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a b s t r a c t

DynaProg is an open-source MATLAB toolbox for solving multi-stage deterministic optimal decision
problems using Dynamic Programming. This class of optimal control problems can be solved with
Dynamic Programming (DP), which is a well-established optimal control technique suited for highly
non-linear dynamic systems. Unfortunately, the numerical implementation of Dynamic Programming
can be challenging and time consuming, which may discourage researchers from adopting it. The
toolbox addresses these issues by providing a numerically fast DP optimization engine wrapped in
a simple interface that allows the user to set up an optimal control problem in a straightforward yet
flexible environment, with no restrictions on the controlled system’s simulation model. Therefore, it
enables researchers to easily explore the usage of Dynamic Programming in their fields of expertise.
Thorough documentation and a set of step-by-step examples complete the toolbox, thus allowing for
easy deployment and providing insight of the optimization engine. Finally, the source code’s class-
oriented design allows researchers experienced in Dynamic Programming to extend the toolbox if
needed.

© 2021 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Motivation and significance

Multi-stage optimal decision problems describe a wide class
of control problems where decisions must be made in stages in
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rder to minimize a certain total cost. As the stages progress, the
ystem evolves based on its own dynamics which are influenced
y the decisions themselves. If the system’s evolution for each
tage is fully predictable, the problem is deterministic. Instead, if
he system’s evolution is influenced by some random phenomena,
he problem is stochastic. Moreover, the decision problem may
e defined over a finite horizon or an infinite horizon, based on
hether the number of stages is finite or not.
Dynamic Programming (DP) is a technique that is applied to

he very wide field of optimal control in multi-stage decision
roblems [1]. Its implementation however is not straightforward:
ven in a deterministic scenario, its original form (Exact Dynamic
rogramming) can only be applied to a very limited number of
ases because of its computational complexity. In most cases at
east one technique from the broad field of Approximate Dynamic
rogramming must be adopted to obtain a numerical solution to
he optimization problem (see e.g. [2]), mitigating the so-called
urse of dimensionality (the issue of computational complexity
asily exploding as the dimensionality of the problem increases)
hich affects all DP-based algorithms. Because of this, building
n algorithm based on Dynamic Programming often involves
ailoring it to a specific optimization problem (see e.g. the com-
rehensive set of methods and applications discussed in [3]) and
equires both technical knowledge of the problem at hand and a
eep understanding of DP and its implementation challenges.
DynaProg is a general-purpose MATLAB software package that

llows to solve deterministic, finite horizon multi-stage decision
roblems with a user-friendly interface. The rationale behind its
evelopment is to provide a simple interface that allows the user
o define an optimization problem of this class in a straightfor-
ard manner, without having to deal with the implementation of
he optimization algorithm itself. Moreover, a fundamental aim
f DynaProg is to provide a computationally fast optimization
lgorithm, as computational time is one of the main factors that
imits the usage of Dynamic Programming algorithms.

This particular class of problems is found in many engineer-
ng and economic applications, and Dynamic Programming al-
orithms have been used with great benefits by many research
ommunities studying various subjects such as vehicle routing
roblems [4], optimal control of hybrid-electric vehicles [5,6],
attery health management [7], resource allocation problems [8],
eservoir systems operation [9,10], hydrothermal coordination in
ower systems [11], sewer network management [12], and even
atural ecosystems preservation [13].
Indeed, speed is DynaProg’s main strength. The software was

eveloped with state-of-the-art algorithms and it relies on fea-
ures (e.g. vectorization, implicit expansion) and best coding prac-
ices (e.g. argument validation) which allow to exploit MAT-
AB’s computational engine at its best as well as improve user-
riendliness, based on our experience in the practical implemen-
ation of Dynamic Programming algorithms. Another prominent
eature of the software is flexibility and ease of use. The user
an define the problem structure with a simple and consistent
aming structure, and he/she can define the system’s dynamics
ith a simple MATLAB function (m-file [14]). Furthermore, ad-
anced users can take advantage of DynaProg’s well-documented,
bject-oriented design to fully customize and reuse the source
ode.

. Software description

The core of the software is the DynaProg class, which allows
o store the problem structure with its properties and solve it
ith its methods. The basic problem elements are a model for the
ystem dynamics, a stage cost, and the initial state of the system.
he state dynamics is a model which takes the form

= f (x , u ), k = 0, 1, . . . ,N − 1, (1)

where k indicates the current stage, N is the number of stages (the
control horizon), x is the state of the system, and u is the control
variable (the decision to be taken). Both x and u can be scalar or
vector, if the system is characterized by several state variables or
several control variables must be controlled. The stage cost takes
the form g(xk, uk), so that the total cost incurred in the entire
process is

J(x0, u0, . . . , uN−1) = gN (xN ) +

N−1∑
k=0

g(xk, uk), (2)

where gN (xN ) is a terminal cost which may be incurred based on
the final state of the system.

The main output of DynaProg are the optimal value of the total
cost incurred in the entire decision problem

J∗(x0) = min
uk∈Uk(xk)
k=0,...,N−1

J(x0, u0, . . . , uN−1) (3)

and the optimal control sequence u∗

0, . . . , u
∗

N−1, that is the se-
quence of control variables that minimizes the total cost, subject
to the constraint that each u∗

k must belong to the set of admissible
control variables at stage k, i.e. Uk(xk).

The core of DynaProg is a deterministic Dynamic Programming
optimization algorithm, which is divided in a backward phase and
a forward phase.

In the backward phase, the algorithm iteratively builds the
optimal cost-to-go for each stage:

J∗k (xk) = min
uk∈Uk(xk)

(
gk(xk, uk) + J∗k+1 (fk(xk, uk))

)
. (4)

The optimal cost-to-go function for each stage is the optimal cost
associated to the tail sub-problem which involves only the stages
from that to the last. In other words, the cost-to-go function J∗k (xk)
is the minimum cost incurred if the system must evolve from
stage k to stage N , expressed as a function of the initial state xk.

In general, it may not be possible to obtain an analytical
expression for J∗k (xk), which would be required for a solution
based on Exact Dynamic Programming. For this reason, DynaProg
requires the user to define discrete computational grids for the
state and control variables. Then, for each iteration k during the
backward phase, it evaluates gk(xk, uk) + J∗k+1 (fk(xk, uk)) for all
points belonging to the computational grids and it constructs a
numerical approximation of J∗k (xk) by linear interpolation.

In the backward phase, the system’s evolution is simulated
starting from the initial state x0. For each stage, the optimal
control variables are determined as

u∗

k(xk) = argmin
uk∈Uk(xk)

(
gk(xk, uk) + J∗k+1 (fk(xk, uk))

)
(5)

and the simulation is advanced to the next stage, until the last
stage is reached.

2.1. Software architecture

The interface by which the user is able to define and solve
a multi-stage deterministic optimal decision problem is the Dy-
naProg class. In order to set up the problem and its settings, an
instance of the class can be created by calling the class construc-
tor:

prob = DynaProg(__);

The input arguments of the class constructor are used to define
some mandatory arguments such as the dynamic system to be
controlled, the computational grids mentioned in Sections 2 and
2.2.2 and initial state values, as well as other optional arguments.
The dynamic system in particular is passed to the class construc-
k+1 k k tor as a function handle which points to a function contained in

2
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n external m-file. This allows the user to code the dynamics of
he system with the greatest amount of flexibility.

The problem object is returned as the output of the class
onstructor, and the settings defined by the user are stored as
roperties of that object. The problem structure can then be
odified, if needed, by changing the values of the appropriate
roperties.

.2. Software functionalities

.2.1. Defining the system’s dynamics
The user can define the system’s dynamics and stage cost by

riting a function in an m-file, with the following structure.

x_next, stage_cost] = myfun(x, u)

hen, the model function is passed to the DynaProg class con-
tructor as a function handle.

roblem = DynaProg(__, @myfun)

If the model function is not time-invariant or, in other words,
t is also a function of some time-dependent exogenous input
, the system’s dynamics and stage cost are specified with the

ollowing alternate structure.

x_next, stage_cost] = myfun(x, u, w)

he exogenous inputs w can include all variables that do not
epend on the state and control variables, but may depend on
ime. It may also be simply time itself.

For some problems, the user may want to define constraints on
he state and control variables that can be reached or selected by
he system. To do this, DynaProg allows to define a third output to
he model function which define, in the form of a logical variable,
nfeasible states and/or control variables.

x_next, stage_cost, unfeas] = myfun(x, u, w)

.2.2. Defining the computational grids
DynaProg can be used to solve multi-stage optimal decision

roblems whether the state and control variables are discrete or
ontinuous. However, the user must specify a discrete computa-
ional grid for each of the state and control variables, though for
ifferent reasons.
Control variables must be discretized and the resulting optimal

ontrol state trajectory will be restricted to the discrete grid
pecified by the user. This simplifies the numerical solution as the
in and argmin operations mentioned in Eqs. (4) and (5) simplify

o finding minimum values over finite sets.
State variables, on the other hand, do not get discretized in the

orward simulation. However, building the cost-to-go function
n the backward phase (as mentioned in Section 2) requires
ampling it at a certain number of values for the state variables.
or this reason, a discretized computational grid for the state
ariables is needed. The discretization of this computational grid
or the state variables affects the computation of the cost-to-go
unction and, as such, it is a source of sub-optimality. Selecting
he proper discretization level for the state variables grid usually
equires some understanding of the physics behind the system
nder analysis and possibly some trial-and-error.
Both computational grids are entirely user-defined. The user

an therefore decide whether to adopt uniform grids or exper-
ment with non-uniform grids, which may allow to reduce the
rid size but may also bias the solution if not properly designed.
owever, DynaProg does not currently include any functionality
o automatically design a non-uniform computational grid and it
s left to the user to do so based on his/her field expertise in the

Fig. 1. Scheme of a p2 parallel HEV powertrain.

3. Illustrative example: optimal control of an hybrid electric
vehicle

3.1. Problem definition

Consider a p2 parallel Hybrid Electric Vehicle (HEV) power-
train schematized in Fig. 1.

Assume that the vehicle must drive following a speed trace in
time, such as the speed trace defined by a regulatory driving cy-
cle, while minimizing the fuel consumption in order to maximize
the benefits of hybridization.

The objective of this example is to design a control strategy
which defines the gear number to be engaged by the gearbox
and the torque that the electrical machine (EM) must provide or
absorb. Furthermore, we must make sure that the battery’s state
of charge at the end of the drive cycle is equal to its initial value.

The vehicle speed and acceleration in time is treated as an
exogenous input, while the control variables are the gear number
and the EM torque ratio, defined as:

τ =
TEM
Treq

, −1 ≤ τ ≤ 1 (6)

where TEM is the torque provided (if positive) or absorbed (if neg-
ative) by the electrical machine and Treq is the torque requested
at the powertrain level to make the vehicle following the given
speed trace. As such, Treq is a function of the vehicle’s speed and
the gear number.

Since we must set a constraint on the terminal value of the
battery’s state of charge (SOC), we must be able to assign an initial
condition to it and track its evolution in time (in other words,
throughout the decision problem’s stages). Thus, the battery SOC
is set as a state variable, and we must define its dynamics.

The SOC dynamics is derived using a simple battery internal
resistance model:

Ibatt =

VOC −

√
V 2
OC − 4ReqPbatt

2Req
, (7)

˙SOC =
Ibatt
Cbatt

. (8)

Here Ibatt , VOC , Req and Cbatt are the battery current, open-circuit
voltage, equivalent resistance and capacity.

The battery power Pbatt is evaluated as

Pbatt =

{
ηinvPEM if PEM ≥ 0,
1

ηinv
PEM if PEM < 0,

(9)

and the power absorbed or generated by the electrical machine
PEM is evaluated as

PEM =

{
ηEMωEMTEM if TEMωEM ≥ 0,
1 ω T if T ω < 0,

(10)

ptimization problem he/she is studying. ηEM EM EM EM EM

3
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ith ηEM and ηinv being the efficiencies of the electrical machine
nd the inverter (or any other power electronics).
Finally, the engine’s fuel consumption is evaluated based on

he engine speed and torque with its fuel consumption map
˙ fuel(ωeng , Teng ).

In order for the optimization problem to be meaningful, we
must set a series of constraints that reflect the operational con-
straints of an actual powertrain.

The engine’s torque cannot exceed its limit torque (which is
in turn dependent on its speed):

Teng = (1 − τ ) Treq ≤ Teng,lim(ωeng ) (11)

The electrical machine’s torque must stay within its limit
torque in generation and motor mode:

TEM,gen,lim ≤ TEM ≤ TEM,mot,lim (12)

When braking (i.e. Treq < 0), the electrical machine should
never operate in motor mode.

The terminal SOC must be equal to its initial value:

SOC0 = SOCN (13)

Also, the battery is characterized by a maximum discharge
power and a maximum charge current that must not be ex-
ceeded:

Pbatt ≤ Pbatt,max (14)

Ibatt ≥ Ibatt,chrg,lim (15)

3.2. Defining the model function

First, the model function must be created by the user. In
this example, the vehicle speed and acceleration are treated as
exogenous inputs. Therefore, the basic function signature accepts
three inputs (the state variables, the control variables, and the
exogenous inputs) and three outputs (the updated state variables,
the stage cost, and the unfeasibility tensor which is used to set the
model constraints).

Listing 1: Basic model function signature.
unction [x_new, stageCost, unfeas] = hev(x, u, w)

...

nd

Also, for practical purposes, it is convenient to define all con-
stant parameters that characterize the powertrain (such as the
engine limit torque characteristic Teng,lim(ωeng ) and fuel consump-
tion map ṁfuel(ωeng , Teng ), the electrical machine efficiency map
ηEM (ωEM , TEM ), the gearbox speed ratios, etc.) outside of the model
function and pass them to it as additional inputs. In this example,
the vehicle data is stored in six structures (veh, fd, gb, eng, em
and batt).

Listing 2: Model function signature modified to accept additional
inputs.
unction [x_new, stageCost, unfeas] = hev(x, u, w, veh, fd,

gb, eng, em, batt)

...

nd

Finally, it might be interesting to also include in the optimiza-
tion results the time profiles of physical quantities other than
the state variables, control variables and cost. This can be done
by changing the function signature to return additional outputs
starting from the fourth positional output.

Listing 3: Model function signature modified to return additional
outputs.
function [x_new, stageCost, unfeas, engTrq, emTrq] = hev(x, u

, w, veh, fd, gb, eng, em, batt)

...

end

The model function must perform all operations required to
evaluate the updated state variables, the stage cost and to define
constraints via the unfeasibility tensor. The full code for this
example is included in the software documentation and can be
accessed by entering open('hev') in MATLAB’s command window.

3.3. Setting up and solving the optimization problem

The optimization problem must be set up and solved in a
separate script. The script must define the discrete computational
grids for state and control variables as well as initial conditions
and (optionally) terminal constraints for the state variable. The
optimization settings for this example are shown in Listing 4.

Listing 4: Preparing the optimization problem settings.
% State variable grid

SVnames = SOC;

x_grid = {0.4:0.005:0.7};

% Initial state

x_init = {0.6};

% Final state constraints

x_final = {[0.6 0.6]};

% Control variable grid

CVnames = [Gear Number, Torque split];

u1_grid = [1 2 3 4 5];

u2_grid = 1:0.1:1;

u_grid = {u1_grid, u2_grid};

% Load a drive cycle

load UDDS % contains velocity and time vectors

dt = time_s(2) time_s(1);

% Create exogenous input

w{1} = speed_kmh./3.6;

w{2} = [diff(w{1})/dt; 0];

% Number of stages (time intervals)

Nint = length(time_s);

% Generate and store vehicle data

[veh, fd, gb, eng, em, batt] = data();

All the information that is needed to define the optimization
problem is then used to create a problem structure, that is an
instance of the DynaProg class, as shown in Listing 5. Note how
the vehicle speed and acceleration are passed to the constructor
as exogenous inputs.

Listing 5: Constructing the problem structure.
prob = DynaProg(x_grid, x_init, x_final, u_grid, Nint, @(x, u

, w) hev(x, u, w, veh, fd, gb, eng, em, batt), '

ExogenousInput', w);

The optimization problem can then be solved by using the run
method, which returns the problem structure with simulation
results. The same problem object can then be passed to the plot
method to visualize the optimal state variables, control variables
and cumulative cost trajectories (see Fig. 2), as shown in Listing
6.
4
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Fig. 2. Optimization results for the p2 HEV example.

isting 6: Running the optimization problem.
rob = run(prob);

lot(prob)

4. Impact

There are many fields where Dynamic Programming is already
well-established method for solving the class of decision prob-

ems such as the ones listed in Section 1. For researchers in these
ields, DynaProg may speed up research activity by allowing them
o set up their own optimization problem and solve it with a fast
lgorithm without having to deal with the implementation chal-
enges of Dynamic Programming. For the same reasons, DynaProg
ay also enable researchers to develop and experiment with new
ethods even in research fields where Dynamic Programming
as not been previously used.
Currently, DynaProg is being used by sustainable mobility

roups at Politecnico di Torino to investigate optimal control
trategies for hybrid-electric vehicles and optimal design of
ybrid-electric powertrains, and it is also under evaluation at
ther institutions. In this context, DynaProg has already proven
ts worth by enabling relatively complex models to be explored
ith significantly reduced computational times.
The DynaProg package provides an easy, flexible, well-docum-

nted and computationally fast tool that allows researchers to
btain the (approximate) global solution for any finite horizon,
ulti-stage deterministic optimal decision problems, regardless
f the field of application. The package syntax and documentation
as carefully designed to prevent it from being tied to a specific
esearch topic. The authors hope that these features should stim-
late the adoption of Dynamic Programming-based optimization
n new research fields.

Moreover, DynaProg’s code was specifically designed with
ransparency and reusability in mind. One of the main design
oals was allowing to extend and customize both its user inter-
ace and computational core. The reason for this is that this will
llow researchers who work in fields where Dynamic Program-
ing optimization algorithms are already an established practice

o improve their understanding of their computational hazards
nd even develop their own optimization algorithm tailored to

5. Conclusions

DynaProg was designed to provide a reliable, versatile and
well documented tool in multi-stage deterministic optimal de-
cision problems. Its development stems from the authors’ ex-
perience in optimal control of Hybrid-Electric Vehicles, but the
tool and the documentation was specifically designed to make it
problem-independent.

We hope that this will enable many researchers facing this
class of optimization problems to exploit Dynamic Programming
in their research without having to invest a long time in becoming
experienced in this technique.

By making the code fully open source, we also hope that
those researchers who are instead experienced in Dynamic Pro-
gramming will be able to contribute with their own extensions
or improvements. Examples of potential extensions include re-
placing the functional approximator for the cost-to-go function
mentioned in Section 2 with more sophisticated solutions (such
as the ones mentioned in [15]) or embedding tools for assist-
ed/automated creation of non-uniform computational grids.
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