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Abstract

We study the mutual interaction between a superconducting sample and the weak, static

Earth’s gravitational field, exploiting the gravito-Maxwell formalism combined with the

time-dependent Ginzburg-Landau model. We will also determine the appropriate condi-

tions to enhance the desired gravity/superfluid interplay, analysing the effects of thermal

fluctuations and optimizing the superconductor parameters and sample geometry.
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1 Introduction

The possible interaction between superconductors and gravitational field is an intriguing field

of research, providing an interesting connection between condensed matter systems and gravi-

tational interaction, with beneficial effects both in theoretical and applied physics. The seminal

paper [1] set the stage for a deeper analysis of the phenomenon, while, in the following years, a

certain amount of scientific literature on the subject was produced [2–21]. The underlying idea

behind this line of research is that, under certain conditions, a gravity/supercondensate interplay

should exist, resulting in a slight affection of the local gravitational field through the interac-

tion with suitable condensate systems. Finally, in 1992 Podkletnov and Nieminen proposed a

laboratory experimental configuration to detect the conjectured mutual interplay [22, 23].

The above ideas led many researchers to the discuss various theoretical explanation of the

described effect. First of all, it is clear that there are no dielectric-like effects that can af-

fect the gravitational interaction, since, in the standard classical picture, there are no charges

of (gravitational) opposite sign to be redistributed in the medium to counteract the external

field. If, on the other hand, we consider the medium as a standard quantum system, we find

a suppressed probability of (graviton) excitation of a medium particle, due to the very small

gravitational coupling. The only possibility left is therefore to consider an interplay with an

unconventional state of matter, like a Bose–condensate or a more general superfluid, the hy-

pothetical effect consisting in some kind of interaction between the gravitational field and the

superfluid constituents, claiming for a more specific quantum description of the phenomenon.

The clearest theoretical interpretation of the proposed interaction dates 1996 [24] and was

obtained exploiting a quantum gravity model coupling the superfluid to the gravitational field.

Let us briefly discuss this approach.

Quantum gravity framework. Let us imagine we have a superconducting sample immersed

in a weak gravitational background. The corresponding metric gµν(x) can be expanded as

gµν(x) = ηµν + hµν(x) , (1)

sum of the flat Lorentz background ηµν plus small fluctuations, encoded in the hµν(x) contribu-

tion. The Cooper pairs inside the sample give rise to a Bose condensate, that we can describe by

means of a bosonic field φ having non-vanishing vacuum expectation value (v.e.v.) φ0 = 〈0|φ|0〉.
The total Lagrangian describing the quantum system has the form

L = Leh + Lφ . (2)

The first term gives the standard Einstein-Hilbert contribution

Leh =
1

8πG
(R− 2 Λ) , (3)

where R is the Ricci scalar and Λ the cosmological constant1. The second term describes the

coupling of the bosonic field φ to gravity and is written as:

Lφ = −1

2
gµν ∂µφ

∗ ∂νφ+
1

2
m2 φ∗φ , (4)

1 we work in the “mostly plus” convention, η = diag(−1,+1,+1,+1), and set c = ~ = 1
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m being the mass of the Cooper pair [24].

If we now expand the bosonic field as φ = φ0 + φ̄, the φ0 v.e.v. can be considered as

an external source, depending on the sample characteristics and on the (possible) presence of

external electromagnetic fields, while the φ̄ component is included in the integration variables.

The Lφ contribution can be then expanded as

Lφ = Lφ + Lh + L0 . (5)

The first term of the above expansion includes contributions coming from the φ̄ components;

these contributions are involved in (negligible) graviton emission-absorption processes and can

be then dropped in the Lagrangian. The second term describes the interaction between the hµν
metric fluctuations and the condensate, with the form

Lh ∝ hµν ∂µφ0
∗ ∂νφ0 , (6)

and determines corrections to the gravitational propagator, which are again irrelevant. Finally,

we have the term

L0 = −1

2
∂µφ0

∗ ∂µφ0 +
1

2
m2 |φ0|2 , (7)

which turns out to be a superfluid contribution to the total effective cosmological term.

The coupling described by the above eq. (7) may then produce localized instabilities in

superfluid regions with larger condensate density, giving rise to observable effects [24, 25]. In

these particular regions, some physical cutoff should be at work, preventing arbitrary growth of

the gravitational field, while the physical effect on field propagation and static potential turns

out to be a kind of slight partial shielding. The introduced superfluid density φ0(x) is related

to the internal (microscopic) structure of the involved sample, as well as to the presence of

magnetic fields and currents in the supercondensate.

Although being a solid and elegant formulation offering a general, theoretical explanation

for the described interplay, the described quantum gravity approach involves a formalism that

makes it hard to extract quantitative predictions. One is then led to consider also alternative,

phenomenological researches to better understand the proposed interplay, trying to obtain a

formulation leading to more explicit experimental predictions.

Generalized EM fields. Parallel to DeWitt (and subsequent) studies about the coupling

between supercondensates and gravity, other theoretical [26, 27] and experimental [28–30] re-

searches were conducted about generalized electric-type fields induced in (super)conductors by

the presence of the Earth’s weak gravitational field. The main result of those studies was the

introduction of a fundamental, generalized electric-type field, featuring an electrical component

and a gravitational one, leading to detectable corrections to the free fall of charged particles.

In the following, we are going to obtain the same results in a more general formulation,

making use of the gravito-Maxwell formalism [31–33]. This approach exploits the introduction

of generalized Maxwell fields, featuring both electromagnetic and gravitational components.

These new generalized fields are involved in quantum effects originating from the interaction

with the weak gravitational background. The formalism turns out to be powerful in the study of

the gravity/superconductivity interplay, since the emerging formal analogy between the Maxwell

and weak gravity equations allows to use the Ginzburg–Landau model for the description of the

physics, resulting in a mean-field theory for the system thermodynamics including the effects
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of thermal fluctuations. In particular, we will analyse how the local gravitational field can be

affected by the presence of the supercondensate, using the time-dependent Ginzburg–Landau

equations in the regime of fluctuations. We will also study which parameters could be optimized

to enhance the desired effect, choosing appropriate sample physical characteristics, geometrical

properties and range of temperatures.

2 Weak static gravitational field expansion

Let us now briefly derive the generalized form of fields and potential coming from the gravito-

Maxwell formulation in weak field approximation.

Linearized gravity. Let us consider a nearly-flat, static spacetime configuration. The asso-

ciated metric gµν and its inverse gµν can be expanded as

gµν ' ηµν + hµν , gµν ' ηµν − hµν , (8)

where ηµν = diag(−1,+1,+1,+1) is the flat Minkowski metric in the “mostly plus convention”

and hµν is a small perturbation. If we consider an inertial coordinate system, the Ricci tensor

(see Appendix A) in the weak field limit can be expanded as [34]

Rµν ' ∂ρ∂(µhν)ρ −
1

2
∂2hµν −

1

2
∂µ∂νh , (9)

where h = hσσ. The Einstein equation are written as [34, 35]

Rµν −
1

2
gµν R = 8πG Tµν , (10)

where the l.h.s. second term in linear approximation reads

− 1

2
gµν R ' −

1

2
ηµν

(
∂ρ∂σhρσ − ∂2h

)
, (11)

R = gµνRµν being the Ricci scalar. In first order approximation, equations (10) can be then

rewritten as

∂ρ∂(µhν)ρ −
1

2
∂2hµν −

1

2
∂µ∂νh−

1

2
ηµν

(
∂ρ∂σhρσ − ∂2h

)
= 8πG Tµν . (12)

Let us now introduce the traceless symmetric tensor

h̄µν = hµν −
1

2
ηµν h , (13)

so that the linearized equations (12) can be rewritten as

1

2

(
∂ρ∂µh̄νρ + ∂ρ∂ν h̄µρ − ∂ρ∂ρh̄µν − ηµν ∂ρ∂σh̄ρσ

)
= ∂ρ

(
∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ

)
= 8πG Tµν ,

(14)

corresponding to the compact form [31–33]

∂ρGµνρ = 8πG Tµν , (15)
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once introduced the tensor

Gµνρ ≡ ∂[ν h̄ρ]µ + ∂σηµ[ρ h̄ν]σ . (16)

Gravito-Maxwell equations. We now decide to work in the De Donder gauge2 gµν Γλµν = 0.

The latter implies the so-called Lorentz condition:

∂µh̄µν ' 0 , (17)

that further simplifies expression (16) for Gµνρ, giving

Gµνρ ' ∂[ν h̄ρ]µ . (18)

We then introduce the fields

Eg = −1

2
G00i = −1

2
∂[0h̄i]0 , Ag =

1

4
h̄0i ,

Bg =
1

4
εi
jk G0jk = εi

jk ∂jAk = ∇×Ag ,

(19)

that satisfy the set of equations [31–33, 36]:

∇ ·Eg = 4πG ρg , ∇ ·Bg = 0 ,

∇×Eg = −∂Bg

∂t
, ∇×Bg = 4πG

1

c2
jg +

1

c2
∂Eg

∂t
,

(20)

having restored physical units and introduced the mass density ρg ≡ −T00 and the mass current

density jg ≡ T0i .

As we can appreciate, the above (20) have the same formal structure of the Maxwell equa-

tions, once interpreted Eg and Bg as the gravitoelectric and gravitomagnetic field, respectively.

For instance, for an observer on the Earth’s surface, Eg corresponds to the standard (New-

tonian) gravity acceleration, while the Bg field is related to angular momentum interactions

[15, 31, 37–40].

Generalized fields and equations. Now we introduce the generalized electric/magnetic

fields, scalar and vector potentials, featuring both electromagnetic and gravitational contribu-

tions:

E = Ee +
m

e
Eg , B = Be +

m

e
Bg , φ = φe +

m

e
φg , A = Ae +

m

e
Ag , (21)

where m and e identify the electron mass and charge, respectively. We then obtain the gener-

alized Maxwell equations for the new fields, reading [31–33, 36, 41]:

∇ ·E =

(
1

ε0
+

1

εg

)
ρ , ∇ ·B = 0 ,

∇×E = −∂B

∂t
, ∇×B = (µ0 + µg) j +

1

c2
∂E

∂t
,

(22)

2 this is equivalent to the harmonic coordinate condition ∂µ (
√
−g gµν) = 0 ⇔ 2xµ = 0
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where ε0 and µ0 are the standard vacuum electric permittivity and magnetic permeability, while

ρ and j give the electric charge density and electric current density, respectively. We have also

introduced the mass density ρg and the mass current density vector jg, that we write in terms

of ρ and j as

ρg =
m

e
ρ , jg =

m

e
j . (23)

Finally, we obtain for the vacuum gravitational permittivity εg and permeability µg the expres-

sions

εg =
1

4πG

e2

m2
, µg =

4πG

c2
m2

e2
. (24)

3 Thermodynamic fluctuations. Ginzburg-Landau formulation

Let us now imagine we have a superconductive sample in the vicinity of its critical temperature

Tc. At the microscopical level, the superfluid undergoes thermodynamic fluctuations of the

order parameter ψ(x, t) describing superconducting electrons3, giving rise to localized regions

of accelerated charge carriers. For T > Tc, the average size of the generated unstable regions is

greater than the mean electron free path, causing in turn an increase of the sample resistivity4.

This physical situation can be described, for T slightly greater than Tc, by using the time-

dependent Ginzburg-Landau equations [42], that can be written in the gauge-invariant form

[43, 44]:

Γ (~ ∂t − 2 i e φ)ψ =
1

2m
(~∇φ− 2 i eA)

2
ψ + αψ (T > Tc) . (25)

In the above expression, ψ(x, t) is the order parameter, φ(x, t) is the electric potential and

A(x, t) is the vector potential, and we also introduce the following quantities:

Γ =
α

ε(T )

π

8 kb Tc
, ε(T ) =

√
T − Tc
Tc

, ξ(T ) =
ξ0√
ε(T )

, α =
~2

2mξ(T ) 2
, (26)

ξ0 being the BCS intrinsic coherence length, roughly characterizing the smallest size of a wave

packet formed by superconducting charge carriers. The temperature-dependent Ginzburg-

Landau coherence length ξ(T ) gives instead a measure of the distance over which the order

parameter can vary without undue energy increase, for a given temperature T .

Let us now make the following ansatz for the solution:

ψ(x, t) = f(x, t) exp
(
i g(x, t)

)
. (27)

We then obtain from (25) the relations

Γ ~
∂f

∂t
= α f − 1

2
mv2s f +

~2

2m
∆f , (28.i)

Γ ~ f
∂g

∂t
= 2 eΓφ f − ~2

2m
f ∆g − 2 ~ vs · ∇f , (28.ii)

3 from a physical point of view, ψ can be thought as the the pseudowavefunction for the center of mass motion
of the Cooper pairs

4 we suppose we work with sufficiently dirty materials, so that the effects of the fluctuations can be observed
over a sizable range of temperature; this can be achieved if the electronic mean free path of the material in the
normal state is < 10 Å
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where the superfluid speed vs is expressed as

vs =
1

m

(
~∇g + 2

e

c
A
)
, (29)

while the associated (super)current density js is given by

js = −2
e

m
|ψ|2

(
h∇g + 2

e

c
A
)

= −2 e f2 vs . (30)

Fluctuations. The presence of a thermal energy (of the order of ∼ kb T ) implies that the

system will fluctuate in different low-lying states with non-zero probability. Let us denote fk
the value of the f function for a fluctuation of the wave vector k. We can then recast the above

(28) as

Γ ~
∂fk
∂t

= α fk −
~2

2m
k2 fk −

1

2
mv2s fk , (31.i)

∂vs

∂t
= −2

e

m
E (31.ii)

where the last equation is found using expressions eq. (29), (28.ii) and

∇φ = −E− 1

c

∂A

∂t
. (32)

After integration of (31.ii), we can write for (31.i)

Γ ~
∂fk
∂t

=

(
α− ~2

2m
k2 − 2

e2

m
E2 t2

)
fk , (33)

so that we find for fk

fk(t) = fk(0) exp


(
α− ~2

2mk
2
)
t− 2

3
e2

m E2 t3

Γ ~

 , (34)

with

f2k (0) =
kb T

2
(
|α|+ ~2

2mk
2
) , (35)

and the associated current density jsk(t) can be written as

jsk(t) =
4 e2

m
E t f2k (0) exp

2

(
α− ~2

2mk
2
)
t− 2

3
e2

m E2 t3

Γ ~

 . (36)

Now we can obtain the explicit expression for the physical (super)current density js summing

over k:

js(t) =
1

8π3

∫ +∞

0

dk 4π k2 jsk(k, t) , (37)

where we assumed we are dealing with a three-dimensional sample of dirty material with di-

mensions greater than the correlation length.
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Generalized fields. Once obtained the explicit form for the supercurrent density, the vector

potential A(x, y, z, t) is given by:

A(x, y, z, t) =
1

4π

∫
js(t) dx

′ dy′ dz′√
(x− x′)2 + (y − y′)2 + (z − z′)2

, (38)

while the generalized electric field E(x, y, z, t) (21) is expressed as

E(x, y, z, t) = −1

c

∂A(x, y, z, t)

∂t
+
m

e
g = −1

c

∂js(t)

∂t
C(x, y, z) +

m

e
g , (39)

and features the contribution coming from the supercurrent coupled to the one from the weak

Earth’s gravitational field g. The geometrical factor C(x, y, z) comes from the integral in (38),

and depends on the space point where we measure the gravitational fluctuation and on the

superconductor’s shape.

4 Discussion

Let us now consider the case of a superconductive disk at a temperature very close to Tc. The

sample is put it in its normal state by a weak magnetic field. The latter is then turned off at the

time t = 0, so that the system goes in the superconductive state. The disk has bases parallel to

the ground, and we are interested in the field variation measured above the sample. Since the

material is at a temperature very close but higher than Tc, we are in the fluctuation regime and

we can exploit the results obtained in Section 3.

In Figure 1 it is shown the variation of the local gravitational field as a function of time

for a Sn sample, a low–Tc metallic superconductor with large intrinsic coherence length ξ0. The

variation is measured at a fixed distance d above the base surface, along the disk axis. We can

note that the local gravitational field is initially reduced with respect to the unperturbed value

g; after that, there is an increase up to a maximum value for t = τ0 and a final decrease to the

standard external value. In Figure 2 we show the field variation as a function of distance from

the base surface, measured along the axis of the disk at the fixed time t = τ0 that maximizes

the effect. In Figures 3 and 4 the same calculations are displayed for a TlBaCaCuO (TlBCCO)

sample, an high–Tc superconductor featuring smaller BCS coherence length.

It is possible to demonstrate that the maximum value ∆ for the variation of the local

gravitational field is proportional to ξ(T )−1; this in turn implies that a larger contribution is

present when dealing with high–Tc superconductors, having the latter smaller coherence lengths.

On the other hand, it is easily shown that the discussed maximal perturbation takes place after

a time interval τ0 ∝ (T − Tc)−1: this suggests that we can extend the time range in which the

perturbation occurs if the sample is very close to its critical temperature. However, we pay this

time range extension with a reduced alteration of the local field, since, if we put ourselves at a

temperature very close Tc, we find a divergence of the Ginzburg-Landau coherence length ξ(T ),

see eq. (26).

We hypothesize that the best choice would be to select a large, high–Tc superconductive

sample (shorter intrinsic coherence length and consequent maximized local alteration) at a

temperature very close to Tc, resulting then in an increase for the perturbation time range with

beneficial effects for experimental detection. Clearly, large dimensions for the sample would

enhance the interaction (and would also result in a larger contribution from the geometrical
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factor C(x, y, z) of eq. (39)), while choosing a dirty material would determine a wider temperature

range in which the effects of fluctuations take place.
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Fig. 1: Local gravitational field variation as a function of time for a Sn sample, measured along the axis

of a superconductive disk at fixed distance d = 0.25 cm above the base surface (ξ0 = 180 nm,

Tc = 3.721 K, ∆T = 10−3 K [45]). The disk radius is R = 15 cm and the disk thickness is

h = 2 cm.
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Fig. 2: Local gravitational field variation as a function of distance for the same Sn sample, measured

along the disk axis above the base surface, at fixed time t = τ0 = 0.745 ns. The disk radius is

R = 15 cm and the disk thickness is h = 2 cm.
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Fig. 3: Local gravitational field variation as a function of time for a TlBCCO sample, measured along the

axis of a superconductive disk at fixed distance d = 0.25 cm above the base surface (ξ0 = 2.8 nm,

Tc = 100 K, ∆T = 0.1 K [45]). The disk radius is R = 15 cm and the disk thickness is h = 2 cm.
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Fig. 4: Local gravitational field variation as a function of distance for the same TlBCCO sample, mea-

sured along the disk axis above the base surface, at fixed time t = τ0 = 7.49 · 10−3 ns. The disk

radius is R = 15 cm and the disk thickness is h = 2 cm.

5 Concluding remarks

A deeper intertwining of different scientific areas can actually bring about a major step forward

in our understanding of many fundamental aspects of our world. In general, a considerable gap

between different branches of physics is generated by the independent mathematical formula-

tions and developments in the individual research fields. This gap can be narrowed by taking

advantage of a multidisciplinary approach, in which a fruitful exchange of ideas and techniques
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from different areas can provide new insights into the related unsolved issues (see e.g. [46–

62]). Following this spirit, we have exploited along the paper different techniques from general

relativity, quantum field theory and condensed matter physics, to describe the conjectured grav-

ity/superfluid interplay. The latter was then combined with the gravito-Maxwell formulation

to describe in detail how a detectable perturbation of the local gravitational field could be in

principle obtained in a laboratory experiment. In particular, we have seen in Section 4 that a

perceptible alteration is expected, especially in high–Tc superconductors. A careful arrangement

of the experimental setup is very important: the material characteristic parameters, together

with the sample geometry, dimensions and temperature, will determine the magnitude of the

effect and the related time scales.

Future significant improvements could be obtained including the presence of suitable electric

and magnetic fields, determining also the formation of moving vortices and giving rise to a

possible further interaction with the gravitational field. It would be also interesting to perform

analogous calculations at a temperature T . Tc (rather than T > Tc) with an external magnetic

field contribution or, alternatively, an applied external electric field parallel to a superconductor

(plane) surface in the presence of defects.

As already pointed out in Section 1, a complete description of the proposed interaction would

necessarily come from a quantum gravity formulation, but this in general implies a formalism

from which it may be difficult to extract quantitative predictions: this was the main reason

that led us to exploit the alternative gravito-Maxwell approach of section 2. However, in our

opinion, at least as long as we limit ourselves to a weak gravitational background, no further

significant contributions would come from the quantum gravity framework. The situation would

be different if we considered, e.g., the interaction between the gravitational field of a neutron

star and a hypothetical superfluid in its core, that is, an interplay involving a very strong

gravitational background. Clearly, in this case the weak-field approach does not hold and, since

the gravitational field is so intense that it also affects the dynamics of elementary particles, a

quantum gravity formulation is called for5.

Finally, we would also like to remark that the gravito-Maxwell formalism can be also ex-

ploited in other physical situation where generalized electric-magnetic fields of the form (21) are

induced by the presence of a static, weak gravitational field; an example of application to the

Josephson junction physics can be found in [32].
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A Conventions

The spacetime metric of a flat background in the “mostly plus” convention is given by the

standard Minkowski

η = diag(−1,+1,+1,+1) . (A.1)

We define the Riemann tensor as:

Rσµλν = ∂λΓσµν − ∂νΓσµλ + Γσρλ Γρνµ − Γσρν Γρλµ =

= 2 ∂[λΓσν]µ + 2 Γσρ[λ Γρν]µ ,
(A.2)

where the Christoffel symbols are given by

Γλνρ =
1

2
gλµ Γµνρ (∂ρgµν + ∂νgµρ − ∂µgνρ) . (A.3)

The Ricci tensor is defined as a contraction of the Riemann tensor

Rµν = Rσµσν , (A.4)

while the Ricci scalar is given by

R = gµνRµν . (A.5)

The Einstein tensor G
(E)

µν has the form

G
(E)

µν ≡ Rµν −
1

2
gµν R , (A.6)

and the Einstein equations are then written as

G
(E)

µν ≡ Rµν −
1

2
gµν R = 8πG Tµν , (A.7)

where Tµν is the total energy-momentum tensor. The contribution coming from the cosmological

constant Λ can be pointed out splitting the Tµν tensor in its matter and Λ component:

Tµν = T
(M)

µν + T
(Λ)

µν = T
(M)

µν −
Λ

8πG
gµν , (A.8)

so that the Einstein equation can be rewritten as

Rµν −
1

2
gµν R = 8πG

(
T

(M)

µν + T
(Λ)

µν

)
, (A.9)

or, equivalently,

Rµν −
1

2
gµν (R− 2 Λ) = 8πG T

(M)

µν . (A.10)
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