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Abstract: Free-edge gridshells represent the majority of
built gridshells. Indeed, the gridshell reference geometry
usually needs to be trimmed in order to provide building
access or to insert the gridshell within an existing building,
giving rise to one or more elastic boundaries. Despite the
current design practice, so far a very limited number of sci-
entific studies has been devoted to investigate the influence
of elastic boundaries on the overall structural behaviour
of gridshells. This paper focuses on the effects of the ori-
entation of the boundary structure with respect to the grid
direction. This is done by studying the buckling behaviour
of an ideal single-layer steel gridshell, for different grid lay-
out (quadrangular, hybrid, triangular) and orientation. The
results of the parametric study demonstrate that the sen-
sitivity of free-edge single-layer gridshells to the free-edge
orientation strongly depends on the grid pattern. In partic-
ular, isotropic gridshells have shown an almost negligible
influence of the free-edge orientation in terms of buckling
load, in opposition to orthotropic gridshells. Moreover, the
change in free-edge orientation induces significant varia-
tions of the global structural stiffness for all the layouts,
resulting in possibly unacceptable displacements in service
conditions.

Keywords: single-layer gridshell, free-edge, anisotropy,
grid pattern, buckling

1 Introduction
Gridshells belong to the family of lightweight form-resistant
structures [1], together with tensegrity structures [2, 3] and
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cable and membrane structures [4]. They are designed to
cover large spans and optimised to ideally bear loads by
means of in-plane internal forces. Since the pioneering
structure designed by Shukov [5] at the end of the 19th
century, gridshell design has evolved through the master
works of Buckminster Fuller [6], Frei Otto [7] and Schlaich
Bergermann und Partner [8, 9], resulting in a huge number
of built structures all over the world [9–11].

Gridshell structures are highly prone to buckling phe-
nomena, as testified by catastrophic collapses such as the
one of the Bucharest Exhibition Hall dome in 1963. Since
then, a lot of research has been devoted to the buckling
behaviour of these kind of structures (for a review see e.g.
Ref.s [12, 13]).

The buckling behaviour of gridshells is influenced by
several factors [12, 13], such as Gaussian curvature of the
reference surface [12, 14, 15], grid topology and spacing
[16–19], imperfections [14, 20–22], stiffness of the joints
[20, 23–25] and boundary conditions [12, 14]. All the cited
studies have been carried out by referring to gridshells with
horizontal spring-plane and rigid supports. Surprisingly,
gridshells of this kind represent a minority and are limited
to research pavilions [7, 26] - horizontally constrained at
the ground level - or roofs - rigidly constrained along their
perimeter to the underlying structure - such as the Neckar-
sulm dome [8] or the British Museum Great Court roof [27].
In the majority of built gridshells, the complete gridshell
surface has been trimmed due to functional or architec-
tural reasons, giving rise to free-edges at the intersection
between the reference geometry and the trimming surface.
Outstanding examples of this kind are the Multihalle in
Mannheim [28], whose reference surface is trimmed by ver-
tical planes to provide access; theHippoHouse at the Berlin
Zoo [29], cut by a curved surface; the Cabot Circus in Bristol
[30], where cuts are made to insert the gridshell within an
existing building. Despite the current design practice, “this
kind of elastic boundary has not been extensively investi-
gated, and studies are needed in each design to know how
and if the supports improve the buckling resistance” [13].

A first attempt to systematically study the stability of
free-edge gridshells has been performed by Venuti and
Bruno [31]. Here, free-edge gridshells are named Partial
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Figure 1: Definition of CG (a) and PG cut by vertical planes (b) and curved surface (c) (after Venuti and Bruno [31])

Gridshells (PG) in opposition to Complete Gridshells (CG).
In the latter case, the shape derives from a reference geom-
etry trimmed by a single surface (Figure 1a): the structure is
rigidly constrained along the boundary given by the inter-
section between the reference and the trimming surfaces.
In the case of PGs, the reference geometry is trimmed by
more than one trimming surface, giving rise to one rigid
boundary (usually the ones which lies horizontally) and
one or more elastic boundaries (Figure 1b-c). The cited au-
thors studied the influence of mechanical factors on the
stability of PGs. Specifically, the effects of the flexural stiff-
ness of the elastic boundaries and of the in-plane shear
stiffness of the gridshell were explored on an ideal hybrid
single-layer steel gridshell dome. The results of the study
showed that, depending on the ratio between stiffness of
the boundary and in-plane stiffness of the gridshell, the
structural buckling behaviour could be free-edge driven or
shell-driven.

This paper aims at carrying on the study by starting
to investigate the influence of geometrical factors on the
buckling behaviour of free-edge gridshells. Specifically, the
stability of PGs is expected to also depend on the kind of
trimming surface (either planar or curved), its orientation
with respect to the grid direction and its location (i.e. the
ratio between the free-edge and the gridshell spans). This
study will focus on the effects of anisotropy, i.e. of differ-
ent orientation of the trimming plane with respect to the
grid direction. It will be carried out through a parametric
study on an ideal free-edge gridshell dome by considering
different grid layouts.

The paper outline is as follows: first, the parametric
study is described in terms of geometrical and structural set
ups and kind of structural analyses adopted to evaluate the
buckling behaviour; then, results are discussed in terms
of buckling loads and shapes and interpreted on the basis
of the grid pattern classification; finally, conclusions and
research perspectives are summarised in the last section.

2 Parametric analysis set-up

2.1 Geometrical set-up

The reference geometry of the investigated free-edge single-
layer gridshell is shown in Figure 2. The analytical form of
the reference continuous dome (Figure 2a) is a paraboloid,
having a parabola as both the directrix and generatrix (red
and blue curves in Figure 2a). The considered free-edge
dome is obtained by trimming the complete dome with a
vertical plane Ω passing through the origin of the reference
system and rotated of an angle θ with respect to the y − z
plane. The obtained half dome is, therefore, bounded by
a vertical parabolic arch, whose geometrical parameters
are: span length L = 30m, span to rise ratio L/f = 8. The
discrete gridshell geometry results from the point wise sam-
pling of the dome surface in P structural nodes (p = 1, P)
along the directions of the directrix and generatrix. The
nodes are connected along the directions of the directrix
and generatrix by straight segments resulting in elemental
planar quads [29], having a characteristic length l ≈ 1.5m
(Figure 3a).

In order to study the effects of the grid anisotropy with
respect to the gridshell free-edge, four different orientations
of the Ω plane are considered, corresponding to angle θ of
0∘, 15∘, 30∘ and 45∘, respectively (Figure 2b).

Moreover, the sensitivity to anisotropy of gridshells
having different grid topology is also investigated. To do so,
for each value of θ three kinds of grid layout are considered:

1. quadrangular (Q) (Figure 3a);
2. hybrid (H) (Figure 3b), where the quad meshes are

stiffened by bracing cables [8];
3. triangular (T) (Figure 3c), where the original quad

mesh is triangularised by the addition of diagonal
elements with the same cross section as the straight
ones.
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Figure 2: Continuous reference surface: axonometric view (a) and plan view (b)

(b)(a) (c)

steel beams bracing cables boundary arch

Figure 3: Gridshell layouts: quadrangular (a), hybrid (b) and triangular (c)

2.2 Structural set-up

In all the layouts the main grid is composed of steel beams.
Both the grid beam, the bracing cable cross section and the
type of joint mimic the one usually adopted in Ref.s [8, 14]:
a solid quadrilateral cross section with area Ae = 2.5 ·10−3
m2 is chosen for the steel beams, while the bracing cables
have a circular cross section with area equal to 1.6 · 10−4
m2 and prestress σ0 = 100MPa. The boundary arch has a
solid quadrilateral cross section, whose moment of inertia
is 100 times greater than the grid beam one: this value has
been chosen based on the free-edge gridshell survey in Ref.
[31], where the ratio between the boundary arch and grid
beam inertia is reported to typically fall in the range 80-250
for single-layer bending-inactive gridshells.

The structures are covered with glass panels, which are
taken into account as dead loads only. The dead load qd of
structural steel members and of 20 mm-thick glass glazing

is set equal to 0.5 kN/m2. A uniform load case q = 1.3qd +
1.5qs is applied to the structure according to the Ultimate
Limite State load combination, where qs=0.75 kN/m2 is
the snow load. The resultant p-th nodal load is defined as
Qp =

∫︀
A qda, being A the tributary area of the p-th node.

The structure is modelled by means of the finite el-
ement software ANSYS® v19.2. Both the grid elements
and the boundary arch are modelled in ANSYS using the
BEAM188 finite element. The 3D beam elements are based
on Timoshenko’s beam theory and adopt a cubic shape
function. The cables aremodelled by 3D unilateral (tension-
only) hinged-hinged bar elements with circular cross sec-
tion (LINK180 finite element). The whole structure is as-
sumed to be hinged at the boundaries, while the joints
between steel bars are modelled as rigid, as usually done
in the literature [14, 16, 32]. Even though the stiffness of the
nodal connections affects the buckling behaviour of this
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kind of structures, a more refined model to account for the
actual stiffness of the joints has not been introduced since
it is not expected to change the results of a comparative
study.

The constitutive model of the steel is linear elastic –
perfect plastic, with a yield strength equal to fy = 355MPa,
Young’s modulus E = 2.1e + 5 MPa and Poisson’s ratio
ν = 0.3.

3 Structural analyses
The buckling loads are calculated by means of three types
of analyses [13]: Linear Buckling Analysis (LBA); Geometri-
cally andMaterially Nonlinear Analysis (GMNA) on the grid-
shell without imperfections; Geometrically and Materially
Nonlinear Analysis (GMNIA) on the gridshell with imperfec-
tions. In GMNIA the distribution of the nodal geometrical
imperfections is assumed equal to the first buckling shape
obtained through LBA, with maximum imperfection am-
plitude equal to L/300, as suggested in the Chinese code
[33].

The structural analysis is performed by means of the
finite-element code ANSYS® v19.2. The Load Control proce-
dure is applied within nonlinear analysis, where the itera-
tive convergence is accomplished at each step by means of
the standard Newton Raphson method.

The results of the numerical simulations are compared
in terms of Load Factor (LF) and buckling shapes. In LBA,
the LF can be defined as the ratio between the buckling
load Qu and the reference load Q as defined in the previous
section. Within GMNA, the Load factor is defined as the
load multiplier corresponding to the limit point in the load-
displacement curve (dQ/dδ = 0 in a selected reference
node) and δu is the corresponding displacement field.

4 Classification of the grid pattern
Differently from continuous shells, gridshells are charac-
terised by an intrinsic anisotropy, given by the fact that the
discrete grid intersects its boundaries (either rigid or elas-
tic) with orientations that can differ from those of the main
grid directions. Besides this, a second kind of anisotropy,
that we can call pattern anisotropy, related to the topology
of the grid pattern, can be identified.

In view of the subsequent interpretation of the results,
it can be useful to classify the adopted grid patterns with
respect to the pattern anisotropy. In physics, anisotropy is
the property of being directionally dependent, which im-

plies different properties in different directions, as opposed
to isotropy. Orthotropy is a subset of anisotropy and is char-
acterised by properties that differ along three mutually-
orthogonal twofold axes of rotational symmetry.When deal-
ing with gridshells, the distinction between isotropic and
orthotropic pattern is not straightforward and unanimously
accepted in the scientific community and different criteria
can be adopted. Some authors adopt a geometrical crite-
rion and consider isotropic all the patterns with equilateral
cells: according to this criterion, not only equilateral tri-
angular, but also quad and hybrid meshes are isotropic
[34]. Pietroni et al. [35] adopt a static criterion and define
anisotropic the grid whose elements are aligned with the
principal stresses of the underlying surface. Winslow et al.
[36], on the basis of the continuum analogy, compute the
homogenised stiffness matrix of the gridshell unit cell in
the case of a triangular grid and obtain the properties of
an equivalent anisotropic material. Tonelli et al. [18] clas-
sify equilateral triangular and hexagonmeshes as isotropic
and quad meshes as orthotropic. This classification also
coincides with the one usually adopted when dealing with
grid-stiffened panels [37], which are usually divided into
isogrid panels – stiffened by equilateral triangular ribs –
and orthogrid panels – stiffened by quadrangular ribs. The
same classification is obtained by Mesnil et al. [19] through
a criterion based on the continuum analogy, which will be
adopted in the following. Specifically, they propose to clas-
sify the quality of a pattern by calculating the structural
efficiency for increasing refinement of the mesh and inter-
preting the results according to homogenisation principles.

The structural efficiency is defined as the ratio between
the buckling load qcr, evaluated by means of LBA, and the
weight of the structure [17, 19]:

η = qcr · Am · g , (1)

where qcr = q · LF, A = πL2/4 is the horizontal surface
covered by the dome, m is the structural mass and g the
gravity acceleration.

The buckling load of a spherical shell dome with uni-
form pressure is considered for reference. This does not per-
fectly coincide with the analysed case study – paraboloid
dome with vertical distributed load – but it can be consid-
ered as a good approximation. The linear buckling load
of an equivalent spherical isotropic shell under uniform
pressure is proportional to

√
AD [38], whereA andD are

the equivalent shell axial and bending stiffness, respec-
tively. Whichever the grid pattern,A is a function of EA/l
and D a function of EI/l [13, 38], being A and I the area
and moment of inertia of the main grid elements, respec-
tively. Therefore, both the buckling load and the mass m
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linearly depends on 1/l, i.e. on the number of cells along
the main span L/l, meaning that η is expected to converge
to a constant value. On the contrary, the buckling load of an
equivalent orthotropic shell is a function of

√
DG, where G

is the in-plane shear stiffness and depends on EI/l3 [13, 19].
Therefore, in this case the buckling load is proportional to
1/l2, making η linearly dependent on the number of cells
along the main span.

The convergence study is performed on the complete
dome, in order to exclude the edge effects induced by the
free boundary. Figure 4 plots the structural efficiency for
increasing number of cells for each grid pattern. It can be
observed that the quad pattern structural efficiency linearly
increases for increasing number of cells along the main
span n = L/l. On the contrary, the triangular pattern has
an almost constant structural efficiency when the number
of cells exceeds 20. The hybrid pattern shows an intermedi-
ate trend, which is expected to depend on the cable axial
stiffness.

10 20 30 40 50 60

Number of cells

0

5

10

15

20

25

30

35

 [
-]

Q
H
T

Figure 4: Structural eflciency η versus grid refinement for each grid
pattern

On the basis of the above considerations, it can be con-
cluded that the considered triangular gridshell is isotropic,
even though the triangles are not equilateral, while the
quadrilateral one is orthotropic (in accordance with Mesnil
et al. [19]). The behaviour of the hybrid gridshell adopted
as case study is more similar to the triangular one, there-
fore it can be classified as isotropic, but it is expected that
orthotropic behaviour could emerge for lower values of the
cable axial stiffness.

It is worth noting that, on the basis of the modelling
assumption made in Section 2.2, the structural mass does
not include the one due to the actual dimensions of the
nodal connections. This added mass is expected to have

increasing influence for increasing number of cells, so that
the denominator in Eq. 1 takes larger values for increas-
ing number of nodal connections, potentially leading to
different trends of the structural efficiency versus n.

5 Results
In this Section, the results of the parametric analysis are
illustrated. First, the influence of the design variable θ on
LFs and buckling shapes is commented on. Then, a deeper
insight into the mechanical behaviour is provided through
the concept of Structural Eigen-Curves [39].

5.1 Load Factors and buckling shapes versus
θ

Figure 5 illustrates the LFs as a function of θ, obtained
from each structural analysis for each gridshell layout. The
results confirm some expected general trends:

– the linear buckling load, obtained through LBA, is
higher than the elastic-plastic buckling load, ob-
tained through GMNA [13]. Moreover, the LFs of the
imperfect structure are lower than the ones of the
perfect structure;

– for each structural analysis and θ, the LFs show an
increasing trend from Q to H to T gridshell, due to
increasing stiffness of the mesh.

Figure 5: Load Factors obtained from LBA, GMNA and GMNIA for
each gridshell layout
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Figure 6: Percentage variation of the Load Factors ∆LF obtained from (a) LBA, (b) GMNA and (c) GMNIA for each gridshell layout
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Figure 7: Buckling shapes (displacements normalised to 2 m)
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Figure 8: Load-displacement curves for each pattern and orientation angle

The sensitivity to the grid orientation of each gridshell
layout is better highlighted in Figure 6, which plots for each
analysis and layout the percentage variation of the load
factor with respect to the reference configuration θ = 0∘:

∆LF = LFi − LF0
LF0

, i = 15, 30, 45. (2)

The LF variations induced by the change in grid orientation
with respect to the boundary structure are less pronounced
and in some cases negligible for the isotropic gridshells
(between ± 20%), but are significant for the orthotropic one,
where they can amount to more than 40% for both LBA and
GMNIA. In most cases, the orientation θ = 30∘ corresponds
to the lowest variations of the load factor (|∆LF| < 10%).

The buckling shapes (Figure 7) are strongly affected
by the grid to boundary structure relative orientation,
whichever the layout and the type of analysis. In general,
the buckling shapes for each grid topology agree with what
already observed by Malek et al. [17]: the grid pattern char-
acterised by higher in-plane shear stiffness, i.e. the T pat-
tern, shows local buckling, characterised by dimples, while
the Q pattern, which has the lowest in-plane shear stiffness,
displays global buckling with high wavelength. H gridshell
displays an intermediate buckling behaviour, that could be
defined as global with low wavelength (at least for LBA and
GMNIA). Focusing on GMNA, the most significant effect
of the rotation of the boundary structure with respect to
the grid directions is to induce non-symmetrical collapse
shapes also when the perfect structure is considered. More-
over, when the boundary structure is aligned with the grid
direction, the node with maximum displacement (red cir-
cle) is usually located near the rigid boundary, while it
moves in proximity of the free edge for θ = ̸ 0∘ (from “shell-
driven” to “boundary-driven” collapse [31]).

5.2 Mechanical reading through Structural
Eigen-stiffness

In this section, a deeper insight into the interpretation of the
results of non linear analyses is provided. The mechanical
reading proposed in the following is limited to the results of
GMNA. This choice is given by the fact that the imperfection
shape adopted in GMNIA (i.e. the first buckling shape from
LBA) depends on the design variable θ and is, therefore,
different for each analysed gridshell. This means that the
effects of imperfection cumulate with and noise the effects
induced by the variation of θ. Since the objective of this
study is to focus on the effects of anisotropy, the latters can
be better isolated and interpreted by referring to the perfect
geometry.

Figure 8 plots the load-displacement curves referred to
the node of maximum displacement for each layout. Some
general qualitative trends can be identified: the T pattern
is the one corresponding to the highest stiffness and to the
lowest displacements at the ultimate state, in opposition
to the Q pattern [18]; for all the patterns, the increase in θ
corresponds to a decrease in the initial slope of the load-
displacement curve and an increase in softening (i.e. in the
ultimate displacement).

In order to have amore synthetic quantification of these
effects, the results of GMNA are analysed through the con-
cept of Structural Eigen-stiffness (SES), introduced by Zhu
et al. [39]. The Eigen-stiffness is a scalar quantity that pro-
vides a measure of the global structural stiffness. The basic
theory for deriving SES is herein briefly recalled. For further
details the reader can refer to the original paper [39].

Considering the generic j-th iteration step of a non lin-
ear structural analysis, the SES is defined as:

k*j =
∆UTj KTj∆Uj
∆UTj ∆Uj

=
∆p*j
∆u*j

, (3)

where ∆Uj is the incremental displacement vector and KTj
is the tangent stiffness matrix at step j; ∆u*j and ∆p*j are
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Figure 9: Structural Eigen-curves for Q, H and T gridshells with θ = 0

the incremental Eigen-displacement and incremental work,
respectively, defined as:

∆u*j = ∆UTj ∆Uj , (4)

∆p*j = ∆UTj ∆Pj , (5)

where ∆Pj is the incremental load vector. The SES has the
same dimension as the structural stiffness and it equals
the work done by incremental load ∆P on the condition of
∆u* = 1.

The advantage of computing SES is that it does not rely
on a specific nodal displacement, but it takes into account
the displacements of all nodes. This is particularly useful in
a comparative study, where it would be almost impossible
to chose the same representative node for all the design
solutions to evaluate load-displacement curves. Indeed,
the node with maximum displacement, usually adopted as
reference node, is different for each analysed gridshell.

An example of Structural Eigen-curves is reported in
Figure 9 for the three gridshells and θ = 0∘. The curves
in the first row (Figures 9a-d-g) plots the cumulated incre-
mental work p* = ∑︀n

j=1 ∆p*j over the total number of steps

n versus the cumulated incremental Eigen-displacement
u* = ∑︀n

j=1 ∆u*j . The slope of the p* − u* curve at each step j
is the SES k*, plotted in Figures 9b-e-h versus u*. Finally,
Figures 9c-f-i report the LF versus u*. It can be observed
that k* decreases as u* increases and becomes null when
the limit point is reached.

The tangent SES k*T, evaluated as the slope of the p*−u*
curve at the origin, is calculated for each grid pattern and
orientation angle and plotted in Figure 10. This allows to
evaluate the effect of the boundary structure orientation on
the initial global stiffness of the structure. The following
considerations can be outlined:

– as expected, T gridshells have the highest global stiff-
ness, while Q gridshells the lowest one;

– for all grid patterns, the initial global stiffness sig-
nificantly decreases when the boundary structure is
rotated with respect to the grid main directions;

– the Q gridshell is the most sensitive to the free edge
orientation. When the free edge is not aligned with
one of the grid main directions, the initial stiffness is
reduced of around 95%.
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Figure 10: Tangent SES versus θ for each layout

The significant reduction of the initial global structural
stiffness with respect to the original configuration θ = 0∘ is
not reflected in a corresponding significant variation of the
load factors. If the free edge orientation doesn’t have a rele-
vant influence on the gridshell ultimate behaviour, at least
for isotropic gridshells, on the other hand the reduction of
the initial stiffness when the free edge is not aligned with
the grid directions is expected to have a significant influ-
ence on the structural behaviour in service. This is shown
in Table 1, which reports the maximum displacements for
each layout in service load condition, corresponding to a
uniform load equal to qd + qs. It can be observed that, for
all the considered patterns, the maximum displacement
increases for increasing θ: this could lead to unacceptable
displacements at the Serviceability Limit State (SLS) for
some layouts. Note that bold values refer to layouts where
the buckling load is lower than the SLS load, meaning that
the reported displacement corresponds to the collapse one.

Table 1:Maximum displacement [mm] at the Serviceability Limit
State

0∘ 15∘ 30∘ 45∘
Q 84.7 153 433.2 720.5
H 2.9 13.8 24.9 29.5
T 2.7 7.6 12.4 13.9

The results of this investigation lead to the following
concluding remarks:

– isotropic gridshells have a low sensitivity to the ori-
entation of the boundary structure in terms of Load
Factor. The preferred orientation seems to coincide

with θ = 0∘, which corresponds to the highest initial
global stiffness of the structure and to the lowest in
service displacements;

– orthotropic gridshells are highly sensitive to the ori-
entation of the boundary structure both in terms of LF
and initial stiffness. In this case, the best orientation
should be carefully evaluated by considering the best
compromise between, on one hand, the increase in
LF and, on the other hand, the significant reduction
of the initial structural stiffness, which could lead to
unacceptable displacements in service conditions.

6 Conclusions
The presented study aimed at exploring the effects of
anisotropy on the structural behaviour of free-edge grid-
shells. In fact, gridshells can be considered as discrete
shells, and their behaviour differs from the one of continu-
ous shells the more the grid topology approximation is far
from the continuous isotropic shell. Therefore, the orienta-
tion of the grid with respect to the free-edges is expected
to play a non negligible role in the stability of this kind of
structures.

The study has been conducted by adopting as bench-
mark an ideal single-layer steel free-edge gridshell. Three
different grid topologies have been considered, i.e., quad-
rangular, hybrid and triangular. On the basis of the con-
tinuum analogy, the quad pattern can be classified as or-
thotropic, while the triangular pattern is the one which
better approximate the behaviour of an isotropic shell. For
each grid layout, four different orientations of the trimming
vertical plane with respect to the grid directions have been
analysed. The load factor and buckling shape have been
calculated in each configuration by means of three struc-
tural analyses: linear buckling analysis (LBA) on the perfect
geometry, geometrically and materially nonlinear analysis
on both the perfect (GMNA) and imperfect structure (GM-
NIA). In the last case, the imperfection shape has been set
as the first buckling mode shape scaled to L/300. A deeper
insight into the influence of the grid orientation on the non
linear behaviour of perfect gridshells has been provided
through the concept of Structural Eigen-stiffness.

The results of the parametric study allow to draw the
following concluding remarks:

– the change in grid orientation with respect to the
boundary structure can induce non negligible vari-
ations of the load factors, which can reach 45% for
some grid patterns and some values of the orienta-
tion angle θ. The variations of LF with respect to the
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reference configuration θ = 0∘ are more pronounced
when geometrical imperfections are taken into ac-
count;

– when considering the perfect geometry, a significant
reduction of the global structural initial stiffness can
be observed if the boundary structure is not aligned
with one of the main grid directions. Even though
this stiffness reduction seems to have not a role in
the ultimate structural behaviour, it should be seri-
ously considered since it could lead to unacceptable
displacements in service conditions;

– in summary, orthotropic and isotropic patterns dis-
play a different sensitivity to the grid orientationwith
respect to the boundary structure. Orthotropic grid-
shells, whose buckling load is mainly influenced by
the in-plane shear stiffness, are the most sensitive to
variation of the angle θ, both in terms of LF, of global
structural stiffness and of softening before buckling.
The opposite holds for isotropic gridshells, which
result almost insensitive to the change in boundary
structure orientation in terms of LF and for which the
reference orientation θ = 0∘ seems to be the most
effective one.

These results, despite relative to a specific geometrical
and structural set-up, suggest the need, in the design phase
of a free-edge gridshell, to explore different grid orientation
with respect to the boundary structure in order to identify
the one corresponding to the most satisfying structural
behaviour. The latter does not necessarily correspond to the
case with highest buckling load, since also the reduction
of the initial structural stiffness should be considered to
avoid unacceptable in service displacements. In the case
of more complex geometries than the one herein adopted
as case study, e.g. free-form gridshells with multiple free-
edges, this aim could be achieved by means of topology
optimisation [36, 40, 41].
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