Technologies such as Bluetooth [14–16], Ultra-Wide Band (UWB) [17], ZigBee [18],
and Radio-frequency identification (RFID) [19] have attracted the attention of the research
community for their capability of providing ranging measurements between users in
dynamic contexts. These ranging technologies are based on Received Signal Strength
Indicator (RSSI) or time-based measurements (e.g., time-of-arrival, time-difference-of-
arrival, round-trip time) [3]. This means that the feature extracted from the signal, whether
it is based on RSSI or time-based, is a reliable measure of the distance only when the signal
experiences a direct propagation path (i.e., without relevant obstacles and multipath).
As a result, proximity awareness and inter-personal distance estimation can be achieved,
but bodies and obstacles can significantly decrease the ranging accuracy. Hence, an accurate
distance estimation requires Line of Sight (LOS) visibility among ranging users or a complex
propagation model estimation [20]. They also have a limited ranging capability, spanning
from short (Bluetooth, RFID) to medium ranges (UWB, ZigBee) [3], a coverage that is not
suitable for continuous monitoring of the distance over larger areas.

A different approach for distance estimation relies instead on positioning technologies.
An estimate of inter-personal distance can be easily inferred from users’ positions. For in-
stance, users that are able to locate themselves can compute their distance from another
user whose coordinates are known. Through this approach, the LOS constraint can be
overcome, providing also long-range distance estimation, but privacy concerns may arise
due to the explicit position disclosure between users. Technologies such as Wi-Fi [21–23],
Cellular networks [24], UWB [25], and Global Navigation Satellite System (GNSS) [26]
have been used for positioning and can be therefore exploited to this end. Differently
from solutions based on Wi-Fi or cellular networks, GNSS is mostly limited to outdoor
applications. Nevertheless, 6.7 billion smartphones are estimated by 2023 [27] and GNSS is
extremely popular on these devices [28]. With its worldwide coverage, it is certainly the
most widespread positioning technology, with more than 6 billion estimated receivers in
2020 [28]. It can be therefore a convenient choice to provide a ubiquitous outdoor distance
estimation technology that does not need application-specific hardware. On the other hand,
technologies such as UWB, ZigBee, and RFID demand an increased cost to be embedded
and additional computational power to perform ranging.

In particular, GNSS has been investigated by researchers to explore cooperative dis-
tance estimation [29]. In this framework, the distance between users can be computed
indirectly, by leveraging GNSS raw data and a communication channel between cooper-
ating users (namely the agents). GNSS-based ranging methods can hence be considered
for distance estimation in outdoor environments and in the presence of networked agents.
They are based on a ubiquitous technology, which is both (i) readily available in billions of
devices and (ii) widespread thanks to a worldwide coverage. Moreover, (iii) it enables short
to long-range distance estimation, working also when (iv) LOS between agents cannot be
guaranteed (which is even more likely for long-range distances).

Being a promising ranging technology, an assessment of GNSS-based distance esti-
mation was presented in [26] for vehicular applications and, recently, a proof-of-concept
demonstrated the feasibility of smartphone-based collaborative positioning based on GNSS
inter-agent distances [30].
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This study addresses the modeling and experimental assessment of a GNSS-based
ranging technique, namely Inter-Agent Ranging (IAR), preliminarily proposed in [31],
based on the exchange of a single row of the Direction Cosine Matrix (DCM) (i.e., steering
vectors) and the corresponding pseudorange measurement between asynchronous users.
Compared to traditional GNSS-based ranging approaches, the IAR technique requires only
a single satellite in a common view to building up a collaborative distance measurement
among connected devices. In this work, we provide an analytical model for mean and
variance estimation of the proposed ranging method. The model is then validated through
Monte Carlo simulations and on-field experimental tests. The results presented in this
study compare the proposed approach to state-of-the-art GNSS-based ranging methods
known in geodesy. All the considered methods share (i–iv) features and they are a straight-
forward term of comparison. Similarly, long-range urban scenarios are considered as a
representative use case to leverage (iii) and (iv). We demonstrate that the proposed method
overcomes the performance attainable by a plain absolute position difference while pre-
venting full disclosure of the user position. The IAR technique is found to also be a valid
alternative to state-of-the-art GNSS-based ranging approaches that deliver comparable
performances while demanding enhanced visibility of common satellites.

Paper Outline

The rest of the paper is organized as follows: in Section 2, GNSS essentials and the
necessary nomenclature and definitions are recalled to support the proposed technique.
State-of-the-art GNSS-based ranging methods are summarized and their limitations are
described w.r.t. the proposed rationale. GNSS observables are applied to IAR computation
in Section 2 as well. In Section 3, the estimation of the IAR is introduced along with the
full derivation of a theoretical model to describe its statistical behavior according to the
geometry of a dual-agent scenario. In Section 4, a static, controlled environment and
real static and kinematic scenarios are investigated by using Commercial Off The Shelves
(COTS) GNSS receivers. The theoretical model is validated through synthetically simulated
and real experimental data. A comparison of the experimental accuracy w.r.t. the traditional
GNSS-based techniques is contextually provided and conclusions are eventually drawn
in Section 5.

2. Background

In principle, GNSS-based distance estimation can be pursued between embedded
ultra-low-cost GNSS receivers which are nowadays integrated into vehicles, mobile devices
such as smartphones and tablets, and wearables such as smartwatches. Furthermore, most
of the current Location Based Services (LBS)s require data connectivity through which also
collaborative approaches can be enabled.

As demonstrated in [30], indeed, the concept of collaborative ranging applied to such
a class of devices leverages the exchange of low-level navigation data through current
networks (4G/LTE). These applications will be further supported by the next-generations of
mobile networks (i.e., 5G-NR Ultra-reliable Low Latency Communication (URLLC) [32,33]).
Thanks to the absence of LOS requirements, such a paradigm can also be conceived
as a complementary method to more challenging Radio-Frequency (RF) approaches for
which obstacles and interference degrade estimation performance, as recalled in Section 1.
Figure 1 shows a pictorial representation of distance estimation performed by merging the
main enablers of the proposed solution: GNSS and existent mobile network infrastructures.
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Figure 1. GNSS-based distance estimation among GNSS receivers embedded in networked mobile
and wearable devices.

2.1. GNSS Observables and Positioning

The positioning problem in GNSS mainly concerns the determination of a set of
coordinates typically referred to as receiver space state. The location of a GNSS receiver can
be expressed in Cartesian quantities within a given geographic coordinates system (e.g.,
Earth Centered Earth Fixed (ECEF), Latitude, Longitude, Altitude (LLA)), depending on
the target application. The receiver clock offset w.r.t. the in-orbit clocks, namely user clock
bias, can be contextually estimated, thus providing a common timescale to all the GNSS
devices. The overall set of time and three-dimensional coordinates[

x(tk)
b(tk)

]
=
[
x(tk) y(tk) z(tk) b(tk)

]T (1)

defines the state of a generic GNSS receiver, namely, the unknowns of the positioning
problem at a generic instant tk. In (1), b(tk) is the clock bias term obtained by multiplying
the aforementioned user clock bias by the speed of light. To estimate (1), a set of satellite-
to-user range estimates are collected at each time instant to solve for a multilateration
problem [34]. These satellite-to-receiver ranges are retrieved by the receiver through the
estimation of the time-of-flight of the navigation signals received from each visible satellite
i ∈ (1, 2, . . . , N) at a given time instant tk. The set of collected measurements is

ρ̂(tk) =
[
ρ̂1(tk) ρ̂2(tk) . . . ρ̂N(tk)

]T . (2)

The generic ρ̂i(tk) is referred to as pseudorange because of the clock bias component.
GNSS pseudorange measurements are altered by a set of impairments affecting the propa-
gation of the navigation signals (e.g., Ionospheric error, Tropospheric error, ephemeris error,
relativistic error, etc.). The biases induced by such effects can be modeled and subtracted
to the estimated measurements [34]. In this view, a raw pseudorange measurement can be
defined as

ρ̂i(tk) = ri(tk) + b(tk) + Σi(tk), (3)

where
ri(tk) = ||x(tk)− xi(tk)|| (4)

is the satellite-to-user range. The random variable Σi(tk) collects all the error contributions
affecting the measurement, while the clock bias term, b(tk), is common to all the mea-
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surements in (2). Once the bias corrections are applied to Σi(tk), a corrected pseudorange
measurement can be defined as

ρi(tk) = ri(tk) + b(tk) + ξi(tk) . (5)

The error term, ξi(tk), is the User Equivalent Range Error (UERE) which models the
independent residual error term not compensated by the aforementioned corrections [35].
It can be assumed to be a zero-mean Gaussian-distributed random variable with a given
standard deviation σi. Provided a set of corrected pseudorange measurements and satellites’
ephemeris data, an estimate of (1) can be indirectly obtained through an iterative Least
Mean Square (LMS) solution[

∆x̂(tk)

−∆b̂(tk)

]
= (HTH)−1HT∆ρ(tk) . (6)

Indeed, both receiver state and measurement vectors are expressed in incremental
notation w.r.t. an approximation point needed for the linearization of the multilateration
problem [34]. Consequently, ∆ρ(tk) in (6) is the N × 1 column vector obtained as the
difference between the measurements and nominal range distances computed between the
satellite position and the linearization point. In (6), H is a N × 4 Jacobian matrix referred to
as observation matrix or DCM and defined as

H =


h1

x h1
y h1

z 1

h2
x h2

y h2
z 1

...
...

...
...

hN
x hN

y hN
z 1

. (7)

The axial components in (7) are defined as

hi
x =

xi(tk)− x0(tk)

ri(tk)

hi
y =

yi(tk)− y0(tk)

ri(tk)
(8)

hi
z =

zi(tk)− z0(tk)

ri(tk)

where x0(tk), y0(tk), z0(tk) are the coordinates of the linearization point. The terms in (8)
will be referred hereafter to as the unitary steering vector hi(tk) =

[
hi

x hi
y hi

z

]
, which is

directed towards the i-th satellite.
In this work, the bias term b(tk) is assumed to be estimated through (6) and compen-

sated for in (5). This allows for modelling the satellite-to-user estimated range r̂i(tk) as a
zero-mean Gaussian random variable

r̂i(tk) ∼ N ( ri(tk), (σi)2 ) (9)

where σi is the standard deviation of the UERE. For the sake of completeness, it is worth
remarking that advanced estimation algorithms can be applied to the receiver state estima-
tion, such as Bayesian algorithms (e.g., Extended Kalman Filter (EKF)). Along with these
solutions, several integration schemes are typically implemented to fuse auxiliary sensors
data (e.g., Inertial Navigation System (INS)) to GNSS in precise positioning applications.
However, these aspects do not limit the applicability of the proposed models, and the
investigation of these solutions falls out of the scope of this work.
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2.2. Distance Estimation via GNSS Data

Given the true locations of two independent GNSS receivers, referred to as agent A
and agent B, their true baseline length can be expressed as

dAB(tk) , ||d(tk)|| = ||xA(tk)− xB(tk)|| (10)

which is, by definition, the Euclidean norm of the displacement vector d(tk) between the
agents [26]. To estimate such a distance using personal GNSS-enabled devices, different
approaches can be pursued involving the exchange of different classes of data:

• absolute positioning solutions, as the output of the multilateration algorithm described
in Section 2.1;

• raw GNSS measurements and unitary steering vectors obtained through the computa-
tion of (7) w.r.t. the current estimated position (instead of the linearization point).

The two approaches lead to the definition of two categories of distance estimation
methods, respectively the Absolute Position Difference and Differential GNSS distancing, which
are described in Sections 2.2.1 and 2.2.2, respectively.

2.2.1. Absolute Position Difference

The practical calculation of (10), named Absolute Position Difference (APD), needs to
consider the fact that the positions xA(tk) and xB(tk) are results of the estimation process
discussed in Section 2.1. Hence, the uncertainty on the estimated positions affects in turn
the estimated distance according to

d̂AB(tk) = ||x̂A(tk)− x̂B(tk)|| = dAB(tk) + ψd , (11)

where the generic x̂(tk) is the estimated solution and ψd is an error due to the independent
positioning errors of the involved receivers. APD is a naive approach which can be pursued
by exchanging users’ location estimates. In this case, pseudonymization or advanced
encryption of the shared data must be implemented to ensure privacy [36].

2.2.2. Differential GNSS Distancing

Previous works on the topic investigated a set of algorithms addressing the estimation
of (10) within a cooperative framework [26,37,38]. These methods rely on the simulta-
neous availability of multiple satellites in LOS for both the receivers (as highlighted in
Figure 2), hereafter referred to as shareable satellites. Differently from APD, they are based
on the combination of GNSS observables computed independently by the two agents.
In particular, each agent provides the associated unitary steering vectors and pseudorange
measurements to ultimately estimate (10).

GNSS Satellite 𝑠
epoch 𝑡𝑘

GNSS 

receiver 𝐵

GNSS 

receiver 𝐴

𝜌𝐴
𝑠(𝑡𝑘)

𝜌𝐵
𝑠 (𝑡𝑘)

𝒅𝐴𝐵(𝑡𝑘)

GNSS Satellite 𝑟
epoch 𝑡𝑘

𝜌𝐵
𝑟(𝑡𝑘)

𝜌𝐴
𝑟(𝑡𝑘)

(a) Open sky and multiple satellites visibility

GNSS Satellite 𝑠
epoch 𝑡𝑘

GNSS 

receiver 𝐵

GNSS 

receiver 𝐴

𝜌𝐴
𝑠(𝑡𝑘)

𝜌𝐵
𝑠 (𝑡𝑘)

𝒅𝐴𝐵(𝑡𝑘)

GNSS Satellite 𝑟
epoch 𝑡𝑘

𝜌𝐵
𝑟(𝑡𝑘)

𝜌𝐴
𝑟(𝑡𝑘)

(b) Occlusion and limited visibility

Figure 2. Pictorial representations of scenarios characterized by different visibility conditions of
GNSS satellites experienced by independent receivers.
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The displacement vector between the two agents is thus treated as the unknown of
the problem, as well as for the individual receiver states in Section 2.1. According to this,
raw pseudorange measurements (from shareable satellites) provided by the agent B can be
aggregated in the measurement vector of agent A within the iterative positioning algorithm
in charge of performing the inter-personal distance estimation. The observables can be then
processed through various differential GNSS methods such as Pseudorange Ranging (PR),
Single Differences (SD) or Double Differences (DD) [26]. For code-based measurements
in static conditions, it has been demonstrated that the raw-pseudorange based technique
(PR) shows the best performance in terms of Root Mean Squared Error (RMSE) w.r.t. more
complex methods (i.e., SD and DD ranging) [26].

2.2.3. Applicability

Differently from the aforementioned methods, APD requires the explicit exchange of
absolute positioning solutions, thus allowing for any collaborating receiver to be aware
of the location of other users. On the other hand, this method does not require shareable
satellites between the cooperating agents, being a less demanding technique in terms
of sky visibility conditions. PR, SD, and DD methods require instead the exchange of
multiple pseudorange measurements between pair of collaborating receivers, as shown in
Table 1. Of course, the larger is the amount of disclosed GNSS observables, the higher is
the capability of the users to accurately guess the location of collaborating agents. Recent
advances in homomorphic encription [36] can be promising solutions to overcome such
privacy issues in the aforementioned technique but at the cost of additional complexity. To
tackle this aspect, the IAR was proposed in [31] as a ranging method that requires a reduced
number of shared GNSS observables. It aims at overcoming the computational complexity
issue, reducing the amount of transmitted data, and natively introducing ambiguity in the
retrieval of other users’ locations.

Table 1. GNSS-based ranging algorithms.

Acronym Ranging Method Min. No. of Shareable
Satellites References

APD Absolute Position Difference 0 [26]
IAR Inter-agent Range 1 [31]
PR Raw Pseudorange 3 [26]
SD Single Difference 3 [26,31]
DD Double Difference 4 [26,30,38–41]

Each receiver employs, in general, a different set of satellites to compute its posi-
tion. The intersection of the two sets could even contain no elements, making some of
the aforementioned techniques unsuitable in harsh environments. Indeed, observing
less than three shareable satellites, only APD and IAR can be employed to compute the
range between the agents (Table 1). As an example, in the limiting scenario shown in
Figure 2b, only one satellite can be shared due to the presence of obstacles that obstruct the
LOS. Contextually, applicability analyses performed in urban context have shown a limited
availability for traditional differential methods. An example of the number of satellites
in common view in a real urban scenario is indeed reported in Figure 3. The data were
collected by observing satellite signals through a Global Positioning System (GPS) receiver,
which is arguably the most widespread GNSS user equipment.

Throughout the observation window, the limited number of satellites (upper plot)
prevents the availability and continuity of the GNSS-based ranging techniques in some
time intervals (lower plot). The experimental example shown in Figure 3 provides a hint
on the fluctuations in the number of visible GPS satellites experienced by a pair of single-
constellation receivers. According to the requirements of Table 1, this motivates the need
for complementary techniques for estimating baseline distances among low-cost, personal
devices sharing few satellites in LOS.
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Figure 3. Example of shared satellite visibility for two pedestrian agents through an experimental
trajectory in urban environment (upper) and practicability of ranging methods along the time,
(bottom) according to Table 1. Post-process data acquired nearby Politecnico di Torino (Turin, Italy),
30 September 2018.

2.3. Inter Agent Ranging

A simplistic scenario in which two agents, A and B, observe in LOS a common satellite
is recalled in Figure 4. The general use case is shown in Figure 4a, and it can be easily
mapped to the formal geometrical arrangement of Figure 4b, which is exploited in the
following description.

𝐶

𝐴

𝐵መ𝑑𝐴𝐵
𝐶 (𝑡𝑘)

ො𝐱𝐴(𝑡𝑘)

ො𝐱𝐵(𝑡𝑘)

𝐱𝐶(𝑡𝑘)

(a) Single satellite distance Estimation

ℎ𝐵
𝐶(𝑡𝑘)

𝐱𝐵(𝑡𝑘)

𝐱𝐴(𝑡𝑘)

𝐱𝐶(𝑡𝑘)

𝑟𝐵
𝐶(𝑡𝑘)

ℎ𝐴
𝐶(𝑡𝑘)

𝑟𝐴
𝐶(𝑡𝑘)

𝑑𝐴𝐵
𝐶 (𝑡𝑘)

𝛾(𝑡𝑘)

𝒞𝐴𝐵(𝑡𝑘)

ℒ𝐴𝐵(𝑡𝑘)

𝐶

𝐴

𝐵

(b) IAR geometrical scenario

Figure 4. Use case geometry for collaborative distance estimation based on shared GNSS pseudor-
ange measurements.

For an intuitive approach, the position of the shared satellite will be hereafter associ-
ated with the letter C and identified as the upper vertex of the triangle formed with the
agents’ locations. The scheme depicts a static scenario or equivalently the snapshot of a
kinematic scenario at a given time instant, tk, without any lack of generality. To discuss the
theoretical framework of the IAR, the basic geometry is hereafter defined by considering
exact measurements and positions, assumed as sides and vertices of this geometrical ar-
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rangement. The steering vectors are defined according to (8), pointing towards the shared
satellite C, whose coordinates are known from the ephemeris broadcasted through the
navigation message [42] or retrieved through network connectivity. Given the true satellite-
to-user ranges rC

A(tk) and rC
B(tk) and the associated steering vectors hC

A(tk) and hC
B(tk), the

IAR can be computed by solving for dC
AB(tk), by means of the Carnot theorem (or law of

cosines). The resulting computation is

dC
AB(tk) =

√
rC

A(tk)2 + rC
B(tk)2 − 2 rC

A(tk) rC
B(tk) cos γ(tk). (12)

where γ(tk) is the angle included between the two steering vectors w.r.t. the shared-satellite
C. It can be computed using the dot product as

γ(tk) , cos−1(hC
A(tk)× hC

B(tk)) = cos−1
(

hC
A(tk)hC

B(tk)
T
)

. (13)

The equivalence in (13) is due to the unitary norm of steering vectors, by definition.
Looking at a first basic implementation of this collaborative ranging approach, the agents
will be hereafter distinguished as

• A, the aided agent, which initializes the cooperation asking for the cooperative baseline
estimation

• B, the aiding agent, which supports the aided agent allowing it to gather the cooperative
estimate required.

This terminology will be adopted also addressing the aforementioned differential
ranging methods.

A more detailed view of the proposed methodology is included in Figure 5, showing
how the estimation of the inter-personal distancing (12) is performed within the coopera-
tive framework.

PERSONAL DEVICE

GNSS RECEIVER

NETWORK DATA 
INTERFACE

𝐵

PERSONAL DEVICE

GNSS RECEIVER

NETWORK DATA 
INTERFACE

𝐴

APPLICATION APPLICATION

COMMUNICATION NETWORK 

INFRASTRUCTURE

GNSS Receiver

Synchronization

Combination (IAR)

Inter-personal 

distance

External 

Pseudorange 

Measurements

(𝐵)

Local Pseudorange 

Measurements

A (application layer)

(B) Observables

Measurements

PERSONAL DEVICE (𝐴)

Data Flow

Figure 5. High-level block scheme showing the methodology of the proposed approach.

In fact, according to (12), an aided agent A that wants to compute the inter-personal
distance should (i) measure rC

A(tk) and hC
A(tk), (ii) retrieve from B an estimate of rC

B(tk),
and (iii) obtain a measure of γ(tk) from the cooperation with B. It is worth noticing that
the accomplishment of (iii) can be attained either by sharing hC

A(tk) and let B perform the
estimation of (13) or by gathering hC

B(tk) from B and locally compute (13). A set of variants
of the IAR algorithm were proposed in which the roles of the agents can be swapped [31]
or re-arranged [43]. However, the formalization of a protocol does not alter the properties
of the method and it is therefore out of the scope of this work.
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2.3.1. Time Consistency of Input Measurements

To retrieve an estimate of the baseline through (12), a user needs to obtain a mea-
sure of the quantities involved in the IAR computation by establishing the cooperation
with an available aiding agent. Figure 6 describes the IAR construction on a temporal
axis, assuming that the agents A and B are not synchronous. The solid dots highlight
the measurements epochs at which each receiver estimates the position and updates its
measurement vector, both for agent A and agent B. The variable ∆t is the time differ-
ence between agents’ measurements epochs, while RTT is the Round Trip Time, which is
mainly determined by the communication network. The processing time needed for the
computation of (12) can be reasonably neglected.

𝐴

𝐵

𝐶

RT

T

RT

T

𝑡0

𝑡1 𝑡3

𝑡2 𝑡0

𝑡1 𝑡3

𝜏2𝜏1Δ𝑡

Satellite Position

Measurement/PVT epoch

Satellite Motion Compensation

IAR computation

Figure 6. Timing of the exchange of navigation data for the IAR computation between non-
synchronous agents. ∆t is the delay that must be compensated by the aided agent.

Let us suppose that agent A sends a request, at time t1. A retrieves the range, rC
A(t1)

and computes the steering vector hC
A(t1). A is able to send the timestamped steering

vector to B. Such a request is received by an aiding agent at time t2 = t1 + RTT/2, at a
time epoch, which can fall randomly between two measurement epochs of the aiding
receiver. The misalignment between agent’s measurement epochs must be taken into
account to manage the time-inconsistent measurements of the receivers. In other words,
the ranges rC

A(tk) and rC
B(tk) that concur to the computation of (12) must be consistent, even

if they are estimated by agents at a different time instant. By knowing the ephemeris and
timestamps of the received data, the aiding agent can compensate for the satellite motion
(see Figure 6) through

rC∗
B (t1) = rC

B(t0)hC
B(t0) + [xC(t1)− xC(t0)] (14)

rC∗
B (t1) = ||rC∗

B (t1)|| (15)

hC∗
B (t1) =

rC∗
B (t1)

rC∗
B (t1)

(16)

The closest measurements in time that B can use are the measurements taken at time
t0, which are then compensated for ∆t = t1 − t0 seconds by linear regression to make
them as consistent as possible with the information provided by A. B computes the angle
γ(t1) in (13) using the predicted hC∗

B (t1) and the received hC
A(t1). At time t3 = t1 + RTT,

A receives γ(t1) and rC∗
B (t1) and determines dC

AB(t1) through (12). The communication
latency only affects the aging of the estimated IAR, which is computed RTT seconds
after A’s measurement epoch t1. This time compensation operation is performed by the
“Synchronization” block in Figure 5.

2.3.2. Privacy Issues

It has to be noticed that, even considering the ideal IAR computation (12), the position
of the aiding agent at tk can not be retrieved by the aided agent A given γ(tk) and rC

B(tk).
The dot product in (13) is not invertible; therefore, agent A can obtain only an ambiguous
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knowledge of the position of B. It can assume that its position lies on a circle, referred to as
ambiguity circumference CAB, and shown in Figure 4b. Such ambiguity circumference is the
locus of the points at distance dC

AB(tk) from the receiver A and rC
B(tk) from the satellite C.

By the aiding side, the only knowledge of the steering vector hC
A(tk) bounds the uncertainty

on the location of A to a straight line, named ambiguity line LAB, passing through points
xA(tk), xC(tk) and the center of CAB. This partial protection of the locations of the agents is
one of the main advantages of the IAR technique.

3. Statistical Modelling for Inter Agent Ranging

Up to now, all the measurements have been considered exact to formalize the basic
problem. However, the joint effect of incorrect satellite-to-receiver range measurements
and the time-dependent geometry of the observed satellites characterize the distribution of
the positioning solution, thus the computation of (12) and (13). Input uncertainties must
be taken into account to evaluate the error propagation. Therefore, the inputs of (12) are
replaced by the corresponding random variables, obtaining

d̂C
AB(tk) =

√
r̂C

A(tk)2 + r̂C∗
B (tk)2 − 2 r̂C

A(tk) r̂C∗
B (tk) cos γ̂(tk) . (17)

where r̂C∗
B (t1) is computed according to (14).

A key point in the analysis of the IAR measurement as a random variable regards the
effects of nonlinearity of (17) on the modeled input random variables (i.e., pseudoranges).
Although the computation is performed through a nonlinear equation, previous works
assessed that, similarly to Euclidean distance, the error distribution of the IAR can be
approximated with a Gaussian distribution when Gaussian inputs are considered and the
positioning error is negligible w.r.t. the baseline length [31]. Statistical moments of such a
distribution are hereafter derived expanding the range terms according to the pseudorange
error model in (9). Satellite-to-receiver ranges are characterized by different standard
deviations σC

A and σC
B for each GNSS receiver and shared satellite C. To limit the notation

complexity, all the references to the shared satellite C and time index tk will be dropped
hereafter. Similarly, the range r̂C∗

B (tk) and the steering vector ĥC∗
B (tk) will be written as r̂B

and ĥB, respectively.

3.1. Bias Modelling

Consider a generic function of n random variables

Y = g(X1, X2, ..., Xn) (18)

and its Taylor expansion about the mean values µX1 , µX2 , . . . , µXn

Y = g(µX1 , µX2 , . . . , µXn ) +
n

∑
i=1

(Xi − µXi )
∂g
∂Xi

+
1
2

n

∑
i=1

n

∑
j=1

(Xi − µXi )(Xj − µXj )
∂2g

∂XiXj
+ . . . (19)

where all the partial derivatives of g(X1, X2, ..., Xn) are evaluated at (X1 = µX1 , X2 =
µX2 , . . . , Xn = µXn), as well. Truncating the expansion at the first order and applying the
expected value to (19), it becomes

E[Y] ' g(µX1 , µX2 , . . . , µXn) (20)

since the first-order terms are canceled by the expected value operator. The same operations
applied to (17) lead to

E[d̂AB] '
√
(rA)2 + (rB)2 − 2rArB cos γ (21)

which is the definition of the ideal IAR (12), assuming zero-mean distribution of the error
affecting the variables r̂A,r̂B and γ̂. According to (21), Equation (17) can be wrongly thought
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of as an unbiased estimator of dAB since E[d̂AB]− dAB = 0. However, the statistical behavior of
the estimated IAR, obtained through a Monte Carlo simulation campaign, shows generally
non-null values of the bias, whose distribution depends on the considered geometry.
Figure 7 shows the value of the estimated IAR bias depending on the position of the
shared satellite.

(a) σγ̂ = 0 (b) σγ̂ = 1× 10−7 (c) σγ̂ = 5× 10−7

Figure 7. Simulation of the bias of the IAR measurements according to the position of the shared
satellite and varying the magnitude of σγ̂ in [0, 1× 10−7, 5× 10−7] rad, d = 100 m, σA = σB = 7.03 m.

Each point of the skyplot corresponds to a pair of azimuth and elevation coordinates
of the shared satellite and the associated colormap varies according to the value of the
estimation bias. The cooperating agents’ locations are fixed with the aided agent in (0,0)
and a distance d = 100 m between the two. The standard deviations of the UERE are set
to σA = σB = 7.03 m according to the nominal value of GPS error budget [34]. The plots
also show how the value of the bias is dependent on σγ̂. The non-null bias contributions
are attributed to the terms in the Taylor expansion which are truncated due to their higher
order. Nonetheless, their value is small if compared to the simulated baseline.

3.2. Variance Modelling

The truncation of the Taylor expansion applied to (17) is exploited to obtain a closed-
form approximation of the estimated IAR variance as well. The variance of a function of
multiple random variables is derived as

σ2
Y , E[Y2]− E[Y]2 '

n

∑
i=1

σ2
Xi

(
∂g
∂Xi

)2
+ ∑

i,j=1,...,n
i 6=j

αijσXi σXj

∂g
∂Xi

∂g
∂Xj

(22)

where αij is the correlation coefficient [44] of two random variables Xi, Xj defined as

αij =
cov(Xi, Xj)

σAσB

. (23)

Consequently, the variance of d̂AB can be written as

σ2
d̂ ' σ2

A

(
∂d̂AB

∂r̂A

)2

+ σ2
B

(
∂d̂AB

∂r̂B

)2

+ σ2
γ̂

(
∂d̂AB

∂γ̂

)2

+ 2 αAB σAσB
∂d̂AB

∂r̂A

∂d̂AB

∂r̂B
+ 2 αAγ̂ σAσγ̂

∂d̂AB

∂r̂A

∂d̂AB

∂γ̂
(24)

+ 2 αBγ̂ σBσγ̂
∂d̂AB

∂r̂B

∂d̂AB

∂γ̂

which can be easily expressed in a closed-form by computing the partial derivatives.
Equation (24) will be referred to as generalized theoretical formula for the IAR variance.
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Two ranges measured by two different receivers can be considered uncorrelated after
the application of the bias corrections in (5). Moreover, the angle γ, computed through the
steering vectors, maintains a very poor correlation to a single specific range among those
involved in the computation of the positioning solution (6). Thanks to these remarks, it
is reasonable to assume uncorrelated variables in (22). In other words, αij = 0 when i 6= j
and (22) becomes

σ2
Y '

n

∑
i=1

σ2
Xi

(
∂g
∂Xi

)2
. (25)

The variance of the estimated IAR d̂AB can be then approximated as

σ2
d̂ '

1
d2

AB

{
σ2

A [rA − cos(γ)rB]
2 + σ2

B [rB − cos(γ)rA]
2 + σ2

γ̂[sin(γ)rArB]
2
}

. (26)

where dAB is as in (12) and highlights the dependency from the true value of the baseline.
In [45], a simplified equation of the IAR variance was computed for two users lying on

the same Local Tangent Plane (LTP), assuming null steering error, i.e., an ideal estimation
of the angle γ (13). Under the same assumptions, it can be shown that (26) and the solution
derived in [45] are equivalent if and only if rA = rB i.e., when the satellite is equidistant
from the two peers. The characterization provided in this paper is therefore consistent
with the distribution presented in [45], considering that the condition σγ̂ = 0 cancels the
third term in (26). The model presented in this paper generalizes the empirical derivation
provided in [45] to the case where the two users do not lie on the same LTP.

As done for the bias, the values obtained through (26) by varying the location of the
shared satellite can be reported on a skyplot. Figure 8 depicts the output of (26) for an
aided agent A in (0,0) w.r.t. the azimuth and elevation of the shared satellite. The specific
position of the aiding agent B is highlighted and reasonable values for σ2

A , σ2
B and σ2

γ̂ have
been considered.

(a) σγ̂ = 0 (b) σγ̂ = 1× 10−7 (c) σγ̂ = 5× 10−7

Figure 8. Analytic evaluation of σd̂ according to the position of the shared satellite and varying the
magnitude of σγ̂ in [0, 1× 10−7, 5× 10−7] rad, d = 100 m, σA = σB = 7.03 m.

The skyplots in Figure 8 show the behavior of (26) for different values of σγ̂. A sym-
metry perpendicular to the baseline direction is clearly visible for null and small values of
σγ̂. When this term increases due to degraded positioning performances, the IAR standard
deviation σd̂ also increases assuming a more uniform distribution, as in Figure 8c. From
these findings on the IAR error distribution w.r.t. the geometry of the multi-agent system,
it can be noticed that the bias has an inverse behavior w.r.t. the standard deviation such
that a shared satellite located in a low bias region of the skyplot induces a high variance of
the estimated IAR and vice versa.

The skyplots in Figure 9 are obtained as the difference between simulated and theoret-
ically computed σd̂ in the same scenario of Figure 8.

The theoretical formula is proved as a suitable variance estimator, exhibiting a negligi-
ble mismodeling error w.r.t. the simulated values in the vast majority of cases (dark-blue
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areas in Figure 9). Furthermore, the mismatch between the two is always lower than
0.6 m. As the steering error σγ̂ increases, a non-negligible error can be observed in the
areas characterized by high IAR standard deviation values. This is particularly visible in
Figure 9c, which is relative to the values of σd̂ reported in Figure 8c. This behavior can
be reasonably attributed to the neglected cross-correlated terms in (26) that become more
relevant as σγ̂ increases (24), as well as to the truncation of the Taylor expansion.

(a) σγ̂ = 0 (b) σγ̂ = 1× 10−7 (c) σγ̂ = 1× 10−5

Figure 9. Difference between σd̂ estimated from Monte Carlo simulation and from theoretical
Formula (26) according to the position of the shared satellite and varying the magnitude of σγ̂ in
[0, 1× 10−7, 0.5× 10−6]. d = 100 m, σA = σB = 7.03 m.

The symmetry shown in Figure 8 is preserved in the case of azimuth rotation of the
aiding peer, as highlighted by Figure 10. For the sake of completeness, we report also
Figure 11, which shows the effect of the movement of agent B by varying both elevation
and azimuth w.r.t. the agent A.

(a) AzB = 90◦, ElB = 0◦ (b) AzB = 180◦, ElB = 0◦ (c) AzB = 220◦, ElB = 0◦

Figure 10. Analytic evaluation of σd̂ varying the azimuth angle of the aiding agent B, w.r.t. the aided
agent A. Parameters: σγ̂ = 0.5× 10−6 rad, d = 100 m, σA = σB = 7.03 m.

(a) AzB = 90◦, ElB = 20◦ (b) AzB = 180◦, ElB = 40◦ (c) AzB = 220◦, ElB = 70◦

Figure 11. Analytic evaluation of σd̂ varying both azimuth and elevation angles of the aiding agent
B, w.r.t. the aided agent A. Parameters: σγ̂ = 0.5× 10−6 rad, d = 100 m, σA = σB = 7.03 m.
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If multiple shareable satellites are available, a suitable model allows the selection of
the satellite which is expected to provide the best trade-off between bias and variance
of the estimation error. The variance computed through (26) or through the generalized
theoretical Formula (24) can therefore influence the choice of the satellite, provided that
the aiding agent is able to estimate σ2

B , rB, σ2
γ̂ and γ, while σ2

A and rA are estimated by the
aided agent.

4. Experimental Assessment and Results

In this section, simulation and experimental results will be presented to cross-validate
the model for the IAR error previously introduced and to demonstrate the effectiveness of
the IAR technique w.r.t. other GNSS-based methods for distance estimation.

4.1. Simulated Performance of IAR vs. APD

As discusses in Section 2, the IAR method is able to provide a baseline estimation
when the number of simultaneously visible satellites does not guarantee applicability
of other GNSS-based ranging techniques (i.e., PR, SD, DD), with the exception of APD
(Figure 3). According to these remarks, the IAR method has been compared to APD,
exploiting the theoretical model introduced in Section 2 for the computation of its standard
deviation. A similar theoretical model for the error distribution of APD is out of the scope
of this work. Thus, the variance of the estimated IAR, computed through the theoretical
model, is compared to the statistical moments of APD obtained by means of a Monte Carlo
simulation, varying the baseline length and the position of the shared satellite (determined
by the azimuth φ and the elevation θ).

For the sake of completeness, the standard deviation of IAR σd̂(θ, φ) and APD σAPD(θ, φ)
are compared, as well as their mean values (µd̂(θ, φ) and µAPD(θ, φ) respectively), through
the computation of a gain factor. Gain metrics are computed for all the possible coordinates
of a shared satellite by averaging on its azimuth and elevation values, as

Gσ =
1
N ∑

θ,φ
10 log10

(
σAPD(θ, φ)

σd̂(θ, φ)

)
(27)

Gµ =
1
N ∑

θ,φ
10 log10

(
|µAPD(θ, φ)− d|
|µd̂(θ, φ)− d|

)
(28)

Figure 12 reports the values of (27) and (28) w.r.t. the baseline length, for different
elevation angles of the receiver B. The standard deviation of the IAR estimate σd̂ always
shows a positive gain value for every baseline length, saturating for baseline lengths above
100 m. The bias gain Gµ is positive as well and decreases asymptotically to 0 for long
baselines, where the performances of APD and IAR are equivalent.
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Figure 12. Average bias and variance gain using the IAR method w.r.t. APD. Results shown for
different values of elevation of the agent B, varying the baseline length.
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This analysis confirms the preliminary results presented in [45], emphasizing the use
of the IAR as a valuable alternative to the APD and also showing clear advantages in terms
of variance of the output measurements.

4.2. Experimental Framework in Controlled Static Environment

A further assessment of the statistical model introduced in Section 3 can be done
in a controlled environment, exploiting real signals, but preventing the non-modeled
impairments from affecting the dataset as in an on-field scenario (i.e., multipath and
atmospheric impairments). Two static receivers have been simulated by means of IFEN™

NavX professional Radio Frequency Constellation Simulator (RFCS) (IFEN GmbH, Poing,
Germany), as shown in the scheme in Figure 13. The two GNSS receivers tackled and
performed the positioning autonomously and asynchronously, based on independent runs
of the same reference oscillator RFX OS364-13 Oven Controlled Xtal Oscillator (OCXO)
(RFX Ltd., Livingston, UK). For the presented results, agents have been simulated with
fixed baseline distance d = 126.5962 m, as obtained from the Euclidean distance of LLA
coordinates reported in Table 2.

RFCS

USRP N2010
A/D Converter

NavSAS SwRx
Software Receiver

USRP N2010
A/D Converter

NavSAS SwRx
Software Receiver

CRU

~ ~

IAR

~ Configuration
File (𝐵)

Configuration
File (𝐴)

RECEIVER (𝐵)RECEIVER (𝐴)

Low Noise
Amplifier

Reference 
Clock

Reference 
Clock

Figure 13. Simulation test-bench for IAR performance assessment in a controlled environment.

Table 2. LLA coordinates of simulated agents in a controlled environment.

Agent Latitude (deg) Longitude (deg) Altitude (m)

Aiding 45.065274 7.658969 311.973
Aided 45.064775 7.650414 311.635

The same scenario was generated at different times of the day to investigate different
relative geometries of the visible satellites. Baseband raw samples of incoming navigation
signals were recorded through a general-purpose front-end [46], i.e., Ettus Research™

Universal Software Radio Peripheral (USRP) N210 (National Instruments Corporation,
Austin, TX, US). Relevant configuration parameters are included in Table 3. The output
binary file (.bin) including the stream of samples was then post-processed by a proprietary
MATLAB® GNSS fully-software receiver, i.e., NavSAS Software Receiver (NavSAS SwRx)
(Politecnico di Torino, Turin, Italy), in order to extract GNSS observables and positioning
solutions. The software receiver was intended as a flexible GNSS receiver configured
according to the parameters reported in Table 4.
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According to Section 2.3.1, asynchronous GNSS receivers provided observables and
positioning data at different epochs depending on their acquisition, tracking, and Position
Velocity and Time (PVT) computation algorithms. The time misalignment, ∆t, between the
measurements epochs was hence compensated, according to (14). Detrended pseudorange
measurements have been assumed as ergodic random processes; therefore, their variance
was reliably estimated by means of a second-order discrete derivative [47]. Time variance
was hence taken into account in the form of sample variance estimated from such derived
time series and used for the evaluation of the proposed theoretical formula. A dedicated
MATLAB® script was implemented in the aforementioned fully-software receiver to pro-
cess the observables obtained at the previous step. Such a script referred to as Collaborative
Ranging Unit (CRU), acted as a dual-receiver IAR simulator.

Table 3. Ettus Research USRP N210.

Parameter Value/Unit

Carrier frequency 1575.42 MHz
Intermediate frequency 0 Hz
Sampling Frequency 5 MHz
Quantization bits 16
Sampling mode IQ
Reference clock External
Gain 38 dB

Table 4. NavSAS Software Receiver.

Parameter Value/Unit

Constellation/Signal GPS/L1
No. of Channels 10
Integration time 20 ms
Doppler step 125 Hz
Coherent accumulations 5
Freq. Lock Loop (FLL) time 10 ms
Position output rate 1 Hz

Validation of the Theoretical Model within a Controlled Environment

The theoretical Formula (26) for the computation of the IAR standard deviation is
adopted with experimentally-estimated values for the assessment and characterization of
the standard deviation of the IAR measurements. Qualitative and quantitative analyses are
provided about σd̂ in Figure 14, computed for the available satellites for three independent
experiments. A set of best matches is highlighted in each experiment by gray circles when
the difference between experimental and estimated values is below the 5% of the measured
quantity. As an example, it is worth noticing that Pseudo Random Noise code (PRN) 21
and PRN 16 returns a valuable match with the analytic extrapolation in Figure 14b. For
other PRNs, the difference between measured and theoretically computed σd̂ is comparable
to the values reported in the skyplots of Figure 9.

4.3. Experimental Framework with COTS GNSS Receivers

The results from on-field tests are hereafter exploited to validate the theoretical find-
ings of Section 3, as well as to provide a valuable comparison among state-of-the-art,
GNSS-based ranging methods and the proposed solution. By exploiting raw pseudor-
ange measurements provided by COTS receivers, two experimental campaigns have been
pursued investigating the IAR computation in a real environment.
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(a) Skyplot, Turin, 00:00, 4 April 2018
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(c) Skyplot, Turin, 08:00, 4 April 2018
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(e) Skyplot, Turin, 12:00, 4 April 2018
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Figure 14. Skyplots (a,c,e) showing the analytic σd̂ (color-scale) along with the superposition of
satellites azimuth and elevation generated by the RFCS. Ranking plot (b,d,f) of all the shareable
satellites based on the experimental standard deviation and the interpolation of the analytic model.

• Static urban scenarios, where both the aided and aiding receivers performed static
positioning at different baseline lengths. The set of selected locations is representative
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of a mixed urban environment including building occlusions, limited sky visibility,
and possible multipath phenomena. However, the impact of environmental param-
eters cannot be effectively controlled and only the distance from the lab location is
considered to discriminate the tests.

• Semi-dynamic urban scenario, in which the aiding receiver was kept static while the
aided receiver was moved by walking in a dense urban scenario connecting the
locations of the static test campaign.

The choice of specific GNSS mass-market receivers does not limit the generality of the
results. The tests locations were set in Turin (see Figure 15) and the details are summarized
in Table 5.
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Figure 15. Scenarios map of static reference locations. Dynamic trajectories were achieved by
connecting the locations from S01 to S04.

Table 5. Test scenarios for GNSS-based ranging (LLA coordinates of the aided peer).

Name Latitude (deg) Longitude (deg) Baseline (m) Test Duration (s)

S01 45.065407 7.657622 100 565.1
S02 45.066450 7.658056 126 640.2
S03 45.068365 7.656880 360 606.2
S04 45.070769 7.656095 630 622.6

D01 Dynamic Dynamic 100–650 1.3866× 103

The setup of the experiment, shown in Figure 16, included two COTS u-Blox NEO-
M8T receivers (u-blox AG, Thalwil, Switzerland) identically configured. The navigation
solution rate was set to 1 Hz provided through multi-constellation positioning. The first
receiver was connected to a georeferenced geodetic antenna located at the rooftop of
LINKS Foundation (Turin, Italy) 45◦3′54.9972′′ N, 7◦39′32.2128′′ E, 311.804 m. The second
receiver was instead moved along with a dual-frequency Swift Piksi Multi receiver used as
reference. They were both connected to the same Aero Antenna AT1675-382 (AeroAntenna
Technology Inc., Chatsworth, CA, USA).

No synchronization was established between the two u-Blox receivers: pseudor-
ange measurements and related positioning solutions were collected according to the
independent onboard clocks as performed for the controlled experiment. The logged raw
pseudorange measurements obtained from the M8Ts were re-processed offline to determine
a plain LMS positioning solution considering only GPS satellites. The inter-personal dis-
tances were then computed according to methods mentioned in Section 2.2 and compared
with our proposed IAR technique. The results presented in this section were obtained
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by selecting output inter-receiver ranges characterized by a reasonable time difference ∆t
between the measurements of the two collaborating receivers. By considering high values
of ∆t, indeed the correction provided through (14) does not effectively compensate for the
time-inconsistency of the data. Therefore, the maximum ∆t considered for the experiment
was 50 ms, which guarantees a considerable margin for the misalignment of different
high-rate positioning solutions provided by collaborating COTS receivers [48].

USRP N2010
A/D Converter

NavSAS SwRx
Software Receiver

U-BLOX M8-T
COTS GNSS Receiver

PVT PROCESSOR
Software Receiver

PVT PROCESSOR
Software Receiver

U-BLOX M8-T
COTS GNSS Receiver

SWIFT PIKSI MULTI

Reference Receiver

CRU

IAR

GNSS L1 

Antenna

GNSS L1

Antenna

Low Noise
Amplifier

MOBILE SETUPLAB SETUP

~
Reference 

Clock

Low Noise
Amplifier

Figure 16. Simulation test-bench for performance assessment of GNSS-based ranging methods in
real environment.

4.3.1. Validation of the Theoretical Model Using COTS Receiver

The statistical models presented in Section 3 are further investigated through a com-
parison w.r.t. experimental data. They are used to obtain an estimate of the IAR variance
considering the satellite constellation and the receiver positions during the experiments.
Given the position of the users A, B and of the satellite C at a certain time instant, it is
possible to estimate the resulting IAR variance by knowing the variances of the random
variables involved in the IAR estimation (17) (i.e., σ2

A , σ2
B , σ2

γ̂). The baseline is evaluated
through a IAR computation based on observations from the experiments, and its variance
is compared to the variance predicted by (26) in the same conditions. The satellites’ move-
ments along the tests duration induce a change in the IAR variance (26) as well. However
the difference between the minimum and maximum variance computed from (26) within
the test duration is always below 10−5 m in each experiment, and it can be reasonably
neglected. As a consequence, the variance of the experimental IARs is compared to the
mean of the set of values computed using (26) over the observation window. The result is
shown in Figure 17, where the theoretical variance is proved to match the behavior of the
measured variance for the majority of the PRNs. The gaps between the two variances are
summarized in Table 6, averaging among PRNs.

Equation (26) models the variance of the IAR computed from the experimental
datasets with a good approximation. However, the observations of the random variables
(r̂A, r̂B, γ̂) are collected throughout time and the satellite movement throughout the experi-
ment’s duration introduces correlation among the random variables. Such a correlation
can be modeled by the coefficients introduced in (22), which can be estimated, on M
observations, as

α̂ij =
1

M− 1

M

∑
m=1

(
Xi,m − µXi

σXi

)(Xj,m − µXj

σXj

)
(29)
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where Xi,m is the m-th observation of the random variable Xi. The correlation coefficients
estimated through (29) are employed in the generalized theoretical Formula (24) to obtain
a refined estimation of the IAR variance. As shown in Figure 17, taking into account the
correlation between the measurements improved the match between the theoretical and
experimental values. Table 6 summarizes a mismatch reduction between 6.8% and 35%,
depending on the experimental conditions.

Table 6. Comparison between theoretical IAR variance and measured variance. The generalized
theoretical Formula (24) and the theoretical formula with the assumption of null cross-correlation (26)
are compared.

Experiment Identifier Gap of Theoretical
Formula

Gap of Generalized
Theoretical Formula Gap Reduction

S01 0.362 m 0.322 m 11.1%
S02 0.749 m 0.698 m 6.8%
S03 0.151 m 0.099 m 34.4%
S04 1.049 m 0.698 m 33.5%
D01 1.683 m 1.094 m 35.0%
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Figure 17. IAR variance estimated from experimental data compared to theoretical models. Circled
values regards relevant matches between model and real measurements.
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4.3.2. Accuracy and Precision of the Ranging Methods

Figure 18 presents the accuracy performance observed in the scenarios listed in
Table 5, in which the IAR measurements errors are compared with the techniques presented
in Section 2.2, along a subset of epochs. DD is not reported due to a lack of shareable satel-
lites, while the PR method proposed in [26] is dropped due to its strong similarity to SD. It
is worth noticing that a proper satellite choice returns remarkable ranging performance
overcoming on average both APD and SD methods in scenarios S01 and S02 of Table 5. The
satellite that minimizes the estimated IAR variance is chosen a priori through (26) and the
resulting baseline estimation is compared to other methods. Standard deviations estimated
along the epochs for each experiment are reported in Table 7. It can be shown that the IAR
presents comparable performance w.r.t. SD, and it outperforms APD in S01, S04, and D01.
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Figure 18. Inter-personal distance estimation error from static experiments. Comparison among
relevant state-of-the-art techniques in Table 1. The presented timespans correspond to the longest
periods of each experiment during which ∆t < 50 ms was verified.

Table 7. Estimated standard deviations of ranging techniques within real experiments in urban
environments.

Test Scenario IAR (Single Satellite) APD SD

S01 0.5490 m 1.4469 m 0.9080 m
S02 2.4344 m 2.3830 m 1.4381 m
S03 1.4763 m 1.0544 m 0.6702 m
S04 4.6664 m 7.3327 m 6.8653 m
D01 2.8590 m 3.5012 m 2.8954 m

The histograms in Figure 19 collect the error statistics of each estimation technique for
all the experimental static scenarios. This allows for a general evaluation of the distance
estimation accuracy in a mixed-urban scenario by in parallel assessing the remarkable
performance of the proposed IAR. Most of the estimation errors are indeed lower than
8 m for the APD method, while better results are observed for SD method whose errors
are mostly lower than 4 m. A different trend is instead observed for IAR which shows
a considerable number of error occurrences in the range 0–8 m. IAR accuracy is mostly
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penalized by a poor cancellation of common errors w.r.t. differential methods (i.e., SD),
and this is evident as the baseline distance increases. However, despite a general lower
accuracy, it is worth recalling that IAR does not require an explicit disclosure of the
positioning data as for APD or the possibility to indirectly estimate it as for SD. Furthermore,
the proposed IAR method relies on a less demanding sky visibility requirement (see Table 1)
w.r.t. SD and w.r.t. differential methods in general.
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Figure 19. Histograms of the estimation errors for inter-personal distances obtained through APD,
SD, and IAR in a static urban scenario.

The dynamic scenario D01 described in Figure 20 shows that the IAR measurements
(which require a single shared satellite) have an appreciable match to the true baseline w.r.t.
other techniques requiring more common satellite in view.

(a) Range estimation
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Figure 20. Results of inter-personal distance estimation in dynamic scenario (D01). Comparison
of the proposed IAR technique and state-of-the-art GNSS-based ranging methods. Maximum ∆t
considered 50 ms.

The baseline error of the estimated IAR shown in the lower plot appears to be very sen-
sitive to the dynamics of the multi-agent system. This experimental result is in accordance
with the spatial distributions of IAR bias and variance presented in Section 2.

5. Conclusions

The technological effort in SARS-Cov-2 pandemic has been mostly focused on con-
tact tracing through short-range proximity sensing, but the emergency has in parallel
highlighted the relevance of social distancing to counteract the infection spreading. Be-
sides supporting the capability of monitoring, assessing the inter-personal distance could
provide vital information to decision-makers about citizens’ behavior. However, a measure
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of this quantity is not easily affordable without disclosing positioning data of GNSS-enabled
personal devices or enhancing the latter with dedicated ranging hardware. Therefore, a low-
complexity distance estimation algorithm, namely IAR, is modeled and assessed in this
work for the estimation of the inter-personal distance in non-LOS conditions among mobile
personal devices equipped with low-cost and ultra-low-cost GNSS receivers. The method
leverages the exchange of a limited set of raw GNSS data between networked receivers
and the simultaneous visibility of a common GNSS satellite. A statistical model for the
inter-personal distance estimation through IAR has been provided and experimentally
validated. The performance of the algorithm has been compared with state-of-the-art
GNSS-based ranging methods in terms of measurement variance and bias, through sim-
ulated and on-field experimental campaigns. The IAR cooperative solution shows on
average better performance w.r.t. the APD and comparable performance w.r.t. iterative
methods such as SD and PR, which require, however, multiple shared satellites and allow
for indirectly disclosing the position of the aiding agents. IAR can hence be considered as a
complementary or alternative technique to similar solutions whenever a limited number
of satellites are available for computation. Moreover, similarly to the aforementioned
methods, IAR provides a measure of inter-personal distance utilizing only GNSS data and
avoiding further implementation of additional ranging sensors.
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