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Abstract
We give the equations of the n-th symmetric product Xn/Sn of a flat affine scheme
X = Spec A over a commutative ring F . As a consequence,wefind a closed immersion
into the coarse moduli space parameterizing n-dimensional linear representations of
A. This is done by exhibiting an isomorphism between the ring of symmetric tensors
over A and the ring generated by the coefficients of the characteristic polynomial of
polynomials in commuting generic matrices giving representations of A. Using this
we derive an isomorphism of the associated reduced schemes over an infinite field.
When the characteristic is zero we show that this isomorphism is an isomorphism of
schemes and we express it in term of traces.

Keywords Symmetric products · Symmetric tensors · Linear representations ·
Moduli spaces · Determinants · Traces

Mathematics Subject Classification 14L30 · 13A50 · 20G05

1 Introduction

Let F be an infinite field and let F[y1, . . . , yn]Sn be the ring of symmetric poly-
nomials in n variables (see Macdonald 1995). The general linear group GL(n, F)

acts by conjugation on the full ring Mat(n, F) of n × n matrices over F . Denote by
F[Mat(n, F)]GL(n,F) the ring of the polynomial invariants for this actions. It is well
known that

F[Mat(n, F)]GL(n,F) ∼= F[y1, . . . , yn]Sn . (1)
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The above result can be restated by saying that the scheme parameterizing n-
dimensional linear representations of F[x] up to basis change is isomorphic to the
symmetric product

(A1)n/Sn = Spec F[y1, . . . , yn]Sn (2)

Let F be a commutative ring. We write Rn(A)//GL(n, F) for the coarse moduli
space that parameterizes n-dimensional linear representations of a flat commutative
F-algebra A up to basis change. Let X = Spec A and write Xn/Sn for the symmetric
product of its spectrum.

When A is flat as F-module we have a couple of morphisms relating Xn/Sn to
Rn(A)//GL(n, F), one is given by the composition of a representation ρ with the
usual determinant, the other is induced by the restriction to diagonal matrices.

Our main results are the following generalizations of (2)

• we give a closed embedding of schemes

Xn/Sn ↪→ Rn(A)//GL(n, F) (3)

• when F is an infinite field the embedding (3) induces an isomorphism of the
associated reduced schemes.

• when F is a characteristic zero field the embedding (3) is an isomorphism.

Suppose A is generated by say m elements, then one can identify the geometric
points of the symmetric product with a sub-scheme of the m-tuples of diagonal n × n
matrices and the above result can be read as a theorem of simultaneous diagonalization
as well as a generalization of the classical result due to Junker (1893) andWeyl (1946).

As a complement, we give a presentation by generators and relations of (A⊗n)Sn

that holds for A flat and over any commutative base ring F giving then the equations
of Xn/Sn in the flat case. In the characteristic zero cases, we describe Vn(A)GL(n,F)

in terms of traces and polynomial identities.
These results generalize those one given in Vaccarino (2005, 2007). See Vaccarino

(2012) for further readings on these topics.

2 Notation

• F is a fixed commutative base ring
• we write algebra to mean commutative F-algebra
• we denote by CF the category of commutative F-algebras
• Sets the category of sets
• we write A(B,C) := HomA(B,C) in a category A with B,C objects in A.
• for A a set and any additive monoid M , we denote by M (A) the set of functions

f : A → M with finite support.
• let α ∈ M (A), we denote by | α | the (finite) sum ∑

a∈A α(a),
• given a set I we denote by �I its cardinality.

123



Beitr Algebra Geom (2022) 63:335–347 337

3 Symmetric product

Let A be an algebra and X = Spec A its prime spectrum. The symmetric group Sn
acts on the n-th tensor power A⊗n and as usual we write TSnF (A) or simply TSn(A)

to denote the subalgebra of the invariants for this action, i.e. the symmetric tensors of
order n over A. The n-th symmetric product of the affine scheme X is the quotient
scheme of Xn with respect to the above action and is usually denoted by X (n). By
definition X (n) = Xn/Sn = Spec TSn(A).

3.1 Polynomial laws

To link symmetric tensors to linear representations we shall use the determinant so
that we are lead to the topic of polynomial laws: we recall the definition of this kind
of a map between F-modules that generalizes the usual polynomial mapping between
free F-modules (see Bourbaki 1988; Roby 1963, 1980).

Definition 1 Let A and B be two F-modules. A polynomial law ϕ from A to B is a
family of mappings ϕL : L ⊗F A −→ L ⊗F B, with L ∈ CF such that the following
diagram commutes

L ⊗F A

f⊗idA

ϕL
L ⊗F B

f ⊗idB

M ⊗F A
ϕM

M ⊗F B

(4)

for all L, M ∈ CF and all f ∈ CF (L, M).

Definition 2 Let n ∈ N, if ϕL(au) = anϕL(u), for all a ∈ L , u ∈ L ⊗F A and all
L ∈ CF , then ϕ will be said homogeneous of degree n.

Definition 3 If A and B are two F-algebras and

{
ϕL(xy) = ϕL(x)ϕL(y)

ϕL(1L⊗A) = 1L⊗B
(5)

for L ∈ CF and for all x, y ∈ L ⊗F A, then ϕ is called multiplicative.

Remark 4 A polynomial law ϕ : A → B is a natural transformation − ⊗F A →
− ⊗F B.

Let A and B be two F-modules and ϕ : A → B be a polynomial law. The following
result on polynomial laws is a restatement of Théorème I.1 of Roby (1963).

Theorem 5 Let S be a set and let as be elements of A such that as = 0 except for a
finite number of s ∈ S.
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1. Let L = F[xs]s∈S. There exist ϕξ ((as)) ∈ B, with ξ ∈ N
(S), such that:

ϕL

(
∑

s∈S
xs ⊗ as

)

=
∑

ξ∈N(S)

xξ ⊗ ϕξ ((as)) (6)

where xξ = ∏
s∈S x

ξs
s .

2. Let R be any commutative F-algebra and let rs ∈ R for s ∈ S, then:

ϕR

(
∑

s∈S
rs ⊗ as

)

=
∑

ξ∈N(S)

r ξ ⊗ ϕξ ((as)) (7)

where r ξ = ∏
s∈S r

ξs
s .

3. If ϕ is homogeneous of degree n, then one has ϕξ ((as)) = 0 if |ξ | is different from
n. That is:

ϕR

(
∑

s∈S
rs ⊗ as

)

=
∑

ξ∈N(S), |ξ |=n

r ξ ⊗ ϕξ ((as)) (8)

In particular, if ϕ is homogeneous of degree 0 or 1, then it is constant or linear,
respectively.

Remark 6 The above theorem means that a polynomial law ϕ : A → B is completely
determined by its coefficients ϕξ ((as)), with ξ ∈ N

(S).

Remark 7 If A is a free F-module and {at : t ∈ T } is a basis of A, then ϕ is completely
determined by its coefficients ϕξ ((at )), with ξ ∈ N

(T ). If also B is a free F-module
with basis {bu : u ∈ U }, then ϕξ ((at )) = ∑

u∈U λu(ξ)bu . Let a = ∑
t∈T μt at ∈ A.

Since only a finite number of μt and λu(ξ) are different from zero, the following
makes sense:

ϕF (a) = ϕF

(
∑

t∈T
μt at

)

=
∑

ξ∈N(T )

μξϕξ ((at )) =
∑

ξ∈N(T )

μξ

(
∑

u∈U
λu(ξ)bu

)

=
∑

u∈U

⎛

⎝
∑

ξ∈N(T )

λu(ξ)μξ

⎞

⎠ bu .

Hence, if both A and B are free F-modules, a polynomial law ϕ : A → B is simply
a polynomial map.

Definition 8 Let A, B ∈ CF be two algebras we write Pn(A, B) for the multiplicative
homogeneous polynomial mapping A → B of degree n.

The assignment B → Pn(A, B) determines a functor PA
n : CF → Sets as one can

easily check.
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3.2 Symmetric products as representing schemes

From now on A will be a flat algebra. There is an element γn ∈ Pn(A,TSn(A)) given
by γn(a) = a⊗n such that the composition CF (TSn(A), B) � ρ �→ ρ ·γn ∈ Pn(A, B)

gives an isomorphism

CF (TSn(A), B)
∼=−→ Pn(A, B), (9)

i.e. the functor PA
n is represented by the symmetric product X (n), (see Bourbaki 1988,

chap. IV). We call γn the universal mapping of degree n.
The proof goes as follows: by Rem. 6 a polynomial law is determined by its coeffi-

cients. If A is free then one can extract from the set of coefficients of γn a linear basis of
TSn(A). Then any polynomial law homogeneous of degree n correspond to a special-
ization of these coefficients of γn . The requirement to be multiplicative corresponds to
the requirement of the above specialization to be an algebra homomorphism, since γn
is obviously multiplicative. Then one applies the good properties of TSn with respect
to inverse limits and gets the desired result for flat algebras, see Lazard (1969).

3.3 Generators

Let a ∈ A, there is an algebra homomorphism

ηa : F[x1, . . . , xn]Sn ∼= TSn(F[x]) → TSn(A)

induced by the evaluation of x at a. We write eni (a) = ηa(eni ) where eni is the i-th
elementary symmetric polynomial in n variables. Given and independent variable t
we have an induced map ηa : F[t][x1, . . . , xn]Sn ∼= TSn(F[t][x]) → TSn(A[t]) such
that

tn +
∑

i

eni (a) = ηa(t
n +

∑

i

eni ) = ηa

(
∏

i

(t + xi )

)

= (t + a)⊗n (10)

so that eni (a) is the orbit sum of a⊗i ⊗ 1⊗n−i . Note that enn(a) = a⊗n = γn(a).

Proposition 9 (Generators) Let A be a commutative flat algebra generated by {ai }i∈I
then TSn(A) is generated by eni (a) where a = ∏

i a
αi
i is such that

∑
i αi ≤

max(n, �I (n − 1)) and the {αi }i∈I are coprime.
Proof In Vaccarino (2005, Theorem 1) we proved the above statement for A = P a
free polynomial F-algebra. For A = P/I flat the morphism TSn(P) → TSn(A) is
onto and the proposition follows. 	
 	

Proposition 10 Suppose F ⊃ Q with Q the rational integers and let A be generated
by {ai }i∈I . In this case TSn(A) is generated by en1(a) where a = ∏

i a
αi
i is such that∑

i αi ≤ n.

Proof It follows from Proposition9, Newton formulas and Noether’s bound. 	
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3.4 Relations

Suppose you have a homomorphism f : A → B of algebras. One can check that the
kernel of TSn f : TSn(A) → TSn(B) is linearly generated by the orbit sums (under
Sn) of elements a1 ⊗ · · · ⊗ an such that ∃k ∈ {1, . . . , n} with ak ∈ ker f . Now any
such element can be expressed as a polynomial in the eni (a) with a varying into the
set of monomials in the a j (see Vaccarino 2005, Lemma 1.2 and Corollary 2.3). Thus
we have the following.

Proposition 11 Let f : A → B be an algebra homomorphism then the kernel of
TSn f : TSn(A) → TSn(B) is generated as an ideal by the elements eni (a) with
i = 1, . . . , n and a ∈ ker f .

Corollary 12 Suppose F ⊃ Q then ker TSn f is generated by en1(a) with a ∈ ker f .

Proof It follows from the above Proposition by Newton’s formulas. 	

Let P
 = F[xω]ω∈
 be the free polynomial algebra on 
. We set P+


 for the
augmentation ideal i.e. the kernel of the evaluation xω �→ 0 for all ω.

Consider the polynomial ring F[ei,μ] freely generated by the symbols ei,μ with
i ≥ 1 andμ that varies in the set of monomials

∏
ω xαω

ω having coprime exponents. By
Proposition 9 for all n there is a surjective homomorphism κn : F[ei,μ] → TSn(P
)

given by ei,μ �→ eni (μ) if i ≤ n and ei,μ �→ 0 for i > n.
Given f ∈ P+


 we can compute enm( f ), orbit sum under Sn of f ⊗m ⊗ 1⊗n−m for
all n ≥ m (for n < m it is zero), and express it as a polynomial in the eni (μ) with μ

monomial with coprime exponents. It has been shown that this expression stabilizes
as n >> m (see Vaccarino 2005, Proposition 3.4 or Vaccarino 2008, 4.4). Thus we
have a well defined polynomial law em : P+


 → F[ei,μ] homogeneous of degree m.
In Vaccarino (2005) we proved that ker κn is linearly generated by the coefficients of
em with m > n.

We give here an improvement of that result.

Theorem 13 (Relations)

1. Let A = P
/I be a flat algebra, then the kernel of the surjection F[ei,μ] κn−→
TSn(P
) → TSn(A) is linearly generated by the coefficients of em with m > n
jointly with the lifting to F[ei,μ] of enk (g) where k ≤ n and g ∈ I ⊂ P
.

2. Suppose F is an infinite field, then the kernel of κn is generated as an ideal by
em( f ) with m > n and f ∈ P+


 .
3. Suppose F is an infinite field and let A = Pω/I . The kernel of the surjection

F[ei,μ] κn−→ TSn(P
) → TSn(A) is generated as an ideal by em( f ) with m > n
and f ∈ P+


 plus the lifting to F[ei,μ] of the enk (g) where k ≤ n and g ∈ I ⊂ P
.

Proof 1. It follows from the previous paragraph and Proposition 11.
2. A linear form that is zero on the linear subspace generated by ek( f ) with k > n

and f ∈ P+

 is zero also on the subspace generated by the coefficients as f varies.

3. By 1. and 2.
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Remark 14 Suppose that A is a finitely generated flat algebra so that A =
F[x1, . . . , xm]/I . We have that TSn(A) is finitely generated and we can substitute
in Theorem 13 the ring F[ei,μ] with the finitely generated polynomial ring F[ei,μ]
such that i = 1, . . . , n and the degree of μ is not greater then max(n,m(n − 1))
by Proposition 9. In this sense Theorem 13 gives the equation of X (n) as a closed
sub-scheme of Ak with k depending both on n,m and the base ring F .

4 Representations

Given an algebra B write Mat(n, B) for the ring of n × n matrices with entries in B.

Definition 15 For a n-dimensional representation of A over B one means an algebra
homomorphism A → Mat(n, B). We denote by Rn(A, B) the set of these represen-
tations. Given any algebras A, B and a homomorphism ρ : A → B we write (ρ)n for
the induced map Mat(n, A) → Mat(n, B).

The assignment B → Rn(A, B) gives a covariant functor RA
n : CF → Sets as can

be easily checked.

Proposition 16 (De Concini et al. 2005, Sect. 1) For all n ∈ N and A ∈ CF there exist
a unique algebra Vn(A) and a unique representation π A

n ∈ Rn(A, Vn(A)) such that
the map ρ �→ (ρ)n · π A

n is an isomorphism

CF (Vn(A), B)
∼=−→ Rn(A, B) (11)

for all algebra B, i.e. the functor from schemes to sets associated toRA
n is represented

by the affine scheme Rn(A) = Spec Vn(A)

Proof Let 
 be a set and consider F[ξi j,ω], a polynomial ring where i, j = 1, . . . , n
and ω ∈ 
.

Let A
 = F{xω}ω∈
 be the free associative algebra on 
 then

Rn(A
, B) ∼= Mat(n, B)
 ∼= CF (F[ξi j,ω], B) (12)

for any B ∈ CF . More precisely write D = Mat(n, F[ξi j,ω]) and let ξω ∈ D be given
by (ξω)i j = ξi j,ω , ∀ i, j, ω, these are called the (n × n) generic matrices and were
introduced by C.Procesi (see Procesi 1967) in this setting.

Let π : A
 → D be the n-dimensional representation given by xω �→ ξω. Given
then any ρ ∈ Rn(A
, B), with B ∈ CF there is a unique ρ̄ ∈ CF (F[ξi j,ω], B) given
by ξi j,h �→ (ρ(xω))i j and it is such that the following diagram commutes

A


ρ

π
B

(ρ̄)n

Mat(n, B)

(13)
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We now substitute A
 with an algebra A ∈ CF and we let

0 −→ J −→ A
 −→ A −→ 0 (14)

be a presentation by generators and relations.
Let I be the unique ideal in F[ξi j,ω] such that

Mat(n, I ) = D π(J ) D (15)

then as one can easily check that, for all B ∈ CF

Rn(R, B) ∼= CF (F[ξi j,ω]/I , B) (16)

via the lifting to a representation of F . Set now Vn(A) = F[ξi j,ω]/I . Let {aω}ω∈
 be
a set of generators of A, in the same way as above we have a universal representation

π A
n :

{
A −→ Mat(n, Vn(A))

rω �→ ξ A
ω

(17)

where ξ A
ω is the image of ξω via the surjection Mat(n, F[ξi j,ω]) → Mat(n, Vn(A)). 	


Remark 17 Note that Rn(A) could be quite complicated, as an example, when A =
C[x, y] we obtain thatRn(A) is the commuting scheme and it is not even known (but
conjecturally true) if it is reduced or not, see Gan and Ginzburg (2006) and Vaccarino
(2007).

5 Determinant and isomorphism

We prove the key result of this paper.

Definition 18 For B ∈ CF let det : Mat(n, B) → B denote the usual determinant. Let
χb(t) ∈ B[t] denote the polynomial ring in the variable t over B, the characteristic
polynomial of b ∈ Mat(n, B) is defined by

χb(t) = det(t In − b) = tn +
n∑

i=1

(−1)iψn
i (b)tn−i (18)

where In denotes the n × n identity matrix.

Definition 19 The subalgebra of Vn(A) generated by the coefficients ψn
i (b) for b that

varies in π A
n (A) will be denoted by Cn(A).

Theorem 20 The composition det ·π A
n induces an isomorphism for all flat A ∈ CF

δAn : TSn(A)
∼=−−→ Cn(A).
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Proof BySect. 3.2 there is a unique algebra homomorphism δAn : TSn(A) → Cn(A) ⊂
An(A) such that det ·π A

n = δAn · γn . We have an identification

1F[t] ⊗ δAn (t ⊗ 1A + 1 ⊗ a)⊗n = det(t ⊗ 1A + 1 ⊗ π A
n (a)) (19)

for all a ∈ A with t and independent variable. Hence δAn (eni (a)) = ψn
i (π A

n (a)) for all
a ∈ A and by definition of Cn(A) and Proposition 9 one has that δnA is surjective.

By Sect. 4 the representation ∂n : A → Mat(n, A⊗n) given by

∂n(a) =

⎛

⎜
⎜
⎜
⎝

a ⊗ 1⊗n−1 0 . . . 0
0 1 ⊗ a ⊗ 1n−1 . . . 0

. . . . . .
. . . 0

0 0 . . . 1⊗n−1 ⊗ a

⎞

⎟
⎟
⎟
⎠

(20)

corresponds uniquely to a homomorphism ∂n : Vn(A) → A⊗n such that ∂n = (∂n)n ·
π A
n . Observe that ∂n · det ·π A

n = det ·∂n(a) = a⊗n = γn(a) hence ∂n(ψ
n
i (π A

n (a))) =
eni (a) for all a ∈ A and the theorem follows. 	


6 Invariants

We want to study within the Geometric Invariant Theory framework (Mumford et al.
1994) the equivalence classes of representations of A under basis changes, i.e. under
the action of the general linear groupG = GL(n, F). The right object is the categorical
quotient Rn(A)//G = Spec Vn(A)G, where, as usual, Vn(A)G denotes the invariants
for the G-action induced on Vn(A) by basis change on Fn . Observe that Cn(A) ⊂
Vn(A)G thanks to the invariance of the characteristic polynomial by basis change. We
address the interested reader to De Concini et al. (2005) and Procesi (1998).

Theorem 21 The homomorphism ∂n : Vn(A) → A⊗n corresponding to the represen-
tation ∂n given in (20) restrict to a surjection Vn(A)G → TSn(A) for all flat algebra
i.e. there is a closed embedding

X (n) ↪→ Rn(A)//G (21)

Proof Suppose A is presented as in (14).We have the following commutative diagram

F[ξi j,ω]
�n

Vn(A) = F[ξi j,ω]/I
∂n

P⊗n

 a⊗n

A⊗n

(22)
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where α : P
 → A is the surjective homomorphism induced by A
 → A and

�n(ξi j,ω) =
{
1⊗i−1 ⊗ xω ⊗ 1⊗n−i i = j

o i �= j
(23)

for i, j = 1, . . . , n and for all ω ∈ 
. The symmetric group acts on Vn(A) as a
subgroup ofG. Sinceα⊗n and�n are Sn-equivariant it follows that ∂n is Sn-equivariant
too. Thus ∂n : Vn(A)G → TSn(A) is onto because ∂n · δAn = idTSn(A) by Theorem 20.

	

Remark 22 A classical result due to Junker (1893) and restated by Weyl (1946) says
that TSn P
 is generated by the restriction of traces to the diagonal matrices i.e.
F[ξi j,ω]G → TSn P
 is surjective over a characteristic zero field F . Theorem 21
generalizes Junker - Weyl’s result.

Remark 23 Theorem 21 jointly with Theorem 20 says that SpecCn(A) is identified
with a closed sub-scheme of Rn(A)//G: those one corresponding to orbits of tuples
of diagonal matrices.

6.1 Infinite field

In this section F will be an infinite field of arbitrary characteristic. We write Nn(A) for
the nilradical of Vn(A) andRn, red(A) = Spec Vn(A)/Nn(A) for the reduced scheme
associated to Rn(A). Since Nn(A) is G-stable then the action of G on Rn(A) can
be restricted to the variety Rn, red(A). Thus the homomorphism δAn induces another
δAn, red : TSn(A)red → Vn(A)Gred

Theorem 24 The homomorphism δn, red is an isomorphism, therefore

X (n)
red

∼= Rn,red(A)//G.

Proof Let k be the algebraic closure of F . Recall that the rational points of GL(n, F)

are dense in GL(n, k) thus we can suppose F algebraically closed without any loss of
generality (see Procesi 2007, §6.1). Given a tuple of matrices inRn, red(A)we observe
that they are pairwise commuting matrices hence there is g ∈ G such that they can
be put by g simultaneously in upper triangular form. Consider now a 1-parameter
subgroup λ of G. We choose λ such that

λ(t) =

⎛

⎜
⎜
⎜
⎝

ta1 0 . . . 0
0 ta2 . . . 0
...

...
. . .

...

0 0 . . . tan

⎞

⎟
⎟
⎟
⎠

(24)

for some positive integers a1 > a2 > · · · > an .
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Let M be an upper triangular n × n matrix, the map

λ : A1\{0} → A
n2 , t �→ λ(t) M λ(t)−1 (25)

can be extended to a regular map

λ : A1 → A
n2 (26)

which sends the origin ofA1 to the diagonal matrix having the same diagonal elements
as M . It is clear that the latter belongs to the closure of the orbit of M . Thus we have
that in the closure of the G-orbit of any point ofRn, red(A) there is the (closed) orbit of
a tuple of diagonal matrices obtained as above. Let now f ∈ Vn(A)Gred be an invariant
regular function that is zero on diagonal matrices. Suppose f is not identically zero,
then there is an orbit of a tuple of diagonal matrices over which f �= 0 by continuity.
Hence δAn, red is injective. The theorem follows from Theorem 21. 	


Remark 25 Let A = F[x] then Theorem 24 implies

F[x1, . . . , xm]Sn ∼= F[Mat(n, F)]G

for any infinite field F .

6.2 Characteristic zero

Theorem 26 Suppose F is a characteristic zero field, then

δAn : TSn(A)
∼=−→ Vn(A)G

i.e.

X (n) ∼= Rn(A)//G

Proof In Vaccarino (2007) we proved that this statement is true when A is a free
polynomial ring. The theorem follows because G is linear reductive (see Mumford
et al. 1994, Chapter1, pag.26) and by Theorem 20.

Another proof. The statement also follows observing that, by Procesi (1976) one has
F[ξi j,ω]G = Cn(A
) and again the result follows by Theorem 20 and the linear
reductivity of G. 	
 	


Remark 27 If A is reduced then Theorem 26 implies that Vn(A)G is reduced too. This
gives some support to the conjecture that the commuting scheme is reduced.
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6.3 Traces

Along this paragraphwe suppose that n! is invertible in F .Whenwe have a polynomial
law ϕ homogeneous of degree n we can consider its full polarization ϕ1n that is the
coefficient of t1t2 . . . tn in ϕ(t1x1 + · · · + t1xn) where ti are commuting independent
variables and the x j are generic elements in the domain of ϕ. It is well known that the
process of polarization is effective via restitution ϕ1n (x, x, . . . , x) = n!ϕ(x).
What happens for enn? We write

enn(t1x1 + · · · + tnxn) = t1t2 . . . tne
n
1n (x1, . . . , xn) + Z (27)

and if one observe that enn(t1x1 + · · · + tnxn) = (t1x1 + · · · + tnxn)⊗n then it follows
easily that en1n (x1, . . . , xn) = ∑

σ∈Sn xσ(1)⊗· · ·⊗xσ(n) .Wewould like now to express
en1n (x1, . . . , xn) in terms of en1(μ) with μ a monomial in the xi .

We know that δAn (eni (a)) = ψn
i (π A

n (a)) where

det(t + π A
n (a)) = tn +

∑

i

ψn
i (π A

n (a))tn−i (28)

in particular en1(a) is identified with the trace of π A
n (a) and enn(a)with its determinant.

It is well known that (see Procesi (1976)) the full polarization χ1n of the determinant
can be expressed as a special polynomial in traces of monomials. Namely consider
the cycle decomposition σ = σ1 . . . σk ∈ Sn and let correspond to it the product
Tσ = tr(μ1) . . . tr(μk) where μh = xh1 . . . xhl being σh = (h1 h2 . . . hl), then

�1n =
∑

σ∈Sn
εσ Tσ (29)

It is a celebrated theorem due to Procesi (1976)) and Razmyslov (1974) that all the
relations (in characteristic zero) between the invariants of matrices, i.e. between traces
of monomial of generic n × n matrices, are consequences of �1n+1 in the sense of
T -ideals.

We summarize what we are able to say so far in the characteristic zero cases.

Theorem 28 Let A = P
/I be a commutative F-algebra. The ring of the invariants
Vn(A)G is generated by traces of monomial of generic matrices ξ A and the ideal of
relations is generated by the evaluation of �1n+1 at the elements of π

A
n (A) and by the

traces tr(π A
n ( f )) with f ∈ I . The same holds mutatis mutandis in TSn(A)

Proof It follows from the preceding paragraph and by Theorem 13.3 using Newton’s
formulas. 	
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