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Ef cient feature selection from high-dimensional datasets is a very important challenge in many data-driven
elds of science and engineering. We introduce a statistical mechanics inspired strategy that addresses the
problem of sparse feature selection in the context of binary classi cation by leveraging a computational scheme
known as expectation propagation (EP). The algorithm is used in order to train a continuous-weights perceptron
learning a classi cation rule from a set of (possibly partly mislabeled) examples provided by a teacher perceptron
with diluted continuous weights. We test the method in the Bayes optimal setting under a variety of conditions
and compare it to other state-of-the-art algorithms based on message passing and on expectation maximization
approximate inference schemes. Overall, our simulations show that EP is a robust and competitive algorithm
in terms of variable selection properties, estimation accuracy, and computational complexity, especially when
the student perceptron is trained from correlated patterns that prevent other iterative methods from converging.
Furthermore, our numerical tests demonstrate that the algorithm is capable of learning online the unknown
values of prior parameters, such as the dilution level of the weights of the teacher perceptron and the fraction of
mislabeled examples, quite accurately. This is achieved by means of a simple maximum likelihood strategy that
consists in minimizing the free energy associated with the EP algorithm.

DOI: 10.1103/PhysRevE.103.043301

I. INTRODUCTION culties in this task: (i) typically genes act in a combinatorial

The broblem of extracting sparse information from hi hand nonlinear manner and (ii) individual samples turn out to
P g sp MNpe statistically very correlated.

dimensional data is among the most interesting challenges Historically, the problem of sparse feature selection in

In theoretical computer science with many appllcatlons_rangblassi cation tasks has been divided into two complementary
ing from computational biology to combinatorial chemistry,

neuroscience, and natural language procesdigily s a spe- computational methodg]: (i) wrappersthat exploit the learn-
! guage p P ing mechanism to produce a prediction value related score

cic example, next generation sequencing and', in general, th‘faor the sought signature and (iBlterswhere the signature
ongoing technological revolution related to hlgh'throum]pmextraction is a data preprocessing, typically unrelated to the

technologies in biology pose very stringent requirements t%lassi cation task.

the algorithmic techniques that are supposed to analyze thée From the point of view of information theory, the problem

data} that are produced and made pubhcly available througgf sparse feature selection in classi cation is strictly related
easily accessible databases. Just to give some orders

. . ; : I fcompressive sensing (CS), one of the most studied methods
magnitude, a typical genetic screening for cancer-relate D

. 4 r data acquisition, with interesting applications in several

\F/)vaetgoski)tgI%ﬁ:{r?\a/g:z:svar:zt;;jrrgmemeo?zrgs ?tei?o”;igtiléi%ther research elds45]. CS was originally proposed as a
o y Of GENeLC ow low-rate signal acquisition technique for compressible

sequence variation over23 000 genes measured on patient _. Is 16 dis f lated foll - giveNl < N
cohorts that typically count around 1000 individuals dividedSlgnas £.6,7] and is ormu ated as follows: givel < N,
into cases and controls (lung and colorectal cancer are avectorz RY, and a linear operator of maximal radk
exception, with 10 000 individ%als screened in each dataset) V<" often referred to as thmeasuremerdr sensingmatrix,
Herepa t)}pical task is to determine the genotypic signaturéhe CS problem consists in determining the unknown sparse
, N O . L
related to the disease that typically involves10?) genes vectorw R" that is linked to its compressed projectian

from 23 000 measured probes. Such problem can be sim means of the linear transformatiar Xw, whereX and
X P " probiem 'p are assumed to be known. Although research in CS has still
formulated in terms of the following classi cation problem:

: o ; . ..~ many open challenges to face, very stringent results are known
8;;3; th?] da(:l\gi%pjzuxléh?n\?;\r;ier:; :Iger;fztl'f)_nzo(gsﬂﬂy'qg; about the g_eneral condition; for the exis.tence and uniqueness
smallést—subset of genes to assess the probability for thof the squpon.Among the different algonthms thathave been
individual to develop the disease. There are two main dif - roposed n order to reconstruct ef C|ent_ly _the signal, many

' use techniques borrowed from the statistical mechanics of
disordered system$+11].
More recently, the so-called 1-bit CS (1BCS) has been

*Currently at Amazon Alexa, Torino. proposed as a strategy to deal with the problem of inferring

TCorresponding author: mirko.pieropan@polito.it a sparse signal knowing only the sign of the data of the linear
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measurements: = sgnXw), where sgrg) is a vector with iterative scheme to approximate intractable distributions that
elements/ |z| for z = 0. Besides being of interest for signal was introduced rst in the eld of statistical physic86,37]
transmission related problems where discarding the amplitudand shortly after in the eld of theoretical computer science
of the signal can signi cantly reduce the amount of informa- [38]. In analogy to what was presented B[ in the context
tion to be stored or relayed 2,13], this problem can also be of sampling the space of high dimensional polytopes, we
interpreted in terms of sparse boolean classi cation tasks. Thehow that, by approximating the computationally intractable
most widely adopted inference scheme in CS is the so-callegosterior distributiod?(w| , X) through a tractable multivari-
lasso regression dri;-norm minimization L4], as originally  ate probability densitfQ(w| , X), we are able to solve both
proposed in the context of 1BCS ifd]. However, it is clear  ef ciently and accurately the 1BCS problem. We compare our
that the most ef cient solution from the point of view of results to those obtained from the AMP and VAMP based
optimal dilution of the problem should be achieved by schemes proposed i@7] and [30], respectively, and to those
pseudonorm, where nonzero parameters are indeed penalizgiden by the EM based approach &5. We provide the
independently of their nonzero value. Unfortunately, dealingfactor graphs associated with these algorithms in EigVe
with the nonconvex, regularization is not so simple as it show through simulations that one of the main strengths of the
typically leads to phase transitions that make the probleniEP-based approach is that it is effective on a wider family of
computationally intractable. A practical solution to the prob-measurement matrices with respect to other relatively similar
lem is to restrict the space of parameters to a discrete sedJgorithms such as VAMP and AMP.
where effectively thé pseudonorm is equivalent to the more  The paper has the following structure: after this introduc-
amenabld_; case [5-19]. As far as continuous parameters tion, in Sec.ll we de ne the problem, and introduce the EP
are concerned, different strategies have been proposed. Firatgorithm. In Seclll we present extensive numerical simu-
from the statistical physics community side, an approach purations both in the noiseless and noisy case. Here both i.i.d.
suing this direction consists in a perceptron the continuouand correlated measurement matrices are analyzed. Finally, in
parameters of which are masked by boolean variables mimsec.lV we summarize the results of the paper and draw the
icking dilution [20-23]. Attempts to characterize theoretically conclusions.
the phase space diagram and the structure of the transition
through the replica method have been reported2if-26]. Il. METHODS
Variations of the generalized approximate message passing
technique (GAMP) were employed i), as it provides a A. The diluted perceptron as a linear estimation problem and
tractable and ef cient way to perform minimum mean squared its statistical mechanics setup
error (MMSE) estimation on the variables to be retrieved We consider a student perceptron withinput units and
when the matrix of patterns is large and Gaussian independeobntinuous weightsy  RN. We assume that the connections
and identically distributed (i.i.d.). However, for more gen- are diluted and that only a fraction of them are nonzero.
eral pattern matrices, GAMP convergence is not guaranteetl/e also assume tha#l real-valued patterns RN are
which has led to the extension of algorithms of the vectorpresented to the perceptron and that a binary labgl =
AMP (VAMP) type [28] to generalized linear model29,30], 1,...,M has already been assigned to each of them as a
including perceptron learning. result of the classi cation performed by a teacher perceptron
On the computer science side, many other algorithms fowith sparse continuous weighB. The task of the student
1BCS combining the enforcement of sparsity and of sigmperceptron is to learn the input-output association based on the
consistency constraints were also proposed, building upoexamplesX , ), = 1,..., M provided by the teacher:
analogous algorithms developed for standard CS. Examples -
of methods for error-free sparse signal retrieval from one-bit =sgnfv'x ), =1...,M (1)

quantized measurements include greedy approaches whighhere we use the convention that sgr€0}. For each exam-

iteratively determine the most appropriate sparse sUppogile |, the rule () is equivalent to the condition
given the sign measurements, such as matching sign pursulit

[31], as well as binary iterative hard thresholdir&?], where x'w 0. (2)
anl;-based convex consistency-enforcing objective functio : " ; - T
minimization is alternated with a thresholding operation thart\t/r\llg gg\t/glrr;[;(t)roil)t(;ce the auxiliary variables,:= (- x")w, and
selects theK largest elements. The problem of noisy 1BCS .

was addressed, for instance, iB3f35]. However, among 1X1

these examples, only¥$] proposes an algorithm which does X 2XJ 3
not require the prior knowledge of the number of corrupted B : ®)
sigh measurements. Here, the one-bit measurement errors X,

are modeled by introducing a sparse vecidhe nonzero
components of which produce the sign mismatches as  Through the previous de nitions, we can de ne the following
sgnXw + s). The algorithm attempts to identify the sign linear estimation problem:
errors and to retrieve the sparse sigwalising a variational y=X w 4)
expectation-maximization (EM) based inference scheme. '

In this paper we propose \arapper strategy where both where the variables to be inferred are bgtAndw. As we
the variable selection and the classi cation tasks are simultawill show below, the positivity constraints in EcR)(will be
neously performed through expectation propagation (EP), aanforced in terms of a prior distribution on theariables.
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FIG. 1. Factor graphs associated with (a) EP, (b) AMP, (c) grVAMP, and (d) R1BCS. Variable nodes are represented as circles and function
nodes are represented as squares and the notation has been made consistent with that employed in this paper. (a) Tilted distributions in EF
(see SecllB for more details), where denotes the exact prior andthe approximated Gaussian prior factors in the EP approximation.

(b) Factor graph related to AMP. In 1bitAMP, are spike-and-slab priors am{ ,|w,x,) = ( uxﬁw). (c) Factor graph related to the
grVAMP approximation, where we have emphasized the VAMP and MMSE modules composing the algorisinenthe same as in (b),
andP( ,|z.)= ( uz.). In(b)and (c), denotes either the pseudoprior in E8) ¢r the one in Eq.10). (d) Factor graph of the function
appearing in the lower bound maximized in R1BCS. The distributfams| ;)p( i) and p(s.| .)p( ) are hierarchical Gaussian-inverse-
Gamma priors assigned to the weights and to the noise compayenéspectively, appearing in= sgnXw + s). The quantities; and
are hyperparameters, whereas the quantiiesre variational parameters optimized in the maximization step of the algorithm.
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The linear estimation problem expressed in Ejy.can be need to resort to approximation methods. Here we propose
addressed in a Bayesian setting: by introducing the variablan expectation propagation scheme based on the zero tem-

vectorh = (Wy,..., Wn, Y1,...,ym)" and the energy func- perature formulation presented 42 in order to solve the
tion, problem.
= 5 Starting from the linear systed w = y, we notice that it
— 2 _ KWTES1
Ew.y)= ySXw o h"E>"h, can be written as the homogeneous system
g1 XX SXT 5) Gh=0 12
B SX I ! - 1 ( )

whereG = (SX [I) andl is theM x M identity matrix.

he likelih f th N weights of th
the likelihood of the set oN weights of the perceptron can The intractable posterior distribution reads

be expressed as the Boltzmann distribution associated with
E(w, y), which reads 1
) . PM)= o "G ) (), (9
LW)=P( 1., ulw)= 7€ €9, (g) i W Y
whereW ={1,...,N},Y={N+ 1,...,N+ M}and M(2

where, from a statistical physics standpointplays the role  jengtes tht-dimensional Dirac delta distribution. We intro-
of an inverse temperature. In the absence of noise, it is convey,ce Gaussian approximating factors

nient to consider the zero temperature limit of this likelihood

. " PRV
L(w)SSS (yS X w), where (x) denotes the Dirac delta i(h) = exp gm , (14)
distribution. 2d

We also introduce prior distributions in order to encodeand a fully Gaussian approximation of the posterior distribu-
the constraints to which the variables, i = 1,..., N, and  tjon (13), in which all priors and are replaced by factors
y, =1,...,M,aresubject. The sparsity assumption on thepf the form (L4):
weightsw is expressed in terms of a spike-and-slab pdd¥:[ 1

) — . Qh)= =~ Y(@Gh)  (h;a,d) (h;a,d). (15)
W)= (18 ) W)+ &7, i=1..N () 2 P w v

If the labels of the teacher are not corrupted by noise, ther(?(h) can be equivalently expressed as

the auxiliary variabley need to ful Il the positivity constraint
(2), which can be expressed in terms of the pseudoprior:
(16)

)= o) =L...M 8) where the covariance matrixy and the meamw in Eq. (16)
On the other hand, if noise at the output of the teacher perceare given, respectively, by
tron is present, one may assume that the labels provided by

Qth) = % MGhexp S WS W) SFWSW) |

the teacher perceptron are assigned according to the following S1_ lelelT + XT lelelT X 17)
process41], w i oy d ’

~ _ sgnB"x)  with probability (9) andby

~ SsgnB'x) with probability 1S ,

and that the student receives the altered examples W= w ia + %XTQ . (18)
Xy, "w), M =1,...,M. In this case, if the process that iw o iy o
ips the labels is known, then it may be encoded in the yore o denotes théth basis vector of the standard basis of
pseudoprior  as follows: RN (respRM)ifi W (respi Y). Notice that the marginal

W) = V) + s ) (SYu)- (10)  distributions ofQ(h) for each variabley; are also Gaussian,

with meandh; given by
In general, the parameters , and are not known and

need to be learned by the student perceptron in the training wi, i W

phase. Finally, by Bayes'’s rule, the posterior distribution of hi = X w, i Y, (19)
both weights and auxiliary variables reads _ )
and variances j; given by
N M
1 < .
Pw.y)= o ySXw) w) () (1) o owa W,
Zr - . i= T : (20)
i=1 =1 e| X w X Q ’ | Yy

where fori Y we took advantage of the linear constraints

y = X w. Notice that the full N+ M) x (N + M) covari-

ance matrix (the diagonal entries of which are de ned in
We wish to infer the values of the weights by estimating thethe previous equation) reads

expectation values of the marginals of the distributia), -

. s . X
as this strategy minimizes the associated mean squared error. = w WA .
However, the latter marginalizations are intractable and we Xow X owX

B. Learning the weights via expectation propagation

Zero temperature formulation

(21)

043301-4
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We now introduceN + M tilted distributionsQ®"(h) fori = 1,..., N + M. In particular, ifi W, we have

. 1
QV(h) = 5— M(Gh) i(h) (h;a,d)  (h;a,d), (22)
Zqo i WA} Y
whereas, if Y,
. 1
QV(h)= s— M(Gh) i(h)  (hia,d) (h;a.d). (23)
Zqv iw Y\(i}
The tilted distributions can be expressed as the product of one of the priors and a Gaussian cavity distribution:
QW) = i()QW(h), (24)
where { , }andwe have denoted the cavity distribution associated witftltheariable byQ®:
6D (h) = z,% M (Gh) exp é%(wé O 0 St & woy (25)
(i)

A factor graph representation of the tilted approximation to the posterior distribution is given ih(&}g.
The cavity covariance matrices are given by the following expressions:

0 $1_ Wi} d—jejejT +XT iy d—iejejT X, ifi W, (26)
w - P
jwaee + X1y aee X, Y.
[
whereas the cavity means read update rules for the variancdsand the meana:
1 1 S1
—) _ W i Wi} %ej oy dJ XTe , ifi W, d = TN S o (31)
W= (i) Ba + ixTe. ifi Y i QW i QO i
wo o jwg® i Y\{i}a € , Il . di i)
27) a= hqvt —z hiqo Sh”, (32)
Similarly to what we obtained for the marginals of E&6); i
we have that the marginals of EQ5j are Gaussian distribu- foralli=1,..., N+ M Following [39,42], the cavity vari-
tions with means ances |(| and meani;l appearing in Eqs.3Q) and 32) can
be computed in terms of the varianceg and meansy; using
. v i w a low rank update rule:
Hi(l) - V\_Ir| ’ _Ii | o (28) p
g x wh, ifi Y, (i) = i (33)
1} S 1 '
_ 1S I i
and variances h a
) hS g
T 0e i W= TE (34)
o- & we ifi W, 29) 18 4
i e’ X \(/Iv) XTg , ifi V. which allows us to perform only one matrix inversion per
iteration.
The yet to be determined meaasand variances of EP repeatedly estimates the vectarandd until a xed

the Gaussian approximating factors4) are determined by pointis eventually reached. From a practical point of view, the
minimizing the Kullback-Leibler divergendax, (Q™||Q) for algorithm returns the means and the variances of the marginal
alli=1,...,N+ M. It can be shown that each of these tilted distributions as soon as the convergence criterion
m|n|m|zat|ons is equivalent to matching the rst and second
moments of the tilted and of the fully Gaussian approxmated

distributions: , _ _ (35)
is ful lled, where t denotes the current iteration angop

h2 (30) is a convergence threshold. In particular, the posterior mean
value of weights learned by the student perceptron is esti-

mated as given b i, with a standard deviation equal to
The EP update equations follow from the moment match- M' Qv g

ing conditions 80). In particular, recalling that the marginals Wi Q® S w ém-

of Q(h) are Gaussian distributions, one can exp@gsndd; The zero temperature formulation of EP presented in this
in terms of the means and variances@¥ and in terms of section is computationally advantageous compared to the
the means and variances of the associated tilted distributionsiite temperature one presented in Appendix as its com-
Indeed, using the fact that the product of Gaussians is a Gauplexity is dominated by the computation of tthN? scalar
sian and the moment matching conditions, we obtain the ERroducts between vectors of lengih that appear in the

= ) S h 2 S K
miax hi Q) S h QY + hi Q S hI QY < stop

hy Qv = hi q hl Qi =

043301-5
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second term of the right-hand side of E4.7 and by the 2. Moments of the theta pseudoprior

inversion of theN x N matrix given by the same equation,  \ve now repeat the same reasoning for the case of the theta
resulting in a cosO(MN*< + N<), rather thqu[(N + M)°]. pseudoprior, which was de ned as

In general, in order to reduce the computational burden related

to the inversion of the covariance matrik7j, we perform a (h)= (), k=N+1...,N+ M (42)

Cholesky de'composmon before |nve.rt|ng. For more detalls‘l’he associated tilted distribution of théh variable is given
about the nite temperature formulation of EP, we refer to by

AppendixA.
Q¥(h) = —=Gi(h) (), k= N+1,... N+ M,
Zow

(43)
where the expression f@)y is the same as in Eq38). The

iR -~ Mnormalization of 43) is the partition function of the tilted
moments of the leave-one-out distributions when the prior igistribution and reads

of the spike-and-slab type. We recall the expression of the !
spike-and-slab prior already introduced in EQ.for the sake Zow = } 1+ erf Hk (44)
2

C. Moments of the tilted distributions
1. Moments of the spike-and-slab prior
In this section, we shall compute the rst and second

of convenience: K

(ho = (1 & ) (ho + where erf denotes the error function, de ned as
k) = Kk "

2 2 s
(36) erfx) = —  €%dz (45)
The marginal tilted distribution of each weight of the student 0
perceptron reads Computing the rst moment of the marginal tilted distribution
) 1 . leads to the expression
QM (h) = =—Qu(h) (), (37) e
Zqu C €35 R( &)
- Kk -
where we have introduced the marginalized cavity Gaussian e = Hict 5 T m Mk 1+ c (46)
distributionQy: K
- 1 & OS2 where (x) = %[1+ erf(%)] is the cumulative density func-
Qulhi; i, 1) = e 2« (38) o 1 S
2 tion of the standard normal distributioR(x) = =0
From Eq. 87), computing the partition function of the tilted and i = J‘L—k Finally, concerning the second moment of the
distributionQ® yields marginal tilted distribution, one obtains
#__
Y N 2 2 — 2+ +
Zow= (1§ ) 1 Sk, St he = B+ «+ Mk kR( k), (47)
2« 2 1+« implying that the variance ofy with respect to thekth

_ (39) marginal tilted distribution can be expressed in a compact way
Finally, the rst moment and the second moment of the samg,

distribution are given by

, Var(h) = «[1S «R( &) S R( W)l (48)
1 51 M Mk
hic quo = Zow 2_e ok 1+ 1+ (40) 3. Moments of the theta mixture pseudoprior
and by When the pseudoprior is of the theta mixture type,
, 2. 2 ()= (h)+ (@S ) (Sh), O 1,
o= L Sy kT k* Hi k=N+1,...,N+M (49)
k Q(k) ZQ(k) 2— 1 + K (1 + k)2 ’ - g ey y
(41)  we have for the partition functioBqyw of the tilted distribu-
respectively. tions @3)
|
T I I
1 < Mk = 1 Hk k 1 <1 TPE
= —erfc S—— + (1S —efc — = — -+ S - erff —— 50
Qv 2 2 . (1S3 2 « 2 2 2 2 (50)
For the rst moment, one %tams 2 % 5 $ 2 %8
1 $ M K = Mk 1 = &M k Hk
h = —— (€7« + erffc S—— + Se“ 7« + ——erfc ——
k QK Zgw 7, k e+ Mk 5 D 7 . kF Mk 5 7D
S L sk (51)
= K (2 S1)e 2«
= k —_— 2 = H
erfc S ‘;Lk + (1S )erfc %

043301-6
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and the second moment with respect to the m:gginal tilted distributi®rréads

> 1 SZLE k 2 = Hk
hk QW = ZQ(k) 7 . Mk k€ 2k + T Mg+« erfc S 7
.8 , %&
1S & S k 2 Mk
+ S €2k + —— pp+ erfc —
2 K l-'lk k 2 uk k > .
2 $1) st
= 2 + + —k — ev “ . 52
Hicm ket He erffc SH= + (1S erfc £ (52)
[
Ill. RESULTS density level is xed to = 0.25. The Gaussian part of the

spike-and-slab prior was set to a standard Gaussian distri-
bution in 1bitAMP, EP and grVAMP. The EP convergence
In this section, we will present some results obtained fromhreshold was set tawp = 10°* and the value of the damping
numerical simulations in the presence of noiseless examplegarameter of the EP algorithm was set equal to 0.9995 (al-
both in the case where patterns are i.i.d. and in a simplehough good results can be obtained using a lower damping
case of correlated patterns. For the sake of simplicity, in alfgo, e.g., 0.99). The results of the simulations for different
the situations described in the following, we have chosen §gjues of are reported in Fig.and show that EP, 1bitAMP,
Bayes-optimal setting, where the prior information providedapng grvaAmP based learning from i.i.d. Gaussian patterns have
by the .splke-and-slat.) prior mirrors the actual distribution Ofroughly the same performance regardless of the speci ¢ value
the weights to be retrieved. , o of . The convergence criterion was 30in the 1bitAMP
First, we performed numerical experiments with i.i.d. pat-gimyations and 1% in the grvAMP simulations. All the
terns drawn from a Gaussian distribution having zero meag;,1ations performed using EP, 1bitAMP, and grvVAMP con-

and unit variance. As a performance measure, we g:onsider tr\]faerged within the thresholds we considered. The error bars in
mean squared error between the normalized weights of thg;

. ig. 2 were estimated ag N where denotes the
student perceptron at the end of the learning process and th°§§gmple standard deviation of t%agllj\l}lsSSE
of the teacher perceptron: y

We also considered the problem of sparse perceptron learn-
N ) ing from correlated patterns drawn from a multivariate normal
(Wi S By)%, (53)  distribution, in the simple case where the meamis 0 and
k=1

A. Sparse perceptron learning from noiseless examples

MSE(w, B) =

wherew = w/ w are the rescaled weights of the student
andB = B/ B denote those of the teacher. In our results,

this metric is expressed in decibel (dB) and used to compare —— EP
expectation propagation to the 1-bit approximate message . —}= 1-bit AMP
passing (1bitAMP) algorithm introduced i27] and to the =251 D -t grvAMP

generalized vector approximate message passing (grvVAMP)
algorithm proposed within the uni ed Bayesian framework
of general linear models published i8Q], which the au- _ =307
thors show to yield equivalent results to the VAMP algorithmg
for the generalized linear model described 29][ We refer u;w
to Figs. 1(b) and 1(c) for the factor graphs related to the = =351
1bitAMP and to the grVAMP approximations, respectively.
The computational cost of 1bitAMP ®(N?), while the cost
of grVAMP is O(N?), as it involves a one-time initial singular =497
value decomposition of. However, since this computation is
not needed again in the following part of the algorithm, its cost
can be neglected for small enough valuebloThe remaining 1 2 3 4 5 6

part of the grVAMP scheme shares the same per iteration a

computational cost of 1bitAMP, as both are dominated by a FIG. 2. MSE resulting from sparse weight learning from i.i.d.

matrlx-vect(_)r product. patterns using EP, 1bitAMP, and grVAMP based estimation as a

We considered the average of the M3B)(0verNsampies=  function of . The parameters considered for the perceptron are
100 simulations. The simulations correspond to sparse pef = 128 and = 0.25 and the number of instanceNSmpies= 100.
ceptron learning of different instances of the weights of theay| simulations converged and the MSE shown is avegaged over all
teacher perceptron, each from a different set of i.i.d. Gaussiafe considered instances. The error bars are estimatéd @¥ampies
patterns fed to the student perceptron. We considered the cagfiere is the sample standard deviation of the MSE computed over
in which the total number of weights ¥ = 128 and their all the instances.
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TABLE I. Fraction of converged trials over a set of 100 different instances of the weights of the teacher perceptron and of the training set
of examples. The patterns were sampled from the multivariate Gaussian distribution with covariance5#jaffirg number of variables is
N = 128 and the density of the weights of the teacher #s 0.25.

()N = 128 (b)N = 256
fEP fep fng/-\MP grvVAMP fEP fep fngAMP grvVAMP
0.5 1 0 1 0 0.5 0.99 0.01 1 0
1.0 1 0 0.96 0.02 1.0 0.73 0.04 0.99 0.01
15 1 0 0.89 0.03 15 0.92 0.03 0.94 0.02
2.0 1 0 0.83 0.04 2.0 0.96 0.02 0.88 0.03
25 1 0 0.87 0.03 25 0.88 0.03 0.83 0.04
3.0 1 0 0.87 0.03 3.0 0.88 0.03 0.73 0.04
4.0 1 0 0.85 0.04 4.0 0.92 0.03 0.80 0.04
5.0 1 0 0.82 0.04 5.0 0.94 0.02 0.76 0.04
6.0 1 0 0.80 0.04 6.0 0.96 0.02 0.70 0.05
the covariance matrix is constructed according to ties, which are given by
S=Y'Y 54 ¥ , 8
= + - 1. 1+ 5 __n
(>4) P0= 1+ =81 — Kfrww  | (55)

. . L . k
whereY RYN s an i.i.d. matrix with entries drawn from a

standard univariate Gaussian distribution ané a diagonal In the case of ERlx and , fork=1,..., N, are the EP
matrix the eigenvalues of which are given by the absolutecavity means and variances, whereas, in the case of grvVAMP,
value of i.i.d. random entries drawn from the same distribuq1 corresponds to the VAMP quantity;x and ¢ = fkl,
tion. By construction, this matrix is symmetric and positive where  is the quantity that parametrizes the denoiser in
de nite and, therefore, is a proper covariance matrix. TheVAMP [28] and we used the standard VAMP notation fay
diagonal matrix is added in order to ensure thahas full and i, for which the indexk refers to the number of the
rank. As an extreme case, we choose 1 for the matrixY. current iteration. In both cases,denotes the density param-
We nd that even in this case the student perceptron is ableter of the spike-and-slab prior. Interestingly, the discrepancy
to estimate the weights of the teacher, although, under thbetween the accuracy of the two algorithms becomes larger
same values of the parameté&s , and of the model and as the number of patterns increases and, as a consequence,
under the same values of the EP parameters (i.e., dampinthe difference between the mean squared errors of the two
stop @Nd maximum number of iterations), the accuracy ofalgorithms increases, as shown in R¢c), implying that the
the estimation is lower than the one achieved by learnindeP and the grVAMP approximations are very different in this
from i.i.d. Gaussian patterns, as one might expect. Still, in th&aussian correlated pattern regime. This fact is con rmed
presence of the correlated patterns considered here, expectar the heterogeneity of the variancdg k= 1,..., N of
tion propagation based learning proves to be advantageous tige approximating univariate Gaussian factogswhen one
compared with other algorithms for 1-bit compressed sensingonsiders the EP solution for instances where both EP and
such as 1bitAMP, the estimates of which of the means andrVAMP converge. More precisely, it can be seen that the
variances of the weights to be retrieved diverge. In additionparametersly span several orders of magnitude, contrary to
in the same situation, EP outperforms grVAMP based learnVAMP where these variances are constrained to be equal.
ing, as shown in Fig6 for the set of parameteld = 128 In each plot in Fig.3, we have shown the average of the
and = 0.25. The convergence thresholds of the grVAMP quantities considered over the set of g, instances for
and of the EP algorithms were set to the same values as imhich each algorithm achieved convergence. Accordingly, the
the case of learning from i.i.d. Gaussian patterns and furthegrror bars were estimated & Ngon, Where denotes the
lowering the value of the threshold parameter of grVAMP standard deviation over the same set of instances.
did not result in a noticeable improvement of the grVAMP A useful additional feature of the EP-based learning ap-
results. In the case of EP, the damping factor was set to 0.99®0ach is the possibility to learn iteratively the value of
and the maximum number of iterations for convergence wasluring the estimation of the weights of the teacher, as, unlike
50 000. The fraction of converged trials is shown in Table EP, many algorithms for 1-bit compressed sensing assume the
for both algorithms in the case whexe= 128 and = 0.25.  density of the signal to be givem priori. The estimation of
The EP led student perceptron is more accurate at determinirie density parameter is achieved by minimizing the EP free
the nonzero weights than the grVAMP led counterpart, agnergy with respect to and yields good results as long as
shown by the receiver operating characteristic curves (ROGhe number of the patterns presented to the student is large
curves) in Fig.3(a) and by the sensitivity plots of Fig(b). enough. We refer to the Appendices for details concerning
In order to construct these curves, each weight of the teachéine EP free energy, its expression for the sparse perceptron
was assigned a score given by its probability of being nonzertearning problem, and free energy optimization based learning
as estimated by EP and grVAMP. The weights of the teacheof the parameters of the prior. We mention here that a similar
were sorted in decreasing order according to these probabilexpectation maximization based strategy can be implemented
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FIG. 3. Sparse perceptron learning from correlated patterns sampled from a multivariate Gaussian distribution. The values of the parameters
are speci ed in each panel and we set 1. Comparison between grVAMP and EP based learning. (a) ROC curves. (b) Sensitivity plots. For
reference, in (a) and (b) the case of ideal variable selection by the teacher perceptron that provided the examples is also shown. (c) Mean
squared error in dB. In each plot, the mean values and the standard deviations are computed over the Ngh,ahsthnces for which
convergence was achieved. The error bars are estimatéd ds..,, where is the sample standard deviation over the same set of instances.

also in the case of 1bitAMP and grVAMP in order to estimate L, we omit the statistical uncertainty associated with
the density parameter. . Finally, we notice that, even when learning from corre-

In order to show that our approach allows one to estimatdated patterns constructed as described above, the student is
the dilution level of the teacher perceptron, we performed a seible to estimate the density level of the weights of the teacher
of Nsamples= 100 EP simulations on a system with= 128  perceptron quite accurately, provided that a suf cient number
and = 0.25, where the density parametey of the spike-  of patterns is provided to the student perceptron. In Tébhle
and-slab prior assigned to each weight variable was randomiye give an example of this fact when the teacher perceptron
initialized by sampling its value from a uniform distribution hasN = 128 weights and density = 0.25.
over the interval M5 o 0.95 and where the learning
rate was chosen to be = 10°°. We show our results in

Tablell. For each value of, we show the average valug of B. Sparse perceptron learning from a noisy teacher
the density estimate over all samples and its assgciated statisti- \y/g analyzed the performance of EP based sparse per-
cal uncertainty, which was computedas = /' Nsamples  ceptron learning when a small fraction of the examples is

as for these values of the parameters all simulations congisiabeled. The student perceptron is given #hepriori
verged. We also show the relative differende  between information that a certain fraction of the labels is wrongly as-
the true value of the density and the estimated one. Sincggned. As in the noiseless case, we consider a Bayes-optimal
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TABLE Il. Learning of the density of the weights of the teacher for a perceptron with paramé&ters128 and = 0.25. The average
and the standard deviation of the learned value af convergence over all the trials for which convergence was achieved during the training
process are denoted by and |, respectively. In each trial, the initial conditiog was drawn uniformly from the interval@05 , 0.95.

ii.d. patterns: | + | i.i.d. patterns: / Patterns from MVN: | £+ | Patterns from MVN: /
2 0.191+ 0.003 0.236 Q161+ 0.004 0.341
3 0.220+ 0.002 0.121 Q196+ 0.004 0.206
4 0.234+ 0.002 0.066 @07+ 0.003 0.182
5 0.240+ 0.002 0.042 @14+ 0.003 0.144
6 0.242+ 0.001 0.031 @23+ 0.003 0.115

setting and therefore we provide the student with saphori absolute value of the weights of the student. In the case
knowledge using the theta mixture pseudoprior introduced irof EP and grVAMP, we also plotted the ROC and sensitivity
Eq. 49). curves according to the sorting criterion based on the score
In order to test and evaluate the performance of EP-guidedxpressed in Eq56), but the results did not exhibit noticeable
learning in this situation, we compared EP with grVAMP, in differences with respect to those obtained using the previous
which we introduced a theta mixture measure as done in EBorting criterion, as the curves in Fig.mostly overlap. The
and with the R1BCS algorithm for 1-bit compressed sensinROC curves and sensitivity plots associated with EP and
with sign- ip errors proposed by Let al.[35], which is based  grvAMP mostly exhibit similar values for the true positive
on an expectation maximization scheme involving both theatio—except for large , where the EP values are slightly
signal to be retrieved and the noise. In grVAMP, the slab partmaller—and outperform signi catively the ones related to
of the spike-and-slab prior was set to a standard GaussigR1BCS in the case of i.i.d. patterns, especially at low values
distribution. When using R1BCS, we rescaled the patterf . This is con rmed by the values of the areas under the
matrix so that each column had unit norm and we includegyryes, as shown in Tabki, where the maximum relative
a convergence thresholdkigcs= 10°*. Thus, the R1BCS giscrepancy between the areas under the ROC curve (AUC)
iterations stop when the estimaté:gcs of the weights of  js 0.008 when considering EP and grVAMP and 0.03 when
the teacher is such thatvriscs S WRiscs < Ruscs Ineach considering EP and R1BCS. However, in the case of corre-
experiment, a given nUMb&iae = (1S )M of labels were  |ated patterns, the ROC curves and sensitivity plots related to
ipped, where is the fraction of unchanged labels. In the EP gp are mostly comparable to those associated with R1BCS
simulations a damping factor equal to 0.9 and a CoNvergencgng yield values of the true positive rate that are systematically
threshold s0p= 10>* were used. The parameter of the larger than the ones of grVAMP, implying that the variable
spike-and-slab prior was set equal td'10 selection properties of EP tend to be affected to a far lesser

We  rst considered the case of i.i.d. Gaussian pattemSyant than those of grvVAMP in this regime, as con rmed by
drawn from a Gaussian distribution with zero mean and unitye Auc reported in Tabléil and analogously to what was

variance and, subsequently, the case of correlated pattergpserved in the noiseless case. In this case, the maximum
drawn from the zero mean multivariate Gaussian distribugative discrepancy between the AUC of EP and of R1BCS is
tion with the covariance matrix expressed &), which we o5 and is attained at the lowest value ohamely, = 0.5
already introduced in the nois_eless case. For both kinds CWhereas, when considering EP and grVAMP, the relative dis-
patterns, we conducted numerical experiments on a set of 1qgepancy is largest at large values qfits maximum being
different instances. In the case of i.i.d. patterns, convergencg o at = 6. The mean squared error values associated with
over all instances was achieved for all three algorithms within, o normalized student and teacher are plotted in Fifpr
the convergence thresholds speci ed. The same was true ioih = 0.95 and 0.9 and their values are shown both in dB
the case of correlated patterns for RIBCS and for EP, whereqgyain plots) and using a linear scale (insets). In particular,
grvAMP e_xhlblted a failure rate up to 15% in terms of con- {1o MSE values reported in Fi§(a) correspond to the ROC
vergence in the correlated case. ) o curves in Fig4(a) While the MSE of EP is de nitely larger

In order to assess the variable selection capabilities of ER, 5, that of grVAMP at large in the presence of i.i.d. patterns
when attempting to learn the weights of the teacher from thesﬁ:igs.S(a)andS(b)], it should be noted that the differences of
kinds of patterns in the presence of mislabeled examples, W'y ajues involved are very small and are not noticeable on
computed the ROC curves and the sensitivity plots related jinear scale. Since the EP approximation is richer than the
to both the former [Figs4(a) and 4(b), respectively] and  yamp one, which, in turn, is due to the fact that EP reduces
to the latter kind of patterns [Figsl(c) and 4(d), respec- i, yaMP when the approximate univariate prior factors are
tively]. Such ROC curves and sensitivity plots are associatef,ngirained to have the same variance, and because of the very
with the weights of the student after the training phase Wagma)| errors and differences observed, we believe that such
completed and were obtained in the case where the numbggqeryed discrepancy between grvAMP and EP in the i.i.d.
of weights wasN = 128, the density of the weighi8 of aytern regime at large is due to numerical effects rather
the teacher was = 0.25, and the fraction of uncorrupted ynan to intrinsic limitations of the EP scheme. Instead, this is
labels was = 0.95. The ordering criterion for the weights o the case for the differences displayed by the MSE related
B adopted in the ROC curves in Figs(@) and4(c) and in 5 p and grvAMP in Fig5(c)for = 0.95, which are clearly

the sensitivity plots in Figsd(b) and4(d) was based on the ,qiiceable on a linear scale as well. The discrepancy involved
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FIG. 4. Sparse perceptron learning from i.i.d. patterns sampled from a standard Gaussian distribution and from correlated patterns
sampled from a multivariate Gaussian distribution, Witke 128, = 0.25,u= 1, = 0.95. A fraction (1S ) of the labels are mislabeled.
Comparison between R1BCS, grVAMP, and EP in terms of their ROC curves (a, ¢) and of their sensitivity plots (b, d). For reference, the case
of ideal variable selection by the teacher perceptron that provided the examples is shown. The plotted quantities are the mean values computec
over the set of alNsampiesinstances and the error bars are estimated asNsampiesWhere  denotes the sample standard deviation over all the
instances considered.

TABLE Ill. (a) AUC scores associated with the ROC curves shown in &g), which correspond to EP, grVAMP, and R1BCS based
classi cation from i.i.d. Gaussian patterns in the presence of label noise, witl9.95. (b) AUC scores associated with the ROC curves
shown in Fig.4(c), which correspond to EP, grVAMP, and R1BCS based classi cation from multivariate Gaussian patterns in the presence of
label noise, with = 0.95.

(a) AUC (i.i.d. patterns) (b) AUC (patterns from MVN)

AUCgp AUCyvamp AUCR1gcs AUCgp AUCyvamp AUCRigcs
0.5 0.621+ 0.005 0627+ 0.005 Q595+ 0.005 Qa5 0.588+ 0.006 0579+ 0.006 Q559+ 0.005
1.0 0.706+ 0.005 Q710+ 0.005 Q682+ 0.004 10 0.661+ 0.005 0628+ 0.006 Q641+ 0.006
15 0.770+ 0.005 Q777+ 0.005 Q746+ 0.005 15 0.727+ 0.006 Q685+ 0.006 Q694+ 0.006
2.0 0.806+ 0.005 Q809+ 0.005 Q792+ 0.004 20 0.732+ 0.007 0696+ 0.006 Q734+ 0.006
2.5 0.835+ 0.004 Q840+ 0.004 Q824+ 0.005 25 0.775+ 0.007 Q719+ 0.006 Q775+ 0.006
3.0 0.860+ 0.004 Q865+ 0.005 Q854+ 0.004 30 0.788+ 0.007 Q742+ 0.007 Q793+ 0.006
4.0 0.893+ 0.004 Q899+ 0.004 Q887+ 0.004 40 0.834+ 0.007 Q788+ 0.006 0828+ 0.005
5.0 0.913+ 0.004 Q920+ 0.004 Q91+ 0.004 50 0.856+ 0.006 Q807+ 0.006 Q851+ 0.006
6.0 0.927+ 0.003 Q936+ 0.003 Q923+ 0.003 (s10] 0.882+ 0.005 Q825+ 0.007 Q885+ 0.005
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FIG. 5. Sparse perceptron learning from31 )M mislabeled examples: comparison between EP, grVAMP, and R1BCS in terms of their
mean squared errors in the case of (a) i.i.d. Gaussian pattemn$,95; (b) i.i.d. Gaussian patterns= 0.9; (c) Gaussian correlated patterns,
= 0.95; and (d) Gaussian correlated patterns, 0.9. In all gures, N 128 and = 0.25. The mean squared errors plotted are averaged
over the set of alNsampiesinstances and the error bars are estimated asNsampiesWhere  denotes the sample standard deviation over all the
instances considered.

re ects that observed at the level of the ROC curves shown irof Gaussian correlated patterns in Table We notice that,

Fig. 4(c). Finally, in the Gaussian correlated scenario, as sooanalogously to EP, an expectation maximization scheme can
as the noise level affecting the labels becomes large enoughe implemented in the case of grVAMP in order to iteratively
we see that EP and grVAMP yield similar results at all valuedearn the density parameterof the spike-and-slab prior and

of , as shown in Fig5(d). the parameter of the theta mixture measure.

Similarly to R1BCS, EP was able to correctly estimate the One important limitation of the R1BCS algorithm as com-
noise level affecting the labels. This was achieved by samplingared with EP (and grVAMP) is that it involves the inversion
the initial condition ¢ for the parameter of the theta mix- both of aN x N matrix and of aM x M matrix at each
ture pseudoprior uniformly from the interval®< < 1and iteration. As a consequence, the computational complexity of
performing one step of gradient descent on the EP free enerdy1BCS is dominated by[(1+ 3)N®] operations. There-
at each EP iteration as described in Apper@ixn addition, fore, from a computational point of view, EP is especially
analogously to the noiseless case, it is possible to learn thedvantageous as compared to R1BCS when the number of

parameter and we veri ed that the two parameters can b@atterns in the training set is large, as, in the EP formulation
learned simultaneously. We show the estimated values of theroposed in this paper, the computational cost is of order
density of the weights and of the consistency levaif the ~ O[(1+ )NZ]. However, in the larg® regime, grvAMP will
labels in the case of i.i.d. patterns in Tableand in the case be faster than EP (and R1BCS) as the only operation that
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TABLE IV. Values of the parameter of the theta mixture pseudoprior estimated by the student perceptron during the training phase when
using EP to learn the weights of the teacher (a) from i.i.d. Gaussian patterns and (b) from multivariate Gaussian patterns i thd 28se
The estimated value ofis denoted as,, the true value being = 0.95, whereas the true value of the density parameter of the spike-and-slab
prior was given by = 0.25.

(a) i.i.d. patterns (b) Patterns from MVN

L / L / L / L /
2.5 0229+ 0.004 0.08 964+ 0.001 0.02 2.5 06+ 0.006 0.2 0951+ 0.002 0.0006
3.0 0234+ 0.003 0.07 0957+ 0.003 0.007 3.0 208+ 0.006 0.2 0953+ 0.001 0.003
4.0 0247+ 0.004 0.01 09584+ 0.0005 0.009 4.0 228+ 0.005 0.09 0953+ 0.001 0.003
5.0 0249+ 0.003 0.003 (®561+ 0.0007 0.006 5.0 @23+ 0.005 0.08 09526+ 0.0005 0.003
6.0 0252+ 0.003 0.007 (B544+ 0.0004 0.005 6.0 236+ 0.004 0.05 09529+ 0.0004 0.003

is O(N®) needs to be performed only once, whereas in ERhe running times related to grVAMP appear to be larger than
the operations with cubic cost must be performed at eackose related to EP.

iteration. In fact, while the VAMP part in grVAMP is faster

than EP for the sizes simulated in this paper, we recall that_ correlated patterns generated by a recurrent neural network

the grVAMP algorithm is composed of two modules [see also
Fig. 1(c)] implemented as two nested loops: the external loop
corresponds to a minimum mean squared error estimation
the linear projection vectoz = Xw, where X denotes the

matrix of the patterns, under a Gaussian prior and a likelihoo . N ;
of an incoming link of theith perceptron. Each perceptron

having the same functional form of the pseudoprior used . ) . .
in EP, whereas the inner loop consists of a VAMP module/ SCEIVES binary input generated accorqllng to a Glauber
- &ynamlcs at zero temperature. We considered both the case
of synchronous update of the patterns at each time step and
Sthe case where the binary inputs are updated asynchronously.
" In the case of synchronous update, starting from an ini-
tial random vectorxo = sgn(,), where , N (;0,1) at
discrete timet = 0 and given a pattern' at timet, each
perceptron computes its output at titne 1 according to

As an example of a diluted network with correlated inputs,
e consider a network ol randomly diluted perceptrons
without self-loops. We will denote thieh row of the weight
gnatrix W RN*(NS1) asw;. Each entry ofw; is the weight

of which is given by the current estimatezmfor a prede ned
number of iterations. We show the running times of R1BC
EP, and grVAMP in Tablé&/ for the simulated siz&l = 128.
All the simulations were performed in parallel on a HP Pro-
liant server with 64 cores clocked at 2.1 GHz. In grVAMP, the
maximum number of iterations of the outer MMSE module

loop was set to 1000, while the number of iterations of the Z=wx,, (56)
inner VAMP module was set to 2000. The comparisons shown

in TableV are only meant to give an idea of the running timesand to

observed for the implementations that we used, which can 1 _

be found in f3. In particular, grvVAMP was adapted by in- X = sgnz} ' (57)

troducing the theta mixture measure and parameters were Sgherex!; denotes the vector of outputs produced by all per-
in each algonthm as eXplaIned in this section. As the VAMpceptrons except thiéh one attimé. The patterns attime+ 1
estimation is repeated for every iteration of the external loopare given by the set of outputs resulting from Eds) (and

TABLE V. Running time related to the EP and R1BCS based sparse perceptron learning from (a) i.i.d. Gaussian patterns and from (b)
Gaussian patterns from multivariate normal distribution with covariance matrix given bp8dqu(= 1) in the presence of label noise, with

= 0.95 and damping factor equal to 0.99 in the case of EP. The uncertainty on these values was estimatdd.@s where is the
sample standard deviation over the set of converged trialfNapgis the number of converged simulations.
(a) i.i.d. patterns (b) Patterns from MVN
tep (S) tgrvamp (S) trigcs (S) tep (S) tgrvamp (S) triecs (S)
0.5 27+ 0.2 1267+ 0.8 6.5+ 0.2 0.5 27+ 0.2 1392+ 2.0 6.7+ 0.2
1.0 26+ 0.03 1346+ 0.9 120+ 0.3 1.0 37+ 0.1 1557+ 2.0 144+ 04
1.5 374+ 0.04 1470+ 1.0 222+ 05 1.5 48+ 0.1 2068+ 20.0 270+ 0.7
2.0 565+ 0.08 1590+ 1.0 476+ 1.0 2.0 62+ 0.2 2890+ 40.0 536+ 1.0
2.5 697+ 0.09 1757+ 1.0 949+ 2.0 2.5 77+ 0.2 2363+ 20.0 1058+ 3.0
3.0 83+ 0.1 2129+ 200 1509+ 3.0 3.0 95+ 0.3 2943+ 300 1585+ 4.0
4.0 102+ 0.1 2583+ 10.0 3734+ 7.0 4.0 114+ 0.3 3669+ 40.0 3794+ 8.0
5.0 122+ 0.1 3116+ 100 6280+ 10.0 5.0 141+ 04 4235+ 40.0 5927+ 10.0
6.0 156+ 0.2 3539+ 10.0 10529+ 20.0 6.0 159+ 0.4 4985+ 50.0 10572+ 20.0
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