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ABSTRACT 
 
Pattern recognition system developers have looked in multiple directions over the years and designed 
a broad spectrum of methodologies for face identification and verification, both in 2D and 3D. These 
techniques rely on sound methods and experimentations, and currently give high to excellent 
recognition rates in terms of performance. Nonetheless, it seems that the most performing face 
recognition system, especially when familiar faces are involved, is still the human being, able to detect 
known faces in the wild, in presence of occlusions or extreme light contrast, caricatures, sketches, partial 
views, blurred images. This is one of the manifold reasons why the human visual system at eye and brain 
level and face perception techniques are currently being studied by neuroscientists and psychologists, 
with the aim to uncover the processes underneath the human vision. 
 
The purpose of this work is to review the current literature about perception foundations and related 
biologically-inspired methodologies for face recognition.  
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1 INTRODUCTION 
 
From a computational viewpoint, face recognition (FR) process is defined as: given still or video images 
of a scene, identify one or more persons in the scene using a stored database of faces [1]. Human face 
recognition (FR) is somehow the same, and the stored database of faces is in our brain, with different 
degrees of knowledge depending on whether a face belongs to a friend, a famous person, or a person we 
know by sight. 
 
Facial expression recognition (FER) regards the identification of the emotion felt by a person thanks to 
the codification of the muscle movements of his/her face. Algorithms try to automatically perform this 
task with the aim to emulate an innate process of our brains. From an anthropologic perspective, the 
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study of the expression of emotions has its roots in Darwin’s studies [2] and, before him, in Charles Bell’s 
[3], about the anatomy of facial expressions. 
 
The process underlying human face perception and recognition has being studied from the Thirties from 
different perspectives to understand what happens at eye and brain level when we identify a face as 
belonging to a specific subject or a person’s emotion thanks to the movements of the face. Even if the 
current modern technologies have allowed to understand more in depth how this process works, several 
fundamental issues on human face perception (FP) are still unresolved [4]. The main research veins of 
face perception are briefly presented here below. 
 
The first consideration regards how faces are processed. Two trains of thoughts have been developed. 
The first and mainly acknowledged is the one assessing the face perception is a holistic (or "whole") 
process. Faces are stored in a relatively holistic form in memory, i.e. faces are initially encoded 
holistically during perception and perceived holistically [5], meaning that a face is perceived as a non 
decomposable whole, at a single glance, rather than as a collection of individual features [6]. In other 
words, face processing is said to be distinct from non-face object in that it is more holistic; that is, faces 
are represented as non-decomposed wholes rather than as a combination of independently-represented 
component parts (eyes, nose, mouth), and the relations between them [7]. This theory has been 
endorsed and partially supported by different researchers [8] [4] [9] [8] [10] [11]. For instance, Van 
Belle et al. saw that prosopagnosics, i.e. patients affected by a damage in the right brain hemisphere, 
process feature-by-feature, while normal people process holistically, thus proving that "standard" face 
processing is holistic [6]. Other studies even revealed that holistic/configural processing is limited to 
faces [12]. 
 
Another evidence is given by the face inversion effect [13]. Recognizing an upside-down face is not 
trivial for us, because we use a super quick look to recognize a face [14], which works only when the 
face is in an upward position. This pattern of results takes many years to develop (six-year-old children 
are not affected by inversion, ten-year-olds exhibit near adult-like performance) [10]. Recognizing an 
upside-down face is not impossible though; it requires training, which starts with learning how to 
process a face feature by feature. The so-called Thatcher illusion is related to the face inversion effect. 
In 1980 Thompson showed that, with the inversion of the facial features (of Margaret Thatcher’s face, 
for instance), we do not just process individual traits, but also the positions and relationships between 
them [15]. Tanaka and Gordon listed the single effects of face inversion: affects configural coding of the 
vertical position of eyes/eyebrows; affects vertical spacing between nose and mouth features; affects 
featural coding of size and shape of the mouth; though, does not perturb the featural perception of eye 
shape and size; leaves intact configural perception involving the horizontal spacing between the eyes. 
Thus, featural and configural information in the eye region is selectively spared during inversion, 
whereas information outside this area is severely impared [16]. The considerations on inversion 
support the fact the face is processed as a whole. 
 
The alternative local face processing theory has been cited by Ellis [14] and consists in an analytic view, 
implemented feature by feature. It is the way prosopagnosia-affected people [6], passport officers, and 
children use to identify faces. In particular, the training path undertaken by passport officers relies on a 
feature-by-feature approach [17]. Similarly, the visual system progresses from piecemeal (local) to 
holistic in the first several years of life [10], meaning that for children under ten years of age, the process 
is feature-based, then it changes into holistic [1].  Another relevant contribution in the “debate” which 
leans away from the holistic approach is given by Schyns’s group. They stress the importance of specific 
facial features for FER (featural approach), in particular with the assertion that facial information tends 
to be integrated from the eyes downward in the face [18]. “Information processing gradually shifts from 
encoding common face features across all spatial scales (such as the eyes) to representing only the finer 
scales of the diagnostic features that are richer in useful information for behavior (e.g. the wide opened 
eyes in ‘fear’ expression)” [19]. Their studies also report that facial features are first processed in 
isolation in extrastriate regions of the brain, then in combinations in the occipito-temporal regions, thus 
suggesting that both featural and holistic processings happen, at different times [20]. The role of specific 
facial features will be reprised in section 2.1.4 regarding the hierarchy of them. 
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Overall, we can say that human FR generally is a holistic process involving an interdependency between 
featural and configural information [10]. Face is of utmost importance, as our visual system starts with 
a rudimentary preference for face-like patterns [4] [10], even if our visual attention is not captured by 
fake faces (pareidolia faces) [21]. The reason of the weight given to faces by our brain is that body 
structure and gait information are much less useful for identification than facial information [10]. 
 
Another issue in the field which supports the understanding of human facial perception and recognition 
is the study of performances of human FR on unfamiliar faces, with the aim of answering to the question 
"Is human face recognition for unfamiliar faces poor?" [8]. Recent results have showed that we are not 
excellent in recognizing faces which do not belong to people we know, even if the recognition is made 
by trained staff [22]. Also, it has been shown that this ability cannot be improved with experience [10], 
but is innate in some people. In other words, some people are particularly gifted in recognizing 

unfamiliar faces, while others are not, even if they undergo specific trainings [17]. Generally speaking, 
unfamiliar faces are more difficult to be recognized; recognition performances are not 100%, which 
instead is the recognition rate for familiar faces. Indeed, the ability to tolerate facial image degradation 
increases with familiarity [4] [10]. Structural codes, which capture those aspects of the structure of a 
face essential to distinguish it from other faces, for familiar faces differ from those formed to unfamiliar 
faces; structural codes for familiar faces emphasize the more informative and less changeable (hairstyle) 
regions of the face [23]. Some observations have also arisen regarding the different types of familiarity 
(friends, famous individuals, close relatives such as parents), with different levels of responses in the 
brain [24]. As a consequence, to understand the key difference between familiar and unfamiliar faces, 
and how differently they are managed by the brain is core for the research [22]. 
 
These core considerations help framing and understanding the vast topic of human FP and FR, and are 
used here to define and tune the scenario. The aim of this work is to offer a thorough survey about 
human FP and on how visual systems dynamics have been applied to automatic face and facial 
expression recognition methodologies in the computer vision and pattern recognition field. Sinha et al. 
in 2006 collected 19 fundamental results on FP with the hope that computer vision researchers could 
take advantage of them for implementing their algorithms [10]. The present work, with a similar 
purpose, offers the step forward, i.e., an up-to-date review about significant FP principles and on how 
biological face recognitions dynamics have been incorporated into automatic methodologies in these 
years, showing that these fields are interlinked and there is still room for inspiration and further 
investigation to connect them more deeply. This is somehow urgent, considering that various 
contributions emerged recently, thanks to the advances in technology, describing the brain functioning 
in specific tasks. 
 
This study is written for readers working on face analysis, whether they be scientists or nonscientists, 
who do not need to have a deep knowledge of the various theories, debates and broad range of findings 
in the science of face and facial expressions, with sufficient pointers to those discussions if they are of 
interest. (Barrett et al. aimed at such an effect when they discussed the challenges to inferring emotions 
from human facial movements [25].) Also, it is important to state that it is out of the scope of this study 
to review all algorithms which are biologically plausible or replicating general brain dynamics; only 
those inspired by human face processing are taken into consideration. 
 
The main foundations of face perception and processes of the human visual system are presented and 
introduced in the following section. Then, biologically-inspired face recognition algorithms are 
presented. Lastly, a discussion and future research hints conclude the work. 
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2 MAIN FOUNDATIONS OF FACE PERCEPTION 
 
Face perception is an individual's understanding and interpretation of the face, particularly the human 
face, especially in relation to the associated information processing in the brain [26]. The face perception 
research field includes studies based on psychology/behaviour and neuro-imaging. The main findings 
concerning recognition are summed-up here. A detailed review of relevant studies on neuroscience and 
psychophysics is beyond the scope of this paper. We mainly summarize findings which are potentially 
usable for the design of face recognition systems, similarly to Chellappa et al.’ study in 1995 [1]. Section 
2.1 exposes the objective and impartial face perception outcomes, which do not depend on the 
recognizing person; section 2.2 briefly overviews the behavioural and subjective/individual aspects of 
human FR. 
 
 
2.1 EXTERNAL DYNAMICS 

 
Research on facial perception processes has demonstrated that there are patterns which belong, 
without distinction, to all human beings. These common processes mainly concern the weight given to 
the facial features (eyes, nose,…), the ability to recognize caricatures and “normal” faces, and the 
manipulation to the facial images in terms of definition and colour. There are also two very popular 
research questions that still have no final answer. This section presents, firstly, these two issues, then 
extrapolates the main findings regarding typical recognition mechanisms, regardless of the individual 
and his/her personality and characteristics. 
 
  
2.1.1 Is face recognition a special recognition process for the brain? 
 
The first issue arising from psychologists is to determine whether or not face recognition is a special 
recognition process for the brain [14] [22] [27]. Is human face a special object for us? If yes, how is it 
processed differently from other objects? Are there dedicated neurons for that? Is there a specific look 
sequence of our eyes to scan a face for recognition purpose? These questions are motivated by the fact 
that faces are more easily remembered by humans than other objects when presented in an upright 
position [1]. 
 
Ellis was the first addressing this issue, in 1975; he supported both the ‘yes’ and ‘no’ theories relying on 
meaningful experimentations. Ellis first studied the recognition abilities of prosopagnosia-affected 
patients. Prosopagnosia is a cognitive disorder caused by lesions in various parts of the inferior occipital 
areas (occipital face area, OFA), fusiform gyrus (fusiform face area, FFA), and the anterior temporal 
cortex, which are areas activated specifically in response to face stimuli [28]. The problems affecting 
these patients in recognizing other faces (even their own) and the fact that they are normally perfectly 
able to identify other objects seem to demonstrate that there is an area of the brain dedicated to face 
processing. Other studies support this thesis relying on experimentations on prosopagnosia [29] or on 
patients with brain damage at the right hemisphere [1]. 
 
Ellis also observed that babies are able to recognize their mother at two weeks age. Chellappa et al. 
argued that infants come into the world pre-wired to be attracted by faces [1]. For filial and sexual 
imprinting reasons [30], physiognomic details are innate in humans, who result in an innate proclivity 
for analyzing faces; this phenomenon is identified as “ontogeny of interest in faces” [14] or “innate 
knowledge” of faces [31]. Also, what makes face processing special is that it is gated by an obligatory 
detection process [7].  
 
Other arguments concern the already mentioned holistic dynamics in processing faces. For faces we are 
global/holistic; for other objects we are analytical and detailed [14], namely face processing is said to 
be distinct from non-face object in that it is more holistic [7]. A shrewd view is mentioned by Tanaka 
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and Gordon; FR “is not distinctive because it depends exclusively on holistic representations. It is only 
distinguished because its representation is disproportionately more holistic than the representation of 
most other types of objects” [16]. 
 
The last evidence of the 'yes' thesis is given by neuroscience. Different research studies report that there 
is a large number of neurons devoted to the class of face stimuli [32] [4] [10] [33]. In particular, "the 
principles underlying the processing of faces and other objects may be similar, but more neurons may 
be allocated to represent different aspects of faces because of the need to recognize faces of many 
different individuals, that is to identify many individuals within the category of faces" [32]. Chellappa et 
al. even assert the existence of a "grandmother" neuron for face recognition [1]. Furthermore, the 
existence of face recognition cells (encoding precise face templates) and face detector cells (detection, 
segmentation, alignment) has been affirmed [7]. Finally, specific studies answering to the research 
question Are faces special? conclude by endorsing the ‘yes’ thesis by focusing on the within-class 
discrimination hypothesis and the derived expertise hypothesis [12]. This hypothesis proposes that 
face-specific mechanisms are engaged by individual-level recognition of objects, just as they are by 
individual-level recognition of faces. Evidence argued that neither within-class discrimination 
hypothesis nor individual–level categorization with extensive expertise leads to face-like processing for 
objects [12]. 
 
The 'no' theory is not very popular. In 1975, Ellis stated that the 'yes' theory was actually impossible to 
be proven, and this was one of the reasons why the 'no' theory could have been taken up. He also saw 
that prosopagnosia is associated to other deficits in some cases [14], thus this defect cannot be fully 
adopted to study human face perception/recognition processes. Table 1 provides a sum-up about the 
two theories. 
 
In the years, this landmark study of Ellis has been contested because experiments at that time have been 
done on photographs. Thus, Ellis's considerations could be considered valuable for picture recognition 
field and not specifically for face recognition [22].  
 
At the moment, the majority of sources, including general informative sources, agrees with the 'yes' 
theory. Studies based on neuropsychology, behaviour, electrophysiology, and neuro-imaging have 
supported the notion of a specialized mechanism for perceiving faces [26]. The characterization of the 
FFA as a dedicated face processing module appears very strong [10] [7], and specialized face processing 
mechanisms in the human visual system are very real possibility [10]. Nonetheless, Haxby and Gobbini 
affirmed that the two perspectives are not necessarily incompatible [24]. 
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Table 1. Arguments and research outcomes supporting the 'yes' and 'no' theories about whether FR is a special 

recognition for the brain or not. 

 
Is human face recognition a special recognition process for the brain? [14] [22] 
 
Critic: Experiments at Ellis time have been done on photographs. Thus, it may not be FR, but picture recognition [22] 
 

YES NO 

Prosopagnosia considerations 

Impairments in FR [14] [1] [7] 
 
Prosopagnosia is not necessarily associated to  other defects [29] 

In some cases the 
prosopagnosia is 
associated to 
other deficits [14] 
 

Behavioural considerations 

Babies recognize their mother at two weeks age [14] 
 
It is argued that infants come into the world pre-wired to be attracted by faces [1] 
 
For filial and sexual imprinting reasons, physiognomic details are innate in humans [14]: 

• innate proclivity for analyzing faces 

• ontogeny of interest in faces 
 
What makes face processing special is that it is gated by an obligatory detection process [7] 
 

 

Face processing considerations 

For faces we are global/holistic; for other objects we are analytical & detailed [14] 
 
Face processing is said to be distinct from non-face object in that it is more holistic [7] 
 

 

Neuroscientific considerations 

There are specialized neural resources devoted to face perception [4] [10] [33] 
 
FFA is activated specifically by faces [7] 
 
The characterization of the FFA as a dedicated face processing module appears very strong [10] 
 
There is a large number of neurons devoted to the class of face stimuli [32] 
 
In particular, "the principles underlying the processing of faces and other objects may be similar, 
but more neurons  may become allocated to represent different aspects of faces because of the 
need to recognize faces of many different individuals, that is to identify many individuals within the 
category of faces." [32] 
 
There might exist a "grandmother" neuron for face recognition [1] 
 
Face recognition cells (encoding precise face templates) and face detector cells (detection, 
segmentation, alignment) exist [7] 
 
Within-class discrimination hypothesis and the derived expertise hypothesis [12] 
 

 

Other / generic considerations 

Faces are more easily remembered by humans than other objects when presented in an upright 
position [1] 
 
Considerations about face inversion effect show that human FR is a face-specific process [13] 
 
Studies based on neuropsychology, behaviour, electrophysiology, and neuro-imaging have 
supported the notion of a specialized mechanism for perceiving faces [26]. 
 

YES is impossible 
to be proved [14] 
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2.1.2 Are face recognition and face expression recognition two separate processes? 
 
A key issue about face perception is to understand whether face recognition and face expression 
recognition are two separate processes or not. Pattern recognition and computer vision researchers 
work for developing algorithms which are able to process the query face and to understand both to 
which person of a gallery dataset belong and which expression that face is actually displaying. Generally, 
face and face expression recognition (FR and FER, respectively) algorithms are separate and rely on 
different methodologies. The human visual system may work similarly [24]. However, in the psychology 
field, considerations have arisen about the fact that some characteristic expressions belong to specific 
subjects, implying that the presence of a typical facial emotion could support the recognition of an 
individual. Similarly to the previous topic, the 'yes' and 'no' theories have been supported by different 
research groups. 
 
The first observation supporting the first theory regards prosopagnosia. Some prosopagnostic patients, 
who have difficulties in identifying familiar faces, recognize emotional expressions. Patients suffering 
from 'organic brain syndrome' work the contrary [1]. The psychological perspective assesses that a 
familiar face is represented via an interlinked set of expression-independent structural codes for 
distinct head angles [23], except for characteristic expressions. From a physical viewpoint, studies 
affirm that FER and FR are separate processes, because they are managed by different brain 
regions/systems [29] [4] [10], even if a clear-cut separation between regions has not been quantified 
yet. In particular, the superior temporal sulcus manages changeable aspects of face (FER) and fusiform 
gyrus (inferior temporal) deals with identity (FR) [7] [33]. The fMRI works of Kanwisher’s group 
support this thesis. They showed that the OFA and the FFA parts are more involved in recognition of 
individual identity, whereas fSTS (a face-selective region of the superior temporal sulcus, STS) deals 
with the recognition of social information in faces, i.e. eye gaze direction and expressions [28]. Also, 
some neurons have responses which reflect the facial expression but not the facial identity of the 
stimulus [32]. 
 
The 'no' theory has been firstly supported by studies which affirm that facial expressions may affect 
human recognition rates (HRR) [14], as many people have characteristic expressions which help the 
recognition of their identity. This thesis, supported by other studies [34], is endorsed by some brain and 
neuron considerations. Haxby et al. assert that a region of the brain (fusiform gyrus) may support both 
FER and FR because some expressions are associated to specific persons [29]. Sinha et al. also proposed 
the "identity expression" concept, affirming that a small subset of neurons respond both to identity and 
emotion [10]. Table 2 outlines the two theories and relative supporting studies. 
 
By taking into consideration and examining two models supporting respectively the ‘yes’ and ‘no’ 
theories, Calder proposed an hybrid view asserting that at least certain aspects of facial identity and 
facial expression recognition involve the same visual route. The suggested framework “incorporates a 
ventral temporal route (including the fusiform gyrus) involved in the analysis of visual form associated 
with both facial identity and facial expression”. Then,  dynamic facial information is coded by a separate 
route including the STS [35]. 
 
Evidence of correlation between emotions and recognition comes also from psychological and 
neuroscientific considerations. Increasing psychosocial evidence supports that recognition memory for 
faces with both negative and positive emotional expressions is more accurate than for neutral faces. In 
one of the first studies, Galper e Hochberg [36] presented to their participants twice the same face but 
with different facial expressions and, in the memory task, recognition was better when the alternative 
emotional expression was presented immediately after compared to the identical face presented 5 days 
after. The emotional expressions seem to have a facilitatory effect on FR enhancing face processing, 
albeit is still under debate if more for positive or negative compared to neutral expressions [37]. 
Negative emotions may attract more attention because, from an evolutionary and adaptive point of view, 
are more threatening and dangerous; while, according to other studies [38], people process happy faces 
more than negative ones because they are more pleasurable. FR after incidental learning (asking to 
participants a gender discrimination task for each faces with different emotional expression) resulted 
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significantly better for negative faces, particularly fearful faces [39]. Examining, through neuroimaging, 
the neural correlates of labelling emotional expressive or neutral faces, Jehna et al. [40] saw that 
participants had more difficulties in identifying emotionally expressive faces (anger, fear and disgust) 
than neutral faces. With neutral faces and other stimuli (eg. buildings) similar brain zones were 
activated, that is the fusiform occipital temporal gyrus, the lateral occipital cortex and the lower frontal 
gyrus. On the contrary, images of emotionally expressive faces, opposed to neutral faces, activated 
different brain areas. 
 

Table 2. Arguments and research outcomes supporting the 'yes' and 'no' theories about whether FER and FR are 

two separate processes or not. 

 
Are FR and FER separate processes? 

YES NO 

Some prosopagnostic patients, who have difficulties in 
identifying familiar faces, recognize emotional 
expressions. Patients suffering from 'organic brain 
syndrome' work the contrary [1] 
 
A familiar face is represented via an interlinked set of 
expression-independent structural codes for distinct head 
angles [23] except for characteristic expressions 
 
FER and FR are separate processes because they are 
managed by different brain regions [29] even if the 
separation between regions has not been quantified yet 
 
FER and FR might be processed by separate systems [4] 
[10] 
 
Some neurons have responses which reflect the facial 
expression but not the facial identity of the stimulus [32] 
 
The superior temporal sulcus manages changeable 
aspects of face (FER) and fusiform gyrus deals with 
identity [7] [33] [28] 
 

Different FEs may affect HRR [14] 
 
A region of the brain (fusiform gyrus) may support both 
FER and FR because some expressions are associated to 
specific persons [29] 
 
FER and FR are not separate processes [34] 
 
A small subset of neurons respond both to identity and 
emotion; concept of "identity expression" [10] 
 
 

 
 
 
2.1.3 Best facial half 
 
It is well known that faces are not perfectly symmetric. The two halves differ for details in normal faces. 
Thus, a few studies have been undertaken about which half is the one we memorize more in other 
people's faces. Ellis dealt with this aspect and asserted that we better memorize faces on the left side 
(effective right side) of people [14]. In other words, experimentations showed that if we reconstruct a 
face by mirroring the left half and the right half, the left side mirroring reconstruction is recognized 
better. The reason is that the left vision field arrives initially at the right hemisphere, which has an 
advantage in the reception and storage of facial information acquired by the visual system [1]. 
 
 
2.1.4 Facial features hierarchy 
 
Facial features have different levels of importance for recognition. Most of the studies agree on the fact  
that the upper part of the face is more important recognition-wise [1]. The hierarchy proposed by Ellis 
in 1975 [14], given by 1) eyes at first position, then 2) nose, 3) mouth, 4) lips/chin, and 5) ears, has 
been endorsed by Zhan et al. in 2009 [8], and completed by age, facial shape, and hair length 
components by Davies and Young [22]. Eyebrows have been mentioned by Chellappa et al. as key 
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elements for recognition, for they are high-contrast and large facial features, less susceptible to shadow 
and illumination changes [4]. Also, their role is core as they convey emotions [10]. According to 
Chellappa et al., nose plays an insignificant role due to the fact that most of the studies have been done 
using frontal images [1]. They also asserted that both external and internal features are important for 
human FR, but internal features are dominant in the recognition of familiar faces [1].  
 
Specific methodologies (Bubbles technique or reverse correlation method) have been developed for 
understanding which facial information and facial parts are used by the brain in order to make a 
judgment and a categorization about the expression displayed by a face [41] [42]. Concerning emotion 
recognition, the studies of Ekman [43] [44] have revealed that every movement of facial muscles can be 
codified and is related to specific emotions. Hence, facial features and in particular mouth, eyes, and 
eyebrows have a significant role in the recognition of emotions via facial expressions, as they convey the 
majority of muscular movements. Cross-race recognition studies have partially endorsed this 
hypothesis. Apparently, recognizing emotions on other-race faces is more difficult, not only because of 
the viewers lessen experience but also because the scanning strategies in fixating own- and other-race 
faces are different [45], thus resulting in different emotion appraisal because different face regions 
provide visual information related to different categories of emotion (for example, the eye region is 
important for recognizing sad expressions, whereas the mouth for recognizing both happy and sad 
expressions [46]). Eye-tracking studies demonstrated, for instance, that Chinese fixated more on the eye 
regions of Caucasian faces than on eye regions of Chinese faces, while they fixated more on nose regions 
of Chinese faces than on that of Caucasian faces [45], and confirmed the differential emotion attribution 
to faces of different races.   
 
 
2.1.5 Caricatures and normotype 
 
Caricatures are sketches of people/faces in which the characteristic features of the subject are 
exaggerated. In particular, caricatures are created to exaggerate deviations in shape or both shape and 
pigmentation cues [10]. Experiments have shown that subjects in caricatures are often recognized more 
than in veridical representations, even when faces are unfamiliar, as "accuracy in recognition occurs 
where the facial detail differs from the exemplar" [8] [47] [10] [1] [7]. 
 
This is connected to the concepts of normotype and beauty. The facial normotype is a prototypical face 
where the facial traits are ‘normal’ and regular. It has been shown that faces far from the normotype are 
easier to be recognized, "perhaps because they reside in a less populated area of face space" [48], while 
typical faces are more easily confused with other faces [49]. In particular, beautiful faces are the easiest 
to be recognized, followed by the ugly and eventually by the standard ones [14]. This also asserts that 
the normotype is not necessarily associated to beauty [1], contrarily to the thesis of Zheng et al. affirming 
that attractive faces are more similar to the norm/average face [48]. As a completion of this topic, Bittner 
and Gold asserted that facial symmetry improves the impression of beauty but does not improve HRR 
[50]. 
 
 
2.1.6 Role of image quality, manipulation, and colours 
 
Researchers investigated on whether human recognition rates may be affected by the quality of the 
facial image, its colours and manipulation. If images are out-of-focus or processed with a mean filter, for 
the purpose of smoothing, i.e. reducing the amount of intensity variation between one pixel and the next, 
we have low spatial frequency images. These images are blurred pictures in which all fine detail of 
features has been removed. Low spatial frequency bands play a dominant role in FR, as they contribute 
to the global description, while high frequency components contribute to the finer details required in 
the identification task [1]. Experiments show that we are able to distinguish very well celebrities' (and 
familiar) faces even in low spatial frequencies [23]. Also, even if faces are distorted and compressed, 
human FR does not decrease [10]. 
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Other evidences have emerged about colours and light. Light is said to be more important in human FR 
than colours and pose [22] [10] [14]. Other sources assert colours, pigmentation, illumination are all 
significant [10]. In particular, pigmentation and shape cues are equally important, but with colours 
human FR is higher, as colour cues are specific to every individual [10]. Also, edges capture the most 
important aspects of images, i.e. the discontinuities, but photometric cues need to be added to have high 
human RRs [10].  
 
The contrast polarity inversion has also been examined. Faces are particularly difficult to be 
recognized when viewed in reverse contrast, as in photographic negatives [51] [4] [10]. The curious 
aspect of this pattern is that no information is lost in negatives, i.e. photographies and its negatives 
contain the same amount of information. 
 
 
2.1.7 At the brain level 
 
The interest in face perception does not only regard results obtained via experimentations with subjects 
asked to recognize faces in different conditions, but also biological studies concerning the anatomy and 
the functioning of visual system at eye and brain level. 
 
Much is known about the neural systems that subserve face recognition in adult humans and primates 
using functional magnetic resonance imaging (fMRI) [52] [53] [54] and electrophysiology [55] [56] [57]. 
The primary locus for human face processing is the lateral fusiform gyrus [29] and, in general, the FFA 
[10] [7], together with OFA, fSTS, AFP (anterior face patch), and regions in the frontal lobe and 
orbitofrontal cortex [56]. FFA deals with face classification [7], with the holistic processing of faces (low 
spatial frequency), and mainly serves facial identity recognition [28]. Prospagnosics have this part 
injured, thus they can only process faces feature-by-feature. The occipital face area (OFA) deals with 
face measurement [7] and with local face processing, i.e. with the identification of facial parts (high 
spatial frequency) [28]. Together with FFA, it is meant to support identity recognition via face 
processing. fSTS is a face-selective part of the superior temporal sulcus, which is being activated by eye 
gaze (although not from the physical properties of the eyes) and facial expressions [24] [28]. Specific 
considerations regarding the activation of these areas for eye gaze processing have been reported by 
Perlphrey and Wyk [58]. Figure 1 shows the brain regions involved in face processing according to the 
works of Kanwisher’s [28] and Tsao’s groups [56].  
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Figure 1. Face parts (or “face patches”) in the human brain with respective tasks according to [28] and [56]. The 
scheme is just recapitulatory for brain parts and functions, not anatomical (for respective anatomical figures see 
[28] and [56], and related works). Abbreviations: superior temporal sulcus (sts), lateral occipito temporal sulcus 
(lots), collateral sulcus (cos), superior temporal sulcus face area (fSTS or FA-STS), fusiform face area (FFA), 

occipital face area (OFA), anterior face patch 1 (AFP1).      
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This model could be completed by the “general model of the distributed neural systems for face 
perception” proposed by Gobbini and Haxby [59], which identifies the face parts described in Figure 1 
as the “core system” and complete the model with an “extended system” including the brain parts 
dealing with personal information and these involved in the emotions (like the amygdala). 
 
To complete this framework, ERP components should be mentioned. Event-related brain potentials 
(ERPs) are measured brain responses to specific sensory, cognitive, or motor events. ERP studies have 
uncovered several components that are linked to different stages in FP, FR, and the processing of FER. 
The most studied ERP component is N170, which belongs to the family of visually evoked N1 
components that are elicited over visual brain areas in response to most types of  visual stimuli. “The 
N170 component has acquired its status as a face-sensitive component because ERP amplitudes elicited 
at occipitotemporal electrodes between 140 ms and 200 ms after stimulus onset are virtually always 
larger in response to faces than in response to non-face objects” [60]. Schweinberger assessed that N170 
predominantly reflects the categorization of a stimulus as a face and deals with structural encoding of 
faces [61]. Other components have been labelled as face-sensitive: P100, reflecting top-down attentional 
processes related to FP; N250 and N250r, dealing with familiarity and repetitions [62]; N400 and N400f, 
regarding semantic information about people [61]. The study of these neurophysiological responses and 
of their connections with different aspects of face processing is encouraged by the authors working in 
the field. Schematically, 
 
 

 
N170 is the face-sensitive component, reflects the categorization of a stimulus as a face and deals with structural 
encoding of faces [61]; 
 
P100 reflects top-down attentional processes related to FP [62]; 
 
N250 and N250r deal with familiarity and repetitions [62]; 
 
N400 and N400f regard semantic information about people [61]. 

 
 
 
Generally speaking, the literature offers good but different explanations about how the human neural 
system works for vision and perception [63] [29] [64] [65]. Figure 2 and Table 3 sum up the role of the 
main regions of the human visual system. Figure 3 shows a concise anatomical representation of the 
brain [66] and specifically of Brodmann’s areas [67] involved in vision and face processing. 

 
Figure 2. Scheme of the information flow in the Human Visual System according to [63] and [64]. 
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Table 3. Human Visual System basic structure and functioning according to [63] and [64]. The ventral pathway 
includes regions V3, V4, and IT. The dorsal pathway includes the parietal cortex, the posterior parietal cortex, and 
the frontal cortex. 

Region Role 

Eye Acquires visual signals 

Optic Nerves They run from an eye and lead to LGN  
[63] 

Lateral Geniculate Nucleus (LGN) Relays information from the optic nerve to V1 

V1 / primary visual cortex / “striate cortex” Receives information from LGN 
[63] 
 
Functions: 
Angular selectivity 
Detects oriented line 
Codes object contour orientation 
[63] 
 
Its neurons are simple and complex 

• Simple cells have receptive fields containing oriented 
subregions acting like edge filters 

• Complex cells respond primarly to oriented edges 
and gratings, with degree of spatial invariance 

[64] 
 

V2 / secondary visual area Receives information from V1 
Topographic organization map of the visual field 
[63] 

Ventral pathway Receives information from V2 
Visual memory and recognition with spatial localization 
[63] 

V3 Preserves topographic organization 
Perception and localization of patterns 
[63] 

V4 / quaternary visual area Object discrimination 
Consciousness (sensible to anaesthesia!) 
[63] 

Infero-Temporal area (IT) / 
Infero-Temporal cortex 

Posterior Infero-
Temporal area (PIT) 

Operates in object recognition using visual memory 
[63] 

Anterior Infero-
Temporal area (AIT) 

Dorsal pathway Receives information from V2 
Temporal treatments 
[63] 

Parietal cortex V5 / Middle Temporal area 
(MT) 

Detect movements by angular direction 
[63] 

Medial Superior Temporal 
area (MST) 

Posterior parietal cortex 7a Visual attention 
[63] Ventral Inferior Parietal 

(VIP) 

Frontal cortex Frontal Eye Field (FEF) Controls the mechanisms of the eye movements 
[63] 
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Figure 3. Compact representation of the regions of the brain and respective Brodmann areas [67] involved in the 
visual signal and face processing. The regions are identified by numbers, according to Brodmann’s model. The 
OCCIPITAL REGION includes the occipital face area (OFA) mentioned in Figure 1. The area called anterior face 
patch 1 (AFP1) is located between the occipital and temporal regions. The orbitofrontal cortex is located in the 
FRONTAL REGION. 
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A stimulating and inspiring face recognition branch regards the building of face mental representation. 
Studies on representation of visual stimuli in the temporal cortical visual areas showed that "one of 
the major problems which must be solved by a visual system is the building of a representation of visual 
information which allows recognition to occur relatively independently of size, contrast, spatial 
frequency, position on the retina, angle of view" [32]. Thus, a face can be recognized as familiar when 
there is a match between its encoded representation and a stored structural code [23]. In particular, 
there are three representational stages beyond the retinal image: the primal sketch, which makes 
explicit the intensity changes present in the image; the viewer-centred representation, that describes 
the surface layout of a viewed scene relative to the viewer; the object-centred representation, allowing 
the recognition of objects from any viewpoint [23]. Apparently, the performance on face memory tasks 
only weakly predicts face matching ability, meaning that these two modes of face identification rely on 
rather different cognitive processes [17]. 
 
Timewise, the steps of human FR process have been studied and identified by Zheng et al. in 2012 [48]. 
If at zero milliseconds a face is seen, at 100th ms the first preprocessing happens; at 150th ms the visual 
stymulus is identified as a face. Then, at 150th-200th ms the facial features are processed (structural 
encoding), and at 200th ms a facial representation is created, to be compared with other representations 
stored in the brain. At 300th ms the process is terminated and the face is recognized or not. The neural 
computation is to be considered feedforward-working [4] [10]. 
 
Besson et al. also worked on timing of human FR, but considering the levels of facial image processing. 
According to their study, there are three face processing levels relying on minimal reaction times 
(minRT) [13]. The first is the SUPerordinate (human), called human face categorization (HFC), which 
corresponds to the process in which the visual system concludes "this face is human"; the minRT is 260 
ms. The second is the SUBordinate (familiarity), called familiar face recognition (FFR); the visual system 
takes 360ms (minRT) to state that "this face is familiar". The last is SUBordinate (recognition/finding 
someone in the crowd), called individual face recognition (IFR). The process ends up with asserting "this 
face is Brad Pitt"; this part is 120/140ms faster than FFR and 20/30ms longer than HFC, i.e. its minRT 
is approximately 0.25 seconds. The important findings of this work are: i) even if they are both 
considered as FR, FFR and IFR are actually different processes; ii) the familiarity process is the least 
accurate and more difficult, while human one is the most accurate and easy; iii) HFC is the least effected 
by facial inversion effect. In a nutshell, 
  

 
accuracy(FFR) < accuracy(IFR) < accuracy(HFC); 
difficulty(FFR) > difficulty(IFR) > difficulty (HFC). 
 
Meaning: 
accuracy(“this face is familiar”) < accuracy(“this face is Brad Pitt”) < accuracy(“this face is human”); 
difficulty(“this face is familiar”) > difficulty(“this face is Brad Pitt”) > difficulty(“this face is human”). 
 
 
In presence of face inversion: 
accuracy(FFR) < accuracy(IFR) < accuracy(HFC). 
 

Besson, et al., 2017 [13]  
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2.2 PSYCHOLOGICAL DYNAMICS 
 
Besides identity, faces convey other information such as gender and ethnicity which influence our 
categorization process and our daily interactions. Even if we are relatively accurate in recognition of 
familiar faces, a number of factors influence our ability particularly for unfamiliar faces. First, there are 
large individual differences; some people are definitely more able in face recognition and memory, 
although people are often not aware of it, as adults with typical face recognition ability have modest 
insight into their ability [68]. Besides individual differences, evidence suggests people are significantly 
more accurate at recognizing faces of their own group compared to outgroup faces. Even the so-called 
super-recognizers, people with extraordinary ability in FR, are subject to the same biases as typical 
perceivers [69]. The most investigated own-group or in-group biases are relative to gender, age, and 
race or ethnic groups. However, biases have also been found for groups even without physiognomic 
facial markers (i.e. sexual orientation, students of same university, political affiliation, experimentally 
induced ingroup/outgroup memberships) [70] [71] [72]. 
 
Recent studies explored these biases often jointly, employing techniques as evocated potential or 
neuroimaging to highlight the underlying neural mechanisms, or eye tracking to investigate the face 
processing strategies, with the aim to develop a comprehensive model and to disambiguate between the 
two most proposed accounts of the in-group biases. The first account refers to familiarity and greater 
perceptual expertise. Frequent contacts with own-groups people shape the “face space” [73] and allow 
a greater accuracy of the face representational system for distinguish individual faces of the in-group 
[70]. A second competing account of these biases refer to sociocognitive motivational mechanism. Faces 
perceived as belonging to an out-group are processed at a categorial level, whereas in-group faces are 
individualized [74], with a mechanism similar to the use of stereotypes and at the origin of prejudice; 
therefore, it is a different level of motivation which results in deeper processing and subsequent greater 
recognition and memory.  
 
After a brief definition of the most studied biases, we summarize the recent empirical evidence focusing 
on the underlying mechanisms. 
 
 
2.2.1 The gender bias 
 
Women are better at recognizing female than male faces, while evidence on men is more contradictory 
[75] [76]. In addition to this asymmetrical own-gender bias (OGB; see [77], for a metananalysis), female 
faces are recognized more accurately than male faces both by female and male participants [78]. Also, 
women are generally more accurate at recognizing both female and male faces compared to men [79] 
[80]. The superior ability of women in face recognition is still under debate [81] [79] [82] but there is 
evidence that neonatal girls already spend more time looking at a face than neonatal boys [83]. 
 
The pionieristic study of Cross et al. proposed an explanation to the gender bias arguing that women are 
more skilled at recognizing female faces because continually exposed to that kind of stimulus [84]. 
Herlitz and Lovén suggest that men and women are both exposed to female faces to a greater extent 
during infancy than to male faces (mother, caregivers). This potentially leads to deeper processing and 
to greater recognition accuracy [77]. The asymmetry in the OGB may therefore derive from an early 
perceptual exposure to female faces [83] which in females persists throughout development because of 
larger number of reciprocal interactions with other females. The OGB in women remains also for less 
familiar faces, such as other-race and other age-faces, supporting that women have acquired a 
generalized perceptual expertise for female faces [78]. Boys and men, on the other side, may become 
more familiar with other males but this at most could weaken their original ability for processing female 
faces, thus resulting in the lack of gender bias often found in males. 
 
Palmer et al. support instead a motivational basis for the gender bias; they used a divided-attention 
paradigm during the encoding of faces and found a reduced recognition particularly for males, 
suggesting that women play more attention at encoding own-gender faces [76]. Similar support in term 
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of motivational underlying mechanism comes from studies with participants with diverse sexual 
orientation [75] [72], and the findings that a pro-female gender bias in face recognition was found in all 
participants with the exception of gay men, who showed a pro-male gender bias. Lovén, Herlitz and 
Rehnman also manipulated in three experiments the level of attention reducing the processing of faces 
during encoding, but their results did not supported the hypothesis that own-gender women bias would 
be reduced; therefore, their findings point to the role of women superior perceptual experience for 
female faces, which subsequently facilitate recognition memory [85].  
 
Exploring with fMRI  the neural substrates of gender differences [86] findings showed, besides 
supporting the superiority in recognizing female faces both in men and women,  greater activation to 
female vs male faces and a reduced activation of women brains, according to the author suggesting a 
greater efficiency in the women relevant neural system. Using event-related brain potentials (ERP), 
measured during tasks of face orientation and gender identification of presented faces, Sun, Gao & Han 
found an activation of specific brain area (larger for N170 in orientation identification, P3 in gender 
identification), with stronger effects difference in women than in men, suggesting that attention to social 
information in faces assume more relevance in women than in men [87]. Using eye-tracking [88], 
different scanning when processing own- and other-gender faces emerged, with more and longer 
fixations to the eyes when viewing own-gender faces.  
 
Comparing the behavioral and neural processes underlying the OGB, both in the learning (exposure to 
unfamiliar faces to memorize and categorize by gender) and in the test phase (recognizing the presented 
face as new or learned), the ERP did not reveal strong evidence for different processing of own- and 
other-gender faces, although the gender biases have been confirmed and, in this study, both for male 
and female participants [74]. However, a difference in the learning phase in some neural correlates 
related to memory effects (occipito-temporal P2 and central N200) was potentially linked to the own-
gender bias. In addition, the memory bias did not correlate either with quality or frequency of contact 
with female or male individuals, and the authors conclude that the own-gender bias largely rely on 
perceived ingroup vs outgroup membership, therefore to social categorization and not to perceptual 
expertise.  
 
                      
 
2.2.2 The age bias 
 
Evidence supports the existence of a similar own-age bias, with superior recognition for faces of one’s 
own age group. A meta-analysis [89] confirms that the discrimination ability is better for same-age 
compared to other-age faces at all ages, even in children. A possible explanation refers to the role of 
recent experience with people of similar age and is supported by the presence of the bias even in groups, 
such as older people, with prior experience with other age groups. However, a social categorization task 
of faces in old/young age group was found to be correlated with the OAB, pointing to a motivational 
account [90]. 
 
To test whether generally FR increases with age, Cross et al. compared 7, 12, 17 yo children, but findings 
were not positive [84]. Faces constitute special stimuli already in neonates [91], who are able to 
recognize the primary components that distinguish a face (nose, eyes and mouth), but also have 
considerable expertise in identifying the spatial relations between the characteristics, as the distance 
between the eyes [92]. Despite numerous works in support, there is however currently no empirical 
evidence demonstrating in an irrefutable manner that the recognition of faces is governed by innate 
factors. This conclusion is difficult to be proved because from the earliest days of life the child will come 
in contact with many facial stimuli rather than with other types of visual stimuli. Wolff showed that they 
smiled in response to a face starting from the fourth week of life [93]; besides, since the second week 
they manage to discriminate between the mother's face and another face [94] and prefer the face of the 
mother than any other feminine face, familiar or not [95].  
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2.2.3 Cross race 
 
The most investigated bias in face recognition is the cross-ethnic effect (in the literature, usually termed 
the Cross-Race Effect, CRE, or Other-Race Effect, ORE) which refers to the superior identification of 
same-race compared to other-race faces.In some people, the ORE effect reached almost a clinical level, 
arriving to be considered face-blind for other-race faces [96], probably because of a lack on interethnic 
contact and a general low face recognition ability. 
 
Albeit ORE is sometimes found to be stronger in White people [84] [97] [73], it exists broadly across 
several ethno-cultural groups [98]. The level of interethnic contact explained part of the findings, but 
even the attitudes toward ethnic groups probably play a role. A perceptual-social linkage hypothesis 
[99] suggests that the greater exposure to own-race faces together with the mostly positive experiences 
with these faces may lead to implicit racial bias. According to Galper [100], positive behaviors toward 
people of different ethnic groups may contribute to an improvement of the memory performances, to 
achieve comparable results to people belonging to that same ethnicity, as observed in a group of white 
students attending courses with black students, who were very skillful in memorizing the faces of their 
black colleagues. 
 
Time ago, Malpass [101] demonstrated the possibility to improve the recognition performance through 
training, teaching the subjects to focus on the salient but at the same time discriminating characteristics 
of a face. For a white subject the most salient feature of a black face is the color of the skin but it is a little 
characteristic element within a group of black individuals [1]. Attention, to facilitate memory, should be 
focused on other elements like the shape of the nose and mouth [102]. Eye tracking confirmed that 
internal facial features (particularly eyes, then nose and mouth) are fundamental for face recognition as 
these features receive more fixations than others even in children, especially for upright faces [103]. A 
further question may refer to the relative importance of specific diagnostic facial region in other- and 
same- race faces. For instance, Caucasian children and adults use eye-centric scanning for both, while 
Asian children and adults use nose-centric scanning for own-race faces and eye-centric scanning for 
other-race faces [104]. A study [105] which disguised the upper and lower regions (with sunglasses and 
a bandana) confirm the superiority of the eye region; when disguised, recognition memory was 
impaired with similar effects on recognition of same- and cross-race faces. However, whereas the upper 
facial region is more diagnostic for white faces, the lower facial region is more diagnostic for black faces. 
The context also plays a relevant role, and experiments comparing same- and other-race presentation 
of faces individually or in groups found that the group presentation impaired the recognition memory 
of cross-race but not of own-group faces, pointing to the influence of viewing conditions in real world 
situations [106], as in the case of eyewitness misidentification of other-race offenders leading to 
wrongful imprisonment [96]. 
 
According to socio-cognitive motivational account, processes of categorization vs individuation at 
encoding account for differential recognition of same- and cross-race faces [107], playing a role even at 
post-encoding, at recognition [108]. That is, faces are quickly coded by their group status and ingroup 
faces are processed deeply whereas outgroup faces are processed shallowly [88]. Support derives from 
studies which use divided or reduced attention [76], labeling of own-race faces as belonging to an 
ingroup/outgroup as same/other university [109], or instruction to pay attention to outgroup faces 
during learning [110].  
 
If motivation is the underlying mechanism, the amount of effort people applies in recognizing own- and 
other-race faces should be different. With this hypothesis, Crookes & Rhodes [111] compared 
recognition of Australian and Chinese faces in Caucasian participants in two conditions: with standard 
timing or with self-paced timing. If people are less motivated in recognizing other-race faces, they should 
apply less effort and spend less time studying other-race than own-race faces. Evidence did not support 
the hypothesis, and actually participant reported more effort in telling apart other-race than own-race 
faces. These findings are therefore contrary to the social-cognitive explanations, and pointing to a 
perceptual-experience account. It has been argued that the evidence supporting the social–motivational 
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account derives from a particular cultural setting: a high socio-economic status group (typically US 
whites) looking at the faces of a lower status group (US blacks) with whom observers typically have at 
least moderate perceptual experience. Five studies [112] tested the relative role of motivation-to-
individuate instructions in participants with wide range of perceptual experience but with equal socio-
economic status (Asian and Caucasian participants), and found no support to the motivational account; 
that is no reduction in the ORE with motivation instructions. The level of ORE was predicted mainly by 
the level of contact with the other races.  
 
Contact may however not completely explain the ORE, given that it has been also reduced by labelling 
own- and other-race face as members of the ingroup, e.g., same vs other university [113]. This points to 
a different level of motivation in encoding faces after the initial simple categorization of face as ingroup 
or outgroup members compared to a facial identity task; this latter may increase motivation to 
individuate the faces [74]. 
           
Further evidence supports the role of experience. ORE has been reversed if an individual has earlier 
exposure to people from another ethnic group, e.g. Korean adults adopted by French families recognized 
Caucasian faces more accurately than Asian faces [114]. Infants at 3 months initially recognize both 
own- and other-race face but 9-months olds recognized only the familiar own–race faces. Two 
alternative explanations refer to a perceptual-learning mechanism or to a perceptual narrowing one. 
The first suggests that initially newborns are unable to process face identity of all races, but with the 
extensive exposure to own-race faces they develop better ability in recognizing own-race faces, while 
the narrowing maintains that the ability to recognize other-race faces declines because of the lack of 
experience [115]. 
 
The exposure to faces may influence, starting from early infancy, scanning and recognition of faces. 
Infants as early as at 6 months of age scan own- and other faces differently and already show a superior 
recognition of own-race faces compared to other-race faces [116] [117]; using eye tracking, after 
familiarization with dynamic faces, children recognized later own-race static faces but not other-race 
faces, with better recognition with more scanning. In addition, children fixated longer on the nose of 
own race faces. The familiarity that infants have with the faces they encounter daily determine that 3-
months old look significantly longer at own- over other-race faces, 6 month-olds look at both equally, 
and 9-month-olds look significantly longer at other- over own race faces [116]. This is probably due to 
the fact that they increasingly process more rapidly information from own-race faces and spend more 
time exploring less familiar faces. 
 
In two ethnic groups with high degree of reciprocal contact (Andalusian Romani and Andalusian 
Caucasians), the recognition performance of East Asian, Caucasian, and Romani faces support that the 
ORE is due to lack of contact. In addition, eye movements were monitored and, although with similar 
face recognition performance, Caucasian and Romani observers employed different visual exploration 
strategies; Romani focused their attention on the eyes, while Caucasians fixated more on the nose [118]. 
Finally, ORE was also reversed, arriving to an other-race advantage, when Caucasian participants 
recognized black male faces better than white male faces when the facial expressions indicated anger or 
fear [119], thus probably interpreting the faces as potentially threatening.            
 
Examining with eye-tracking visual attention and memory for faces of different race and gender in 
women and men, thus studying at the same time both ORE and OGB, a study [78] highlighted that own-
race faces were generally viewed longer than other-race faces and subsequently recognition memory 
was higher, as it was for female faces than for male faces, and that male faces of other race received more 
time viewing, probably because they may be perceived as a potential threat. However, longer viewing 
time influenced later memory for faces but did not reduce the magnitude of ORE. The proposed 
explanations point mainly to a dual process, that is social-motivation – lower in recognizing other-race 
faces - and perceptual experience - greater for own-race faces because of greater exposure and 
familiarity. Similarly, the Categorization-Individuation model (CIM) [70] proposes that social 
categorization, perceiver motivation, and perceiver experience are the three causes at work to different 
extents in the own-group biases. Categorization involves a focus on shared characteristics among a class 
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of exemplar (i.e., category-diagnostic information, for instance the skin color for race), while 
individuation involves an attentional focus on characteristics unique to a particular exemplar (i.e., 
identity-diagnostic information). The first occurs quickly, effortlessly, and spontaneously for novel faces 
and tend to be more salient for outgroups than for outgroups, while individuating characteristics may 
be more relevant for ingroup faces. An experimentally-induced focus on identity cues has shown to be 
effective in reducing the OAB, but it not reduced the ORE [120], supporting that the categorization-
individuation processes do not play the same role in the two biases. A dual-route approach to ORE is 
supported also by the findings of Wan et al. [112] who propose that lack of motivation and lack of 
experience contribute differently across varying world locations and cultural settings.  
 
A final consideration about cross-race biases regards emotion recognition. An eye-tracking study of Hu 
et al. [45] showed that viewers did not attribute more own-race than other-race neutral faces as neutral; 
more Chinese neutral faces were perceived as neutral by all participants. Also, the attribution of positive 
or negative expressions to the presented faces was influenced by stereotypes, with greater attribution 
of negative expression to Chinese faces and of positive expressions to Caucasian faces; in addition, 
participants’ pupil size was larger when processing other-race faces, suggesting greater cognitive load 
in processing unfamiliar other-race faces. 
 
Interestingly, also automatic FR systems are affected by cross-race bias. Existing training and testing 
databases consist of almost Caucasian subjects, implying that “there are still no independent testing 
databases to evaluate racial bias and even no training databases and methods to reduce it” [121]. This 
means that racial bias in databases reflects in algorithms; thus, the performance of FR methods depends 
on the race. Wang et al. addressed this issue by introducing a new dataset with Caucasian, Asian, Indian, 
and African subjects [121]. This suggests that putting in contact perception foundations and automatic 
FR algorithms could contribute to answer to the research questions and make the two fields nurture 
each other. 
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3 BIOLOGICALLY-INSPIRED FACE RECOGNITION ALGORITHMS 
 
 
Several findings of neuroscientists studying human FP have important consequences for engineers who 
design algorithms and systems for machine recognition of human faces [1]. Increased knowledge about 
the way people recognize each other may help to guide efforts to develop practical automatic face 
recognition systems [10]. This trend has emerged only recently. It has been reported that, in 1995, 
barring a few exceptions, research on machine recognition of faces had developed independent of 
studies in psychophysics and neurophysiology. The reason is that at that time it was considered futile 
(impossible with that technology) to attempt to develop a system which could mimic all human traits 
[1]. Now, especially considering the studying the human brain is a hot research topic, the time has come 
for the technology to consider the functioning of the brain as a stimulus and inspiration for the algorithm 
conceptualization. This section sums up the most relevant contributions published after 2000, making 
a few exceptions of previous works which have been evaluated relevant and significant for the general 
understanding of the topic. The search keywords on Scopus were “face perception” and “face 
recognition”; the contributions have been then selected in the research areas of Computer Science and 
Engineering.  
 
Two approaches are used in algorithms: bottom-up and top-down. Bottom-up is try to reverse-
engineer the visual system by reconstructing the brain piece by piece so that artificial intelligence will 
emerge. Top-down is feed-forward engineering, i.e. computer vision and machine learning, which 
happens by building formal theories of visual perception and applying the biologically-plausible 
implementations of these theories to the neural circuits. Most of the biologically-inspired methods for 
FR are top-down models [65]. They respectively correspond to hierarchical methods, as they are based 
on hierarchical representations, and techniques relying on efficient coding hypothesis.  
 
Neural networks and deep learning are the primary examples of how some functions of the human 
being, the neural system in this case, could provide a hint to researchers in Computer Science for 
developing computational programs. The Computer Science term ‘neural network’ “has its origins in 
attempts to find mathematical representations of information processing in biological systems”, 
although in some cases their biological plausibility has been the subject of discussion [122]. 
 
Descriptions of neural system’s functioning and of how could be simulated by computers have been 
provided in distinguished works exploring the topic from different perspectives. In 1943, McCullogh and 
Pitts proposed a neural system model adopting psychological functions (the activity of a single neuron 
is called “psychon”) as starting point and focusing on the “all-or-none” law of nervous activity [123]. In 
1962, Rosenblatt designed and tested perceptron brain models; a perceptron consists of a set of signal 
generating units (called “neuro-mimes”) connected together to form a network [124]. Differently from 
McCullogh and Pitts’s study, who focused on psychological functions, physiological principles form the 
basis of the perceptron models. Necessarily, the probabilistic properties of a class of physical sistems 
was here the departure point. An early primary contribution about adaptive or “learning” systems for 
pattern recognition was given by Widrow and Hoff in 1960 [125]. In this work, an adjustable neuron 
model is adopted for the construction of an adaptive pattern classification machine called Adaline (for 
adaptive linear).  
 
Among the many types of artificial neural networks developed in the last decades, Convolutional Neural 
Networks (CNNs) are worth being taken into consideration in this study for their attempt to specifically 
resemble the virtual cortex, which makes them be suitable for applications in pattern recognition and, 
thus, face recognition. The origins of the model rely on Hubel and Wiesel’s discoveries in the Sixties on 
two major cell types in the primary visual cortex (V1) of cats: simple cells and complex cells, the second 
receiving input from the first [126]. These findings have been transformed into a functioning model 
called Neocognitron by Fukushima in the Eighties [127], that relies on S-cells and C-cells named after 
simple and complex ones. “After a layer of simple and complex cells representing the basic computations 
of V1, the Neocognitron simply repeats the process again. That is, the output of the first layer of complex 
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cells serves as the input to the second simple cell layer, and so on. With several repeats, this creates a 
hierarchical model that mimics not just the operations of V1 but the ventral visual pathway as a whole. 
The network is “self-organized,” meaning weights change with repeated exposure to unlabeled image” 
[128]. This model is considered as the precursor of modern CNNs, that use convolution mathematical 
operation in place of general matrix multiplication in at least one of their layers. Images fed into these 
networks are usually first normalized and separated into the three color channels RGB, that capture 
certain computations done by the retina. Each “stacked bundle of convolution–nonlinearity–pooling” 
can then be thought of as an approximation to a single visual area (usually V1, V2, V4, IT). Thus, standard 
feedforward CNN architectures are believed to represent the very initial stages of visual processing 
[128]. Lindsay’s study [128] is a recent contribution focusing on how traditional CNN models and 
alternative architectures imitate the visual system. 
 
For their success in image classification, CNNs are largely used for automatic face categorization tasks 
like FER [129] [130] [131], FR [132] and medical applications [133], with AlexNet, ResNet and VGG 
being the mostly adopted [130] [134]. Detailed literature reviews exist [134] [135] [136] [137] [138] 
[139] [140] [141] [142], for interested readers. CNNs can be considered a mainstream for computer-
based face recognition and a key computational approach imitating the visual cortex. 
 
Besides CNNs, the human visual system has been inspirational for other approaches to face 
categorization. Carnec and Barba presented a pattern recognition methodology based on perceptual 
data, simulating the functioning of the human visual system [63]. The implemented method reproduces 
a simpler version of the visual system conserving these specifications: i) the adoption of the eye as the 
starting point, represented by RGB images; ii) detection of oriented contrasts, simulating the role of V1 
area; iii) topographic organization of information, simulating the role of V2 (see Table 3 for more details 
on these parts). Success rates range between 85 and 100%. Fu et al. adopted spiking neural network to 
simulate the visual cortex mechanism for facial expression recognition. Recent evidences from 
neurobiology have led researchers to build cortex-like scheme based model with single spiking neurons 
acting as computation units (most cortical physiologists believe that most neurons are in cortex spike), 
the Spiking Neural Networks (SNNs). SNN utilizes information representation as trains of spikes, 
embedded with spatiotemporal characteristics. Following the standard model of visual cortex, from the 
sensory/input layer to the final classification layer, the overall system consists of three main blocks: (1) 
the sensory/ receptive layer, which consists of simple cell behavior simulator and complex cell behavior 
simulator, data preprocessing, feature extraction; (2) the learning layer, which consists of only 
excitatory neurons; (3) the classification layer, which accumulates all the outputs from the learning 
layer [144]. Zhang et al. applied a hierarchical cortical model to facial expression recognition. The 
backbone idea relies on Poggio’s cortex mechanism like system. “The core of the model is the hypothesis 
that the main function of the ventral stream is a mechanism which has evolved to achieve the trade-off 
between selectivity and invariance in IT area for fast and accurate object of interest recognition tasks, 
which is done through a underlying hierarchical structure (from retina to IT). The model has been 
successfully tested on the JEFFE database, proving that the cortical like mechanism for facial expression 
recognition should be exploited in great consideration [64]. Tistarelli et al. presented a pseudo-
hierarchical Hidden Markov Model (HMM) to build a double layer architecture to extract shape and 
motion information from face sequences, inspired by the fact that we capture both facial traits (static) 
and behavioural (dynamic) features. The main outcome is the capability of modelling both physiological 
and behavioural features, so that identification and verification tasks could be gained effectively [52].  
 
In 1991 Cottrell and Metcalfe introduced holons as features for FR [145]. Holons are given to one and 
two layer back propagation networks that are trained to classify the input features for identity, 
emotions, and gender. The developed system has been called Emotion PATern recognition using Holons 
(EMPATH); it is a biologically plausible neural network model for categorizing facial expressions [144]. 
In 2002, Dailey et al. showed that EMPATH, trained to classify facial expressions into six basic emotions, 
predicts data used to support both the discrete and continuous theories about facial expression 
perception. The system is a feed-forward network consisting of three layers common to most object 
recognition models. The first layer of the model is a set of neurons whose response properties are 
similar to those of complex cells in the visual cortex. Gabor filters are used to model complex cells. “As 
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a feature detector, the Gabor filter has the advantage of moderate translation invariance over pixel-
based representations. This means that features can move in the receptive field without dramatically 
affecting the detector’s response, making the first layer of our model robust to small image changes” 
[146]. Other neurocomputational models of face processing have been investigated in 2011 in a 
dedicated study by Cottrell and Hsiao [147]. They resumed the features of three biologically plausible 
models developed in the last years of the Nineties: (i) O’Really and Munataka’s model included V1, V2, 
V4 and the lateral gineculate nucleus and was considered the most biologically plausible; (ii) “the 
standard model” (TSM) included V1, V2, V4, inferior temporal cortex layer and prefrontal cortex, was 
developed by Riesenhuber and Poggio and involved Gabor filters; (iii) Cottrell and Dailey’s “the model” 
(TM) was considered the least biologically plausible, including V1 and FFA, with the use of Gabor filters. 
TSM was considered by the authors “neurally realistic, while requiring a search for parameters to fit the 
data, and TM being the less realistic, but using learning on a realistic task to set the parameters” [147]. 
The development of models which could be biologically plausible in both their learning methods and 
their neural processing mechanisms is seen by the authors as the next crucial research step. 
 
The adoption of Gabor representation for approximating the shape of the receptive fields in the primary 
visual cortex was firstly introduced by Marčelja in 1980 [148] relying on a description of simple cortical 
cells given by Hubel and Wiesel [126]. Petkov et al. applied Gabor functions to FR. They developed a 
biologically motivated FR approach with the adoption of 2D Gabor functions resembling the receptive 
fields of simple cells in the primary visual cortex V1. Data obtained by projecting a 2D signal (image) 
onto a set of Gabor functions is interpreted as the activities of individual cells in the V1. A 94% RR was 
achieved on a database of 205 facial images of 30 subjects [149]. More recently, Gabor representations 
were adopted by Sato et al., that proposed a computational model of the cognitive processing in the 
brain involving both configurational and featural processes [150]. According to the authors, the first 
cerebral step is the configurational process, which is the perception of internal relationships among 
features, that are codified by low spatial frequencies. The second step is the featural process; it relies on 
the perception of contour details of nose, eyelid, mouth, and eyes. These contours are codified at high 
frequencies. Low and high frequencies play a key part in human FR, as they define the framework of 
human visual system and the concepts of holistic and local processing, respectively. The possibility to 
emulate this framework in the algorithms encouraged the authors to employ Gabor pyramids. The 
purpose of the study was to explain why human observers have difficulty in distinguishing two 
extremely similar faces of different genders, for applications in Human-Computer Interaction context. 
The literature on the adoption of Gabor features for pattern recognition applications is vast and varied, 
and has been reviewed in some ad hoc studies [151] [152] [153]. 
 
Deng et al. argued that Gabor wavelet representations were not enough to gain acceptable RRs [154]. 
They developed an uncontrolled FR system aiming at emulating early processing, face coding, and cue-
fusion strategies of human FR. They adopted a set of biologically inspired features derived from the 
response properties of neurons in the early stages of visual pathways (spectral and spatial frequencies, 
orientation, color opponent); developed a dimensionality reduction module relying on an 
incremental robust discriminant module with the objective of emulating the perceptual learning that 
happens in later stages of visual pathway to extract higher level (identity-specific) codes; processed face 
coding on different facial cues, yielding separated visual pathways, in order to predigest the highly 
complex cue-fusion strategy of human FR. The authors obtained 93% RR and encouraged researchers 
to search more informative features and perceptually optimal face codes in order to build a valid 
perception-inspired computational model. 
 
The human visual system has also been inspirational for the visual attention mechanism, with 
successful results in FER tasks. Visual attention mechanism relies on the functioning of the human visual 
system, meaning that, when processing a complex visual scene, humans have the ability to rapidly direct 
the gaze towards objects of interest in the scene. The simulated attention mechanism is often embedded 
into a CNN  architecture aimed at classifying facial expressions with automatic determination of regions 
of interest [155], occlusion identification [156], and the adoption of 3D data (depth maps) [157]. 
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Puri and Lall relied on the role of abstractions to develop a methodology for head pose estimation in 
real time [158]. Both the brain and the algorithms work faster with abstractions of images, i.e. with 
features, which must be extracted from images before the matching process. Humans do this process 
automatically, while computers need to be provided with features [158] [159]. Generally speaking, 
features are largely adopted in the Computer Vision field for recognition purposes [160] [161], but not 
often consciously connected to FP. Similarly, the ability to abstract from invariants has been 
investigated. While modelling differences in perception between autistic and non-autistic children, Wu 
et al. made some considerations about the role of invariants in the human perception. “Real-world 
invariants may often be hard to detect because they are hidden behind several stages of processing. The 
problem here is quite similar to that of dimensionality reduction in machine learning: knowledge of 
symmetries and other invariants allows one to reduce the search space and is a basic element of 
‘imagination’ and planning. Thus, such knowledge is essential in real-world intelligent agents” [159].  
 
Zhan et al. took from the FP context the concepts of familiarity (role of memory) and the hierarchy of 
importance of facial components to propose a FR method to deal with the “one sample problem”. 
Particularly, quantized local features which learnt from generic face dataset are used to mimic the 
prototype effect of human FR [8]. Every local feature is quantified according to a codebook to mimic the 
prototype effect. The codebook is built using clustering approach based on a generic facial dataset which 
consists of images from subjects other than those under consideration. In this method, the authors also 
adopted the caricature concept to weight the distinctiveness in the comparison with the average face. 
The Mahalanobis distance is used to measure the distinctiveness of every facial part (mouth is excluded 
due to its shape variations). Similarly, Dagnes et al. used the average face to evaluate the distance of the 
query face to the typical one, thus reprising the caricature idea. For this purpose, a novel descriptor 
based on the shape index and the average face, called ‘personal shape index’, has been adopted as 
discriminating feature for a novel FR methodology [162] [163]. 
 
Another FP aspect which has been adopted in the algorithms is Weber's law [164] [165]. As the ability 
of human perception to dissolve intensity change ∆𝐼 depends proportionally to the absolute intensity I, 
“the human perception of local micro-pattern is defined by the ratio between two terms: one is relative 
intensity differences of a central pixel against its neighbors and the other is intensity of local central 
pixel” [165]. Xie et al. proposed a face representation based on this law and a FR methodology relying 
on Local Binary Patterns (LBPs) on images. Dunker and Keller dealt with illumination normalization for 
FR relying on the same law [164].  
 
A perception-driven approach was constructed by Yu et al. to synthesize facial expressions in the 
absence of actor performance data for that expression [166]. The authors blended 3D Morphable Model 
computer graphics technique with reverse correlation, a method imported form human psychophysics. 
By studying visual properties during stimulus classification tasks using behavioural and brain 
responses, reverse correlation uses the response of human observers to filter the parametric values that 
correspond to a specific expression. This perception principle could be considered belonging to the 
already mentioned internal mental representation. 
 
Some hints for specific computational models for the “psychology of face recognition” come from 
neuroscientific studies. Active Appearance Models (AAMs) are being considered by Zhan et al. for 
modelling the mental representation of a face identity [167]. AAM is a mathematical model used in the 
context of Pattern Recognition which contains full 3D surface and 2D texture information of the face. 
The general aim of the study is “to model the face identity contents in the generative 3D space of faces 
and to use these models to generate identification information in resemblance tasks that test the 
generalizability of identity information.” This research may open new avenues for the interplay between 
visual information, categorization tasks, and their implementation. 
 
Table 4 sums the content of this section by reporting respective aims, methods, and results in terms of 
recognition rates. 
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Table 4. Schematization of the works adopting FP concepts in FR and FER algorithms. 

Work Inspiring perception 
concept 

Aim Method Results 

Carnec 
and 
Barba 
[63] 

visual cortex mechanism: 
i) the adoption of the eye as 
the starting point, 
represented by RGB 
images; ii) detection of 
oriented contrasts, 
simulating the role of V1 
area; iii) topographic 
organization of information, 
simulating the role of V2 

pattern recognition ad hoc 
(pseudocode 
written in the 
paper) 

85-100% RR 

Fu et al. 
[144] 

visual cortex mechanism: 
(1) the sensory/ receptive 
layer, which consists of 
simple cell behavior 
simulator and complex cell 
behavior simulator, data 
preprocessing, feature 
extraction; 
(2) the learning layer, which 
consists of only excitatory 
neurons; 
(3) the classification layer, 
which accumulates all the 
outputs from the learning 
layer 

FER spiking neural 
network 

97.35% RR 

Zhang et 
al. [64] 

visual cortex mechanism FER hierarchical 
cortical model 

95.1%, 95.3%, 
92.4%, 89.5% RR 
depending on the 
database 

Tistarelli 
et al. [52] 

visual cortex mechanism; 
capture of both facial traits 
(static) and behavioural 
(dynamic) features. 

extract shape and 
motion information 
from face 
sequences for FR 

pseudo-
hierarchical 
Hidden Markov 
Model (HMM) 

100%  

Dailey et 
al. [146] 

discrete and continuous 
theories about facial 
expression perception 

FER Emotion PATern 
recognition using 
Holons 
(EMPATH), a 
biologically 
plausible neural 
network model. 
Gabor filters 

90% RR 

Petkov et 
al. [149] 

functioning of the  receptive 
fields of simple cells in the 
primary visual cortex V1 

FR Gabor 
representation 

94% RR 

Sato et 
al., [150]  

cognitive processing in the 
brain: configurational and 
featural processes 

explain why human 
observers have 
difficulty in 
distinguishing two 
extremely similar 
faces of different 
genders, for 
applications in 
Human-Computer 
Interaction context 

Gabor pyramids / 

Sun et al. 
[155] 

visual attention 
mechanism of human 
visual system 

FER novel 
Convolutional 
Neural Networks 

depending on the 
database 
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Li et al. 
[156] 

visual attention 
mechanism of human 
visual system 

FER novel 
Convolutional 
Neural Networks 

depending on the 
database and on 
CNN version 

Li et al.  
[157] 

visual attention 
mechanism of human 
visual system 

FER novel 
Convolutional 
Neural Networks 

94.63%, 98.52%, 
94.33% RR 
depending on the 
database 

Deng et 
al. [154] 

early processing, face 
coding, and cue-fusion 
strategies of human FR 

FR specific method 93% RR 

Puri and 
Lall [158] 

abstractions head pose 
estimation in real 
time 

regional 
segmentation and 
stroke rendering 

80-96% depending 
on the angle 

Wu et al. 
[159] 

invariants FR specific method / 

Zhan et 
al. [8] 

familiarity (role of memory); 
hierarchy of importance of 
facial components; 
caricature concept 

FR landmark and 
feature based 
method 

92%, 77%, 75%, 
71% RR 
depending on the 
dataset 

Dagnes et 
al. [162] 

caricature concept FR specific method 95.39% RR 

Xie et al. 
[164] 
[165]  

Weber's law Face 
representation and 
FR 

LBPs 98% RR 

Yu et al.  
[166] 

mental representation of 
the face 

face expression 
synthesis 

3D Morphable 
Model + reverse 
correlation 

95.4% by 
observers 
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4 DISCUSSION AND FUTURE WORK 
 
In 1995, Chellappa et al. suggested engineers to use FP concepts when designing FR methods: the role 
of holistic and features; the significance of facial components (eyes ...); the caricature concept; the role 
of spatial frequency analysis. In particular, “designers should include both global and local features for 
representing and recognizing faces” [1]. Although some of these suggestions have been taken into 
consideration in the last decades, as Section 3 shows, perception foundations are still seen as something 
only for psychologists. The caricature concept was particularly mentioned as a suggestion for future 
work in pattern recognition [10] [8]. Other hints concern adaptation, invariant scale and position 
features and in general more informative biologically-inspired features [154], probabilistic parameters 
[144], the equal importance of pigmentation and shape cues [10], perceptually optimal face codes [154]. 
 
Concerning the model types, according to Fu et al., bottom-up models have proven to be qualitatively 
constrained by the anatomy and physiology of the visual cortex and may not be actually suitable for 
practical computer vision systems, and a more high-level computation framework is required. 
Hierarchical models can be viewed as conceptual tools rather than computational means; how to 
combine the logic structure of the hierarchy with the computation unit in vivo should be considered 
with great attention [144].  
 
The main concerns of researchers in the field regard the little we know of the functioning of the visual 
system and general in the field of perception. Specific researches for human facial information and facial 
expression recognition in the field of biologically-motivated models are missing. Surprisingly, little 
works attempted to explore the cognition mechanism using computing units emulating the visual 
system [144], and a framework for a biologically-inspired model mimicking brain functioning is still 
missing [64]. Also, the nature of FR e FER impairments in autistics remains unclear [6]; similarly to 
prosopagnosia, knowing how these impairments work could significantly foster the research on 
perception under normal conditions. Furthermore, studying the errors of recognition made by normal 
people both in everyday life and under laboratory conditions could help the general understanding of 
the FP process [23]. Anatomically speaking, “lesion data can answer the crucial question of whether a 
given brain region is necessary for a given computation” [168], supporting, this way, the design of 
related computational models. Another psychological concern regards how cognitive and 
developmental aspects are correlated to human FR performances.  Psychiatric disorders such as eating 
disorders, phobias, obsessive-compulsive patterns, and depression may imply different facial 
perception attitudes and performances. For instance, it is believed that people with little self-concept 
are very good observers and thus develop more structured and performing human FR. The influence of 
personality traits in face processing [169] and the role of cultural and social factors [170] could also be 
more deeply investigated in this sense. 
 
A further stimulus is given by the research question Are computers better than humans?. According to 
O’Toole et al.’s experimentations, for non-familiar faces, nowadays algorithms are more accurate than 
humans in the good and moderate facial image condition; comparable to humans in the poor accuracy 
condition. For familiar faces, humans beat computers [171]. Sinha et al. have confirmed this thesis by 
asserting that the appropriate benchmarking for evaluating machine-based face recognition systems is 
still human performance with familiar faces [10]. An endorsement is given by O’Toole et al., as they 
affirmed that the next generation of FR algorithms will have to operate with levels of robustness 
comparable to those humans show in recognizing familiar faces [171]. Thus, humans undoubtedly win, 
but fusing the machines and humans could give the best RRs [4], in particular when similarly looking 
people are involved [172] [173]. Dunker and Keller, indeed, conclude their comparative study (between 
conventional and perception-inspired methods) by asserting that the algorithms based on human 
perception outperformed nearly all other algorithms [164]. A similar assertion was made by Burtons 
and Jenkins [174], who suggested to computer scientists to base the FR match on abstracted 
representation of the face or to store multiple exemplars, in order to emulate human familiarity in the 
automatic systems. Investigating how we come to be expert is some faces is a key question to be 
answered for them. 
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The methodologies for FR and FER involving knowledge on perception or on the visual system are only 
a few compared to the vast literature within the pattern recognition field. In particular, it seems that 
biological hints are used unconsciously, such as for Gabor functions. Neural networks are a well-known 
example about how a human mechanism could be computationally copied. Indeed, some work has been 
done to emulate parts of the brain with deep learning, namely with deep neural networks (DNN). An 
example is given by the Blue Brain Project [175]. It is a bottom-up approach about the simulation of the 
whole neocortical column. The goal is attractive and elusive, i.e. building a brain-like device which 
contains simulated brain regions in order to emulate the brain-like process [64]. Nonetheless, it does 
not deal with the visual cortex alone, thus it cannot specifically reproduce human FR. Besides the 
common concern on artificial neural networks regarding the vagueness of their resemblance of the 
nervous system and the excessive conceptual simplifications which make them unsuitable to describe it 
(“the brain is given to us, the product of a long evolution ─ we do not want to know how it may work 
but how it actually does work”) [176], computational neuroscientists have tried to model biological 
vision with DNN [177]. Though, no model exists for outlining the brain functioning for face processing 
specifically. Regarding these types of models, some researchers have suggested that computer science 
methodologies such as DNN could be a promising framework to investigate how visual stimuli emerge 
in the human brain [178]. This way, the union between machine learning and neuroscience can have 
twofold purpose: use evidence from neuroscience to help computer scientists to devise better the face 
and the facial emotions; use approaches in computer science to help neuroscientists to understand 
relevant neural processes more in-depth. The main aim of this paper was to address the first issue. 
 
In conclusions,  despite it could be considered as necessary that researchers in Computer Vision rely on 
FP for designing their algorithms, it could beneficial for them to be informed about the relevant findings, 
especially when human interaction is involved [1] [179] [41]. We have a gift from nature that should be 
deepened and exploited [7]. In the next future, we see as inevitable step of the research pathways in 
these fields (computer vision and pattern recognition, neuroscience, psychology) to start 
collaborations/projects between these and assemble interdisciplinary research groups with these 
knowledge, with the purpose to uncover together the meticulous functioning of the human visual system 
for FP and mutually juice up the respective expertise to create a common framework of knowledge in 
the area.  Human-computer interaction applications are booming now, and perception could be the key 
factor which could make the big change in this sense. 
 
 

 
5 CONCLUSIONS 
 
This study presents the main foundations of facial perception and their application to pattern 

recognition algorithms such as face recognition and facial expression recognition. Despite the literature 

in the field of face recognition is vast and varied, only a few contributions involve findings coming from 

perception or inspired by the functioning of the human visual system. Gabor functions and features seem 

to be the most renowned example, but their adoption in face recognition is hardly due to a specific 

knowledge about complex cells in the primary visual cortex or the use of features at the brain level, 

respectively. The possibility to study the perception under different perspectives is fostered by the 

recent advances in neuroscience and the modern technology tools, which could uncover human face 

recognition processes and make this knowledge available to other disciplines. 
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