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A method for selecting electroencephalographic (EEG) signals in motor imagery-based brain-computer
interfaces (MI-BCI) is proposed for enhancing the online interoperability and portability of BCI sys-
tems, as well as user comfort. The attempt is also to reduce variability and noise of MI-BCI, which could
be affected by a large number of EEG channels. The relation between selected channels and MI-BCI
performance is therefore analyzed. The proposed method is able to select acquisition channels common
to all subjects, while achieving a performance compatible with the use of all the channels. Results are
reported with reference to a standard benchmark dataset, the BCI competition IV dataset 2a. They
prove that a performance compatible with the best state-of-the-art approaches can be achieved, while
adopting a significantly smaller number of channels, both in two and in four tasks classification. In par-
ticular, classification accuracy is about 77% - 83% in binary classification with down to 6 EEG channels,
and above 60% for the four-classes case when 10 channels are employed. This gives a contribution in
optimizing the EEG measurement while developing non-invasive and wearable MI-based brain-computer
interfaces.

Keywords: EEG channels selection; EEG channel reduction; motor imagery; brain-computer interface.

1. Introduction

A brain-computer interface (BCI) provides an al-

ternative communication channel by directly read-

ing the brain activity and associating a mean-

ing.1–4 Although invasive measurements guaran-

tee better signal-to-noise ratio,5,6 entering the

scalp is not suitable for many applications, espe-

cially for people with no impairments. Meanwhile,

among the mostly adopted non-invasive measure-

ments, electroencephalography (EEG) allows wear-

able, portable, and inexpensive acquisition of the

electrical brain signals with the electrodes placed

along the user’s scalp.7 A BCI based on sensorimotor

rhythms is known as “motor imagery” (MI) BCI.8,9

These rhythms can be measured by EEG. Other-
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wise, magnetoencephalography (MEG), functional

near-infrared spectroscopy (fNIRS), and hybrid ap-

proaches are also used.10 Motor imagery refers to

imagining a specific movement without executing it.

Several researches have shown MI-BCI suitability in

different applications, from communication and con-

trol to rehabilitation.11,12 Unfortunately, it is more

affected by inter-subject and inter-session variability

than other brain activities.13,14 Nonetheless, this

kind of BCI is easy to use and comfortable because

it relies on endogenous brain potentials, unlike other

BCI paradigms requiring, for example, visual stimu-

lation.15–18 MI can be detected either synchronously

(cue-based), or asynchronously (no cue is provided).

Therefore, a MI-BCI is a suitable candidate for a

wearable system in daily-life applications of commu-

nication and control. EEG channels selection allows

to minimize the number of electrodes while guaran-

teeing acceptable performance, wearability, portabil-

ity, and easiness to use.

Several literature studies concern the classifica-

tion of motor imagery tasks. Most of them consider

the discrimination between two classes, while fewer

discriminate more classes.19–24 This is confirmed by

a recent review25 that highlights classification accu-

racies up to 80% - 90% with down to 4 EEG chan-

nels for two-classes problems.26–28 In an another re-

view,29 main finding about channel selection algo-

rithms for motor imagery are reported. Some results

are recalled in the following, while the reader is ad-

dressed to the bibliography for further details. For

instance, a research of 201530 reports the results ob-

tained with varying the number of EEG channels

(14, 22, and 29). The number of selected channels

and the accuracies crucially depend on the dataset

taken into account and on the tasks to classify. This

justifies the need to establish one or more bench-

mark datasets when validating a method by com-

paring its results to literature. With particular ref-

erence to the dataset 2a of BCI competition IV 31,

considered as a benchmark in the present work, sev-

eral approaches are reported in literature.22,32–36 In

Arvaneh et al.27 two implementations of a sparse

common spatial pattern (SCSP) are proposed for a

two class discrimination: left hand versus right hand

imagery. By selecting 13 channels, the classification

accuracy was 81%, while it was 79% when reducing

them to 8. However, different channels were selected

for each subject. Other works report an a-priori chan-

nel selection.37 As an example, the electrodes C3,

Cz, and C4 of the 10-20 system were simply selected

because they are related to the motor area of the

scalp.38 This approach was criticized for the poor

performance, even in case of time-frequency opti-

mization.27,39 Even single-channels approaches were

proposed with the aim to build utmost wearable and

portable BCIs 40,41. For instance, in,41 the results in

terms of cross-validation accuracy on training data

seemed promising for 3 randomly chosen subjects.

Nonetheless, these preliminary results were not con-

firmed when considering more data.

In this paper, a method for selecting and vali-

dating EEG channels is proposed for BCI design by

exploiting the relation between channels and perfor-

mance. Notably, the proposed method progressively

selects EEG channels that are common to all sub-

jects by considering their contribution to classifica-

tion accuracy. Four motor imagery tasks are taken

into account. The results show that accuracies com-

patible with the best approaches in literature can be

achieved with a smaller number of channels, both

in the two-classes and four-classes discrimination.

Therefore, in the following, Section 2 introduces the

proposed channel selection approach. Then, the re-

sults are reported in Section 3 and extensively dis-

cussed in Section 4. Conclusions follow in Section 5.

2. Proposal

In designing a BCI, the selection of a minimum num-

ber of meaningful EEG channels is a crucial task

for enhancing the wearability and portability of the

system, as well as to optimize the system perfor-

mance by eliminating noisy channels or reducing

over-fitting.25 Notably, for MI-based BCI, the con-

tribution of each channel to the recognition of a mo-

tor behavior is to be estimated. A method for se-

lecting and validating EEG channels is proposed by

exploiting the signal processing approach of the BCI

competition IV winners with respect to the dataset

2a.32 The proposed method adds a non-uniform em-

bedding strategy42 to evaluate the contribution of

the candidate channels to the final performance. This

proposal is a wrapper technique, because, in con-

trast with filtering approaches, the classifier is also

involved.25 The proposed method carries out a pro-

gressive selection of EEG channels in order to high-

light the trade-off between classification performance

and number of channels.
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Figure 1: Signal processing approach proposed by the winners of the BCI competition IV, also known as “filter bank
common spatial pattern”, or FBCSP.32

2.1. Channel selection

A sequential forward selection (SFS) strategy25,43

is adopted for an iterative selection of the best-

performing channels. In the first iteration, a sin-

gle channel is used for motor imagery classification.

All available channels are tried one-by-one, and the

channel leading to the best performance is selected.

Similarly, in the second iteration, two channels are

used. The first one (equal for all subjects) is the

best of the previous iteration, while the second one

is searched by scanning across the remaining chan-

nels and computing the performance of the result-

ing double-channel system. The next iterations fol-

low the same principle, until the maximum number

of available channels is reached. For each guess of

the channel set, the classification performance is as-

sessed by considering the mean classification accu-

racy µ and the standard deviation σ among all sub-

jects. The best performance is determined as the one

associated with the maximum value of µ−σ. The aim

is to select common channels for all subjects while

minimizing the performance variance among them.

The channel selection exploits a 6-fold cross-

validation. The folds contain the same amount of

data and they are balanced with respect to the MI

tasks. Hence, the available data are split ncv = 6

times into 5 folds for training and 1 fold for eval-

uation. For each split, a processing based on the

BCI competition IV winning approach32 is exploited.

Cross-validation accuracy is obtained for every sub-

ject by averaging the classification accuracies of the

different splits. Then, µ and σ are the mean and stan-

dard deviation of such accuracies. The chosen signal

processing approach is based on four main blocks,

constituting both the training phase and the evalua-

tion phase for each cross-validation split:

• a filter bank (FB),

• a common spatial pattern (CSP) filter,

• features selection with “mutual information-

based best individual feature” (MIBIF),

• and a classifier.

In the training phase, the CSP, the MIBIF, and the

classifier are trained with labeled EEG data. Then,

during the evaluation phase, further EEG trials are

classified by assigning a suitable label to each of

them. The classification accuracy is assessed by com-

paring the obtained labels with the actual ones.

The described algorithm is represented in Fig. 1.

Notably, for the channel selection, data from a first

measurement session are taken into account, while

data from a second session are exploited afterwards

for validation. In both cases, these data can be ar-

ranged in an array with dimensions nch × nsub ×
ntr × s, where nch is the number of channels, nsub
the number of subjects, ntr the number of trials, and

s the number of samples for each signal. The pseudo-

code of the selection procedure is detailed in Alg. 1.

Moreover, each block of the training and evaluation

phases is explained in detail in the next subsections.

For the purpose of illustrating the signal process-

ing approach, the arrays XT and XE are considered
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as the training and evaluation data of a single sub-

ject, respectively. Therefore, the dimension ‘nsub’ is

mainly ignored in presenting the blocks more easily.

Nevertheless, it is easy to extend the reasoning to

multiple subjects, as the proposed method requires.

Algorithm 1 Channel selection(X, y)

Require: selection data array X,

selection data labels y.

Ensure: sorted channels array CH,

(µ, σ) associated with channel.

1: CH,M,Σ = [“empty′′]

2: for iteration = 1 : nch do

3: for ch = 1 : nch ∧ ch /∈ CH do

4: CHtest = [CH, ch],

5: X ′ = X(CHtest)

6: for sub = 1 : nsub do

7: split X ′ in (XT ,XE) ncv times,

8: split y in (yT ,yE) accordingly.

9: for i = 1 : ncv do

block B1 - filter bank

10: Xf
T = ChebychevII(XT , bandf )

11: Xf
E = ChebychevII(XE , bandf )

block B2 - common spatial pattern

12: Wp = findMatrices(Xf
T , yT )

13: ξT = features(Xf
T ,Wp)

14: ξE = features(Xf
E ,Wp)

block B3 - features selection

15: Ip = findBestFeatures(ξT , yT )

16: ξrT = selectFeatures(ξT , Ip)

17: ξrE = selectFeatures(ξE , Ip)

block B4 - classifier

18: 1) Training with (ξrT , yT )→ clfp
19: 2) µ(i, sub, ch) = clfp(ξ

r
E , yE)

20: end for:cross-validation

21: µcv(sub, ch) =
∑

i µ(i,sub,ch)

ncv

22: end for:subjects

23: µ =
∑

sub µcv(sub,ch)

nsub

24: σ =
√∑

sub[µcv(sub,ch)−µ]
nsub−1

25: end for:test channel

26: select chopt associated with maximum µ− σ
27: CH = [CH, chopt]

28: M = [M,µopt], Σ = [Σ, σopt]

29: end for:iterations

2.1.1. Filter bank

Type–II Chebyshev filters are employed for the fil-

ter bank. Each filter has a 4 Hz-wide pass band,

and consecutive filters have a 2 Hz overlap, result-

ing in 17 bands from 4 Hz to 40 Hz (4-8, 6-10, 8-

12, . . . , 36-40). Later, the features selector chooses

the best bands subject-by-subject. This also means

that the band choice is age-related. However, an age-

dependent baseline could be also adopted in future,

and the 4-40 Hz range extended. The attenuation in

the stop band was set to -40 dB, while the order was

set to 10, so to achieve a -200 dB/decade slope in the

frequency response. By filtering each signal of XT , a

4D array is derived. This array is referred to as Xf
T ,

and its dimensions are nch×ntr×s×f , with f = 17

in the current implementation. The same filtering is

also applied to each signal of XE to obtain Xf
E .

2.1.2. Spatial filtering

The CSP spatial filtering is applied to filtered data by

means of projection matrices derived in the training

phase. It has been demonstrated that spatial filters

for multi-channel EEG effectively extract discrimi-

natory information from two populations of single-

trial EEGs.44 Hence, the CSP typically applies to

binary classification, but multi-class extensions are

possible.45 Among the various possibilities, the one-

versus-rest (OVR) approach is adopted here.32 This

means that, since the CSP can discriminate between

two classes, each class is considered against the re-

maining ones.

The computation of the projection matrices

from training data is conducted as follows. A projec-

tion matrix exists for each filter band and for each

class, i.e. W i
p associated with the i − th band and

class p. In the new space, the first m CSP compo-

nents have maximum variance associated with class

p and minimum variance associated with the remain-

ing classes. Simultaneously, the last m components

have minimum variance associated with class p and

maximum variance for the others. The calculation

steps are here reported for the sake of an easy re-

producibility of the algorithm, while the reader is

addressed to the literature for further details.32,45

To simplify the notation, the filter band is fixed,

but the following applies to all bands. Each filtered

trial of the training data belonging to class p, namely

χj,p = χij,p, is involved in the calculation of the class
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p covariance matrix

Kp =
1

ntr,p

ntr,p∑
j=1

χj,pχj,p
′

trace (χj,pχj,p′)
, (1)

where ntr,p is the number of training trials belong-

ing to class p, and the dimensions of the matrix χj,p
are nch×s. The composite covariance matrix is then

obtained by summing the covariance matrix of each

class, namely

K =
∑
p

Kp. (2)

The complete projection matrix W c
p is computed by

solving the eigenvalue decomposition problem

KpW
c
p = KW c

pΛp, (3)

where Λp is a diagonal matrix made of eigenvalues.

In the present implementation, the eigenvalues are

sorted in ascending order in Λp, and the eigenvec-

tors constituting W c
p are sorted accordingly. Finally,

the projection matrix W i
p is obtained by considering

the first m and the last m columns of the complete

projection matrix, where m = 2 is empirically set.32

Ultimately, f = 17 projection matrices are obtained

for each class p.

The matrices W i
p transform each nch × s sub-

array of XT or XE , corresponding to a single trial

and a single band, into a new space associated with

the class p. In applying the CSP, each signal is pro-

jected in all the possible class-related spaces. Since

the class of such signals is in principle unknown dur-

ing this step, the adopted notation will be χij , i.e. the

subscript p cannot be applied. Clearly, each signal

must be described with features corresponding to all

possible classes. The signal features are derived from

the covariance matrix

Cij,p = W i
p

′
χijχ

i
j

′
W i
p, (4)

where χij is the nch× s filtered signal to project, and

W ′ denotes the transposed matrix. It is to remark

that, while the computation of projection matrices

discussed above is only carried out during the train-

ing phase, the CSP projection is conducted both in

the training and evaluation phases. From the matrix

Cij,p the features are obtained as

f ij,p = log

[
diag(Cij,p)

trace(Cij,p)

]
. (5)

The f ij,p describe the j − th trial with respect to the

class p and the i− th band. Since the projection ma-

trix W i
p has dimensions nch×2m, the covariance ma-

trix Cij,p is a square matrix with dimensions 2m×2m

and the features for each trial are 2m per band. By

concatenating the features of all the bands, each trial

j is described with 2mf features with respect to the

class p. By bringing together all the trails, two fea-

tures matrices can be created per each class, ξT,p and

ξE,p. They have dimensions ntr × 2mf , and they are

associated with training data and evaluation data,

respectively. Note that the computation explained in

this subsection in the general multi-class case can be

obviously applied to binary classification problems.

2.1.3. Features selection

At this step, the features matrix ξT,p (or the ξE,p)

is processed. As abovementioned, its dimensions are

ntr × 2mf , and the selection reduces the columns

to Ip features. Hence, the subset of features will be

different for each class p. In particular, for this se-

lection, the mutual information (MIBIF) between a

feature and the class p is calculated for each feature,

and the features with the highest mutual information

are selected. The features matrices associated with

the labeled training data, i.e. ξT,p, are employed to

train the selection process, while the same features

are then selected both from ξT,p and ξE,p.
32

The number of selected features depends on the

fact that the CSP features are paired. Therefore, if

one element of the pair is selected, the other has to be

selected too. If the two features of a pair are both se-

lected as features with high mutual information, the

total number of features will then be smaller. Thus,

the outputs of this third step are reduced feature ma-

trices ξrT,p (or ξrE,p), whose dimensions are ntr × Ip,
with Ip ranging from k to 2k. In the proposed imple-

mentation, k = 5 was empirically chosen.

2.1.4. Classification

The proposed channel selection method consists of

determining, among the available channels describ-

ing the observed processes, the most significant in the

sense of predictive information. In doing that, the it-

erative procedure is defined for selecting a minimum

number of channels that can effectively classify the

target behaviors. A new candidate channel is added

to the set if the related classification performance is



October 31, 2020 11:3 output

6 P. Arpaia, F. Donnarumma, A. Esposito, and M. Parvis

the best among the other possible channel combina-

tions. Thus, in the final processing step, the features

obtained from the MIBIF must be classified.

In choosing the most suitable classifier, state-

of-the-art solutions were compared, i.e. a k nearest

neighbors (kNN) classifier,46 a Näıve Bayesian

Parzen Window (NBPW),32 and a support vector

machine (SVM)47. The best classifier was then cho-

sen according to experimental results. This are ba-

sically binary classifiers, but an OVR approach was

again considered for the multi-class extension: each

class is discriminated against the remaining ones,

and then the most probable class is assigned to each

trial thanks to the score associated with each binary

classification. The classifier is trained with the fea-

tures matrix ξrT,p and its associated labels. Then, the

features arrays associated with each unlabeled trial

are extracted from ξrE,p for classification, and the de-

rived label are compared with the real ones to calcu-

late the classification accuracy.

The channel selection procedure is performed by

exploiting the classification step. In particular, the

resulting accuracies are averaged among the different

splits of the cross-validation. Finally, in each itera-

tion of the channel selection, the mean µ and stan-

dard deviation σ of the accuracies, calculated among

the subjects, are considered in choosing the channel

with optimal µ− σ.

2.2. Channel validation

The result of channel selection is a sequence of chan-

nels sorted according to their predictive information.

In designing a BCI system, these results are useful

in choosing a combination of nsel = 1, ..., nch chan-

nels. Given the number of channels, the proposed

method also points out an expected classification

performance in terms of (µ, σ). Next, a subset of the

data from the first measurement session can be ex-

tracted by considering the nsel identified channels.

The BCI design is finalised by employing these data

subset for the CSP, MIBIF, and classifier training.

The final system is thus defined by the CSP projec-

tion matrices Wp, the features Ip to select accord-

ing to the MIBIF, the trained classifier clfp, and, of

course, the EEG channels CH(1 : nsel).

A testing phase can be carried out in order to

validate such a design. This procedure is described in

Alg. 2. In this case, an array Xv containing validation

data is taken into account for the evaluation phase.

The data in Xv must be independent from the data

from the first measurement session contained in the

array X. Thus, the former is usually associated with

a further measurement session. In general, the num-

ber of trials and even the number of samples could

be different between Xv and X, while the available

EEG channels must be the same.

Algorithm 2 Validation(Xv, yv, CH, Wp, Ip, clfp)

Require: validation data array Xv,

validation data labels yv,

nsel channels selected from CH.

CSP projection matrices Wp,

features to select Ip,

trained classifiers clfp for p = 1, ..., classes,

Ensure: system performance: (µ, σ).

1: X ′v = Xv(CH(1 : nsel))

block B1 - filter bank

2: Xf
v = ChebychevII(X ′v, bandf )

block B2 - common spatial pattern

3: ξv = features(Xf
v ,Wp)

block B3 - features selection

4: ξrv = selectFeatures(ξv, Ip)

block B4 - classification

5: µ(i, sub, ch) = clfp(ξ
r
v , yv)

It is worth noting that the system performance

is assessed by considering the mean performance

among subjects, but the algorithm is trained sub-

ject by subject. Therefore, the procedure of Alg. 2

applies to each subject, while the mean classification

accuracy among subjects must be ultimately consid-

ered for validation since the claim is to select subject-

independent channels.

3. Results

In this section, the results achieved in applying the

proposed method are reported. The analyses were

conducted on signals extracted from the dataset 2a of

BCI competition IV. This is briefly described in the

next subsection, while further details can be found

in the bibliography.31 The scripts for data processing

were implemented in MATLAB R©.

3.1. Dataset

The dataset 2a of BCI competition IV contains data

related to 9 subjects. For every subject, signals were
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recorded in 2 sessions held on different days, referred

to as “session T” and “session E”. Each session con-

sisted of up to 3 runs related to eye movements, and

6 runs related to motor imagery separated by short

breaks. The runs related to eye movements are ig-

nored in the present work. The remaining 6 runs

consist of 48 trials each. The subjects could per-

form four motor imagery tasks, namely imagining

the movement of left hand, right hand, both feet,

or tongue. A cue-based paradigm presented the se-

quence of tasks to perform in random order but bal-

ancing the tasks per run. Each trial contains data

from 3 EOG channels and 22 EEG channels. Only the

EEG channels were considered, and the 3 s time win-

dows related to the motor imagery were extracted.

These signals were recorded with Ag/AgCl wet elec-

trodes placed according to the 10-20 system37 to

cover the motor cortex. As shown in Fig. 2, refer-

ence and ground electrodes are placed on the left and

right ear lobes, respectively. The sampling rate was

250 Sa/s, a bandpass-filter was applied with band

0.5 Hz - 100 Hz, and a 50 Hz notch filter was also

enabled to suppress line noise. Artefacts were identi-

fied by visual inspection and trials containing them

are marked within the dataset. However, they were

not removed from the dataset.

GNDRef

Cz

CP2CP3 CP1 CPz

Pz

CP4

P1 P2

Fz

POz

C4C3

FC3 FC1 FCz FC2 FC4

C5 C6C1 C2

Figure 2: EEG electrodes employed during the data ac-
quisition, placed according to the 10-20 standard.31,37

3.2. Optimal Classifier

Preliminary tests were performed to choose the clas-

sifier to employ in Alg. 1 and Alg. 2. According to

previous section, the investigated classifiers where a

kNN, an NBPW, and an SVM, as well as their multi-

class extensions (OVR approach). Tab. 1 shows the

results in terms of mean accuracy and standard de-

viation among the 9 subjects. For each subject, and

for each classifier, the accuracy was calculated with

a 6-fold cross-validation on data from the session T,

thus choosing the optimal classifier regardless of data

from session E used afterward for validation. All the

22 EEG channels were taken into account for this

step. Results show comparable performances on the

classifiers. Nevertheless, it is possible to argue that

NBPW is to prefer. To this aim, paired t-tests48 were

performed to compare first NBPW with kNN, and

then NBPW with SVM. Tests were conducted for

each row of Tab. 1 with the null hypothesis that

µN ≤ µK/S , (6)

where µN and µK/S are the mean accuracies for the

NBPW and kNN/SVM, respectively. Rejecting the

null hypothesis would suggest that the NBPW is bet-

ter than the competing classifier. The level of signifi-

cance for this one-sided test was fixed at α = 5%.

The null hypothesis was rejected only in a single

case (’left hand vs tongue’) in comparing the NBPW

with the kNN, thus suggesting that the NBPW is

slightly better (p-value = 0.0145). Instead, no evi-

dence showed a difference between the NBPW and

the SVM. However, it is worth mentioning that, in

training the classifiers, hyperparameters tuning was

carried out for SVM and kNN, while this was not

needed for NBPW. This suggests that NBPW for

the implemented processing.

ACCURACY (%)

CLASSES / CLASSIFIERS kNN NBPW SVM

left hand vs right hand 73 ± 19 74 ± 20 74 ± 20

left hand vs feet 82 ± 13 81 ± 13 82 ± 12

left hand vs tongue 82 ± 13 82 ± 13 81 ± 13

right hand vs feet 81 ± 15 81 ± 15 81 ± 15

right hand vs tongue 83 ± 13 84 ± 13 83 ± 14

feet vs tongue 75 ± 14 75 ± 13 76 ± 13

four classes 63 ± 20 63 ± 19 63 ± 19

Table 1: Comparison between different classifiers, car-
ried out by taking into account all EEG channels. Mean
and standard deviation of the cross-validation accuracy
are considered among the 9 subjects.

3.3. Classification accuracy

The iterative selection method was implemented

both for the discrimination among the six possible

pairs of classes, and for the discrimination among

the four classes. Channel selection was conducted by

considering a cross-validation on data from session T.

The results in terms of mean cross-validation accu-

racy among the 9 subjects are reported with a blue

line in Fig. 3 and Fig. 4, for the binary cases and

the multi-class case respectively. The x-axis reports
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(a) left hand vs right hand
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(b) left hand vs feet
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(c) left hand vs tongue
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(d) right hand vs feet
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(e) right hand vs tongue
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(f) feet vs tongue

Figure 3: Mean classification accuracy and standard deviation of the mean in cross-validation for progressively selected
channels and for each pair of classes.

the progressively selected channels, while the y-axis

reports the classification accuracy µ in percentage.

Actually, aiming at comparing Fig. 3 and Fig. 4 di-

rectly, the y-axes should report normalized perfor-

mance metrics such as the kappa coefficient.49 How-

ever, classification accuracies are commonly reported

in literature. Therefore, the values reported on the

y-axes are such that there is a one-by-one correspon-

dence between Fig. 3(a)-(f) and Fig. 4, i.e. they cor-

respond to the same kappa coefficients. These plots

show the trade-off between the number of selected

channels and the classification accuracy. Depending

on the considered tasks, an acceptable performance

can be also achieved with only 4 channels. This is es-

pecially true for binary classification problems, while

more channels are required in the four-task classifi-

cation. The area defined by the standard deviation

of the mean accuracy is also reported in light blue.

This is calculated as the standard deviation among

subjects divided by the square root of the number

of subjects, i.e. σµ = σ/
√
nsub. It should also be no-

ticed that maximum accuracy is sometimes reached

with less than 22 channels. In the present case, those

values are merely a random occurrence because those

values are not significantly different from the accu-

racy at 22 (from the statistical point of view).

In a further step, the sequences of selected chan-

nels were validated by employing the independent

data from the session E. The mean accuracy among

the 9 subjects and its standard deviation are plot-

ted in Fig. 5 and Fig. 6. For each plot, the channels

on the x-axis correspond to the respective sequence

found during the selection step, while the accuracy

values on the y-axes were chosen as explained be-

fore. In detail, the validation starts by considering

the first channel of the proper sequence, and then

progressively the other channels are added as they

were found within the selection procedure.
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Figure 4: Mean classification accuracy and standard de-
viation of the mean in cross-validation for progressively
selected channels in the multi-class problem.

Validation results were analyzed with paired t-

tests48 in order to compare the accuracy at 22 chan-
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(a) left hand vs right hand
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(b) left hand vs feet
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(c) left hand vs tongue
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(d) right hand vs feet
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(e) right hand vs tongue
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(f) feet vs tongue

Figure 5: Mean classification accuracy and standard deviation of the mean obtained in validating the respective channels
sequence.

nels with the one at a reduced number of channels.

The null hypothesis was

µ22 ≤ µred, (7)

where µ22 and µred are the mean accuracies for the 22

channels and a reduced set of channels, respectively.

Rejecting the null hypothesis would suggest that the

classification performance at 22 channels is signifi-

cantly better. For this test, the level of significance

was set to α = 5%. Nevertheless, failing to reject

would not mean that the null hypothesis is neces-

sarily true. Therefore, the probability β of a false

positive was also taken into account. In particular,

β ≤ 5% was considered as a reasonable risk of accept-

ing a false positive. In accordance with the figures,

these tests pointed out that performances are signifi-

cantly worse when 3-5 channels are considered, while

they become acceptable with at least 6-13 channels

(depending on the considered tasks). In detail, the

acceptable minimum number of channels is reported

in Fig. 5 and Fig. 6 with a red circle. To sum up these

results, the classification performances achieved with

the reduced number of channels are also reported in

Tab. 2. Notably, this table reports the standard de-

viation σ, instead of the standard deviation of the

mean σ/
√
nsub, since this is common in literature.

Finally, to better understand where the most

predictive information is located on the scalp, Fig. 7

and Fig. 8 show contour plots in which the i-th chan-

nel is weighted according to

w(i) = 1− i− 1

nch
, (8)

where nch = 22 in the present case. Thus, w(i) is

a weight between 1 and 1/nch assigned according to

the selection order of channels per each sequence.
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Figure 6: Mean classification accuracy and standard de-
viation of the mean obtained in validating the channels
sequence.

Eq. 8 assigns a decreasing importance to the progres-

sively selected channels and it helps the discussion,

reported in the following section, by highlighting the

most informative brain areas.
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(a) left hand vs right hand
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(b) left hand vs feet
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(c) left hand vs tongue
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(d) right hand vs feet
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(e) right hand vs tongue
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(f) feet vs tongue

Fz

FC3 FC1 FCz FC2 FC4

C5 C3 C1 Cz C2 C4 C6

CP3 CP1 CPz CP2 CP4

P1 Pz P2

POz

0.0

0.2

0.4

0.6

0.8

1.0

c
h

a
n

n
e

l 
w

e
ig

h
t

Figure 7: Location of the most predictive information on the scalp for each pair of classes

ACCURACY (%)

TASKS / CLASSIFIERS reduced ch. 22 channels

left hand vs right hand (6) 77 ± 12 79 ± 15

left hand vs feet (6) 80 ± 15 83 ± 15

left hand vs tongue (6) 81 ± 12 84 ± 12

right hand vs feet (10) 81 ± 12 84 ± 15

right hand vs tongue (13) 83 ± 12 84 ± 12

feet vs tongue (13) 77 ± 9 78 ± 12

four classes (10) 62 ± 12 64 ± 12

Table 2: Mean and standard deviation of the classifi-
cation accuracy obtained during validation, for both the
minimum number of channels (reported for each row) and
22 channels.

4. Discussion

The main idea of the work is to reduce the number

of EEG electrodes in designing a wearable BCI de-

vice for daily-life applications. The proposed method

allows to select a reduced set of EEG channels while

keeping good performance. The classification accura-

cies decrease of few percentage points with respect to

22 channels when more than 3-5 channels are selected

(depending on the considered tasks), but statistical

tests demonstrated that the performance differences

were not significant. In particular, the classification

accuracy is kept around 77% - 83% for 2 tasks, and

it is kept around 62% for 4 tasks classification. In

some cases, the channel reduction also leads to a

slight improvement (decrease) of the standard devi-

ation. Further validation tests were also carried out

by inverting the data from session T and session E

of the benchmark dataset, and then by considering

data from BCI competition III dataset 3a.50 Statis-

tical tests confirmed that classification performance

was significantly different when the channels set is re-

duced down to the first 3-5, while for more channels

the performance was acceptable. Nonetheless, some

limitations emerged.
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Figure 8: Location of the most predictive information on
the scalp for the multi-class problem

4.1. Results significance

Firstly, if data from session E is employed for

training, data from session T for evaluation, and the

same channel sequence of Fig. 3 and Fig. 4 are re-

spectively used for each task combination, there is
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an accuracy diminishing of 1%-5%. This diminish-

ing holds for both the reduced and non-reduced sets.

Therefore, the channel selection is still effective be-

cause the performances for reduced and non-reduced

sets result not statistically different. Meanwhile, the

processing approach should be improved with respect

to the training data sensitivity. In a second step,

data from BCI competition III was exploited, with

particular reference to the dataset 3a. This dataset

contains data from 3 subjects, and, by adopting the

FBCSP processing approach, the classification accu-

racy for the maximum number of channels (60) re-

sulted above 80% for 2 tasks, and above 70% for 4

tasks. In aiming at using the reduced sets of chan-

nels as before, it is to point out that the signals in the

dataset 3a were not acquired at the exact same po-

sitions as dataset 2a. Hence, the channels closest to

the respective standard positions adopted in the BCI

competition IV were selected. The accuracies for the

respective reduced sets of channels resulted between

78% and 92% for in case of 2 tasks, and equal to

72% with 10 channels employed in the 4 tasks case.

It is to notice that the four mental tasks involved in

the dataset 3a are quite compatible with the ones of

the benchmark dataset, but a single foot is consid-

ered instead of both feet. In spite of this, satisfying

performance was achieved. Also note that the con-

sidered mental tasks are intuitively associated with

commands such as ‘left’, ‘right’, ‘down’, and ‘up’.

The discussed results are in general comparable

or improve the findings in the recent literature. Ac-

tually, only a single work recently validated a chan-

nel reduction procedure on the dataset 2a of BCI

competition IV.51 In that work, the authors consid-

ered one binary case, namely right hand versus left

hand, and they obtained a mean classification accu-

racy equal to 76%, among 8 subjects out of 9, by

selecting different channels for each subject (6−15

channels). In another work on the same dataset, all

the 4 tasks are considered, but in this case a chan-

nel selection procedure was not proposed. Instead,

9 channels were manually selected, and the resulting

accuracy equaled 50%.52 Several other works propose

channel selection or reduction procedures working on

different datasets. The method suggests by Parashiva

et al.53 in discriminating between left and right hand

reduces the channels number from 31 to 13 obtaining

the 74% of accuracy with a subject-dependent selec-

tion, while the achieved accuracy is 66% when chan-

nels are reduced to 11 with a subject-independent

approach. Feng et al.54 found the minimum number

of channels depending on the considered frequency

band. Only two classes were discriminated, and two

different datasets were taken into account. For the

first dataset, the channels were reduced from 118 to

30, and the resulting accuracy is 82%. Instead, for the

second dataset, the channels are reduced from 59 to

24 and the resulting accuracy is 77%. Although they

start from a number of channels that is greater than

the one considered in the present manuscript, the re-

duced set basically contains channels located in the

sensorimotor areas of the scalp. Therefore, the find-

ings are somehow compatible with the results pre-

sented above.

4.2. Possible improvements

Considering the widely spread datasets from

BCI competitions is indeed useful in comparing the

proposed method with other works in literature.

However, the classification accuracies for the gen-

eral population might be lower because the best

subjects could be selected for a competition. No-

tably, it was shown that about 7% of subjects from

general population give lower performance in two-

class motor imagery.55 This consideration supports

the choice of the dataset 2a of BCI competition

IV as benchmark, because a relatively large num-

ber of subjects was involved. On the other side, the

results indicate that improvements are still needed

for practical applications. The first limiting factors

are indeed the poor signal-to-noise ratio associated

with non-invasive techniques like EEG. Interestingly,

the present FBCSP approach proved quite robust to

artifacts, because excluding marked artefacts from

the dataset was not enhancing performance. Ulti-

mately, results suggest that future works should fo-

cus on EEG non-stationary. This is particularly evi-

dent from validation results, where the employment

of data from a different session introduced perfor-

mance fluctuations. Nonetheless, in the present case,

figures suggest that there is no significant difference.

For instance, in Fig. 6, the accuracy diminishes when

the second channel is added to the first, but a t-test

can demonstrate that this difference is not statisti-

cally significant.

Indeed, the adopted architecture is modular and

can be furtherly refined and explored, especially in
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dealing with EEG non-stationarity. For instance, the

adoption of a convolutional neural network for ex-

tracting and classifying CSP features was recently

proposed to capture temporal changes in the EEG

signals.56 Such a framework seems promising to mit-

igate the effects of inter-subjects and inter-sessions

variability. One possible improvement of the pro-

posed method, which can be addressed in future

works, is an efficient treatment of online signals when

dealing with a very large number of starting avail-

able channels. In this case, the framework could be

integrated with a preliminary reduction analysis step

based on techniques of sparse dictionary learning,

e.g. sPCA, sparse coding, and related approaches

(see57,58). An efficiency trade-off could guide the tun-

ing of such a pre-analysis step. Finally, the itera-

tive channel selection phase could be also enhanced.

In detail, though the proposed method selects the

best possible channel for each iteration, figures show

that there is an accuracy diminishing for some selec-

tion steps, while this increases again if one or more

other channels are added. This evidence suggests

that channels could be correlated, and correlation-

based selection could improve the results.59 A rea-

sonable target will be to overcome 90% accuracy for

two-tasks discrimination, and 85% for four-tasks dis-

crimination (both would correspond to a 0.8 kappa

coefficient). In the latter case, further studies will

probably be needed also for the multi-class process-

ing approach.

4.3. Channels significance

Literature reports that the left hand gener-

ally shows bilateral activation, while the right hand

mainly shows contralateral activation schemes, i.e.

the left hemisphere of motor area is typically in-

volved. Then, the feet-related area is located inside

the interhemispheric fissure of the sensorimotor cor-

tex, and feet show a strong bilateral activation when

they are considered together.60,61 Finally, patterns

and motor area of the tongue are concentrated in

the bilateral premotor cortex that covers the cen-

tral sulcus and in the right putamen. Apparently,

this should limit the capability of recording tongue-

related activity with surface electrodes. However, it

was demonstrated62 that tongue movement imagery,

as well as foot-related imagery, enhances the rhythms

in the neighboring cortical areas, and by consequence

this allows the possibility to discriminate the tongue

imagery itself. In this regard, Fig. 7 tries to highlight

the areas of the scalp were the predictive information

is concentrated per each binary classification prob-

lem, while Fig. 8 highlights the areas for the four

classes problem. Indeed, there is a correspondence

between these brain areas and the literature recalled

above. Notably, the importance of the median line

activities in Fig. 7 is minimized when feet and/or

tongue imagery is involved, in accordance with the

considerations about the specific task-related activ-

ity. This supports the idea that the channels iden-

tified for a reduced set have a meaningful neurolog-

ical counterpart. It is also interesting to note that,

by considering the weights associated with the chan-

nels per each classes pair, the electrodes that most

likely covered the field potentials are ”CP3”, ”C3”,

”CPz”, ”CP2”, ”C1”, ”Cz”, ”CP4”, and ”C4”. They

are directly related to the somatosensory and motor

areas,63 and most of them are also among the first

channels of the multi-class sequence.
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

kappa coefficient reduced channels

Figure 9: Comparison between the performance achieved
with a reduced number of EEG channels and thirty tests
with random channels.

A final test was carried out to prove the robust-

ness of the presented results. In this test, random

channel sequences were selected for thirty times. The

number of random channels goes from 4 to 13, i.e. a

number of channels for which statistical tests showed

no evidence of significant difference with the 22 chan-

nels case. The aim was to show that it is not enough

to select any set with a reduced number of channels,

but that the proposed method allows to identify an

optimal set. The proof of that is shown in the box

plot of Fig. 9, where each distribution of the kappa
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coefficients of the “random channels tests” are plot-

ted against the ones corresponding to the reduced

channel set reported in Tab. 2. Kappa coefficients

were used in spite of accuracies in order to compare

the 2 task cases with the 4 task case. It can be seen

that the values found with the proposed procedure

(black diamonds in Fig. 9) are always in the up-

per part of the respective distribution. Interestingly,

the proposed channel selection finds an optimal set

without testing all possible combinations of channels.

Therefore, such a procedure could be also exploited

in online channel selection due to its computational

efficiency.

5. Conclusions

This paper proposes and validates a method aimed

at EEG channel selection applied to the analysis

of motor imagery signals. The selected channels are

subject-independent because they are chosen accord-

ing to the performance of all subjects. The effective-

ness of the proposal is validated on a benchmark

dataset that is largely employed in recent works. It

has been shown that it is possible to reduce the num-

ber of EEG channels down to 6 (depending on the

considered task) while keeping accuracy around 77%

- 83% in binary classification, and above 60% for the

four-classes case with a 10 channels sequence. The re-

sults have been extensively discussed, and they pro-

vide a valuable support to the design of wearable

BCI systems for applications in daily life.

This work also addresses some future develop-

ments. Indeed, the main principles of this work can

be extended to other datasets and BCI paradigms

different from motor imagery. Then, further analyses

could be conducted and the present results should be

compared to a subject-dependent selection, in aiming

to analyse the performance difference. Finally, result-

ing accuracies could be enhanced by better managing

EEG non-stationarity, and by attempting different

multi-class approaches. These developments are fore-

seen for future studies in designing wearable MI-BCI

systems, and the proposed channel selection could be

also exploitable in online channel selection due to its

computational efficiency.
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37. G. H. Klem, H. O. Lüders, H. Jasper, C. Elger, et al.,
“The ten-twenty electrode system of the Interna-
tional Federation,” Electroencephalogr Clin Neuro-
physiol, vol. 52, no. 3, pp. 3–6, 1999.

38. Y. Yang, S. Chevallier, J. Wiart, and I. Bloch,
“Subject-specific time-frequency selection for multi-
class motor imagery-based BCIs using few Laplacian
EEG channels,” Biomedical Signal Processing and
Control, vol. 38, pp. 302–311, 2017.

39. Y. Yang, I. Bloch, S. Chevallier, and J. Wiart,
“Subject-specific channel selection using time in-
formation for motor imagery brain–computer inter-
faces,” Cognitive Computation, vol. 8, no. 3, pp. 505–
518, 2016.

40. S. Ge, R. Wang, and D. Yu, “Classification of
four-class motor imagery employing single-channel
electroencephalography,” PloS one, vol. 9, no. 6,
p. e98019, 2014.

41. L. Angrisani, P. Arpaia, F. Donnarumma, A. Es-
posito, N. Moccaldi, and M. Parvis, “Metrological
performance of a single-channel Brain-Computer In-
terface based on Motor Imagery,” in 2019 IEEE In-
ternational Instrumentation and Measurement Tech-
nology Conference (I2MTC), pp. 1–5, IEEE, 2019.

42. L. Faes, G. Nollo, and A. Porta, “Information-based
detection of nonlinear Granger causality in multi-
variate processes via a nonuniform embedding tech-
nique,” Physical Review E, vol. 83, no. 5, p. 051112,
2011.

43. A. W. Whitney, “A direct method of nonparamet-
ric measurement selection,” IEEE Transactions on
Computers, vol. 100, no. 9, pp. 1100–1103, 1971.

44. J. Müller-Gerking, G. Pfurtscheller, and H. Flyvb-
jerg, “Designing optimal spatial filters for single-trial
EEG classification in a movement task,” Clinical
neurophysiology, vol. 110, no. 5, pp. 787–798, 1999.

45. D. Thiyam and E. Rajkumar, “Common Spatial Pat-
tern Algorithm Based Signal Processing Techniques
for Classification of Motor Imagery Movements: A
Mini Review,” IJCTA, vol. 9, no. 36, pp. 53–65, 2016.

46. B. V. Dasarathy, “Nearest neighbor (NN) norms: NN
pattern classification techniques,” IEEE Computer
Society Tutorial, 1991.

47. C.-W. Hsu, C.-C. Chang, C.-J. Lin, et al., “A prac-
tical guide to support vector classification,” 2003.

48. D. C. Montgomery and G. C. Runger, Applied statis-
tics and probability for engineers. John Wiley &
Sons, 2010.

49. A. Schlogl, J. Kronegg, J. Huggins, and S. Mason,
“19 evaluation criteria for bci research,” Toward
brain-computer interfacing, 2007.

50. “BCI competition III, data sets IIIa: motor imagery,
multi-class,” 2006.

51. A. Ghaemi, E. Rashedi, A. M. Pourrahimi, M. Ka-
mandar, and F. Rahdari, “Automatic channel selec-
tion in EEG signals for classification of left or right
hand movement in Brain Computer Interfaces us-
ing improved binary gravitation search algorithm,”
Biomedical Signal Processing and Control, vol. 33,
pp. 109–118, 2017.

52. S. Saha, K. I. U. Ahmed, R. Mostafa, L. Hadjileon-
tiadis, and A. Khandoker, “Evidence of variabili-
ties in EEG dynamics during motor imagery-based
multiclass brain–computer interface,” IEEE Trans-
actions on Neural Systems and Rehabilitation Engi-
neering, vol. 26, no. 2, pp. 371–382, 2017.

53. P. K. Parashiva and A. Vinod, “A New Channel Se-
lection Method using Autoencoder for Motor Im-
agery based Brain Computer Interface,” in 2019
IEEE International Conference on Systems, Man
and Cybernetics (SMC), pp. 3641–3646, IEEE, 2019.

54. J. K. Feng, J. Jin, I. Daly, J. Zhou, Y. Niu, X. Wang,
and A. Cichocki, “An optimized channel selection
method based on multifrequency CSP-rank for mo-
tor imagery-based BCI system,” Computational In-
telligence and Neuroscience, vol. 2019, 2019.

55. C. Guger, G. Edlinger, W. Harkam, I. Niedermayer,
and G. Pfurtscheller, “How many people are able
to operate an EEG-based brain-computer interface
(BCI)?,” IEEE transactions on neural systems and
rehabilitation engineering, vol. 11, no. 2, pp. 145–147,
2003.

56. X. Zhu, P. Li, C. Li, D. Yao, R. Zhang, and P. Xu,
“Separated channel convolutional neural network to
realize the training free motor imagery BCI sys-
tems,” Biomedical Signal Processing and Control,
vol. 49, pp. 396–403, 2019.

57. I. Jolliffe, Principal component analysis. Springer,
2011.

58. R. Prevete, F. Donnarumma, A. D’Avella, and
G. Pezzulo, “Evidence for sparse synergies in grasp-
ing actions,” Scientific reports, vol. 8, no. 1, pp. 1–16,
2018.

59. J. Jin, Y. Miao, I. Daly, C. Zuo, D. Hu, and A. Ci-
chocki, “Correlation-based channel selection and reg-
ularized feature optimization for MI-based BCI,”
Neural Networks, vol. 118, pp. 262–270, 2019.

60. H. H. Ehrsson, S. Geyer, and E. Naito, “Imagery of
voluntary movement of fingers, toes, and tongue ac-
tivates corresponding body-part-specific motor rep-
resentations,” Journal of neurophysiology, vol. 90,
no. 5, pp. 3304–3316, 2003.

61. A. M. Batula, J. A. Mark, Y. E. Kim, and H. Ayaz,



October 31, 2020 11:3 output

16 P. Arpaia, F. Donnarumma, A. Esposito, and M. Parvis

“Comparison of brain activation during motor im-
agery and motor movement using fNIRS,” Computa-
tional intelligence and neuroscience, vol. 2017, 2017.

62. G. Pfurtscheller, C. Brunner, A. Schlögl, and F. L.
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