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Ef�cient feature selection from high-dimensional datasets is a very important challenge in many data-driven
�elds of science and engineering. We introduce a statistical mechanics inspired strategy that addresses the
problem of sparse feature selection in the context of binary classi�cation by leveraging a computational scheme
known as expectation propagation (EP). The algorithm is used in order to train a continuous-weights perceptron
learning a classi�cation rule from a set of (possibly partly mislabeled) examples provided by a teacher perceptron
with diluted continuous weights. We test the method in the Bayes optimal setting under a variety of conditions
and compare it to other state-of-the-art algorithms based on message passing and on expectation maximization
approximate inference schemes. Overall, our simulations show that EP is a robust and competitive algorithm
in terms of variable selection properties, estimation accuracy, and computational complexity, especially when
the student perceptron is trained from correlated patterns that prevent other iterative methods from converging.
Furthermore, our numerical tests demonstrate that the algorithm is capable of learning online the unknown
values of prior parameters, such as the dilution level of the weights of the teacher perceptron and the fraction of
mislabeled examples, quite accurately. This is achieved by means of a simple maximum likelihood strategy that
consists in minimizing the free energy associated with the EP algorithm.

DOI: 10.1103/PhysRevE.103.043301

I. INTRODUCTION

The problem of extracting sparse information from high
dimensional data is among the most interesting challenges
in theoretical computer science with many applications rang-
ing from computational biology to combinatorial chemistry,
neuroscience, and natural language processing [1,2]. As a spe-
ci�c example, next generation sequencing and, in general, the
ongoing technological revolution related to high-throughput
technologies in biology pose very stringent requirements to
the algorithmic techniques that are supposed to analyze the
data that are produced and made publicly available through
easily accessible databases. Just to give some orders of
magnitude, a typical genetic screening for cancer-related
pathologies—freely available from The Cancer Genome Atlas
web site [3]—involves measurement of activity or genetic
sequence variation over� 23 000 genes measured on patient
cohorts that typically count around 1000 individuals divided
into cases and controls (lung and colorectal cancer are an
exception, with� 10 000 individuals screened in each dataset).
Here, a typical task is to determine the genotypic signature
related to the disease that typically involvesO(102) genes
from 23 000 measured probes. Such problem can be simply
formulated in terms of the following classi�cation problem:
given the activity and/ or the genetic alterations of an indi-
vidual, �nd a simple rule involving a small—possibly the
smallest—subset of genes to assess the probability for the
individual to develop the disease. There are two main dif�-
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†Corresponding author: mirko.pieropan@polito.it

culties in this task: (i) typically genes act in a combinatorial
and nonlinear manner and (ii) individual samples turn out to
be statistically very correlated.

Historically, the problem of sparse feature selection in
classi�cation tasks has been divided into two complementary
computational methods [2]: (i) wrappersthat exploit the learn-
ing mechanism to produce a prediction value related score
for the sought signature and (ii)Þlterswhere the signature
extraction is a data preprocessing, typically unrelated to the
classi�cation task.

From the point of view of information theory, the problem
of sparse feature selection in classi�cation is strictly related
to compressive sensing (CS), one of the most studied methods
for data acquisition, with interesting applications in several
other research �elds [4,5]. CS was originally proposed as a
new low-rate signal acquisition technique for compressible
signals [4,6,7] and is formulated as follows: givenM < N,
a vectorz � RM, and a linear operator of maximal rankX �
RM× N often referred to as themeasurementor sensingmatrix,
the CS problem consists in determining the unknown sparse
vector w � RN that is linked to its compressed projectionz
by means of the linear transformationz = Xw, whereX and
z are assumed to be known. Although research in CS has still
many open challenges to face, very stringent results are known
about the general conditions for the existence and uniqueness
of the solution. Among the different algorithms that have been
proposed in order to reconstruct ef�ciently the signal, many
use techniques borrowed from the statistical mechanics of
disordered systems [8–11].

More recently, the so-called 1-bit CS (1BCS) has been
proposed as a strategy to deal with the problem of inferring
a sparse signal knowing only the sign of the data of the linear
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measurements:� = sgn(Xw), where sgn(z) is a vector with
elementszi / |zi | for zi �= 0. Besides being of interest for signal
transmission related problems where discarding the amplitude
of the signal can signi�cantly reduce the amount of informa-
tion to be stored or relayed [12,13], this problem can also be
interpreted in terms of sparse boolean classi�cation tasks. The
most widely adopted inference scheme in CS is the so-called
lasso regression orL1-norm minimization [14], as originally
proposed in the context of 1BCS in [12]. However, it is clear
that the most ef�cient solution from the point of view of
optimal dilution of the problem should be achieved by aL0
pseudonorm, where nonzero parameters are indeed penalized
independently of their nonzero value. Unfortunately, dealing
with the nonconvexL0 regularization is not so simple as it
typically leads to phase transitions that make the problem
computationally intractable. A practical solution to the prob-
lem is to restrict the space of parameters to a discrete set,
where effectively theL0 pseudonorm is equivalent to the more
amenableL1 case [15–19]. As far as continuous parameters
are concerned, different strategies have been proposed. First,
from the statistical physics community side, an approach pur-
suing this direction consists in a perceptron the continuous
parameters of which are masked by boolean variables mim-
icking dilution [20–23]. Attempts to characterize theoretically
the phase space diagram and the structure of the transition
through the replica method have been reported in [24–26].
Variations of the generalized approximate message passing
technique (GAMP) were employed in [27], as it provides a
tractable and ef�cient way to perform minimum mean squared
error (MMSE) estimation on the variables to be retrieved
when the matrix of patterns is large and Gaussian independent
and identically distributed (i.i.d.). However, for more gen-
eral pattern matrices, GAMP convergence is not guaranteed,
which has led to the extension of algorithms of the vector
AMP (VAMP) type [28] to generalized linear models [29,30],
including perceptron learning.

On the computer science side, many other algorithms for
1BCS combining the enforcement of sparsity and of sign
consistency constraints were also proposed, building upon
analogous algorithms developed for standard CS. Examples
of methods for error-free sparse signal retrieval from one-bit
quantized measurements include greedy approaches which
iteratively determine the most appropriate sparse support
given the sign measurements, such as matching sign pursuit
[31], as well as binary iterative hard thresholding [32], where
anL1-based convex consistency-enforcing objective function
minimization is alternated with a thresholding operation that
selects theK largest elements. The problem of noisy 1BCS
was addressed, for instance, in [33–35]. However, among
these examples, only [35] proposes an algorithm which does
not require the prior knowledge of the number of corrupted
sign measurements. Here, the one-bit measurement errors
are modeled by introducing a sparse vectors the nonzero
components of which produce the sign mismatches as� =
sgn(Xw + s). The algorithm attempts to identify the sign
errors and to retrieve the sparse signalw using a variational
expectation-maximization (EM) based inference scheme.

In this paper we propose awrapper strategy where both
the variable selection and the classi�cation tasks are simulta-
neously performed through expectation propagation (EP), an

iterative scheme to approximate intractable distributions that
was introduced �rst in the �eld of statistical physics [36,37]
and shortly after in the �eld of theoretical computer science
[38]. In analogy to what was presented in [39] in the context
of sampling the space of high dimensional polytopes, we
show that, by approximating the computationally intractable
posterior distributionP(w|� , X) through a tractable multivari-
ate probability densityQ(w|� , X), we are able to solve both
ef�ciently and accurately the 1BCS problem. We compare our
results to those obtained from the AMP and VAMP based
schemes proposed in [27] and [30], respectively, and to those
given by the EM based approach of [35]. We provide the
factor graphs associated with these algorithms in Fig.1. We
show through simulations that one of the main strengths of the
EP-based approach is that it is effective on a wider family of
measurement matrices with respect to other relatively similar
algorithms such as VAMP and AMP.

The paper has the following structure: after this introduc-
tion, in Sec.II we de�ne the problem, and introduce the EP
algorithm. In Sec.III we present extensive numerical simu-
lations both in the noiseless and noisy case. Here both i.i.d.
and correlated measurement matrices are analyzed. Finally, in
Sec.IV we summarize the results of the paper and draw the
conclusions.

II. METHODS

A. The diluted perceptron as a linear estimation problem and
its statistical mechanics setup

We consider a student perceptron withN input units and
continuous weightsw � RN. We assume that the connections
are diluted and that only a fraction� of them are nonzero.
We also assume thatM real-valued patternsx� � RN are
presented to the perceptron and that a binary label� � , � =
1, . . . , M has already been assigned to each of them as a
result of the classi�cation performed by a teacher perceptron
with sparse continuous weightsB. The task of the student
perceptron is to learn the input-output association based on the
examples (x� , � � ), � = 1, . . . , M provided by the teacher:

� � = sgn(wT x� ), � = 1, . . . , M, (1)

where we use the convention that sgn(0)= 1. For each exam-
ple � , the rule (1) is equivalent to the condition

�
� � xT

�

�
w � 0 . (2)

We now introduce the auxiliary variables,y� := (� � xT
� )w, and

the data matrix

X� =

�

�
�
�

� 1xT
1

� 2xT
2

...
� MxT

M

�

�
�
	 . (3)

Through the previous de�nitions, we can de�ne the following
linear estimation problem:

y = X� w, (4)

where the variables to be inferred are bothy andw. As we
will show below, the positivity constraints in Eq. (2) will be
enforced in terms of a prior distribution on they variables.
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(a) (b)

(c)

(d)

FIG. 1. Factor graphs associated with (a) EP, (b) AMP, (c) grVAMP, and (d) R1BCS. Variable nodes are represented as circles and function
nodes are represented as squares and the notation has been made consistent with that employed in this paper. (a) Tilted distributions in EP
(see Sec.II B for more details), where� denotes the exact prior and� the approximated Gaussian prior factors in the EP approximation.
(b) Factor graph related to AMP. In 1bitAMP,� are spike-and-slab priors andP(� µ |w, xµ ) = � (� µ xT

µ w). (c) Factor graph related to the
grVAMP approximation, where we have emphasized the VAMP and MMSE modules composing the algorithm,� are the same as in (b),
andP(� µ |zµ ) = � (� µ zµ ). In (b) and (c),� denotes either the pseudoprior in Eq. (8) or the one in Eq. (10). (d) Factor graph of the function
appearing in the lower bound maximized in R1BCS. The distributionsp(wi |	 i )p(	 i ) and p(sµ |
 µ )p(
 µ ) are hierarchical Gaussian-inverse-
Gamma priors assigned to the weights and to the noise componentssµ , respectively, appearing in� = sgn(Xw + s). The quantities	 i and
 µ

are hyperparameters, whereas the quantities� µ are variational parameters optimized in the maximization step of the algorithm.
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The linear estimation problem expressed in Eq. (4) can be
addressed in a Bayesian setting: by introducing the variable
vector h = (w1, . . . , wN, y1, . . . , yM )T and the energy func-
tion,

E(w, y) = � y Š X� w� 2 = hT EŠ1h,

EŠ1 =



XT
� X� ŠXT

�
ŠX� I

�
, (5)

the likelihood of the set ofN weights of the perceptron can
be expressed as the Boltzmann distribution associated with
E(w, y), which reads

L (w) = P(� 1, . . . , � M|w) =
1
Z

eŠ
 E(w,y), (6)

where, from a statistical physics standpoint,
 plays the role
of an inverse temperature. In the absence of noise, it is conve-
nient to consider the zero temperature limit of this likelihood

L (w)

 ��
ŠŠŠ� � (y Š X� w), where� (x) denotes the Dirac delta

distribution.
We also introduce prior distributions in order to encode

the constraints to which the variableswi , i = 1, . . . , N, and
y� , � = 1, . . . , M, are subject. The sparsity assumption on the
weightsw is expressed in terms of a spike-and-slab prior [40]:

� (wi ) = (1 Š � )� (wi ) + �

�
�

2
eŠ

� w2
i

2 , i = 1, . . . , N. (7)

If the labels of the teacher are not corrupted by noise, then
the auxiliary variablesy need to ful�ll the positivity constraint
(2), which can be expressed in terms of the pseudoprior:

� (y� ) = � (y� ), � = 1, . . . , M. (8)

On the other hand, if noise at the output of the teacher percep-
tron is present, one may assume that the labels provided by
the teacher perceptron are assigned according to the following
process [41],

�̃ =


sgn(BT x) with probability �
Šsgn(BT x) with probability 1Š �,

(9)

and that the student receives the altered examples
(xµ , �̃ µ ), µ = 1, . . . , M. In this case, if the process that
�ips the labels is known, then it may be encoded in the
pseudoprior� as follows:

� (yµ ) = �� (yµ ) + (1 Š � )� (Šyµ ). (10)

In general, the parameters� , � , and � are not known and
need to be learned by the student perceptron in the training
phase. Finally, by Bayes’s rule, the posterior distribution of
both weights and auxiliary variables reads

P(w, y) =
1
ZP

� (y Š X� w)
N�

i= 1

� i (wi )
M�

� = 1

� � (y� ). (11)

B. Learning the weights via expectation propagation

Zero temperature formulation

We wish to infer the values of the weights by estimating the
expectation values of the marginals of the distribution (11),
as this strategy minimizes the associated mean squared error.
However, the latter marginalizations are intractable and we

need to resort to approximation methods. Here we propose
an expectation propagation scheme based on the zero tem-
perature formulation presented in [42] in order to solve the
problem.

Starting from the linear systemX� w = y, we notice that it
can be written as the homogeneous system

Gh = 0, (12)

whereG = (ŠX� |I ) andI is theM × M identity matrix.
The intractable posterior distribution reads

P(h) =
1
ZP

� M (Gh)
�

i� W

� i (hi )
�

� � Y

� � (h� ), (13)

whereW = { 1, . . . , N}, Y = { N + 1, . . . , N + M} and� M (z)
denotes theM-dimensional Dirac delta distribution. We intro-
duce Gaussian approximating factors,

� i (hi ) = exp



Š
(hi Š ai )2

2di

�
, (14)

and a fully Gaussian approximation of the posterior distribu-
tion (13), in which all priors� and� are replaced by factors
of the form (14):

Q(h) =
1

ZQ
� M (Gh)

�

i� W

� (hi ; ai , di )
�

� � Y

� (h� ; a� , d� ). (15)

Q(h) can be equivalently expressed as

Q(h) =
1

ZQ
� M (Gh) exp



Š

1
2

(w Š w̄)T � Š1
W (w Š w̄)

�
,

(16)
where the covariance matrix� W and the mean̄w in Eq. (16)
are given, respectively, by

� Š1
W =

�

i� W

1
di

eieT
i + XT

�

�
�

i� Y

1
di

eieT
i

�

X� , (17)

and by

w̄ = � W

�
�

i� W

ai

di
ei +

�

i� Y

ai

di
XT

� ei

�

. (18)

Here,ei denotes theith basis vector of the standard basis of
RN (resp.RM) if i � W (resp.i � Y). Notice that the marginal
distributions ofQ(h) for each variablehi are also Gaussian,
with means̄hi given by

h̄i =


w̄i , i � W

eT
i X� w̄, i � Y,

(19)

and variances� ii given by

� ii =


eT
i � Wei , i � W,

�
eT

i X�
�
� W

�
XT

� ei
�
, i � Y,

(20)

where fori � Y we took advantage of the linear constraints
y = X� w. Notice that the full (N + M) × (N + M) covari-
ance matrix� (the diagonal entries of which are de�ned in
the previous equation) reads

� =



� W � WXT
�

X� � W X� � WXT
�

�
. (21)
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We now introduceN + M tilted distributionsQ(i)(h) for i = 1, . . . , N + M. In particular, ifi � W, we have

Q(i)(h) =
1

ZQ(i)
� M (Gh)� i (hi )

�

i� W\{ i}

� (hi ; ai , di )
�

� � Y

� (h� ; a� , d� ), (22)

whereas, ifi � Y,

Q(i )(h) =
1

ZQ(i)
� M (Gh)� i (hi )

�

i� W

� (hi ; ai , di )
�

� � Y\{ i}

� (h� ; a� , d� ). (23)

The tilted distributions can be expressed as the product of one of the priors and a Gaussian cavity distribution:

Q(i )(h) = � i (hi )Q̃(i )(h), (24)

where� � { �, � } and we have denoted the cavity distribution associated with theith variable byQ̃(i ):

Q̃(i )(h) =
1

ZQ(i)
� M (Gh) exp



Š

1
2

(w Š w̄(i ) )T �
� (i )

W

� Š1
(w Š w̄(i ) )

�
. (25)

A factor graph representation of the tilted approximation to the posterior distribution is given in Fig.1(a).
The cavity covariance matrices are given by the following expressions:

�
� (i )

W

� Š1
=

�
�

�

�
j � W\{ i}

1
dj

ej eT
j + XT

�

� �
j � Y

1
dj

ej eT
j

�
X� , if i � W,

�
j � W

1
dj

ej eT
j + XT

�

� �
j � Y\{ i}

1
dj

ej eT
j

�
X� , if i � Y.

(26)

whereas the cavity means read

w̄(i ) =

�
�

�

� (i )
W

� �
j � W\{ i}

aj

dj
ej +

�
j � Y

aj

dj
XT

� ej

�
, if i � W,

� (i )
W

� �
j � W

aj

dj
ej +

�
j � Y\{ i}

aj

dj
XT

� ej

�
, if i � Y.

(27)
Similarly to what we obtained for the marginals of Eq. (16),

we have that the marginals of Eq. (25) are Gaussian distribu-
tions with means

h̄(i )
i =


w̄(i )

i , if i � W

eT
i X� w̄(i ), if i � Y,

(28)

and variances

� (i )
ii =

�
eT

i � (i )
W ei , if i � W,

�
eT

i X�
�
� (i )

W

�
XT

� ei
�
, if i � Y.

(29)

The yet to be determined meansa and variancesd of
the Gaussian approximating factors (14) are determined by
minimizing the Kullback-Leibler divergenceDKL(Q(i )||Q) for
all i = 1, . . . , N + M. It can be shown that each of these
minimizations is equivalent to matching the �rst and second
moments of the tilted and of the fully Gaussian approximated
distributions:

�hi 	Q(i ) = � hi 	Q,
�
h2

i

�
Q(i ) =

�
h2

i

�
Q. (30)

The EP update equations follow from the moment match-
ing conditions (30). In particular, recalling that the marginals
of Q(h) are Gaussian distributions, one can expressai anddi
in terms of the means and variances ofQ(i ) and in terms of
the means and variances of the associated tilted distributions.
Indeed, using the fact that the product of Gaussians is a Gaus-
sian and the moment matching conditions, we obtain the EP

update rules for the variancesd and the meansa:

di =

�
1

�
h2

i

�
Q(i ) Š � hi 	 2

Q(i )

Š
1

� (i )
ii

� Š1

, (31)

ai = � hi 	Q(i ) +
di

� (i )
ii

�
�hi 	Q(i ) Š h̄(i )

i

�
, (32)

for all i = 1, . . . , N + M. Following [39,42], the cavity vari-
ances� (i )

ii and means̄h(i )
i appearing in Eqs. (31) and (32) can

be computed in terms of the variances� ii and means̄hi using
a low rank update rule:

� (i )
ii =

� ii

1 Š 1
di

� ii
, (33)

h̄(i )
i =

h̄i Š � ii
ai
di

1 Š � ii
di

, (34)

which allows us to perform only one matrix inversion per
iteration.

EP repeatedly estimates the vectorsa andd until a �xed
point is eventually reached. From a practical point of view, the
algorithm returns the means and the variances of the marginal
tilted distributions as soon as the convergence criterion

� t := max
i

� �
��hi 	Q(i )

t
Š � hi 	Q(i )

tŠ1

�
� +

�
��h2

i

�
Q(i )

t
Š � h2

i 	Q(i )
tŠ1

�
�� < � stop

(35)
is ful�lled, where t denotes the current iteration and� stop
is a convergence threshold. In particular, the posterior mean
value of weights learned by the student perceptron is esti-
mated as given by�wi 	Q(i ) , with a standard deviation equal to�

�w2
i 	Q(i ) Š � wi 	 2

Q(i) .

The zero temperature formulation of EP presented in this
section is computationally advantageous compared to the
�nite temperature one presented in AppendixA, as its com-
plexity is dominated by the computation of theN2 scalar
products between vectors of lengthM that appear in the
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second term of the right-hand side of Eq. (17) and by the
inversion of theN × N matrix given by the same equation,
resulting in a costO(MN2 + N3), rather thanO[(N + M)3].
In general, in order to reduce the computational burden related
to the inversion of the covariance matrix (17), we perform a
Cholesky decomposition before inverting. For more details
about the �nite temperature formulation of EP, we refer to
AppendixA.

C. Moments of the tilted distributions

1. Moments of the spike-and-slab prior

In this section, we shall compute the �rst and second
moments of the leave-one-out distributions when the prior is
of the spike-and-slab type. We recall the expression of the
spike-and-slab prior already introduced in Eq. (7) for the sake
of convenience:

� (hk) = (1 Š � )� (hk) + �

�
�

2
eŠ 1

2 � h2
k , k = 1, . . . , N.

(36)
The marginal tilted distribution of each weight of the student
perceptron reads

Q(k)(hk) =
1

ZQ(k)
Q̃k(hk)� (hk), (37)

where we have introduced the marginalized cavity Gaussian
distributionQ̃k:

Q̃k(hk; µ k, � k) =
1



2 � k

eŠ (hkŠµk)2

2� k . (38)

From Eq. (37), computing the partition function of the tilted
distributionQ(k) yields

ZQ(k) = (1 Š � )
1



2 � k

eŠ
µ2

k
2� k +

�



2

�
�

1 + �� k
eŠ 1

2

�µ 2
k

1+ �� k .

(39)
Finally, the �rst moment and the second moment of the same
distribution are given by

�hk	Q(k) =
1

ZQ(k)

�



2
eŠ 1

2

�µ 2
k

1+ �� k

�
�

1 + �� k

µ k

1 + �� k
, (40)

and by

�
h2

k

�
Q(k) =

1
ZQ(k)

�



2
eŠ 1

2

�µ 2
k

1+ �� k

�
�

1 + �� k



� k + �� 2

k + µ 2
k

(1 + �� k)2

�
,

(41)
respectively.

2. Moments of the theta pseudoprior

We now repeat the same reasoning for the case of the theta
pseudoprior, which was de�ned as

� (hk) = � (hk), k = N + 1, . . . , N + M. (42)

The associated tilted distribution of thekth variable is given
by

Q(k)(hk) =
1

ZQ(k)
Q̃k(hk)� (hk), k = N + 1, . . . , N + M,

(43)
where the expression for̃Qk is the same as in Eq. (38). The
normalization of (43) is the partition function of the tilted
distribution and reads

ZQ(k) =
1
2

 
1 + erf



µ k

2� k

�!
, (44)

where erf denotes the error function, de�ned as

erf(x) =
2





" x

0
eŠz2

dz. (45)

Computing the �rst moment of the marginal tilted distribution
leads to the expression

�hk	 = µ k +

�
� k

2

eŠ µ 2
k

2� k

�
� µ k


� k

� = µ k



1 +

R(	 k)
	 k

�
, (46)

where� (x) = 1
2[1 + erf( x


2
)] is the cumulative density func-

tion of the standard normal distribution,R(x) = 1

2

eŠx2/ 2

� (x) ,
and	 k = µ k


� k
. Finally, concerning the second moment of the

marginal tilted distribution, one obtains
�
h2

k

�
= µ 2

k + � k + µ k

#
� kR(	 k), (47)

implying that the variance ofhk with respect to thekth
marginal tilted distribution can be expressed in a compact way
by

Var(hk) = � k[1 Š 	 kR(	 k) Š R2(	 k)]. (48)

3. Moments of the theta mixture pseudoprior

When the pseudoprior� is of the theta mixture type,

� (hk) = �� (hk) + (1 Š � )� (Šhk), 0 � � � 1,

k = N + 1, . . . , N + M, (49)

we have for the partition functionZQ(k) of the tilted distribu-
tions (43)

ZQ(k) = �
 

1
2

erfc



Š
µ k

2� k

�!
+ (1 Š � )

 
1
2

erfc



µ k

2� k

�!
=

�
 � k

2

 
1
2

+



� Š
1
2

�
erf



µ k

2� k

�!
. (50)

For the �rst moment, one obtains

�hk	Q(k) =
1

ZQ(k)

�
�



2 � k

$

� ke
Š

µ2
k

2� k + µ k

�
 � k

2
erfc



Š

µ k

2� k

� %

+
1 Š �



2 � k

$

ŠeŠ
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k
2� k + µ k

�
 � k

2
erfc
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2� k

� %&

= µ k +

�
2� k


(2� Š 1)eŠ

µ2
k

2� k

� erfc
�
Š µ k


2� k

�
+ (1 Š � )erfc

� µ k

2� k

� ,

(51)
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and the second moment with respect to the marginal tilted distribution (43) reads

�
h2

k

�
Q(k) =

1
ZQ(k)

�
�



2 � k

$

µ k� ke
Š

µ2
k

2� k +

�
 � k

2

�
µ 2

k + � k
�
erfc



Š
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+
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k

2� k +
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 � k

2

�
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µ k
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� %&

= µ 2
k + � k + µ k

�
2� k


(2� Š 1)eŠ

µ2
k

2� k

� erfc
�
Š µ k


2� k

�
+ (1 Š � )erfc

� µ k

2� k

� . (52)

III. RESULTS

A. Sparse perceptron learning from noiseless examples

In this section, we will present some results obtained from
numerical simulations in the presence of noiseless examples,
both in the case where patterns are i.i.d. and in a simple
case of correlated patterns. For the sake of simplicity, in all
the situations described in the following, we have chosen a
Bayes-optimal setting, where the prior information provided
by the spike-and-slab prior mirrors the actual distribution of
the weights to be retrieved.

First, we performed numerical experiments with i.i.d. pat-
terns drawn from a Gaussian distribution having zero mean
and unit variance. As a performance measure, we consider the
mean squared error between the normalized weights of the
student perceptron at the end of the learning process and those
of the teacher perceptron:

MSE(÷w, ÷B) =
1
N

N�

k= 1

(w̃k Š B̃k)2, (53)

where ÷w = w/ � w� are the rescaled weights of the student
and ÷B = B/ � B� denote those of the teacher. In our results,
this metric is expressed in decibel (dB) and used to compare
expectation propagation to the 1-bit approximate message
passing (1bitAMP) algorithm introduced in [27] and to the
generalized vector approximate message passing (grVAMP)
algorithm proposed within the uni�ed Bayesian framework
of general linear models published in [30], which the au-
thors show to yield equivalent results to the VAMP algorithm
for the generalized linear model described in [29]. We refer
to Figs. 1(b) and 1(c) for the factor graphs related to the
1bitAMP and to the grVAMP approximations, respectively.
The computational cost of 1bitAMP isO(N2), while the cost
of grVAMP is O(N3), as it involves a one-time initial singular
value decomposition ofX. However, since this computation is
not needed again in the following part of the algorithm, its cost
can be neglected for small enough values ofN. The remaining
part of the grVAMP scheme shares the same per iteration
computational cost of 1bitAMP, as both are dominated by a
matrix-vector product.

We considered the average of the MSE (53) overNsamples=
100 simulations. The simulations correspond to sparse per-
ceptron learning of different instances of the weights of the
teacher perceptron, each from a different set of i.i.d. Gaussian
patterns fed to the student perceptron. We considered the case
in which the total number of weights isN = 128 and their

density level is �xed to� = 0.25. The Gaussian part of the
spike-and-slab prior was set to a standard Gaussian distri-
bution in 1bitAMP, EP and grVAMP. The EP convergence
threshold was set to� stop = 10Š4 and the value of the damping
parameter of the EP algorithm was set equal to 0.9995 (al-
though good results can be obtained using a lower damping
too, e.g., 0.99). The results of the simulations for different
values of	 are reported in Fig.2 and show that EP, 1bitAMP,
and grVAMP based learning from i.i.d. Gaussian patterns have
roughly the same performance regardless of the speci�c value
of 	 . The convergence criterion was 10Š4 in the 1bitAMP
simulations and 10Š8 in the grVAMP simulations. All the
simulations performed using EP, 1bitAMP, and grVAMP con-
verged within the thresholds we considered. The error bars in
Fig. 2 were estimated as� /

#
Nsamples, where� denotes the

sample standard deviation of the MSE.
We also considered the problem of sparse perceptron learn-

ing from correlated patterns drawn from a multivariate normal
distribution, in the simple case where the mean ism = 0 and

FIG. 2. MSE resulting from sparse weight learning from i.i.d.
patterns using EP, 1bitAMP, and grVAMP based estimation as a
function of 	 . The parameters considered for the perceptron are
N = 128 and� = 0.25 and the number of instances isNsamples= 100.
All simulations converged and the MSE shown is averaged over all
the considered instances. The error bars are estimated as� /

#
Nsamples,

where� is the sample standard deviation of the MSE computed over
all the instances.
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TABLE I. Fraction of converged trials over a set of 100 different instances of the weights of the teacher perceptron and of the training set
of examples. The patterns were sampled from the multivariate Gaussian distribution with covariance matrix (54). The number of variables is
N = 128 and the density of the weights of the teacher is� = 0.25.

(a)N = 128 (b)N = 256

	 fEP � fEP fgrVAMP � grVAMP 	 fEP � fEP fgrVAMP � grVAMP

0.5 1 0 1 0 0.5 0.99 0.01 1 0
1.0 1 0 0.96 0.02 1.0 0.73 0.04 0.99 0.01
1.5 1 0 0.89 0.03 1.5 0.92 0.03 0.94 0.02
2.0 1 0 0.83 0.04 2.0 0.96 0.02 0.88 0.03
2.5 1 0 0.87 0.03 2.5 0.88 0.03 0.83 0.04
3.0 1 0 0.87 0.03 3.0 0.88 0.03 0.73 0.04
4.0 1 0 0.85 0.04 4.0 0.92 0.03 0.80 0.04
5.0 1 0 0.82 0.04 5.0 0.94 0.02 0.76 0.04
6.0 1 0 0.80 0.04 6.0 0.96 0.02 0.70 0.05

the covariance matrix is constructed according to

S = YT Y + � , (54)

whereY � Ru× N is an i.i.d. matrix with entries drawn from a
standard univariate Gaussian distribution and� is a diagonal
matrix the eigenvalues of which are given by the absolute
value of i.i.d. random entries drawn from the same distribu-
tion. By construction, this matrix is symmetric and positive
de�nite and, therefore, is a proper covariance matrix. The
diagonal matrix� is added in order to ensure thatS has full
rank. As an extreme case, we chooseu = 1 for the matrixY.

We �nd that even in this case the student perceptron is able
to estimate the weights of the teacher, although, under the
same values of the parametersN, � , and	 of the model and
under the same values of the EP parameters (i.e., damping,
� stop, and maximum number of iterations), the accuracy of
the estimation is lower than the one achieved by learning
from i.i.d. Gaussian patterns, as one might expect. Still, in the
presence of the correlated patterns considered here, expecta-
tion propagation based learning proves to be advantageous as
compared with other algorithms for 1-bit compressed sensing
such as 1bitAMP, the estimates of which of the means and
variances of the weights to be retrieved diverge. In addition,
in the same situation, EP outperforms grVAMP based learn-
ing, as shown in Fig.6 for the set of parametersN = 128
and � = 0.25. The convergence thresholds of the grVAMP
and of the EP algorithms were set to the same values as in
the case of learning from i.i.d. Gaussian patterns and further
lowering the value of the threshold parameter of grVAMP
did not result in a noticeable improvement of the grVAMP
results. In the case of EP, the damping factor was set to 0.999
and the maximum number of iterations for convergence was
50 000. The fraction of converged trials is shown in TableI
for both algorithms in the case whereN = 128 and� = 0.25.
The EP led student perceptron is more accurate at determining
the nonzero weights than the grVAMP led counterpart, as
shown by the receiver operating characteristic curves (ROC
curves) in Fig.3(a) and by the sensitivity plots of Fig.3(b).
In order to construct these curves, each weight of the teacher
was assigned a score given by its probability of being nonzero
as estimated by EP and grVAMP. The weights of the teacher
were sorted in decreasing order according to these probabili-

ties, which are given by

P�= 0
k =

$

1 +



1
�

Š 1
� �

1 + �� k

�� k
eŠ

µ2
k

2� k(1+ �� k )

%Š1

. (55)

In the case of EP,µ k and � k, for k = 1, . . . , N, are the EP
cavity means and variances, whereas, in the case of grVAMP,
µ corresponds to the VAMP quantityr1k and � k = � Š1

1k ,
where � 1k is the quantity that parametrizes the denoiser in
VAMP [28] and we used the standard VAMP notation forr1k
and � 1k, for which the indexk refers to the number of the
current iteration. In both cases,� denotes the density param-
eter of the spike-and-slab prior. Interestingly, the discrepancy
between the accuracy of the two algorithms becomes larger
as the number of patterns increases and, as a consequence,
the difference between the mean squared errors of the two
algorithms increases, as shown in Fig.3(c), implying that the
EP and the grVAMP approximations are very different in this
Gaussian correlated pattern regime. This fact is con�rmed
by the heterogeneity of the variancesdk, k = 1, . . . , N of
the approximating univariate Gaussian factors� k when one
considers the EP solution for instances where both EP and
grVAMP converge. More precisely, it can be seen that the
parametersdk span several orders of magnitude, contrary to
VAMP where these variances are constrained to be equal.
In each plot in Fig.3, we have shown the average of the
quantities considered over the set of theNconv instances for
which each algorithm achieved convergence. Accordingly, the
error bars were estimated as� /



Nconv, where� denotes the

standard deviation over the same set of instances.
A useful additional feature of the EP-based learning ap-

proach is the possibility to learn iteratively the value of�
during the estimation of the weights of the teacher, as, unlike
EP, many algorithms for 1-bit compressed sensing assume the
density of the signal to be givena priori. The estimation of
the density parameter is achieved by minimizing the EP free
energy with respect to� and yields good results as long as
the number of the patterns presented to the student is large
enough. We refer to the Appendices for details concerning
the EP free energy, its expression for the sparse perceptron
learning problem, and free energy optimization based learning
of the parameters of the prior. We mention here that a similar
expectation maximization based strategy can be implemented
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FIG. 3. Sparse perceptron learning from correlated patterns sampled from a multivariate Gaussian distribution. The values of the parameters
are speci�ed in each panel and we setu = 1. Comparison between grVAMP and EP based learning. (a) ROC curves. (b) Sensitivity plots. For
reference, in (a) and (b) the case of ideal variable selection by the teacher perceptron that provided the examples is also shown. (c) Mean
squared error in dB. In each plot, the mean values and the standard deviations are computed over the set of allNconv instances for which
convergence was achieved. The error bars are estimated as� /



Nconv, where� is the sample standard deviation over the same set of instances.

also in the case of 1bitAMP and grVAMP in order to estimate
the density parameter� .

In order to show that our approach allows one to estimate
the dilution level of the teacher perceptron, we performed a set
of Nsamples= 100 EP simulations on a system withN = 128
and � = 0.25, where the density parameter� 0 of the spike-
and-slab prior assigned to each weight variable was randomly
initialized by sampling its value from a uniform distribution
over the interval 0.05 � � 0 � 0.95 and where the learning
rate was chosen to be�� = 10Š5. We show our results in
TableII . For each value of	 , we show the average value� L of
the density estimate over all samples and its associated statisti-
cal uncertainty, which was computed as�� L = � � L /

#
Nsamples,

as for these values of the parameters all simulations con-
verged. We also show the relative difference��/� between
the true value of the density and the estimated one. Since

�� � �� L, we omit the statistical uncertainty associated with
�� . Finally, we notice that, even when learning from corre-
lated patterns constructed as described above, the student is
able to estimate the density level of the weights of the teacher
perceptron quite accurately, provided that a suf�cient number
of patterns is provided to the student perceptron. In TableII ,
we give an example of this fact when the teacher perceptron
hasN = 128 weights and density� = 0.25.

B. Sparse perceptron learning from a noisy teacher

We analyzed the performance of EP based sparse per-
ceptron learning when a small fraction of the examples is
mislabeled. The student perceptron is given thea priori
information that a certain fraction of the labels is wrongly as-
signed. As in the noiseless case, we consider a Bayes-optimal
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TABLE II. Learning of the density� of the weights of the teacher for a perceptron with parametersN = 128 and� = 0.25. The average
and the standard deviation of the learned value of� at convergence over all the trials for which convergence was achieved during the training
process are denoted by� L and�� L, respectively. In each trial, the initial condition� 0 was drawn uniformly from the interval 0.05 � � 0 � 0.95.

	 i.i.d. patterns:� L ± �� L i.i.d. patterns:��/� Patterns from MVN:� L ± �� L Patterns from MVN:��/�

2 0.191± 0.003 0.236 0.161± 0.004 0.341
3 0.220± 0.002 0.121 0.196± 0.004 0.206
4 0.234± 0.002 0.066 0.207± 0.003 0.182
5 0.240± 0.002 0.042 0.214± 0.003 0.144
6 0.242± 0.001 0.031 0.223± 0.003 0.115

setting and therefore we provide the student with sucha priori
knowledge using the theta mixture pseudoprior introduced in
Eq. (49).

In order to test and evaluate the performance of EP-guided
learning in this situation, we compared EP with grVAMP, in
which we introduced a theta mixture measure as done in EP,
and with the R1BCS algorithm for 1-bit compressed sensing
with sign-�ip errors proposed by Liet al. [35], which is based
on an expectation maximization scheme involving both the
signal to be retrieved and the noise. In grVAMP, the slab part
of the spike-and-slab prior was set to a standard Gaussian
distribution. When using R1BCS, we rescaled the pattern
matrix so that each column had unit norm and we included
a convergence threshold� R1BCS = 10Š4. Thus, the R1BCS
iterations stop when the estimatewR1BCS of the weights of
the teacher is such that� wR1BCSŠ wold

R1BCS� < � R1BCS. In each
experiment, a given numberKlabel = (1 Š � )M of labels were
�ipped, where� is the fraction of unchanged labels. In the EP
simulations a damping factor equal to 0.99 and a convergence
threshold� stop = 10Š4 were used. The parameter� of the
spike-and-slab prior was set equal to 104.

We �rst considered the case of i.i.d. Gaussian patterns
drawn from a Gaussian distribution with zero mean and unit
variance and, subsequently, the case of correlated patterns
drawn from the zero mean multivariate Gaussian distribu-
tion with the covariance matrix expressed in (54), which we
already introduced in the noiseless case. For both kinds of
patterns, we conducted numerical experiments on a set of 100
different instances. In the case of i.i.d. patterns, convergence
over all instances was achieved for all three algorithms within
the convergence thresholds speci�ed. The same was true in
the case of correlated patterns for R1BCS and for EP, whereas
grVAMP exhibited a failure rate up to 15% in terms of con-
vergence in the correlated case.

In order to assess the variable selection capabilities of EP
when attempting to learn the weights of the teacher from these
kinds of patterns in the presence of mislabeled examples, we
computed the ROC curves and the sensitivity plots related
to both the former [Figs.4(a) and 4(b), respectively] and
to the latter kind of patterns [Figs.4(c) and 4(d), respec-
tively]. Such ROC curves and sensitivity plots are associated
with the weights of the student after the training phase was
completed and were obtained in the case where the number
of weights wasN = 128, the density of the weightsB of
the teacher was� = 0.25, and the fraction of uncorrupted
labels was� = 0.95. The ordering criterion for the weights
B adopted in the ROC curves in Figs.4(a) and 4(c) and in
the sensitivity plots in Figs.4(b) and4(d) was based on the

absolute value of the weightsw of the student. In the case
of EP and grVAMP, we also plotted the ROC and sensitivity
curves according to the sorting criterion based on the score
expressed in Eq. (55), but the results did not exhibit noticeable
differences with respect to those obtained using the previous
sorting criterion, as the curves in Fig.4 mostly overlap. The
ROC curves and sensitivity plots associated with EP and
grVAMP mostly exhibit similar values for the true positive
ratio—except for large	 , where the EP values are slightly
smaller—and outperform signi�catively the ones related to
R1BCS in the case of i.i.d. patterns, especially at low values
of 	 . This is con�rmed by the values of the areas under the
curves, as shown in TableIII , where the maximum relative
discrepancy between the areas under the ROC curve (AUC)
is 0.008 when considering EP and grVAMP and 0.03 when
considering EP and R1BCS. However, in the case of corre-
lated patterns, the ROC curves and sensitivity plots related to
EP are mostly comparable to those associated with R1BCS
and yield values of the true positive rate that are systematically
larger than the ones of grVAMP, implying that the variable
selection properties of EP tend to be affected to a far lesser
extent than those of grVAMP in this regime, as con�rmed by
the AUC reported in TableIII and analogously to what was
observed in the noiseless case. In this case, the maximum
relative discrepancy between the AUC of EP and of R1BCS is
0.05 and is attained at the lowest value of	 , namely,	 = 0.5,
whereas, when considering EP and grVAMP, the relative dis-
crepancy is largest at large values of	 , its maximum being
0.06 at	 = 6. The mean squared error values associated with
the normalized student and teacher are plotted in Fig.5 for
both � = 0.95 and 0.9 and their values are shown both in dB
(main plots) and using a linear scale (insets). In particular,
the MSE values reported in Fig.5(a)correspond to the ROC
curves in Fig.4(a). While the MSE of EP is de�nitely larger
than that of grVAMP at large	 in the presence of i.i.d. patterns
[Figs.5(a)and5(b)], it should be noted that the differences of
the values involved are very small and are not noticeable on
a linear scale. Since the EP approximation is richer than the
VAMP one, which, in turn, is due to the fact that EP reduces
to VAMP when the approximate univariate prior factors are
constrained to have the same variance, and because of the very
small errors and differences observed, we believe that such
observed discrepancy between grVAMP and EP in the i.i.d.
pattern regime at large	 is due to numerical effects rather
than to intrinsic limitations of the EP scheme. Instead, this is
not the case for the differences displayed by the MSE related
to EP and grVAMP in Fig.5(c)for � = 0.95, which are clearly
noticeable on a linear scale as well. The discrepancy involved
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FIG. 4. Sparse perceptron learning from i.i.d. patterns sampled from a standard Gaussian distribution and from correlated patterns
sampled from a multivariate Gaussian distribution, withN = 128,� = 0.25,u = 1, � = 0.95. A fraction (1Š � ) of the labels are mislabeled.
Comparison between R1BCS, grVAMP, and EP in terms of their ROC curves (a, c) and of their sensitivity plots (b, d). For reference, the case
of ideal variable selection by the teacher perceptron that provided the examples is shown. The plotted quantities are the mean values computed
over the set of allNsamplesinstances and the error bars are estimated as� /

#
Nsampleswhere� denotes the sample standard deviation over all the

instances considered.

TABLE III. (a) AUC scores associated with the ROC curves shown in Fig.4(a), which correspond to EP, grVAMP, and R1BCS based
classi�cation from i.i.d. Gaussian patterns in the presence of label noise, with� = 0.95. (b) AUC scores associated with the ROC curves
shown in Fig.4(c), which correspond to EP, grVAMP, and R1BCS based classi�cation from multivariate Gaussian patterns in the presence of
label noise, with� = 0.95.

(a) AUC (i.i.d. patterns) (b) AUC (patterns from MVN)

	 AUCEP AUCgrVAMP AUCR1BCS 	 AUCEP AUCgrVAMP AUCR1BCS

0.5 0.621± 0.005 0.627± 0.005 0.595± 0.005 0.5 0.588± 0.006 0.579± 0.006 0.559± 0.005
1.0 0.706± 0.005 0.710± 0.005 0.682± 0.004 1.0 0.661± 0.005 0.628± 0.006 0.641± 0.006
1.5 0.770± 0.005 0.777± 0.005 0.746± 0.005 1.5 0.727± 0.006 0.685± 0.006 0.694± 0.006
2.0 0.806± 0.005 0.809± 0.005 0.792± 0.004 2.0 0.732± 0.007 0.696± 0.006 0.734± 0.006
2.5 0.835± 0.004 0.840± 0.004 0.824± 0.005 2.5 0.775± 0.007 0.719± 0.006 0.775± 0.006
3.0 0.860± 0.004 0.865± 0.005 0.854± 0.004 3.0 0.788± 0.007 0.742± 0.007 0.793± 0.006
4.0 0.893± 0.004 0.899± 0.004 0.887± 0.004 4.0 0.834± 0.007 0.788± 0.006 0.828± 0.005
5.0 0.913± 0.004 0.920± 0.004 0.91± 0.004 5.0 0.856± 0.006 0.807± 0.006 0.851± 0.006
6.0 0.927± 0.003 0.936± 0.003 0.923± 0.003 6.0 0.882± 0.005 0.825± 0.007 0.885± 0.005
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FIG. 5. Sparse perceptron learning from (1Š � )M mislabeled examples: comparison between EP, grVAMP, and R1BCS in terms of their
mean squared errors in the case of (a) i.i.d. Gaussian patterns,� = 0.95; (b) i.i.d. Gaussian patterns,� = 0.9; (c) Gaussian correlated patterns,
� = 0.95; and (d) Gaussian correlated patterns,� = 0.9. In all �gures,N = 128 and� = 0.25. The mean squared errors plotted are averaged
over the set of allNsamplesinstances and the error bars are estimated as� /

#
Nsampleswhere� denotes the sample standard deviation over all the

instances considered.

re�ects that observed at the level of the ROC curves shown in
Fig. 4(c). Finally, in the Gaussian correlated scenario, as soon
as the noise level affecting the labels becomes large enough,
we see that EP and grVAMP yield similar results at all values
of 	 , as shown in Fig.5(d).

Similarly to R1BCS, EP was able to correctly estimate the
noise level affecting the labels. This was achieved by sampling
the initial condition� 0 for the parameter� of the theta mix-
ture pseudoprior uniformly from the interval 0.5 < � < 1 and
performing one step of gradient descent on the EP free energy
at each EP iteration as described in AppendixC. In addition,
analogously to the noiseless case, it is possible to learn the
� parameter and we veri�ed that the two parameters can be
learned simultaneously. We show the estimated values of the
density of the weights and of the consistency level� of the
labels in the case of i.i.d. patterns in TableIV and in the case

of Gaussian correlated patterns in TableIV. We notice that,
analogously to EP, an expectation maximization scheme can
be implemented in the case of grVAMP in order to iteratively
learn the density parameter� of the spike-and-slab prior and
the� parameter of the theta mixture measure.

One important limitation of the R1BCS algorithm as com-
pared with EP (and grVAMP) is that it involves the inversion
both of a N × N matrix and of aM × M matrix at each
iteration. As a consequence, the computational complexity of
R1BCS is dominated byO[(1 + 	 3)N3] operations. There-
fore, from a computational point of view, EP is especially
advantageous as compared to R1BCS when the number of
patterns in the training set is large, as, in the EP formulation
proposed in this paper, the computational cost is of order
O[(1 + 	 )N3]. However, in the largeN regime, grVAMP will
be faster than EP (and R1BCS) as the only operation that
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TABLE IV. Values of the� parameter of the theta mixture pseudoprior estimated by the student perceptron during the training phase when
using EP to learn the weights of the teacher (a) from i.i.d. Gaussian patterns and (b) from multivariate Gaussian patterns in the caseN = 128.
The estimated value of� is denoted as� L, the true value being� = 0.95, whereas the true value of the density parameter of the spike-and-slab
prior was given by� = 0.25.

(a) i.i.d. patterns (b) Patterns from MVN

	 � L ��/� � L ��/� 	 � L ��/� � L ��/�

2.5 0.229± 0.004 0.08 0.964± 0.001 0.02 2.5 0.206± 0.006 0.2 0.951± 0.002 0.0006
3.0 0.234± 0.003 0.07 0.957± 0.003 0.007 3.0 0.208± 0.006 0.2 0.953± 0.001 0.003
4.0 0.247± 0.004 0.01 0.9584± 0.0005 0.009 4.0 0.228± 0.005 0.09 0.953± 0.001 0.003
5.0 0.249± 0.003 0.003 0.9561± 0.0007 0.006 5.0 0.23± 0.005 0.08 0.9526± 0.0005 0.003
6.0 0.252± 0.003 0.007 0.9544± 0.0004 0.005 6.0 0.236± 0.004 0.05 0.9529± 0.0004 0.003

is O(N3) needs to be performed only once, whereas in EP
the operations with cubic cost must be performed at each
iteration. In fact, while the VAMP part in grVAMP is faster
than EP for the sizes simulated in this paper, we recall that
the grVAMP algorithm is composed of two modules [see also
Fig. 1(c)] implemented as two nested loops: the external loop
corresponds to a minimum mean squared error estimation of
the linear projection vectorz = Xw, where X denotes the
matrix of the patterns, under a Gaussian prior and a likelihood
having the same functional form of the� pseudoprior used
in EP, whereas the inner loop consists of a VAMP module
running on a standard linear model, the measurement vector
of which is given by the current estimate ofz, for a prede�ned
number of iterations. We show the running times of R1BCS,
EP, and grVAMP in TableV for the simulated sizeN = 128.
All the simulations were performed in parallel on a HP Pro-
liant server with 64 cores clocked at 2.1 GHz. In grVAMP, the
maximum number of iterations of the outer MMSE module
loop was set to 1000, while the number of iterations of the
inner VAMP module was set to 2000. The comparisons shown
in TableV are only meant to give an idea of the running times
observed for the implementations that we used, which can
be found in [43]. In particular, grVAMP was adapted by in-
troducing the theta mixture measure and parameters were set
in each algorithm as explained in this section. As the VAMP
estimation is repeated for every iteration of the external loop,

the running times related to grVAMP appear to be larger than
those related to EP.

C. Correlated patterns generated by a recurrent neural network

As an example of a diluted network with correlated inputs,
we consider a network ofN randomly diluted perceptrons
without self-loops. We will denote theith row of the weight
matrix W � RN× (NŠ1) aswi . Each entry ofwi is the weight
of an incoming link of theith perceptron. Each perceptron
receives binary inputsx generated according to a Glauber
dynamics at zero temperature. We considered both the case
of synchronous update of the patterns at each time step and
the case where the binary inputs are updated asynchronously.

In the case of synchronous update, starting from an ini-
tial random vectorx0 = sgn(� 0), where � 0 � N (� ; 0, I ) at
discrete timet = 0 and given a patternxt at time t, each
perceptron computes its output at timet + 1 according to

zt
i = wT

i xt
\ i , (56)

and to

xt+ 1
i = sgn

�
zt

i

�
, (57)

wherext
\ i denotes the vector of outputs produced by all per-

ceptrons except theith one at timet. The patterns at timet + 1
are given by the set of outputs resulting from Eqs. (56) and

TABLE V. Running time related to the EP and R1BCS based sparse perceptron learning from (a) i.i.d. Gaussian patterns and from (b)
Gaussian patterns from multivariate normal distribution with covariance matrix given by Eq. (54) (u = 1) in the presence of label noise, with
� = 0.95 and damping factor equal to 0.99 in the case of EP. The uncertainty on these values was estimated as� /



Nconv, where� is the

sample standard deviation over the set of converged trials andNconv is the number of converged simulations.

(a) i.i.d. patterns (b) Patterns from MVN

	 tEP (s) tgrVAMP (s) tR1BCS (s) 	 tEP (s) tgrVAMP (s) tR1BCS (s)

0.5 2.7± 0.2 126.7± 0.8 6.5± 0.2 0.5 2.7± 0.2 139.2± 2.0 6.7± 0.2
1.0 2.6± 0.03 134.6± 0.9 12.0± 0.3 1.0 3.7± 0.1 155.7± 2.0 14.4± 0.4
1.5 3.74± 0.04 147.0± 1.0 22.2± 0.5 1.5 4.8± 0.1 206.8± 20.0 27.0± 0.7
2.0 5.65± 0.08 159.0± 1.0 47.6± 1.0 2.0 6.2± 0.2 289.0± 40.0 53.6± 1.0
2.5 6.97± 0.09 175.7± 1.0 94.9± 2.0 2.5 7.7± 0.2 236.3± 20.0 105.8± 3.0
3.0 8.3± 0.1 212.9± 20.0 150.9± 3.0 3.0 9.5± 0.3 294.3± 30.0 158.5± 4.0
4.0 10.2± 0.1 258.3± 10.0 373.4± 7.0 4.0 11.4± 0.3 366.9± 40.0 379.4± 8.0
5.0 12.2± 0.1 311.6± 10.0 628.0± 10.0 5.0 14.1± 0.4 423.5± 40.0 592.7± 10.0
6.0 15.6± 0.2 353.9± 10.0 1052.9± 20.0 6.0 15.9± 0.4 498.5± 50.0 1057.2± 20.0
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