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1 Introduction

In this paper we investigate the holographic dual description of supergravity instantons

in the AdS5 × S5/Zk vacuum of IIB supergravity. Such instanton solutions were recently

constructed in [1] building on earlier work in [2]. As explained in those references the

instanton solutions can be found from 5-dimensional half-maximal gauged supergravity

truncated to the moduli space of the AdS vacuum. This moduli space has been studied in

quite some detail in [3, 4] and shown to be the coset:

Mmoduli =
SU(1, k)

S[U(1)×U(k)]
. (1.1)

Since we wish to describe instantons, we need to know the moduli space of the AdS vacuum

in Euclidean signature. The Wick rotation of space-time induces a Wick rotation of the

moduli space which is neither unique nor fixed by Euclidean supersymmetry. But given the

higher-dimensional and holographic interpretation of the scalars it can be fixed uniquely

– 1 –
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as follows. Since IIB string theory on AdS5×S5/Zk is expected to be the holographic dual

of the N = 2 necklace quiver gauge theories with k nodes [5], the moduli space of the AdS

vacuum is then supposed to be dual to the space of exactly marginal couplings, a. k. a. the

conformal manifold. The marginal couplings in the necklace quiver gauge theories are k

complexified couplings, of which the real parts correspond to θ-angles and hence get Wick-

rotated with an i-factor. The scalars that are dual to these θ angles should be scalars

that enjoy a (classical) shift symmetry (axions). The manifold (1.1) has exactly k Abelian

isometries that act as shifts of k real scalars. This fixes the Wick-rotation uniquely to [2]

Mmoduli =
SL(k + 1,R)

GL(k,R)
. (1.2)

If one restricts to instanton solutions with spherical symmetry (i.e. respecting the

rotational SO(5) symmetry of Euclidean AdS5) for simplicity, then the scalar field equations

of motion reduce to geodesic equations on Mmoduli and the Einstein equations of motion

decouple from the scalar fields into a universal form, [2, 6, 7]. The metric is then only

sensitive to the constant velocity of the geodesics (in an affine parametrization), which we

denote as c

GIJ φ̇
I φ̇J = c , (1.3)

where φI denote the moduli, GIJ is the metric on (1.2) and a dot is a derivative with

respect to the affine coordinate. Not surprisingly the description of geodesics on a coset

space like (1.2) can be understood entirely using group theory [1]. The properties and

meaning of geodesics depend strongly on whether they are time-like (c > 0), space-like

(c < 0) or null (c = 0).

When c < 0 the instantons are called super-extremal and the geometry describes a

smooth two-sided wormhole that asymptotes to AdS on both sides [8]. A very explicit and

concrete embedding of such wormholes was found inside AdS5 × S5/Zk when k > 1 [2].

When k = 1 the scalars are singular and the corresponding wormholes are not considered

as physical [9]. These Euclidean “axionic” wormholes have a long history in cosmology,

QCD, holography and quantum gravity (see for instance [2, 10–17] ) which was reviewed

in the comprehensive paper [18].

When c > 0 the instantons are called sub-extremal and the geometry corresponds to

a singular “spiky” deformation of AdS. The holographic description of these instantons is

unclear but for c small enough a suggestion was made in [9] in the case of AdS5 × S5. In

this paper we find that the same interpretation holds water as well in AdS5 × S5/Zk.

The focus of our paper is on the extremal instantons, for c = 0. When k > 1 it was

found that these instantons come into two families, supersymmetric or not, whereas for

k = 1 there are only supersymmetric solutions. One can expect that the supersymmetric

instantons are the easiest to understand. When k = 1 these instantons are simply the

D(-1)/D3 bound states zoomed in near the horizon of the D3. Their holographic map

to supersymmetric instantons in N = 4 Yang-Mills theory has been established in the

early days of AdS/CFT [19–28]. For k > 1 much less is known. A preliminary discussion

can be found in [29] and an in-depth study of the instanton moduli space (and other

– 2 –
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properties) was performed in [30, 31]. It is the aim of this paper to present the detailed

map between the on-shell actions on both sides of the correspondence and the dual one-

point functions for the marginal operators. As it turns out, this map works nicely for the

supersymmetric instantons and leads to a clear description of the holographic dictionary

between the massless scalars and the dual marginal operators, which to our knowledge has

not been constructed before. For the non-supersymmetric instantons we present evidence,

using the one-point functions, that they correspond to the so-called “quasi-instantons” [32]

of quiver gauge theories, although the on-shell actions do not map to each other. We

speculate on why that happens.

The remainder of this paper is organised as follows. In section 2 we review the results

of [1] on instantons in AdS5. We then proceed in section 3 to similarly review some basic

properties of instantons in field theory relevant to the holographic map, focussing on the

one-point functions, Pontryagin indices and on-shell actions. In section 4 we combine these

two pictures to obtain the holographic dictionary between the massless scalars and the

dual marginal operators, by analysing in detail the supersymmetric case. We also briefly

discuss aspects of the holographic interpretation of the non-supersymmetric extremal and

non-extremal instantons in AdS5. We conclude in section 5, with some comments on the

holographic map in more general settings.

2 Reviewing supergravity instanton solutions

2.1 General comments

In order to describe deformations of AdS5 × S5/Zk for which the dual sources that are

possibly turned on are exactly marginal, one should restrict to the moduli space of the

vacuum. Instantons satisfy this requirement, since they should correspond to deformations

that can be interpreted entirely as non-trivial vacuum configurations of the undeformed

theory with non-zero vev’s for the operator that corresponds to the Lagrangian itself, so

Tr[F 2] + . . . and Tr[F ∧ F ], which are exactly marginal. Hence a good starting point is

to consider the gauged supergravity obtained by truncating the KK modes of Type IIB

supergravity on S5/Zk [3], restricted to the moduli space of its supersymmetric vacuum. If

then only scalars are switched on, we end up with an effective action of the following form:1

S = − 1

2κ2
5

∫ √
|g5|
(
R5 − 1

2GIJ ∂φ
I∂φJ − Λ

)
, (2.2)

with the φI coordinates on the moduli space Mmoduli, GIJ its canonical metric and Λ

the negative minimum of the scalar potential in the supersymmetric AdS vacuum. If we

restrict to instanton solutions with spherical symmetry, the metric Ansatz is given by

ds2
5 = f(r)2dr2 + a(r)2dΩ2

4 , (2.3)

1Here we point out that, in the background under consideration, the relation between κ2
5 and κ2

10 is the

following:
1

κ2
5

=
`5 Vol(S5/Zk)

κ2
10

=
`5 Vol(S5)

k κ2
10

=
`5 π3

k κ2
10

, (2.1)

where we have used the property: Vol(S5/Zk) = Vol(S5)/k = π3/k.

– 3 –
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and the moduli only depend on Euclidean time r. In the gauge f = a4, r is an affine

parametrization of the geodesic curves that are being traced out by the scalars, such that

φ̇I in equation (1.3) means φ̇I = dφI/dr. The Einstein equations are then equivalent to

the following Hamiltonian constraint

ȧ2

f2
=

c

24
a−6 +

a2

`2
+ 1 , (2.4)

where ` is the AdS length scale, defined as Λ = −12/`2, and c is the integration constant

appearing in (1.3). We therefore see that the metric is determined by c only. When

c = 0 the metric is that of pure Euclidean AdS. This is due to the vanishing of the total

energy momentum of the scalar fields, which is possible because of the indefinite sigma

model metric. The extremal instantons can straightforwardly be extended to non-spherical

solutions by replacing r by a general harmonic function that is not radially symmetric. We

shall use the symbol τ to denote the harmonic function. Note that the same symbol will

also be used to describe the D = 10 axion-dilaton complex scalar. The meaning of the

symbol will however be clear from the context.

When the variable τ is used for extremal solutions c = 0 it can mean any harmonic but

for non-extremal solutions c 6= 0 we have the spherically symmetric harmonic on Euclidean

AdS5 in mind:

∂r
(
f−1a4∂rτ(r)

)
= 0 . (2.5)

The most general harmonic function H with a single center is given by

H(z, ~x) = αF−3

((
1− 2F 2

z2
0

)√
1 +

F 2

z2
0

)
+ β , (2.6)

with α, β constants2 and F is the SO(1, 5) invariant function:

F (z, ~x) =

√
[(z0 − z)2 + |~x− ~x0|2][(z0 + z)2 + |~x− ~x0|2]

2z
, (2.7)

with ~x, z Poincaré coordinates for which EAdS metric is given by ds2 = `2z−2
(
dz2 + d~x2

)
.

The singularity of H at z = z0, ~x = ~x0 can be interpreted as the position of the instanton

and is free. Therefore the whole of EAdS5 is part of the instanton moduli space. The

specific choice z0 = `, ~x0 = 0 can be thought of as the original spherically-symmetric

solution, where H ∼ τ . The most general extremal solution now consists in taking an

arbitrary superposition of harmonics with singularities at different positions. These can be

thought of as multi-centered instantons.

2.2 Geodesic solutions

We now turn to the explicit expressions for the moduli-geodesics in the specific model

considered in this paper, given in (1.2). Following [1, 2] we introduce 2k real coordinates

2We fix α and β such that for the spherically symmetric harmonic we simply have H = r in the gauge

f = a4.
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on Mmoduli, denoted by U, a, ζi, ζ̃i where i = 1, . . . , k − 1.3 These coordinates define the

so-called solvable parametrization of the coset, see appendix C. The metric on the moduli

space can then be written as:

ds2 = 4dU2 − e−4UN 2 + e−2U
k−1∑
i=1

[(dζi)2 − (dζ̃i)
2] , (2.9)

where N is the one-form, N ≡ da+ (
∑

i ζ
idζ̃i − ζ̃idζi)/2. In contrast, the metric on the

moduli space of Lorentzian AdS which (somewhat confusingly) has Euclidean signature,

can be obtained trivially from the above metric by analytically continuing N and (dζ̃i) to

imaginary values, thus flipping the negative signs in the metric (2.9).

Prior to the Wick rotation, the moduli space (1.1) is also called complex hyperbolic

space and is denoted by CHk. For the reader’s convenience we summarize in appendix A

the relevant parametrizations of this space and their relations.

As opposed to the solvable parametrization of the Riemannian scalar manifolds oc-

curring in Lorentzian supergravities, the solvable parametrization of a pseudo-Riemannian

manifold (such as Mmoduli in (1.2)) is in general not global but only covers a local patch

in the space. Such parametrization however defines the physical fields φI = U, a, ζi, ζ̃i,

each of which corresponds to string excitations on the chosen background. The precise

string-interpretation of the solvable coordinates will be given later. We therefore refer to

the corresponding local patch as the physical patch. At its boundary the fields are no longer

well defined and, in particular, e−2U → 0. A solution described by a given geodesic can

be singular although its space-time geometry is regular, as it is the case for the space-like

geodesics describing wormholes. This occurs if the arc of the geodesic described by the

solution crosses the border of the physical patch, where some of the moduli diverge. This

never happens for light-like and time-like geodesics as the affine parameter τ runs from

0 to ∞, but only for the space-like ones. Therefore the regularity condition for worm-

holes amounts to requiring that the segment of the corresponding geodesic on Mmoduli,

described when going from side to side of the solution, never crosses the boundary of the

physical patch.

It is also important to point out that the solvable parametrization U, a, ζi, ζ̃i is mani-

festly covariant only with respect to the GL(k− 1) subgroup of the GL(k) isotropy group,

which acts linearly on the ζi, ζ̃i coordinates leaving a and U invariant. The correspondence

with string excitations, however, will require considering the combinations

δ ≡ e2U +
1

2

k−1∑
i=1

(ζi)2 , ã ≡ a− 1

2

∑
i

ζ̃iζ
i , (2.10)

to be identified as

δ ∼ e−φ = 1/gs , χ ∼ −ã , (2.11)

3With respect [1], we make, for notational convenience, the following rescaling

ζi → ζi√
2

, ζ̃i →
ζ̃i√

2
, Li →

Li√
2
. (2.8)

– 5 –
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where φ and χ being the ten-dimensional type IIB dilaton and axion fields, respectively.

These combinations break GL(k − 1) down to O(k − 1), so that the string interpretation

of our solutions is made in a O(k − 1)-covariant frame. The symmetry group Zk of the

Ak−1-quiver is contained in O(k − 1) as we shall show in section 4. We refer the reader

to appendix C for more mathematical details about the solvable parametrization and its

manifest symmetries.

The geodesic solutions can most easily be constructed using the exponential map M =

M(0) exp(2Qτ), with Q an element of the Lie algebra of the coset, τ the affine coordinate

and M a matrix, built from the coset representative L in the solvable gauge. The details can

be found in [1]. Here we simply present the solutions in terms of the scalars. The solutions

are all characterized by 2k “charges” denoted pα,mβ with α, β = 0 . . . k − 1 that obey

c = 4 ~m · ~p . (2.12)

For simplicity we explicitly write the geodesics through the origin, O, of the moduli space.

The general solutions that do not pass through O are obtained by acting on the ones

originating in O by means of shift-like isometry transformations:

U → U + U(0) ,

ζ̃ → ζ̃eU(0) + ζ̃(0) , ζ → ζeU(0) + ζ(0) ,

a→ ae2U(0) +
ζζ̃(0)eU(0)

2
− ζ̃ζ(0)eU(0)

2
+ a(0) . (2.13)

The above transformations are isometries in SL(k+1,R) that act transitively on the coset.

In fact they are generated by the solvable Lie algebra Solv parametrized by the scalar

fields in the solvable parametrization. We shall generically describe the geodesic passing

through a point φ0 = (φI0 ) = (U(0), ζi(0), ζ̃i(0), a(0)) of the moduli space at τ = 0 using

the compact notation:

φI = φI(τ, φ0) , φI(τ = 0, φ0) = φI0 . (2.14)

Note that the boundary of Euclidean AdS is at τ = 0. So the geodesics originate at

the boundary (UV) and flow to the interior as τ →∞.

Lightlike geodesics. When c = 0 we have:

U =
1

2
log

[
1

(1− τp0) (1− τm0)

]
,

ζi = −τ
(

pi
(1− τp0)

+
mi

(1− τm0)

)
,

ζ̃i = −τ
(

pi
(1− τp0)

− mi

(1− τm0)

)
,

a = − 1

(1− τp0)
+

1

(1− τm0)
, (2.15)

– 6 –
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where i = 1, . . . , k − 1. The condition c = 0 implies that the Noether charge matrix Q is

nilpotent either of degree 2 (Q2 = 0) or degree 3 (Q3 = 0) [1]. The degree 2 solutions are

supersymmetric and imply that either all p’s vanish or all m’s vanish. Regularity of the

solution requires that p0 ≤ 0 and m0 ≤ 0.

Time-like geodesics. The solutions through the origin with c = 4 ~p·~m = 4µ2 > 0 read:

U =
1

2
log

[
µ2

(m0 sinh (µτ)− µ cosh (µτ)) (p0 sinh (µτ)− µ cosh (µτ))

]
,

ζi =
mi

m0 − µ coth (µτ)
+

pi
p0 − µ coth (µτ)

,

ζ̃i = − mi

m0 − µ coth (µτ)
+

pi
p0 − µ coth (µτ)

,

a = − m0

m0 − µ coth (µτ)
+

p0

p0 − µ coth (µτ)
, (2.16)

where µ =
√
~m · ~p. Regularity of the solution requires that p0 ≤ 0 and m0 ≤ 0.

Space-like geodesics. If c = 4 ~p · ~m = −4µ2 < 0, we simply replace µ → i µ in the

time-like solutions to obtain:

U =
1

2
log

[
µ2

(m0 sin (µτ)− µ cos (µτ)) (p0 sin (µτ)− µ cos (µτ))

]
,

ζi =
mi

m0 − µ cotg (µτ)
+

pi
p0 − µ cotg (µτ)

,

ζ̃i = − mi

m0 − µ cotg (µτ)
+

pi
p0 − µ cotg (µτ)

,

a = − m0

m0 − µ cotg (µτ)
+

p0

p0 − µ cotg (µτ)
, (2.17)

where now µ =
√
−~m · ~p.

As discussed in [2], the generating solution of regular wormholes corresponds to a space-

like geodesic unfolding within the SL(2,R)/ SO(1, 1) submanifold of Mmoduli spanned by

the scalars U and ζ̃1. This solution is obtained from the general one by choosing, as the

only non-vanishing parameters, m0 = p0 = f0 ≤ 0 and m1 = −p1 = f1, with f2
1 > f2

0 ,

and reads:

e−2U =
1

µ2
(|f0| sin(µτ) + µ cos(µτ))2 , ζ̃1 =

2 f1
|f0| sin(µτ) + µ cos(µτ)

, (2.18)

where µ2 = f2
1 − f2

0 > 0 and c = 4 (f2
0 − f2

1 ) < 0. The parameter f0 represents the

component of the velocity vector along the positive signature direction in the pseudo-

Riemannian moduli space. The singular points in the moduli space are those in which the

geodesic intersects the boundary of the physical patch. At these points e−2U → 0. We

are interested in the geodesic of maximal length `max between two such points. For fixed

f1, the maximal length space-like geodesic are obtained by setting f0 = 0. In this limit

e−2U = cos(µτ)2 and the singular points occur when τ = ±π/(2µ), where now µ = |f1|.
The length along such geodesic between the two singular points is readily computed to be

`max =

∫ π
2µ

− π
2µ

√
|c| dτ = 2π , (2.19)

– 7 –
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where
√
|c| = 2µ. This value is larger than the actual length `wh of the arc of the geodesic

from side to side of the wormhole, which was computed in [14]. The scalar fields are

therefore always regular along the solution. In the limit |f0| → |f1|, c→ 0 and the instanton

becomes extremal non-BPS. The solution discussed in this subsection, and its extremal

limit, will be referred to as intrinsically non-BPS since there is no choice of the parameters

for which it is supersymmetric. Indeed the particular SL(2,R)/ SO(1, 1) submanifold of

Mmoduli, spanned by the scalars U and ζ̃1, in which the corresponding geodesic unfolds,

contains only non-supersymmetric solutions. We shall reconsider this intrinsically non-BPS

instanton later in light of the holographic correspondence.

2.3 Axion charge quantization

As emphasized earlier, the AdS moduli space contains k axion fields, and the shifts of

these fields define k commuting Killing vectors. The scalar fields that posses these shift

symmetries are the ζ̃i and ã. The latter scalar combination is defined as

ã = a− 1

2

∑
i

ζ̃iζ
i . (2.20)

The charges under these symmetries are called axion charges and should be quantised.

This in turn implies that certain combinations of m’ and p’s are quantised. It is useful to

adopt the following collective notation for describing the axion fields:

{χα} = {χ = −ã, ζ̃i} , (2.21)

where α = 0, . . . , k − 1. The quantization of the axion-charges follows from the

identifications:

χα = χα + Lα ↔ ã = ã− L0 , ζ̃i = ζ̃i + Li , (2.22)

where Lα = L0, Li are the radii of the axion-circles.

This quantisation was carried in [1] and can be stated as the following condition:

2π
nα
Lα

=

∫
S4

dSµ Jα|µ = Vol(S4) Jα|τ , nα ∈ Z , (2.23)

where Jα|µ are the Noether charges associated with the axion shift-symmetries, see equa-

tion (C.12) of appendix C. The explicit expression of nα in our solutions is:4

n0 = −e−2U(0)(m0 − p0)
Vol(S4)

2κ2
5

L0

2π
,

ni =
(
e−U(0)(mi − pi) + e−2U(0)(m0 − p0)ζi(0)

) Vol(S4)

2κ2
5

Li
2π

, (2.24)

with n0, ni ∈ Z. The actual values of the circle lengths can be derived from the string

theory origin of all fields. Instead of pursuing that option, we simply carry the L’s around

4This corrects a missing factor of 1/2 in [1]. Moreover, since we are considering here the axion χ0 = −ã,

which corresponds to the ten dimensional type IIB axion field χ, there is a sign difference between in the

expression of n0 with respect to the same reference.

– 8 –
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in our expressions and only fix them when we compute certain dual gauge theory quantities.

We will find it convenient, when discussing holography, to introduce constant quantities n′a,

a = 0, . . . , k− 1, associated with the non axionic scalar fields. To this end let us recombine

the non-axionic scalar fields U, ζi in the following way:

ϕa ≡ {δ, ζi} , (2.25)

where the new scalar δ is defined as follows:

δ ≡ e2U +
1

2

k−1∑
i=1

(ζi)2 . (2.26)

We define the quantities n′a on our solutions as follows:

n′a =
Vol(S4)La

2π
K−1

a
I(φ0) JI|τ (φ0) =

Vol(S4)La

2π 2κ2
5

GaK(φ0) ∂τφ
K∣∣
τ=0

, (2.27)

where K−1
I
J is the inverse matrix of KI

J which describes the components of the Killing

vectors KI defined in appendix C. Their explicit expression is

n′0 = −e−2U(0)(m0 + p0)
Vol(S4)

2κ2
5

L0

2π
,

n′i =
(
e−U(0)(mi + pi) + e−2U(0)(m0 + p0)ζi(0)

) Vol(S4)

2κ2
5

Li
2π

. (2.28)

Note that the expression of n′a is obtained from that of nα by changing pα → −pα. As

opposed to the latter, the former in general are not integers. Note that we have used, for

notational convenience, two different indices α and a, with the same range of values, in

order to label the axionic and non-axionic scalar fields, respectively. Later, however, we

will find it convenient to use a single index α to label the two kinds of scalar fields, when

the interpretation of the corresponding quantities is clear from the context.

2.4 On-shell actions

We now present the results of [1] for the the Euclidean on-shell action, which is generically

complex. The imaginary part of the on-shell supergravity action, for all instantons, is

particularly simple and only a function of the quantised charges (and not the number c):

Sim = 2π

(
iã(0)

n0

L0
+ i
∑
j

ζ̃j(0)
nj
Lj

)
. (2.29)

The corresponding expression for the real part of the on-shell action is

Sreal = 2π

(
[ã(∞)− ã(0)]

n0

L0
+
∑
j

[
ζ̃j(∞)− ζ̃j(0)

] nj
Lj

)
. (2.30)

An explicit computation for the general (sub-)extremal instanton, i.e. excluding worm-

holes, gives

Sreal =
Vol(S4)

2κ2
5

1

m̂2
0p̂

2
0

Abs

[
(m̂0 + p̂0)

2

k−1∑
i=1

(m̂0 pi − p̂0mi)
2 − µ m̂0p̂0(m̂0 − p̂0)2

]
,

(2.31)
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where we have defined:

m̂0 = m0 − µ , p̂0 = p0 − µ , µ =
√
~m · ~p . (2.32)

For regular wormholes the on-shell action is the difference between the left and right hand

side of the boundary values and we refer to [2, 9] for some explicit expressions when k = 1.

In the extremal limit µ→ 0, the expression (2.31) simplifies drastically, and reads

Sreal
SUSY =

Vol(S4)

2κ2
5

[
|m0 + p0|

(
1 +

1

2

k−1∑
i=1

[m2
i

m2
0

+
p2
i

p2
0

])]
, (2.33)

where the extremality constraint ~m · ~p = m0p0 +
∑k−1

i=1 mipi = 0 is understood to be

imposed.

The final results required for the holographic match in the next sections are the asymp-

totic expansions for the scalar fields near the boundary. For that purpose, the following

choice of coordinates is useful

φ̃I = {δ, ζi, ζ̃i, −ã} , (2.34)

where δ and ã were defined earlier, and we have used the tilde symbol to distinguish these

new scalars from the old ones φI = {U, ζi, ζ̃i, ã}. The explicit metric on the moduli space

in the φ̃ basis is:

G̃IJ = e−4U


1 − ζi 0 0

− ζi (e2Uδij + ζiζj) 0 0

0 0 − (e2Uδij + ζiζj) ζi

0 0 ζi −1

 , (2.35)

which will be used explicitly in due course.

3 Instantons in quiver gauge theories

The understanding of instantons in gauge theories has a long history with interesting spin-

offs in pure mathematics and we refer the reader to the excellent reviews [33–35] which are

of particular relevance for the discussions here.

Since we only describe specific aspects of the holographic dual to the geodesic curves we

do not need many details of instanton solutions and in what follows we therefore present the

minimal information required for this paper, such as the one-point functions, Pontryagin

indices and on-shell actions. If we furthermore ignore the bi-fundamental matter fields and

the fermions in the necklace quiver gauge theory then the classical action truncates simply

into k decoupled SU(N) pure Yang-Mills theories:5

L =

k−1∑
α=0

(
− 1

4g2
α

Tr[F 2
α]− i θα

32π2
Tr[Fα ∧ Fα]

)
. (3.1)

5We use the following notation:

Tr[F 2] ≡ Tr[Fµν F
µν ] , Tr[F ∧ F ] ≡ Tr[Fµν ?4 F

µν ] ,

where, in flat space-time, ?4Fµν ≡ 1
2
εµνρσ F

ρσ.
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Our notation is such that Fα is the field strength in the α’th SU(N) gauge factor (node).

The factor i in front of the theta-angles arises because we are working in Euclidean signa-

ture. Our conventions for the Lie algebra valued fields are:

Tr[TaTb] = −δab , F aµν = ∂µA
a
ν − ∂νAaµ + fabcA

b
µA

c
ν , (3.2)

where a, b . . . denote SU(N) Lie algebra indices. It could very well be that the above

truncation is too simplistic to capture all instantons, but it will suffice for most of the

discussion in this paper.

We are aware of three classes of instanton solutions that all rely on self-duality in

certain sectors of the product gauge group SU(N)k. The moduli-spaces of these instantons

are quite involved but we will mostly focus on their Pontryagin labels:

Nα = − 1

32π2

∫
4

d4xTr[Fα ∧ Fα] . (3.3)

Therefore an important characterisation of classes of instanton solutions in quiver gauge

theories is to provide a string of k integers:

(N0, . . . , Nk−1) . (3.4)

We shall also define the following non-negative quantities:

N ′α = − 1

32π2

∫
4

d4xTr[F 2
α] ≥ 0 . (3.5)

As opposed to the Nα, the N ′α are in general not quantized.

Extremal instantons. The supersymmetric instantons of the quiver theory have the

property that each field strength obeys (anti-) self duality:

?4 Fα = ±Fα , (3.6)

and furthermore all field strengths have the same orientation. This means that all N ’s are

of the same sign. So either all field strengths Fα are self dual or all are anti-self dual. In

other words there is no mixture of instantons and anti-instantons. These configurations

preserve 4 real supercharges.

If one allows for mixtures of instantons and anti-instantons, the solutions still solve the

equations of motion because each gauge node separately obeys (3.6). These configurations

were coined “quasi-instantons” in the literature, see for instance [32], and also correspond

to local minima of the action, but necessarily break supersymmetry. Their importance

in supersymmetric gauge theories seems unclear. For all the above extremal (SUSY and

quasi-instanton) solutions the following equality holds:

N ′α = |Nα| , (3.7)

and the on-shell action is given by:

S =
∑
α

(
8π2

g2
α

|Nα|+ iθαNα

)
, (3.8)
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while the expressions for the classical gauge of single centered configurations read

Tr[F 2
α] = sign(Nα)Tr[Fα ∧ Fα] = −192

z4
0(

z2
0 + (~x− ~x0)2

)4 |Nα| . (3.9)

Here, ~x0 is the position of the instanton, which we have taken to be the same for all gauge

nodes for simplicity, and z0 sets the thickness radius of the instanton, again taken to be

the same for all gauge nodes.

Non-extremal instantons. We consider the above two classes of instantons as “ex-

tremal” because they satisfy (anti-)self-duality in each separate gauge node. However

there also exist classical YM solutions with finite action that are not (anti-) self-dual. A

particularly simple class of such solutions can be constructed in theories with large N as

pointed out in [9]. The idea is rather straightforward. One can consider mutually commut-

ing SU(2)-factors inside SU(N). If one then takes the separate SU(2) to be (anti-) self dual

then such a gauge field configuration solves the equations of motion without obeying (3.6).

For the sake of illustration we take a single anti-instanton configuration for SU(2) denoted,

Aµ, inside the color matrix which for the rest has SU(2) instantons on the diagonal:

ASU(N)
µ =


A

SU(2)
µ 0 . . . 0

0 A
SU(2)
µ 0

...
. . .

0 A
SU(2)
µ

 . (3.10)

If we call N+
α the number of SU(2)-instantons and N−α the number of anti-SU(2)-instantons

inside the α’th gauge node then the on-shell action and gauge field profiles are given by

S =
∑
α

8π2

g2
α

(N+
α +N−α ) + iθα(N+

α −N−α ) , (3.11)

Tr[F 2
α] = −192

z4
0(

z2
0 + (~x− ~x0)2

)4 (N+
α +N−α ) , (3.12)

Tr[Fα ∧ Fα] = −192
z4

0(
z2

0 + (~x− ~x0)2
)4 (N+

α −N−α ) , (3.13)

where ~x0 and z0 are again the common position and equal thickness of the instantons. It

should be obvious from the above that the Pontryagin indices for the α-th gauge node is

by definition

Nα = (N+
α −N−α ) , (3.14)

and as a consequence the imaginary part of the on-shell action, as well as the Tr[Fα ∧ Fα]

expression is the same for all instanton solutions considered above.

4 Holographic correspondence

In this section we describe the match between the on-shell actions on both sides of the

correspondence and the dual one-point functions of Tr[F 2
α] and Tr[Fα ∧ Fα].
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One obvious correspondence should be the exact map between the topological data

on both sides of the correspondence: the Pontryagin indices Nα and the quantised axion

charges nα. The most general relation between the two strings of integers is

Nβ =

k−1∑
α=0

nαMαβ , (4.1)

with M ∈ GL(k,Z). Here we have distinguished between the index α = 0, . . . , k− 1, which

labels the vertices of the quiver diagram, from α labeling the quantized axion charges of

our solution. For later purposes it is useful to remark that the quiver diagram exhibits the

cyclic symmetry Zk of the corresponding extended Dynkin diagram A
(1)
k−1:

Zk = {ν`}`=0,...,k−1 , ν :


α0 → α1

α1 → α2

...

αk−1 → α0

(4.2)

where α0, . . . , αk−1 are the k simple roots of A
(1)
k−1.

4.1 Coordinates on moduli space versus conformal manifold

In order to study a possible holographic correspondence between the supergravity instan-

tons and field theory instantons we need the detailed dictionary between the moduli and

the YM couplings gα, θα. To the best of our knowledge this is not known. Our working

assumption is therefore that, like in AdS5× S5 we might hope for a match between the

on-shell actions of the supersymmetric instantons:

Sgauge theory(Nα) = SSUGRA(nα) . (4.3)

This equality constraints the dictionary between the coordinates on the conformal manifold

and the coordinates on the AdS moduli space. Once we fix from this the dictionary,

we compute, as a consistency test, the dual one-point functions for the operators Tr[F 2
α]

and Tr[Fα ∧ Fα]. These one-point functions should be consistent with the gauge theory

expectations and this will turn out to be the case. Then, armed with the correct dictionary,

we can work out the consequences for the non-SUSY instantons.

What furthermore helps us is to have a 10-dimensional picture of the type IIB super-

gravity moduli dual to the conformal manifold. There is the 10d axio-dilaton τ = χ+ i e−φ

and there are the vevs of the B2 and C2 field over the collapsing two-cycles ΣI of the orb-

ifold:

vI = −
∫

ΣI

(BRR
(2) − τ B

NS
(2) ) , (4.4)

where I = 1 . . . k − 1.

At this point we have three sets of scalar fields: from 10d SUGRA we have k com-

plex fields

10D supergravity: τα = {τ, vI} , (4.5)
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from 5d SUGRA we have 2k real fields

5D supergravity: U, a, ζi, ζ̃i , (4.6)

and we have k complexified gauge couplings

4D gauge theory: τα = θα + i
8π2

g2
α

. (4.7)

We now relate all of them.

First we note that the action of quiver-symmetry Zk on the complexified coupling

constants τα (and the corresponding field strengths Fα) leaves the classical field theory

action (3.1) invariant. This symmetry group Zk should be contained in the compact part

O(k) of the isotropy group GL(k,R) of the moduli space and should also act linearly on

the scalar fields. One can show that only the subgroup O(k−1) of O(k) has a linear action

on the scalar fields and it only acts on ζI , ζ̃I leaving a and U invariant. Therefore a, U

have to correspond to the complex axio-dilaton field τ , which is a Zk-singlet since it is

insensitive to the orbifold geometry. Similarly the ζI , ζ̃I should be related to the vevs of

the NS-NS and R-R 2-forms BNS
(2) , B

RR
(2) across the shrinking 2-cycles ΣI of the orbifold. So

purely based on the action of the Zk symmetry we can deduce

τ = χ+ i e−φ ∼ −ã+ i δ ,

vI ∼ ζ̃I + iζI . (4.8)

To fix the proportionality constants we investigate the geometry of the moduli space from

compactification in the orbifold limit. This is a bit subtle and discussed in appendix B,

where we find all proportionality constant to be unity:6

vI = ζ̃I + iζI , τ = −ã+ i δ . (4.9)

The vI define the twisted moduli and are in one-to-one correspondence with the simple roots

αI , I = 1 . . . , k − 1, of the Ak−1 algebra. Their non-trivial transformation property under

the Zk symmetry of the quiver diagram, to be described in detail below, differentiates them

from the untwisted complex scalar τ (not to be confused with the symbol for Euclidean

time).7 Then, from the discussions in references [3, 36] we can relate τα = {τ0, τI} to

τα = {τ, vI} as follows:

τα =
∑
α

Mαα τα , (4.10)

6Of course this was anticipated in the normalisation of the vI earlier.
7We distinguish here the index I from the index i = 1 . . . , k − 1 which labels an orthonormal basis of

the Cartan subalgebra of Ak−1. The relation between the two bases is encoded in a matrix C = (Ci
I):

A−1|IJ =
∑
i

Ci
ICi

J ,

where AIJ is the Cartan matrix of Ak−1. We will therefore have vi = Ci
I vI , mi = Ci

I mI and pi = Ci
I pI .
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such that8

τ =

k−1∑
α=0

τα , vI = −(τI−1 − τI) , I = 1, . . . , k − 1 . (4.12)

From the above equations we can determine the form of the matrix M . For instance in the

k = 2 case we find:

Mαα =

(
1 1

−1 1

)
⇒ (M−1)αα =

1

2

(
1 −1

1 1

)
. (4.13)

We now investigate whether the on-shell actions on both sides of the duality are equal.

From the on-shell imaginary action on the supergravity side is given by (2.29). This

expression is the same for all instantons, SUSY or not and captures purely topological

information. A useful rewriting of the imaginary part is given by:

SImGRAV =
∑
α

2π

Lα

[
iRe(τα)nα)

]
. (4.14)

Similarly, a useful shorthand way to rewrite the real part of the on-shell supergravity

action is

SReal
GRAV =

∑
α

2π

Lα

[
Im(τα)n′α

]
+ constant , (4.15)

where τα is given by

τ0 = τ = −ã(0) + iδ(0) , τI = ζ̃I(0) + iζI(0) , (4.16)

and the constant term refers to a contribution that does not depend on the moduli at the

boundary. More explicitly we have:

SReal
GRAV =

∑
α

2π

Lα

[
Im(τα(0)− τα(∞))n′α

]
. (4.17)

For the supersymmetric solutions the n′α are, up to a possible minus signs, equal to the nα
and so the real part of the action is also a weighted sum of integers, just like the on-shell

YM action. If one insists on equating the on-shell actions on both sides of the duality one

would conclude that the gauge couplings are dual to linear combinations of the scalar vevs

in the UV subtracted by the values at τ = ∞ (which means z = `AdS). For AdS5 × S5

this issue does not arise since there Im(τ0(∞)) = 0 always. For the sake of computing

holographic n-point functions the distinction between identifying the dual couplings as the

UV values or the UV values subtracted with the values in the bulk at τ = ∞, does not

matter since variations of the action with respect to τα(0) or τα(0) − τα(∞) are equal.

Hence for notational simplicity we disregard now the τα(∞) contribution.

8Note that the matrix M has the following property:

k−1∑
α=0

MααMβα =

(
k 0J
0I AIJ

)
, (4.11)

where AIJ is the Cartan matrix of Ak−1.
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Now, we are ready to equate the on-shell action of the supersymmetric instantons on

both sides of the holographic correspondence. The on-shell YM action is

SGAUGE =
∑
α

2π [Im(τα) |Nα|+ iRe(τα)Nα)] . (4.18)

In view of (4.10), the match works if we identify:

n′α = M−1
αα |Nα| , nα = M−1

αα Nα , (4.19)

where we can use ∑
βγ

MβαM
−1
γβ |Nγ | = |Nα| . (4.20)

We can generalize the relations (4.19) to the non-extremal case defining:

N ′α = − 1

32π2

∫
Tr[F 2

α] ≥ 0 , (4.21)

and writing:

n′α = M−1
αα N

′
α , nα = M−1

αα Nα . (4.22)

In the extremal case in which N ′α = |Nα| we recover equations (4.19). In this section,

with an abuse of notation, we have denoted by nα, n
′
α quantities depending on the vector

field strengths at the boundary, while we have used the same symbols in section 2.3 to

denote background quantities associated with a supergravity solution. We shall prove

in what follows that the vevs of the former quantities, computed using the holographic

correspondence, coincide indeed with the latter denoted by the same symbols.

4.2 Holographic one-point functions

Consider the background described by the geodesic φI(τ, φ0). In the AdS/CFT correspon-

dence [37–39] φI0 are sources JI of dual operators OI in the CFT so that:

〈OI〉J = − δ

δJI
SSUGRA[J] , (4.23)

where JI = φI0 and SSUGRA[J] = SSUGRA[φ0] is the supergravity action computed on the

solution as a function of the boundary values of the scalar fields. Computing the on-shell

variation of SSUGRA as φI0 → φI0 + δφI0 one ends up with the following boundary term:

δS =
1

2κ2
5

∫
∂M5

δφI GIJ ∂µφ
J dΣµ =

∫
∂M5

δφI0
(
K−1

I
J (φ0) JJ |τ

)
∂zτ g

zz
5

√
|g5| d4x ,

(4.24)

where JJ |τ are constants proportional to the Noether charges associated with the solv-

able isometries TI and dΣµ the volume element on a Minkowski slice of the Euclidean

asymptotically AdS space M5 at constant z. Let us also use the fact that, near z = 0,

gzz5

√
|g5| ∼ `3/z3. In the end we find:

δS

δφI0
= lim

z→0

`3

z3
∂zτ

(
K−1

I
J (φ0) JJ |τ

)
. (4.25)
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For the sake of simplicity, we localize the instanton at ~x0 = ~0 and z0 = `. As far as the

axion fields χα are concerned, Kα = ∂
∂χα and, using the property:

lim
z→0

`3

z3
∂zτ =

16 `4

[|~x|2 + `2]4
, (4.26)

we find:
δS

δχα
=

16 `4

[|~x|2 + `2]4
Jα|τ = 32π

nα
Vol(S4)Lα

`4

[|~x|2 + `2]4
, (4.27)

where we have used the quantization condition (2.23) to express JJ |τ . According to our

previous analysis, the marginal operator dual to χα is:

Oα =
1

16π Lα

k−1∑
β=0

M−1
βα Tr (Fβ ∧ Fβ) , (4.28)

such that:

1

16π Lα

k−1∑
β=0

M−1
βα 〈Tr (Fβ ∧ Fβ)〉 = − δS

δχα
= −32π

nα
Vol(S4)Lα

`4

[|~x|2 + `2]4
. (4.29)

Using Vol(S4) = 8π2/3 we end up with the following formula:

〈Tr (Fβ ∧ Fβ)〉 = −192

k−1∑
α=0

Mαβnα

 `4

[|~x|2 + `2]4
= −192Nβ

`4

[|~x|2 + `2]4
. (4.30)

We can make a similar computation for the 1-point functions associated with the non-

axionic scalars {ϕa} = {δ = eφ, ζi}. The corresponding 1-point functions read

〈Oa〉 =
1

16π La

k−1∑
β=0

M−1
βa 〈Tr

(
F 2
β

)
〉 = − δS

δϕa
= −32π

n′a
Vol(S4)La

`4

[|~x|2 + `2]4
, (4.31)

where we have used the definition of n′a in (2.27). By the same token we end up with the

general formula:

〈Tr
(
F 2
β

)
〉 = −192

k−1∑
a=0

Maβn
′
a

 `4

[|~x|2 + `2]4
= −192N ′β

`4

[|~x|2 + `2]4
. (4.32)

We find the relations between Nα, N
′
α and nα, n

′
a given in the previous section:

N ′β ≡ −
1

32π2

∫
M4

〈Tr
(
F 2
β

)
〉 =

k−1∑
α=0

Mαβn
′
α , (4.33)

Nβ ≡ −
1

32π2

∫
M4

〈Tr (Fβ ∧ Fβ)〉 =
k−1∑
α=0

Mαβnα . (4.34)
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4.3 SUSY instantons

For BPS solutions either pα = 0 or mα = 0, which implies

n′α = ±nα , (4.35)

where the sign on the right hand side does not depend on α and is “+′′ if pα = 0, “−′′

otherwise. This implies:

N ′α = ±Nα , (4.36)

which define BPS instantons in the dual theory. Note however that consistency requires

N ′α = |Nα| ≥ 0 ,

namely that N ′α be non-negative and quantized. From the expression of the matrix M

and (4.33) we find:

N ′0 = n′0 − n′1 ,
N ′1 = n′0 − n′2 + n′1 ,

...

N ′k−2 = n′0 − n′k−1 + n′k−2 ,

N ′k−1 = n′0 + n′k−1 . (4.37)

We need to require the right hand sides of the above equations (which are integers for the

BPS solutions) to be non-negative. A sufficient condition for k > 2 amounts to requiring:

(n′0)2 ≥ 2

k−1∑
i=1

(n′i)
2 , (4.38)

while for k = 2 we only need n′0 ≥ |n′1|. Note that n′0, as defined in (2.27), is always

non-negative since regularity requires m0, p0 ≤ 0. The above condition is a stronger one

and is O(k − 1)-invariant. If we have a BPS solution, we can always rotate the charges so

that (4.38) is satisfied, by means of a transformation in O(k)/O(k − 1). Once we are in

this O(k − 1)-frame one can study the holographic correspondence.

4.4 Intrinsically non-BPS solutions revisited

We now reconsider the intrinsically non-BPS solution discussed in subsection 2.2 for which

k = 2. For the sake of simplicity we fix L0 = L1 = L and define ξ ≡ Vol(S4)
2κ25

L
2π and consider

the geodesic moving through the origin. Recalling that regularity of the solution requires

m0, p0 ≤ 0, which implies f0 ≤ 0, we find:

n′0 = −2 f0 ξ = 2 ξ |f0| , n′1 = 0 ,

n0 = 0 , n1 = 2 f1 ξ . (4.39)
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The explicit expression of the matrix Mαα in (4.22) and (4.10) is given in (4.13), and we get:

N ′0 = −2 f0 ξ = 2 ξ |f0| , N ′1 = −2 f0 ξ = 2 ξ |f0| ,
N0 = −2f1 ξ , N1 = 2 f1 ξ , (4.40)

where we recall that regularity of the solution requires f0 < 0. In the super-extremal case,

c < 0, we have |f0| < |f1| so that:

N ′α < |Nα| ⇒ |Tr[F 2
α]| < |Tr[Fα ∧ Fα]| . (4.41)

We therefore find a violation of the positivity, aka BPS bound in the dual gauge theory.

Note that this result was already anticipated in [9] but could not be proven since the

wormholes in [9] were not regular. The fact that for c < 0 we violate the BPS bound is

consistent with the recently found instabilities (in the Euclidean sense) of macroscopic ax-

ion wormholes [40]. This means that the wormholes do not contribute in any path integral

since there is a similar configuration with the same boundary conditions that has lower

action. This configuration is expected to be the complete defragmentation of the macro-

scopic wormholes into a dilute gas of microscopic wormholes, each carrying a unit axion

charge. Such a configuration has no classical description. The fact that we find the regu-

lar wormholes to violate the BPS bound in the dual gauge theory constitutes holographic

evidence for the results in [40] that the macroscopic wormholes are indeed unphysical.

However some note of caution is necessary here. Since the wormhole spacetime has two

boundaries it could very well not be correct to compute holographic n-point functions in

the usual way. So we only regard the violation of positivity as a heuristic argument for the

spurious nature of the wormholes claimed in [40]. Nonetheless one can potentially make it

more precise in two ways. Firstly one “cuts the wormhole in half” as argued for in many

papers, see for instance [15, 18]. This implies gluing a compact sphere in the middle and

thereby slightly altering the solution. The on-shell action is then half the original action

up to small corrections [16]. In this case one could expect the violation of positivity to go

through. Secondly, as envisaged originally by Coleman [11] one can regard an “almost”

Euclidean saddle point by gluing the wormhole back into the same AdS space. This is

not an exact solution to the equations of motion but improves as the wormholes are more

separated. In that case there is also one single boundary. Both suggestions are far from

exact statements and would require a thorough study in order to try to make them precise.

For the subextremal solutions, c > 0, we have |f0| > |f1| and we hence satisfy the

BPS bound without saturating it since N ′α > |Nα|. Hence we find a correspondence to the

non-extremal gauge theory instantons presented in the previous section.

In the extremal limit |f0| = |f1|, i.e. f0 = ±f1. This implies N ′0 = |N0| = , N ′1 = |N1|
and, more precisely, N ′0 = ±N0 , N

′
1 = ∓N1. In terms of the field strengths of the boundary

theory these relations imply

|Tr[F 2
0 ]| = ∓Tr[F0 ∧ F0] , |Tr[F 2

1 ]| = ±Tr[F1 ∧ F1] , (4.42)

which is the characterization of a quasi-instanton. We conclude that the solution discussed

in subsection 2.2 provides, in the extremal limit, the supergravity dual of a quasi-instanton.
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Hence the name ‘intrinsically non-BPS’ since there is no continuous change of parameters

that brings us to a supersymmetric solution. Interestingly this is where the smooth worm-

holes are residing in the super-extremal corner.

To summarise: our simple solution shows that, at the level one-point functions, we can

holographically reproduce non-SUSY quasi instantons in quiver gauge theories as well as

non-extremal Yang Mills solutions. The super-extremal gravity solutions, corresponding to

smooth wormholes, on the other hand have no dual description consistent with the findings

in [40] that they do not contribute to the quantum gravity path integral.

5 Discussion

We have investigated the holographic correspondence between supergravity instantons in

AdS5×S5/Zk, and instantons in the N = 2 necklace quiver gauge theory in four dimensions

with k nodes (labelled with α = 0 . . . k − 1) at large N. We have compared the on-shell

actions and the vevs of the operators Tr[F 2
α] and Tr[Fα∧Fα] between instantons on the field

theory and instantons on the supergravity side. We have found that the match between

the supersymmetric instantons on both sides of the correspondence works out in detail.

This also allowed us to write the precise dictionary between the supergravity scalars and

the gauge couplings.

However there is more than just the supersymmetric saddle points. On the super-

gravity side 2 other classes of instantons were found in [1] that break supersymmetry: 1)

extremal (c = 0) but non-supersymmetric solutions, and 2) non-extremal (c 6= 0) solu-

tions. The gauge-theory seems to have the same property. The dual to the non-SUSY but

extremal instantons are gauge theory instantons for which different gauge theory nodes

carry instantons of different orientation, which we named “quasi-instantons” as in [32].

Our analysis based on the computation of 1-point functions provides evidence that the ex-

tremal non-supersymmetric solution discussed in section 4.4 provide the supergravity dual

to a “quasi-instanton” solution.

The dual to some of the non-extremal instantons with c > 0 was already suggested

in [9] and corresponds to taking some SU(2) sub-algebras inside a separate gauge node

and flip the orientation of some of these mutually commuting SU(2) sub-blocks. The dual

to wormhole solutions (c < 0) cannot make sense since we have explicitly demonstrated

that the dual one-point functions computed from everywhere smooth wormholes, violate

the BPS bound in the dual field theory. This is a very sharp AdS/CFT paradox but gets

resolved if one accepts the recent results that these (macroscopic) wormhole solutions are

unstable [40] in the Euclidean sense. Then the wormholes, despite being smooth, and

having a finite action, do not contribute to the path integral.

Many of the non-supersymmetric solutions constructed in [1] have not been interpreted

in this paper. The fate of these solutions is unclear to us. But it could be that allowing

the scalar fields in the dual gauge theories to be turned on, more non-SUSY saddle points

exist whose duals are to be found in the supergravity. We leave this for future research.

Our work suggests some extensions. For instance the Klebanov-Witten background

AdS5 × T1,1 has as part of its moduli space the moduli space of AdS5 × S5/Z2 and so the
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instanton solutions of AdS5×T1,1 are therefore implicitly contained in this paper. We refer

to [41] for an earlier investigation of the supersymmetric instantons in AdS5×T1,1. A less

straightforward extension would be to apply these ideas in AdS3/CFT2 and in particular

to the “D1-D5 CFTs” dual to AdS3×S3×T4 or AdS3×S3×K3. The supergravity moduli

spaces have not yet been computed but the dual field theory conformal manifolds have

been found in [42]. That should be sufficient information to construct the geodesic curves.

We hope to come back to this in the future.
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A Parametrizations of complex hyperbolic space CHk

Below we discuss the relevant parametrizations of the complex hyperbolic space CHk and

define the one which should be most appropriate to the string description.

Fubini — Study coordinates. These are coordinates zα, α = 0, . . . , k − 1 in terms of

which the Kähler potential reads:

K = −2 log

(
1−

∑
α

|zα|2
)
. (A.1)

This is the parametrization in which the holomorphic prepotential in the projective coor-

dinates XΛ = (X 0̂, Xα) has the form:

F (X) = − i
2
ηΛΣX

ΛXΣ = − i
2

[
(X 0̂)2 −

∑
α

(Xα)2

]
, (A.2)

the coordinates being defined as zα = Xα/X 0̂, X 0̂ 6= 0. Note that in this parametrization

the U(k) symmetry is manifest.

Coordinates τ0, vi. Let us split the index α into 0 and i = 1, . . . , k − 1, and make the

following (holomorphic) change of coordinates:

z0 =
1 + i τ0

1− i τ0
, zi = − i vi

1− i τ0
. (A.3)

One can verify that, modulo a Kähler transformation, the Kähler potential becomes:

K = −2 log

[
− 2i(τ0 − τ̄0)−

∑
i

|vi|2
]
. (A.4)
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Coordinates τ, vi. We can make a further change of coordinates and define:

τ = τ0 −
i

4

∑
i

v2
i . (A.5)

The Kähler potential acquires the following form:

K = −2 log

[
−2i(τ − τ̄) +

1

2

∑
i

(vi − v̄i)2

]
. (A.6)

This is the parametrization best suited to string theory. It indeed corresponds to the

parametrization used in [43].

Relation to the solvable coordinates. The relation of the above complex coordinates

to the solvable ones is the following:

τ0 = −a+ i

[
e2U +

1

4

∑
i

(
ζ2
i + ζ̃2

i

)]
, vi = ζ̃i + i ζi , (A.7)

or

τ = −ã+ i

(
e2U +

1

2

∑
i

ζ2
i

)
= −ã+ i δ , (A.8)

where, as usual, ã = a − 1
2

∑
i ζiζ̃i. Notice that τ is precisely the complex modulus we

find occurring in the kinetic term and theta term. This is the complex parametrization in

which the translational symmetries (real part of τ and imaginary part of vi) are manifest.

B Comparison with Type IIB on T 1,1

We discuss here the Type IIB origin of the scalar fields in our model. This is done by

comparing our σ-model metric with the one obtained by reducing the ten-dimensional

theory on a smoothed version of S5/Zk. The simplest choice for this regular internal

manifold is, for k = 2, the space T 1,1 which originates from the blow-up of the singular

S2 inside S5/Z2 [44]. The effective five-dimensional description of the Type IIB theory

on AdS5 × T 1,1 was considered for instance in [41, 43, 45]. In particular the σ-model

describing the D = 10 axion-dilaton fields and the moduli originating from the RR and

NS-NS 2-forms on the 2-cycle of T 1,1 was worked out within a D = 5 gauged supergravity.

We shall compare our σ-model metric to that found in [41, 43] to leading order in the

fields vI = ζ̃I + i ζI , and find agreement with our ten-dimensional interpretation of the

solvable coordinates. The two metrics differ however by interaction terms which are of

higher order in the vI fields. We shall briefly comment on this, at the end of the present

section, following the discussion in [43].

The type IIB action reads:

S =
1

2κ2
10

∫
d10xe

(
R− 1

2
∂µ̂φ∂

µ̂φ− e2φ

2
∂µ̂χ∂

µ̂χ− e−φ

2 · 3!
Hµ̂ν̂ρ̂H

µ̂ν̂ρ̂ − eφ

2 · 3!
F̃µ̂ν̂ρ̂F̃

µ̂ν̂ρ̂

− 1

4 · 5!
F̃µ̂ν̂ρ̂σ̂δ̂F̃

µ̂ν̂ρ̂σ̂δ̂ − 1

2e
εµ̂1...µ̂10Cµ̂1...µ̂4Hµ̂5µ̂6µ̂7Fµ̂8µ̂9µ̂10

)
,

(B.1)
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where e =
√
|g10|,

H(3) =
Hµ̂ν̂ρ̂

3!
dxµ̂ν̂ρ̂ , µ̂, ν̂, ρ̂ = 0, . . . , 9 (B.2)

and

H(3) = dB(2) , F(3) = dC(2) , F̃(3) = F(3) − χH(3) . (B.3)

Let ω be the harmonic 2-form corresponding to the 2-cycle of T 1,1, normalized so that

ωαβω
αβ/2 = 1, where α, β,= 1, . . . , 5, only in this appendix, label the T 1,1 directions. Let

us expand the 2-forms B(2) and C(2) in the basis (ωI) = (ω) of H2(T 1,1, Z),9 i.e.

B(2) = bIω
I = b ω , C(2) = cIω

I = c ω . (B.4)

Restricting to extremal instantons which do not alter the space-time geometry, we end up

with the effective five-dimensional action (recall that k = 2):

S =
1

2k2
5

∫
AdS5

d5x
√
|g5|

[
R− 1

2
∂µφ∂

µφ− e2φ

2
∂µχ∂

µχ

− e−φ

2
∂µbI∂

µbI −
eφ

2
( ∂µcI − χ∂µbI )2 + . . .

]
. (B.5)

The σ-model metric for the moduli {φ, χ , bI , cI } has the following general structure

ds2 = (dφ)2 + e2φ (dχ)2 + e−φ
k−1∑
I=1

(dbI)
2 + eφ

k−1∑
I=1

(dcI − χdbI )2 . (B.6)

Note the 2(k − 1) translational isometries of the above metric:

bI → bI + ξI , bI → bI + λI , ξI , λI = const. (B.7)

only half of which are present in our σ-model metric (2.9).

The (2k = 4)-dimensional moduli space so obtained is a Kähler manifold with complex

coordinates

z1 = χ + ie−φ , zI+1 = cI − z1bI , I = 1, . . . , k − 1 (B.8)

and Kähler potential

K = −2 ln ( z1 − z̄1 ) − i

2

∑
I

( zI+1 − z̄I+1 )2

z1 − z̄1
. (B.9)

This is the moduli-space geometry found in [43] from an analysis of the corresponding

D = 5 gauged supergravity, and in [41] from dimensional reduction. Our moduli space

SU (1, k) /U (k) is instead associated with a Kähler potential

K = −2 ln

[
−2i ( τ − τ̄ ) +

1

2

∑
I

( vI − v̄I)2

]
. (B.10)

9The index I = 1, . . . , k − 1, being k = 2, has one single value and, in writing ω, we have omitted it.
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Let us rescale vI →
√
ε vI and keep only terms of O (ε)

K = −2 ln [−2i ( τ − τ̄ ) ] − i ε

2

∑
I

( vI − v̄I)2

( τ − τ̄ )
. (B.11)

Reabsorbing
√
ε in vI (which means considering |vI | “small”), and identifying (B.9)

with (B.11) we get

τ = z1 = χ + i e−φ = −ã + i δ , (B.12)

vI = ζ̃I + i ζI = − ( cI − τ bI ) = − ( cI − χ bI ) + i e−φ bI , (B.13)
ζI = e−φ bI

ζ̃I = − ( cI − χ bI )

δ = e2U + 1
2

∑
I ( ζI )2 = e−φ

ã = −χ .

(B.14)

The expansion in ε, necessary to connect the two moduli spaces, was interpreted in [43] as

deriving from an expansion in the Newton’s constant κ5 which naturally multiplies the b, c

scalars and which, in the large-N limit, is small. The singular orbifold S5/Z2 is however

obtained by sending to zero the blow-up parameter. We think it is reasonable to assume

that the presence, in the effective supergravity description, of these two competing limits

justifies the existence in the moduli space-geometry of the orbifold reduction, as described

by the effective D = 5 gauged supergravity, of interaction terms which are absent in the

T 1,1 case. We do not expand on this issue further in this paper.

C On the solvable parametrization of CHk and its manifest symmetry

Referring to the appendix B of [1], we write

su(1, k) = [ sl(2) ⊕ u(k − 1) ] ⊕S [ (2,k− 1)+1 + (2,k− 1)−1 ] , (C.1)

where the grading refers to the U(1) inside U(k − 1) in the Wick-rotated group of

sl(1 + k) = [ sl(2) ⊕ gl(k − 1) ] ⊕S [ (2,k− 1)+1 + (2,k− 1)−1 ] , (C.2)

being sl(2) the isometry algebra of SL(2)/SO(2) parametrized by U and a .

To define the solvable Lie algebra we further split sl(2)

sl(2) → 10 + 1+2 + 1−2 (C.3)

and use a double grading structure with respect to H0 ∈ sl(2) parametrized by U and

gl(1) in gl(k − 1) . We shall consider, for the sake of simplicity, the Wick-rotated case,

obtaining

sl(1 + k) = gl(k − 1)(0,0) ⊕ 1(0,0) ⊕
[
1(2,0) ⊕ 1(−2,0) ⊕ (k− 1)(+1,+1)

⊕ (k− 1)(+1,−1) ⊕ (k− 1)(−1,+1) ⊕ (k− 1)(−1,−1)

]
, (C.4)
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where the solvable Lie algebra, Solv, is generated by

H0 = 1(0,0) , T• = 1(2,0) , Ti + T i = (k− 1)(+1,+1) ,

Ti − T i = (k− 1)(+1,−1) . (C.5)

We see that the manifest symmetry is generated by gl(k − 1) which acts linearly on ζi, ζ̃i
and has no action on U and a.

The linear action of a generic element of gl(k − 1) on the scalars ζi,ζ̃i is described by

the following matrix:

J =

(
Jij Kij

Kij Ji
j

)
,

Kij = Kij = Kji

Jij = −Jj i = Ji
j , (C.6)

where J generates SO(k−1) ⊂ GL(k−1). The matrix J defines the embedding of GL(k−1)

within Sp(2(k − 1)).

Defining J ≡ (Jij) and K ≡ Kij , we can write J in the form of a Kronecker product

J = J ⊗ 12 + K ⊗ σ1 , (C.7)

C = 1 ⊕ iσ2 =

(
0 1

−1 0

)
, η = 1 ⊕ σ3 =

(
1 0

0 −1

)
; (C.8)

we observed that

J
T C = −CJ , (C.9)

J
T η = −η J . (C.10)

Using the above properties, one can easily verify that the terms ZMCMNdZN and

dZMηMNdZN in the metric are indeed manifestly invariant under the action of GL(k− 1)

through the matrix J.

When we make contact with the IIB string theory, however, we have the following

correspondences

e−φ = e2U +
1

2

∑
i

(
ζi
)2

, ã = a − 1

2

∑
i

ζ̃i ζ
i = −χ , (C.11)

which are invariant only under O(k−1), while the non-compact transformations in GL(k−1)

act non linearly on e−φ and χ . It follows that the parametrization of the moduli space

which is directly related to the string excitations has manifest O(k−1) symmetry. We end

this appendix by giving the general expression of the Noether currents associated with the

solvable generators TI :

JI|µ(φ) ≡ 1

2κ2
5

KI
J (φ)GJK(φ) ∂µφ

K , (C.12)

where

KI(φ) ≡ KIJ (φ)
∂

∂φJ
, (C.13)

are the Killing vectors corresponding to TI . Note that the Killing vectors associated with

the axion fields χα defined in (2.21) are simply:

Kα =
∂

∂χα
. (C.14)
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