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UPSCALING AND SPATIAL LOCALIZATION OF NON-LOCAL ENERGIES WITH
APPLICATIONS TO CRYSTAL PLASTICITY

JOSÉ MATIAS, MARCO MORANDOTTI, DAVID R. OWEN, AND ELVIRA ZAPPALE

Abstract. We describe multiscale geometrical changes via structured deformations (g,G) and the non-
local energetic response at a point x via a function Ψ of the weighted averages of the jumps [un](y) of
microlevel deformations un at points y within a distance r of x. The deformations un are chosen so that
limn→∞ un = g and limn→∞∇un = G. We provide conditions on Ψ under which the upscaling “n → ∞”
results in a macroscale energy that depends through Ψ on (1) the jumps [g] of g and the “disarrangment
field” ∇g−G, (2) the “horizon” r, and (3) the weighting function αr for microlevel averaging of [un](y). We
also study the upscaling “n → ∞” followed by spatial localization “r → 0” and show that this succession
of processes results in a purely local macroscale energy I(g,G) that depends through Ψ upon the jumps
[g] of g and the “disarrangment field” ∇g − G, alone. In special settings, such macroscale energies I(g,G)

have been shown to support the phenomena of yielding and hysteresis, and our results provide a broader
setting for studying such yielding and hysteresis. As an illustration, we apply our results in the context of
the plasticity of single crystals.

Keywords: structured deformations, upscaling, relaxation, spatial localization, non-local energies, crystal
plasticity.
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1. Introduction

The phenomena of yielding, hysteresis, and dissipation are central aspects of the plastic behavior of solids.
The research described in this article addresses the energetics underlying such phenomena and builds on the
approach taken in two earlier publications [11, 19] in this journal. In [11] an enriched energetics [12], attained
by means of the multiscale geometry of structured deformations [15], led to the identification of instabilities
due to submacroscopic slips and to the prediction of yielding, hysteresis, and dissipation within a class
of structured deformations called two-level shears. In [19], again within the class of two-level shears, the
additional phenomenon of work-hardening was shown to emerge from a refinement of the approach in [11],
and the quantitative details of the hardening property of the resulting constitutive response were identified
by means of the classical experiments of G. I. Taylor on aluminum single crystals in soft devices.

Key elements in the prediction of yielding, hysteresis, and dissipation that emerged from the approach
taken in [11] and [19] are

(i) an additive decomposition of the amount µ of macroscopic shear into the shear without slip γ,
the amount of shear at the macrolevel due to submacroscopic shears away from slip bands diffused
throughout the crystal, and into the shear due to (micro)slip µ−γ, the amount shear at the macrolevel
due to the relative displacements of portions of the crystal on opposite sides of slip bands;

(ii) a corresponding additive decomposition of the volume density of free energy H(µ, γ) into a part
ϕ(γ), a strictly convex measure of the volume density of energy stored by the crystal lattice away
from slip bands, and a part ψ(µ− γ), a periodic measure of the volume density of energy stored due
to the relative displacement of the portions of the crystal on opposite sides of slip bands:

H(µ, γ) = ϕ(γ) + ψ(µ− γ). (1.1)

The periodicity of the part ψ due to crystallographic slips is the source of an infinite family of
metastable branches of the set of pairs (µ, γ) that render stationary H(µ, γ), in the case of a hard
device, or H(µ, γ) − σµ in the case of a soft device (with σ a given applied shear stress). The
analysis in [11] shows that on each stable branch, reversible loading and unloading is available, while
irreversible jumps between the ends of metastable branches are the source of yielding and hysteresis.

The decomposition (i) in the context of two-level shears is an instance of the more general additive
decomposition [15] associated with a structured deformation (g,G) in a fully three-dimensional context:

∇g = G+M, (1.2)

a decomposition of the macroscopic deformation gradient ∇g into the part G, the deformation without
submacroscopic disarrangements, and the part M , the deformation due to disarrangements. This terminol-
ogy is justified by demonstrating the existence of piecewise smooth approximations un of the macroscopic
deformation g with the properties

g = lim
n→∞

un, G = lim
n→∞

∇un (1.3)

and with the property that M = ∇g − G is a limit of averages of the jumps [un] of the approximations.
In the context of [15], the limits in (1.3) are taken in the sense of essentially uniform convergence, and the
accommodation inequality

0 < detG 6 det∇g, (1.4)
a defining requirement in [15] for a structured deformation, assures that injective approximations un of
the injective mapping g are available in (1.3). The scalar fields γ and µ − γ for two-level shears in (i) are
components of the tensor fields G and M , respectively, in [15].

The decomposition (ii) in the context of two-level shears was motivated by the seminal study of the
energetics of structured deformations provided in [12]. The structured deformations (g,G), studied there
in a multidimensional setting appropriate for variational analysis and described here in Section 2.3, were
shown to lead to decompositions and identification relations analogous to (1.3), but the unavailability of (1.4)
in that setting means that there is lacking a guarantee that injective approximations un as in (1.3) exist.
Nevertheless, the broader setting permits one to assign an energy EL(un) to the approximating functions un
in (1.3) that is the sum of a bulk part depending upon ∇un and an interfacial part depending upon [un]. In
addition, in this setting one also can identify a “relaxed”, or “upscaled”, energy I(g,G) by means of optimally
chosen approximations un. More significantly, the analysis in [12] shows that the upscaled energy is the sum
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of a bulk part that depends upon ∇g and G (or, equivalently, upon M and G) and of an interfacial part
that depends upon [g]. Consequently, the identification relations (1.3) tell us that the bulk energy density
H(∇g,G) that determines the bulk part of the upscaled energy I(g,G) reflects both the smooth part ∇un
and the disarrangements [un] of the approximations.

A volume density of free energy for two-level shears that depends only upon µ and γ would be a one-
dimensional counterpart of the bulk density H(∇g,G) in [12]. However, in the setting of [12], an additive
decomposition of H(∇g,G) of the type (1.1) into a part depending only upon the deformation without
disarrangements G and a part depending only upon the deformation due to disarrangements M generally is
not available (see the discussion in Subsection 5.4). Moreover, in the setting of [12], in special cases in which
such a decomposition is available, the further availability of a dependence on M for the upscaled energy
that reflects the periodicities of a crystal lattice is not assured. Consequently, the upscaling of energy in [12]
provides ingredients necessary, but not sufficient, for the justification of the decomposition (1.1) with the
stated properties of the terms ϕ and ψ used in [11] as well as in [19].

The determination of an upscaling of energy that justifies the particular decomposition (1.1) was studied
in [17] in a one-dimensional setting by adding to the energy EL(un) a term with a non-local dependence on
the jumps [un] of the approximations un in (1.3). The additional non-local term

ˆ 1

0

Ψ

( ∑
z∈Sun∩(x−r,x+r)

[un](z)

2r

)
dx (1.5)

introduced in [17] involves the values of an energy density Ψ at the average
∑
z∈Sun∩(x−r,x+r)

[un](z)
2r of the

jumps [un](z) of the approximation un at all points z ∈ Sun , the set of jump points of un, that lie within
the interval (x − r, x + r); the energy density then is integrated over the interval (0, 1) representing the
body under consideration. The main result obtained there for a particular class of energy densities Ψ is the
formula

lim
r→0

lim
n→∞

ˆ 1

0

Ψ

( ∑
z∈Sun∩(x−r,x+r)

[un](z)

2r

)
dx =

ˆ 1

0

Ψ(M(x)) dx (1.6)

that holds for sequences of approximations un satisfying (1.3) and whose jumps are all of the same sign. The
iterated limit on the left-hand side of this formula is interpreted as the operation of upscaling, “ limn→∞”, fol-
lowed by the operation of spatial localization, “limr→0”, and is seen to result in a bulk energy

´ 1

0
Ψ(M(x)) dx

in which the original energy density Ψ is evaluated at the disarrangement tensor M(x) = ∇g(x)−G(x) for
the given structured deformation (g,G). In particular, properties of the energy density Ψ such as periodicity
persist under the operations of upscaling and localization. Moreover, sufficient conditions were provided in
[17] in order that the total energy obtained by addition of the non-local term (1.5) to the energy EL(un)
satisfies

lim
r→0

lim
n→∞

{
EL(un) +

ˆ 1

0

Ψ

( ∑
z∈Sun∩(x−r,x+r)

[un](z)

2r

)
dx

}
= lim
n→∞

EL(un) +

ˆ 1

0

Ψ(M(x)) dx (1.7)

and eventually assures that a decomposition of the form (1.1) is available in the case of two-level shears.
Thus, the use of the operations of upscaling followed by localization in a one-dimensional setting justifies
the decomposition (1.1) with the stated properties of the terms ϕ and ψ used in [11] as well as in [19] and
thereby provides a firmer basis for the analyses in [11] and [19] that predict yielding, hysteresis, dissipation,
and hardening in the context of two-level shears.

Our main goal in this paper is to justify a fully three-dimensional analogue of the decomposition (1.1)
that will provide in future research a basis for an analysis of yielding, hysteresis, dissipation, and hardening
in a context far broader than that of two-level shears. Our efforts here to this end consist of

(a) the broadening of the analysis of upscaling and localization in [17] to a class of structured de-
formations that includes the genuinely three-dimensional changes in geometry encountered in the
deformations of single crystals, and

(b) the provision of a context compatible with the analysis in (a) in which the energy density Ψ has prop-
erties that reflect underlying periodicities of a crystalline lattice and, in addition, has the property of
frame-indifference, central in the formulation of constitutive assumptions in continuum mechanics.
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The results in this paper thus provide the desired energetic and geometrical starting point for a fully three-
dimensional study of yielding, hysteresis, and dissipation in single crystals in the context of structured
deformations.

Item (a) is addressed in Sections 3 through 5 below. Following a summary in Section 2 of the required
mathematical background on measure theory and the SBV theory of structured deformations, we state in
Section 3 our main results on the upscaling and spatial localization of a non-local, multidimensional analog
of the one-dimensional non-local term energy (1.5), as well as, in Section 5, our multidimensional analog
of the one-dimensional formula (1.7) that pertains to a sum of local and non-local energies. The non-local
analog of (1.5) that we consider is a weighted average of jumps in which the weighting function is smooth
and vanishes outside of a ball of radius r centered at a given point x in the body. This type of average is
amenable to more standard mathematical tools, and we leave for future study whether or not the case of
a discontinuous weighting function, one such as in (1.5), which is a non-zero constant inside the ball and
vanishes outside the ball, is amenable to mathematical analysis in the present context. The proofs and
verifications of our theorems and formulas are provided in Section 4 for the analysis of the non-local term
and in Section 5 for the analysis of the sum of local and non-local terms. Our multidimensional analogs of
both local and non-local energies allow for an explicit dependence of the energy densities on position.

The explicit dependence on position just mentioned is necessitated by the additional requirement of
frame-indifference of energetic response that is imposed in Section 6 when we apply our results to crystal
plasticity and by the transformation properties of the deformation due to disarrangements M under changes
of observer. There we provide the context mentioned in item (b) by restricting our attention to a more
limited class of structured deformations suitable for describing deformations of single crystals, namely, to
invertible structured deformations [15, 20]. For invertible structured deformations, the fields g and G have
additional smoothness, and the accommodation inequality (1.4) is satisfied with equality, so that the macro-
scopic volume change det∇g equals the the volume change detG due to smooth submacroscopic changes.
Consequently, the submacroscopic disarrangements associated with invertible structured deformations can-
not entail any volume change, as would occur during the formation of microvoids, and so are compatible
with the submacroscopic slips observed in single crystals. In Section 6 we describe further a class of “crys-
tallographic structured deformations”, invertible structured deformations whose disarrangement tensor M
reflects the availability of submacroscopic slips only on specific crystallographic planes in specific crystallo-
graphic directions. The bulk of the analysis in Section 6 then is devoted to showing that it is appropriate in
the context of crystallographic structured deformations to require that the energy density Ψ has properties
that reflect underlying periodicities of a crystalline lattice, as well as the property of frame-indifference. As
noted in the last paragraph of Section 6, when an energy density with these properties is used to generate
the non-local term studied in Sections 3 and 4, the results from Section 5 for the analysis of the sum of local
and non-local terms provide the desired multidimensional version of (1.1) appropriate for crystallographic
deformations of single crystals, the starting point for a future study of yielding, hysteresis, dissipation and
work-hardening. Readers mainly interested in applications to plasticity may wish to focus on Sections 3
and 6, referring to the mathematical preliminaries in Section 2 as needed.

Our approach to the study of non-local energies rests on two limiting processes:

upscaling: Starting from a submacroscopic level at which a weighted average of disarrangements within
each neighborhood of a fixed size r > 0 determines the non-local energy, one passes to the macrolevel,
permitting disarrangements to diffuse throughout each such neighborhood. This upscaling process
determines for each given structured deformation the dependence of the upscaled energy density on
that structured deformation.

spatial localization: Starting at the macrolevel from neighborhoods of the given size r above, one passes
to neighborhoods of smaller and smaller sizes to obtain in the limit r → 0 purely local bulk and
interfacial energy densities for the structured deformation in question.

The results in Sections 3 through 5 show that the non-linearities in the non-local energy embodied in
the choice of energy density Ψ, before upscaling, persist under these two limiting processes. In cases that
can be identified through our analysis in those sections, the mathematical effect of the upscaling and spatial
localization is to replace the initial weighted average of jumps [un] of approximating deformations at which
Ψ is to be evaluated by the disarrangement tensor M = ∇g − G for the given structured deformation that
un approximates.
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To our knowledge, previous research that involves upscaling or spatial localization of energies has been
restricted to the consideration of only one of these two limiting processes, rather than both. In [8, 12,
13, 17, 37, 41] the upscaling is carried out for purely local energy densities, so that the parameter r does
not appear and the spatial localization is irrelevant. The important results in [41] that are exemplified in
[8, 12, 13, 17, 37] show that the bulk energies obtained via upscaling, when the energy before upscaling is
both local and purely interfacial, form a class that excludes the periodic functions used in [11, 19] to predict
yielding and hysteresis. Peridynamics provides a context in which only spatial localization is employed: for
example, instances of classical, local theories of elasticity and fracture are recoverd in [39] and [34] from
peridynamics under the limiting process r → 0. In the case of peridynamics, the principal focus with respect
to storage of energy and with respect to associated field theories is the non-local case in which the “horizon”
r remains fixed.

To address here the extensive published research on crystal plasticity that employs neither the explicit use
of upscaling nor that of spatial localization, we mention first the article [4]. The introduction in that recent
paper provides an extensive bibliography of such research, and the substantial analysis in two dimensions
provided there is based in part on the availability of an infinite family of energy wells (as was the case in
[11] and [19]) and on the requirement of frame-indifference, ingredients that will enter into a future analysis
of yielding, hysteresis, and dissipation, based on the results on energetics of structured deformations in the
present paper. Another recent article [23] provides a critical review of an essential element of “physically
based” plasticity theories and gives an alternative approach to conventional treatments.

2. Mathematical preliminaries

We start this section by fixing the notation used throughout this work; then we recall the basic notions and
definitions of SBV functions, which are essential to introduce the variational setting of [12] for structured
deformations, and we conclude by recalling some results on measure theory, which will be useful to state our
main results. In this section, we will use the symbol U to denote an open subset of RN with boundary ∂U of
zero Lebesgue measure; we save the symbol Ω for a bounded, connected, open subset of RN with Lipschitz
boundary which represents the body undergoing the mechanical deformations we are interested in describing
and characterizing. Since both general results and ones specific to our mechanical setting are presented, we
will distinguish between functions or measures defined on the set U taking values in R`, for a generic ` ∈ N
(for the general case), and functions or measures defined on the set Ω taking values in Rd×N , for N, d ∈ N
(for those carrying a mechanical meaning). The properties that we require of the set Ω are stronger than
those required on U , so that all of the properties valid for functions U → R` will be valid, in particular, for
functions Ω→ Rd×N .

2.1. Notation. We will use the following notations
- LN and HN−1 denote the N -dimensional Lebesgue measure and the (N − 1)-dimensional Hausdorff
measure in RN , respectively; the symbol dx will also be used to denote integration with respect to
LN , while dHN−1 will be used to denote surface integration with respect to HN−1;

- U ⊂ RN is an open set with LN (∂U) = 0;
- Ω ⊂ RN is a bounded connected open Lipschitz set;
- A(Ω) is the family of all open subsets of Ω; B(Ω) is the family of all Borel subsets of Ω;
- C∞c (U ;R`) := {u : U → R` : u is smooth and has compact support in U}; if ` = 1, we just denote
this set by C∞c (U); C∞0 (U) and C∞0 (U ;R`) denote the closures of C∞c (U) and C∞c (U ;R`), respec-
tively, in the sup norm; the same definitions are given if we replace U by U ;

- Cc(U ;R`) := {u : U → R` : u is continuous and has compact support in U}; if ` = 1, we just denote
this set by Cc(U); C0(U) and C0(U ;R`) denote the closures of Cc(U) and Cc(U ;R`), respectively, in
the sup norm; the same definitions are given if we replace U by U ; observe that C0(Ω;R`) = C(Ω;R`);

- C(U ;R`) := {u : U → R` : u is continuous on U}; the same definitions are given if we replace U by
U ;

- M(U) andM(U ;R`) are the sets of (signed) finite real-valued or vector-valued Radon measures on
U , respectively;M+(U) is the set of non-negative finite Radon measures on U ;

- M(U) andM(U ;R`) denote the dual spaces of the sets C0(U) and C0(U ;R`) of continuous functions,
respectively;
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- given µ ∈M(U) (orM(U)) or µ ∈M(U ;R`) (orM(U ;R`)), the measure |µ| ∈ M+(U) (orM+(U))
denotes the total variation of µ;

- given µ ∈M(U ;Rd) (orM(U ;Rd)), we denote by µ = maLN +µs its decomposition into absolutely
continuous part with respect to the Lebesgue measure and singular part; for every A ∈ B(U),(or
B(U)) we define 〈µ〉(A) :=

´
A

√
1 + |ma(x)|2 dx+ |µs|(A);

- SN−1 denotes the unit sphere in RN ;
- for any r > 0, Br denotes the open ball of RN centred at the origin of radius r; for any x ∈ RN ,
Br(x) := x + rB denotes the open ball centred at x of radius r; Q := (− 1

2 ,
1
2 )N denotes the open

unit cube of RN centred at the origin; for any η ∈ SN−1, Qη denotes the open unit cube in RN with
two faces orthogonal to η; for any x ∈ RN and δ > 0, Q(x, δ) := x + δQ denotes the open cube in
RN centered at x with side δ;

- for any r > 0 and U ⊂ RN , Ur := {x ∈ U : dist(x, ∂U) > r} and Ur := U +Br;
- C represents a generic positive constant that may change from line to line.

2.2. SBV functions. We recall some facts on functions of bounded variation and refer the reader to [2] for
a detailed treatment of this subject.

Let V ⊆ RN be an open set. A function u ∈ L1(V ;Rd) is said to be of bounded variation, and we write u ∈
BV (V ;Rd), if its distributional derivative Du ∈M(V ;Rd×N ), that is, it is a (signed) finite Radon measure.
The space BV (V ;Rd) is a Banach space when endowed with the norm ‖u‖BV (V ;Rd) := ‖u‖L1(V ;Rd)+|Du|(V ).
Since the presence of the total variation |Du| makes this norm too strong for practical applications, it is
customary to consider the weak-* convergence in BV , which is the appropriate notion for having good
compactness properties. We first need to introduce the notion of weak-*convergence of measures: we say
that a sequence of measures µn ∈M(V ;R`) converges weakly-* to µ inM(V ;R`) if

lim
n→∞

ˆ
V

ϕ(x) dµn(x) =

ˆ
V

ϕ(x) dµ(x) for every ϕ ∈ C0(V ;R`).

With this definition, we say that a sequence un ∈ BV (V ;Rd) converges weakly-* to a function u ∈
BV (V ;Rd), in symbols un

∗
⇀ u, if

un → u in L1(V ;Rd) and Dun
∗
⇀ Du inM(V ;Rd×N ).

The Radon-Nikodým Theorem [2, Theorem 1.28] ensures that, for any Radon measure µ ∈ M(V ;R`),
there exists a unique pair of Radon measures µa and µs such that µa is absolutely continuous with respect
to the Lebesgue measure LN , µs is singular with respect to LN , and µ = µa + µs. Moreover, there exists a
unique function ma ∈ L1(V ;R`) such that µa = maLN , so that µ = maLN + µs. The singular part µs of µ
is supported on a set of Lebesgue measure zero.

Given u ∈ BV (V ;Rd), since the distributional derivative Du is a measure, it can be split into the sum of
two mutually singular measures, which we denote by Dau and Dsu, the former being absolutely continuous
with respect to the Lebesgue measure LN , the latter being orthogonal to it. By ∇u we denote the density
of Dau with respect to LN , so that we can write

Du = ∇uLN +Dsu.

The measure Dsu can be further split into the sum of two contributions, Dju measuring the discontinuities
of u and Dcu measuring the Cantor-like behavior of the distributional derivative. In particular, denoting by
Su the set of points x ∈ Ω for which there exist two vectors a, b ∈ Rd and a unit vector ν ∈ SN−1, normal to
Su at x, such that a 6= b and

lim
ε→0+

1

εN

ˆ
{y∈x+εQν :(y−x)·ν>0}

|u(y)− a|dy = 0, lim
ε→0+

1

εN

ˆ
{y∈x+εQν :(y−x)·ν<0}

|u(y)− b|dy = 0,

the triple (a, b, ν) is uniquely determined by the two limits above up to permutation of a and b and a change
of sign of ν and is denoted by (u+(x), u−(x), νu(x)). The set Su is called the jump set of u and it is (N − 1)-
rectifiable. In conclusion, the distributional derivative Du can be written as the sum of three mutually
singular measures as

Du = ∇uLN + [u]⊗ νuHN−1 Su +Dcu,

where [u](x) := u+(x)− u−(x) is the jump of u at x ∈ Su and νu(x) is the outer unit normal to Su at x.
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The space of special functions of bounded variation, SBV (V ;Rd) is the space of functions u ∈ BV (V ;Rd)
such that Dcu = 0; therefore, for each u ∈ SBV (V ;Rd)

Du = ∇uLN + [u]⊗ νuHN−1 Su. (2.1)

2.3. Structured deformations. In continuum mechanics, structured deformations [15] provide a substan-
tial description of the multiscale geometry of deformations. In light of the modern developments of analytical
tools for the energetic formulation of mechanical phenomena, structured deformations have been cast in a
variational framework in the pioneering work of Choksi and Fonseca [12]. In their setting, a (first-order)
structured deformation of a body, represented here and henceforth by a bounded, connected, open set Ω ⊂ Rn
with Lipschitz boundary, is a pair (g,G), where g represents the macroscopic deformation of Ω and G rep-
resents the contribution at the macrolevel of smooth submacroscopic geometrical changes; in order to allow
the macroscopic deformation g to include non-smooth behavior, such as slips and separations, Choksi and
Fonseca required that g ∈ SBV (Ω;Rd). The matrix-valued field G ∈ L1(Ω;Rd×N ) captures the contribution
of the smooth submacroscopic geometrical changes to the deformation gradient ∇g, so that a relevant object
in the theory of structured deformation is the disarrangement tensor M := ∇g−G. Following [12], we define
the set of structured deformations on Ω as

SD(Ω;Rd × Rd×N ) := SBV (Ω;Rd)× L1(Ω;Rd×N ).

We endow the space SD(Ω;Rd × Rd×N ) with the natural norm induced by the product structure and we
introduce the shorthand notation ‖(g,G)‖SD(Ω;Rd×Rd×N ) := ‖g‖BV (Ω;Rd) + ‖G‖L1(Ω;Rd×N ), which we are
going to denote simply by ‖(g,G)‖SD when no domain specification is needed. The connection between
structured deformations and the actual submacroscopic geometrical changes occurring during a deformation
is captured in the Approximation Theorem [12, Theorem 2.12], [40, Theorem 1.2] (which are counterparts of
[15, Theorem 5.8]), stating that for each (g,G) ∈ SD(Ω;Rd×Rd×N ) there exists a sequence un ∈ SBV (Ω;Rd)
such that, as n→∞,

un → g in L1(Ω;Rd) and ∇un
∗
⇀ G inM(Ω;Rd×N ). (2.2)

In the formula above, the geometrical process of upscaling from the submacroscopic to the macroscopic level
is made precise via the notions of convergence used there. The approximating functions un in (2.2) are
interpreted as a description of both smooth and non-smooth submacroscopic geometrical changes, and we
may write

M = ∇
(

lim
n→∞

un
)
− lim
n→∞

∇un.

Thus, the disarrangement tensor emerges as a measure of the non-commutativity of the limit operation
and taking the absolutely continuous part of the distributional derivative; because of this, it captures the
contribution in the limit of the jump discontinuities of the un’s. Notice that the approximating sequence un
in (2.2) need not be unique.

It is convenient to restate the Approximation Theorem along the lines of [40, Theorem 1.2] to deduce
suitable properties of the approximating sequences which we are going to need to prove our main results.

Proposition 2.1 (Approximation Theorem). There exists C > 0 such that for every (g,G) ∈ SD(Ω;Rd ×
Rd×N ) there exists a sequence un ∈ SBV (Ω;Rd) converging to (g,G) according to (2.2) and such that, for
all n ∈ N,

|Dun|(Ω) 6 C‖(g,G)‖SD(Ω;Rd×Rd×N ). (2.3)
In particular, this implies that, up to a subsequence,

Dsun
∗
⇀ (∇g −G)LN +Dsg inM(Ω;Rd×N ). (2.4)

The proof rests on the following two results.

Theorem 2.2 ([1, Theorem 3]). Let f ∈ L1(Ω;Rd×N ). Then there exist h ∈ SBV (Ω;Rd) and a Borel
function β : Ω→ Rd×N such that

Dh = f LN + βHN−1 Sh,

ˆ
Sh∩Ω

|β(x)|dHN−1(x) 6 CN‖f‖L1(Ω;Rd×N ), (2.5)

where CN > 0 is a constant depending only on N .
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Lemma 2.3 ([12, Lemma 2.9]). Let h ∈ BV (Ω;Rd). Then there exist piecewise constant functions h̄n ∈
SBV (Ω;Rd) such that h̄n → h in L1(Ω;Rd) and

|Dh|(Ω) = lim
n→∞

|Dh̄n|(Ω) = lim
n→∞

ˆ
Sh̄n

|[h̄n](x)| dHN−1(x). (2.6)

Proof of Proposition 2.1. Let (g,G) ∈ SD(Ω;Rd × Rd×N ) and, by Theorem 2.2 with f := ∇g − G, let
h ∈ SBV (Ω;Rd) be such that ∇h = ∇g−G. Furthermore, let h̄n ∈ SBV (Ω;Rd) be a sequence of piecewise
constant functions approximating h, as per Lemma 2.3. Then, the sequence of functions

un := g + h̄n − h (2.7)

is easily seen to approximate (g,G) in the sense of (2.2). In fact, un → g in L1 and ∇un(x) = G(x) for
LN -a.e. x ∈ Ω. Invoking the triangle inequality, the inequality in (2.5), and (2.6), we obtain for C = 3(1+CN )

|Dun|(Ω) 6 C‖(g,G)‖SD(Ω;Rd×Rd×N ), for all n ∈ N sufficiently large, (2.8)

so that (2.3) is proved for a suitable “tail” of the sequence un. The convergence of un → g in L1 implies that
Dun converges to Dg in the sense of distributions. The uniform bound (2.8) ensures the existence of a (not
relabeled) weakly-* converging subsequence such that Dun

∗
⇀ Dg inM(Ω;Rd×N ), so that, since ∇un

∗
⇀ G

inM(Ω;Rd×N ), we have

Dsun
∗
⇀ (∇g −G)LN +Dsg inM(Ω;Rd×N ),

which is (2.4). The proof is concluded. �

We now define the set of admissible sequences for the limit problems that we consider. Given (g,G) ∈
SD(Ω;Rd × Rd×N ), we let

Ad(g,G) := {un ∈ SBV (Ω;Rd) : un converges to (g,G) in the sense of (2.2) and (2.4) holds}. (2.9)

Lemma 2.1 guarantees that, for every (g,G) ∈ SD(Ω;Rd × Rd×N ), the set Ad(g,G) is not empty.

2.4. Measure Theory. We collect here some basic definitions and results from measure theory that will be
used throughout the paper. In particular, we present with more details the notions of weak-* and 〈·〉-strict
convergences for measures, we define two classes of admissible non-local energy densities Ψ, and we conclude
by stating two Reshetnyak-type continuity theorems.

In addition to the notion of weak-* convergence of measures introduced in Section 2.2 (and repeated in
point (i) of Definition 2.4), we give further definitions of convergence, which will be relevant in the sequel.
We point out that it is crucial to distinguish if the domain is an open set U or a closed one U .

Definition 2.4. Let µn, µ ∈M(U ;R`) (or inM(U ;R`)).
(i) We say that µn converges weakly-* to µ inM(U ;R`) if

lim
n→∞

ˆ
U

ϕ(x) dµn(x) =

ˆ
U

ϕ(x) dµ(x) for every ϕ ∈ C0(U ;R`).

(ii) We say that µn converges locally weakly-* to µ inM(U ;R`) if

lim
n→∞

ˆ
U

ϕ(x) dµn(x) =

ˆ
U

ϕ(x) dµ(x) for every ϕ ∈ Cc(U ;R`).

(Notice that (i) and (ii) coincide if U is bounded.)
(iii) We say that µn converges weakly-* to µ inM(U ;R`) if

lim
n→∞

ˆ
U

ϕ(x) dµn(x) =

ˆ
U

ϕ(x) dµ(x) for every ϕ ∈ C0(U ;R`).

The weak-* convergence of µn to µ is denoted by the symbol µn
∗
⇀ µ.

(iv) We say that µn converges 〈·〉-strictly to µ inM(U ;R`) (or inM(U ;R`)) if µn
∗
⇀ µ and in addition,

〈µn〉(U)→ 〈µ〉(U) (or 〈µn〉(U)→ 〈µ〉(U)), where, for every A ∈ B(U) (or A ∈ B(U)),

〈µ〉(A) :=

ˆ
A

√
1 + |ma(x)|2 dx+ |µs|(A).
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The next proposition establishes semicontinuity and continuity results with respect to the weak-* conver-
gence of measures.

Proposition 2.5 ([2, Proposition 1.62]). Let µn ∈ M(U ;R`) be a sequence of bounded Radon measures
locally weakly-* converging to µ.

(a) If the measures µn are positive, then for every lower semicontinuous function u : U → [0,+∞]ˆ
U

u(x) dµ(x) 6 lim inf
n→∞

ˆ
U

u(x) dµn(x)

and for every upper semicontinuous function v : U → [0,+∞) with compact supportˆ
U

v(x) dµ(x) > lim sup
n→∞

ˆ
U

v(x) dµn(x).

(b) If |µn| locally weakly-* converges to Λ, then Λ > |µ|. Moreover, if K is a relatively compact µ-
measurable subset of U such that Λ(∂K) = 0, then µn(K)→ µ(K) as n→∞. More generally,ˆ

U

u(x) dµ(x) = lim
n→∞

ˆ
U

u(x) dµn(x),

for every bounded Borel function u : U → R with compact support, such that the set of discontinuity
points is Λ-negligible.

Recall that given two functions f, g defined in RN , the convolution is a commutative and associative
smoothing operation defined by (

g ∗ f
)
(x) :=

ˆ
RN

f(x− y)g(y) dy,

whenever the integral makes sense. One of the main features of the convolution operation is that the function
f ∗ g is as regular as the most regular between f and g.

Following [2, Definition 2.1], we define for every µ ∈M(U ;R`) and every continuous function f : Rn → R
the convolution of µ and f (denoted by µ ∗ f)

(µ ∗ f)(x) :=

ˆ
U

f(x− y) dµ(y).

In this case, also, the regularity of µ ∗ f is the higher between that of µ and that of f . In particular, since f
is continuous, so is µ ∗ f , so that this turns out to smoothen the measure µ. Through the convolution, the
singularities of µ are smeared, so that µ ∗ f can be used as a density of the Lebesgue measure to generate a
measure which is absolutely continuous with respect to LN . The convergence results that we are going to
mention establish the behavior of convolution under weak-* convergence.

Following [2, page 41], if µh ∈ M(U ;R`) is a sequence locally weakly-∗ converging in U to µ and f ∈
C∞c (RN ), then

µh ∗ f → µ ∗ f uniformly on the compact sets of RN . (2.10)

We now introduce the convolution kernels that will be responsible for the averaging process in the non-local
term of the energy. They play the role of the division by 2r in the functional (1.5). Let

αr(x) :=
1

rN
α
(x
r

)
, (2.11a)

where

α ∈ C∞c (RN ), sptα ⊂ B1, α > 0, α(−x) = α(x), and
ˆ
B1

α(x) dx = 1. (2.11b)

It is easily verified that, for every x ∈ RN , the convolution

µ ∗ αr(x) =

ˆ
U

αr(x− y)dµ(y) = r−N
ˆ
Br(x)∩U

α

(
x− y
r

)
dµ(y). (2.12)

is well defined and it is a regular function. The convolution of a measure with a kernel of the type in (2.11)
has good convergence properties with respect to the weak-* and 〈·〉-strict convergences of measures.

Theorem 2.6 ([2, Theorem 2.2], [5, Proposition 2.22]). Let µ ∈ M(U ;R`) and, for r > 0, let αr be as in
(2.11). Define the measures µr := (µ ∗ αr)LN . Then, as r → 0+,
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(i) µr locally weakly-* converge to µ and for every A ∈ B(Ur)ˆ
A

|µ ∗ αr|(x) dx 6 |µ|(Ar) (2.13)

and the measures |µr| locally weakly-* converge in U to |µ|;
(ii) if |µ|(∂U) = 0, there also holds 〈µr〉(U)→ 〈µ〉(U). �

We introduced the convolution kernels αr of (2.11) which we will use to describe the averaging of the jumps
in the non-local term of the energy. We now introduce and describe two classes of continuous functions from
which we are going to take the energy density of the non-local energy. We consider a continuous function
Ψ: Ω× Rd×N → [0,+∞) belonging to the class (E) or (L), which are characterized as follows:

(E) Ψ can be extended to a function (still denoted by Ψ) belonging to C(Ω× Rd×N ) with the property
that limt→+∞Ψ(x, tξ)/t exists uniformly in x ∈ Ω and ξ with |ξ| = 1. (Such functions Ψ form the
class E(Ω× Rd×N ) defined in [31, Section 2.4].) In particular, this entails that
(i) Ψ has at most linear growth at infinity with respect to the second variable, namely there exists

CΨ > 0 such that

|Ψ(x, ξ)| 6 CΨ(1 + |ξ|) for all x ∈ Ω and ξ ∈ Rd×N ; (2.14)

(ii) for all x ∈ Ω and ξ ∈ Rd×N there exists the limit

lim
x′→x
ξ′→ξ
t→+∞

Ψ(x′, tξ′)

t
. (2.15)

(L) (i) Ψ is Lipschitz with respect to the second variable, i.e., there exists LΨ > 0 such that

|Ψ(x, ξ)−Ψ(x, ξ′)| 6 LΨ|ξ − ξ′|, for all x ∈ Ω and ξ, ξ′ ∈ Rd×N ; (2.16)

(ii) there exists a continuous function ω : [0,+∞)→ [0,+∞), with ω(s)→ 0+ as s→ 0+, such that

|Ψ(x, ξ)−Ψ(x′, ξ)| 6 ω(|x− x′|)(1 + |ξ|), for all x, x′ ∈ Ω, ξ ∈ Rd×N . (2.17)

Notice that, by fixing ξ′ ∈ Rd×N , (2.16) implies that there exists CΨ > 0 such that (2.14) holds.

Remark 2.7. The two classes (E) and (L) have a non-empty intersection, but also a non-trivial symmetric
difference.
An example of a function which belongs to (E) but not to (L), with N = d = 1 (and hence ` = 1), is the
function Ψ: R → R defined by Ψ(ξ) =

√
1− ξ2 for ξ ∈ [−1, 1] and extended by periodicity. The limit in

(2.15) exists and equals 0, but Ψ is not Lipschitz.
An example of a function which belongs to (L) but not to (E), again with N = d = ` = 1, is given by
Ψ: R → R defined in terms of the sequence {ξn}∞n=1, defined recursively by ξ1 = 1 and ξn+1 = 2nξn, for
n ∈ N \ {0}, and such that

Ψ(ξ) =


0, 0 6 ξ 6 1,

ξ − ξn, ξn 6 ξ 6
ξn + ξn+1

2
, n ∈ N \ {0},

ξn+1 − ξ,
ξn + ξn+1

2
6 ξ 6 ξn+1, n ∈ N \ {0}.

Then Ψ(ξn)/ξn = 0 for all n ∈ N \ {0} and

Ψ
(ξn + ξn+1

2

)
ξn + ξn+1

2

=
ξn+1 − ξn
ξn+1 + ξn

=
2n− 1

2n+ 1
, for n ∈ N \ {0}.

Consequently,

lim
n→∞

Ψ(ξn)

ξn
= 0 < 1 = lim

n→∞

Ψ
(ξn + ξn+1

2

)
ξn + ξn+1

2

,

so that (2.15) does not hold. �
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We now introduce functionals defined on measures, which will be useful for our mathematical treatment
of the problem we study (see Section 3). Given µ = maLN + µs ∈ M(U ;R`) and Φ: U × R` → [0,+∞)
continuous, let

I (µ) :=

ˆ
U

Φ(x,ma(x)) dx+

ˆ
U

Φ∞
(
x,

dµs

d|µs|
(x)

)
d|µs|(x), (2.18)

where Φ∞ is the recession function of Φ at infinity, defined by

Φ∞(x, ξ) := lim sup
x′→x
ξ′→ξ
t→+∞

Φ(x′, tξ′)

t
(2.19)

for every x ∈ U , ξ ∈ S`−1 and extended to R` by positive 1-homogeneity. The following two results will be
useful in Section 4.2. Notice that if Φ belongs to the class (E) then Φ∞ is a limit, namely

Φ∞(x, ξ) = lim
x′→x
ξ′→ξ
t→+∞

Φ(x′, tξ′)

t
(2.20)

for every x ∈ U , ξ ∈ S`−1 and extended to R` by positive 1-homogeneity. We point out that (i) continuous and
positively 1-homogeneous functions and (ii) convex functions with linear growth are two classes of functions
belonging to (E) (see [31, Section 2.4] to which we refer the reader for a detailed description of the class (E),
where it is indicated by the symbol E(U ;R`)).

Theorem 2.8 (Reshetnyak upper-semicontinuity theorem, [5, Corollary 2.11]). Let µn, µ ∈ M(U ;R`) be
such that µn 〈·〉-strictly converges to µ. Let Φ: U×R` → [0,+∞) be a continuous function with linear growth
at infinity (see (2.14)). Then the functional I defined in (2.18) is upper semicontinuous, namely

I (µ) > lim sup
n→∞

I (µn).

Theorem 2.9 (Reshetnyak continuity theorem, [31, Theorem 4]). Let µn, µ ∈ M(U ;R`) be such that µn
〈·〉-strictly converges to µ and let Φ belong to the class (E). Then Φ∞ is given by (2.20) and

I (µn)→ I (µ), as n→∞,
where

I (µ) :=

ˆ
U

Φ(x,ma(x)) dx+

ˆ
U

Φ∞
(
x,

dµs

d|µs|
(x)

)
d|µs|(x),

and analogously for I (µn).

We conclude this subsection by proving the following property for functions Φ belonging to the class (L).

Lemma 2.10. Let Φ: U × R` → [0,+∞) belong to the class (L). Then the recession function Φ∞ defined
in (2.19) can be computed as

Φ∞(x, ξ) = lim sup
t→+∞

Φ(x, tξ)

t
, for all x ∈ U , ξ ∈ R`. (2.21)

Proof. Fix x ∈ U and ξ ∈ R`. The inequality Φ∞(x, ξ) > lim supt→+∞ t−1Φ(x, tξ) is obvious from the defi-
nition of lim sup. The proof of the converse inequality is a matter of a computation, using the subadditivity
of the lim sup and keeping (2.16) and (2.17) in mind. �

3. Theorems on upscaling and localization of non-local energies

In this section we introduce a higher-dimensional analogue of the non-local functional (1.5). In what fol-
lows, Ω ⊂ RN denotes a bounded, connected, open set with Lipschitz boundary and we consider deformations
of the body Ω taking values in Rd. Therefore the deformation gradient is a Rd×N -valued field defined on Ω.
As it is customary when assigning an energy to a structured deformation, we start from an initial energy
defined for a classical deformation u : Ω→ Rd of the body and define the energy of a structured deformation
(g,G) as the energetically most economical way to approximate (g,G) by means of classical deformations un
which converge to (g,G) according to (2.2). The theory that we are going to introduce here and develop in
Section 4 is for a non-local energy inspired by (1.5), whereas in Section 5 we pair the non-local functional
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with a local one of the type treated in [12] and present results on the upscaling and spatial localization of
an energy featuring both local and non-local terms. It is for this coupling result that we are going to need
the sequences un to converge to (g,G) in the sense of (2.2) and also satisfy (2.4). We are going to describe
this process in detail.

The main issues that Choksi and Fonseca [12] addressed were the assignment of an energy to a structured
deformation and the establishment of an integral representation for that energy. They took an initial energy
EL : SBV (Ω;Rd)→ [0,+∞) featuring a bulk energy density W : Rd×N → [0,+∞) and an interfacial energy
density ψ : Rd × SN−1 → [0,+∞) in the form

EL(u) :=

ˆ
Ω

W (∇u(x)) dx+

ˆ
Ω∩Su

ψ([u](x), νu(x)) dHN−1(x), (3.1)

where dx and dHN−1(x) denote integration with respect to the N -dimensional Lebesgue measure LN and
the (N − 1)-dimensional Hausdorff measures, respectively, Su is the jump set of u, [u](x) is the jump of u at
x ∈ Su, and νu(x) is the outer unit normal at x ∈ Su. Because of the non-uniqueness of the approximating
sequence un in Proposition 2.1, the energy IL(g,G) for a given structured deformation is defined as the most
economical way, in terms of energies EL(un) in (3.1), to reach (g,G). From the mathematical point of view,
this corresponds to a relaxation/upscaling procedure, namely

IL(g,G) := inf
{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

EL(un) : un converges to (g,G) as in (2.2)

and sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

} (3.2)

where p > 1. The representation theorems [12, Theorems 2.16 and 2.17] state that, under suitable hypotheses
on W , ψ, and G depending upon p, there exist a relaxed/upscaled bulk energy density H : Rd×N ×Rd×N →
[0,+∞) and a relaxed/upscaled interfacial energy density h : Rd × SN−1 → [0,+∞) such that

IL(g,G) =

ˆ
Ω

H(∇g(x), G(x)) dx+

ˆ
Ω∩Sg

h([g](x), νg(x)) dHN−1(x). (3.3)

We refer the reader to Section 5.1 for the integral representation theorem providing (3.3); the particular
hypotheses on W , ψ, and G that depend upon p will not play a role until then. As a matter of fact, we
will present a more general version where we allow the initial bulk and surface energy densities W and ψ to
depend on the space variable x. The one-dimensional procedure of [17] inspired by that in [12] was carried
out for the notion of structured deformations introduced in [15]; there the initial energy (3.1) had the form

EL(u) =

ˆ 1

0

W (∇u(x)) dx+
∑
z∈Su

ψ([u](z)) (3.4)

and the resulting integral representation (3.3) was shown to be

IL(g,G) =

ˆ 1

0

(
W (G(x)) + ζ(∇g(x)−G(x))

)
dx+

∑
z∈Sg

ψ([g](z)),

where ζ := lim infξ→0+ ψ(ξ)/ξ. In this example, the contribution to the relaxed bulk energy density H of the
initial interfacial energy density ψ has a special character: as the definition of ζ shows, only arbitrarily small
jumps influence the relaxed bulk response, which, in turn, is linear in the disarrangement tensor M . In [11]
and subsequently in [18, 19] a periodic dependence upon M was shown to account for yielding, hysteresis,
and hardening in single crystals undergoing two-level shears. Therefore, to include such significant non-linear
effects, the choice (3.4) of initial energy must be modified. The proposal in [17] toward capturing a non-linear
dependence onM was to modify the initial energy (3.4) by adding the non-local term (1.5) to form the initial
energy

F r(u) :=

ˆ 1

0

W (∇u(x)) dx+
∑
z∈Su

ψ([u](z)) +

ˆ 1

0

Ψ

( ∑
z∈Su∩(x−r,x+r)

[u](z)

2r

)
dx, (3.5)

where the added, non-local term includes the bounded and uniformly continuous bulk energy density
Ψ: [0,+∞) → [0,+∞) accounting for the average of the jumps within each interval of radius r. Pass-
ing to structured deformations in (3.5) and then taking the limit as r → 0+ yields (see [17, Proposition 2.3
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and (2.21)])

J(g,G) =

ˆ 1

0

(
W (G(x)) + ζ(∇g(x)−G(x))

)
dx+

∑
z∈Sg

ψ([g](z)) +

ˆ 1

0

Ψ(∇g(x)−G(x))dx, (3.6)

where a second, possibly non-linear, dependence on the disarrangements appears through the density Ψ in
the last integral above.

A principal goal of this paper is to show that an analogous procedure that achieves in one dimension the
energy in (3.6) can be carried out in higher dimensions in the SBV framework of [12], by adding to the
energy EL in (3.1) a term similar to the last term on the right-hand side of (3.5). For a continuous function
Ψ: Ω×Rd×N → [0,+∞) in (E) or (L), set Ωr := {x ∈ Ω : dist(x, ∂Ω) > r}, and for u ∈ SBV (Ω;Rd), define
the averaged interfacial energy

Eαr (u) :=

ˆ
Ωr

Ψ
(
x, (Dsu ∗ αr)(x)

)
dx. (3.7)

Notice that we have introduced an explicit dependence on x in the non-local energy density Ψ in (3.7). The
need for such a dependence is motivated by applications to yielding, hysteresis, and crystal plasticity that
we will discuss in Sections 5.4 and 6. Putting (2.12) and (3.7) together and using the structure theorem for
the derivative of SBV functions (see formula (2.1)), yields the following form for the averaged interfacial
energy Eαr

Eαr (u) =

ˆ
Ωr

Ψ

(
x,

ˆ
Br(x)∩Su

αr(x− y)[u](y)⊗ νu(y) dHN−1(y)

)
dx. (3.8)

We note that in the expression above the non-local character of the averaged interfacial energy emerges
through the appearance of two iterated integrations, the inner surface integral with respect to HN−1 and the
outer volume integral with respect to LN . Our main aim in this paper is to study the behavior of energy (3.8)
under upscaling, i.e., as the field u approaches a target structured deformation (g,G), followed by spatial
localization, i.e., as r approaches 0. The first contribution we obtain is the following result concerning the
upscaling of the initial energy Eαr (un).

Theorem 3.1. Let Ω ⊂ RN be a bounded Lipschitz domain, Ψ: Ω × Rd×N → [0,+∞) be a continuous
function, for r > 0, let αr be as in (2.11), and let Eαr be as in (3.8). Then for every (g,G) ∈ SD(Ω;Rd ×
Rd×N ) and for every admissible sequence un ∈ Ad(g,G) (see (2.9))

lim
n→∞

Eαr (un) =

ˆ
Ωr

Ψ

(
x,

ˆ
Br(x)

αr(y − x)(∇g −G)(y) dy

+

ˆ
Br(x)∩Sg

αr(y − x)[g](y)⊗ νg(y) dHN−1(y)

)
dx

=: Iαr (g,G; Ωr).

(3.9)

After proving Theorem 3.1 we deduce an explicit formula for

I(g,G) := lim
r→0+

lim
n→∞

Eαr (un) = lim
r→0+

Iαr (g,G; Ωr), (3.10)

where I(g,G) represents the spatial localization of the upscaled energy Iαr (g,G; Ωr). In our main result,
we obtain an explicit formula for I(g,G) via an extension of (g,G) ∈ SD(Ω;Rd × Rd×N ) to (ḡ, Ḡ) ∈
BV (RN ;Rd) × L1(RN ;Rd×N ) such that |Dsḡ|(∂Ω) = 0 (see [28, 29]). This extension permits us to add a
term to Iαr (g,G; Ωr) such that the resulting sum I

αr
(ḡ, Ḡ; Ω) is an integral over the fixed domain Ω whose

limit can be studied via the Reshetnyak continuity-type Theorems 2.8 and 2.9, and the resulting explicit
formula turns out not to depend on the particular choice of the extension. Accordingly, we restrict our
attention to functions Ψ with at most linear growth at infinity, belonging to the classes (E) or (L) described
in Subsection 2.4. We are now in a position to state our result concerning the limit (3.10), the spatial
localization of the upscaled energy Iαr (g,G; Ωr) in (3.9).

Theorem 3.2. Let Ω ⊂ RN be a bounded Lipschitz domain, let Ψ: Ω × Rd×N → [0,+∞) be a continuous
function belonging to (E) or (L), and let αr be as in (2.11). Then for any (g,G) ∈ SD(Ω;Rd × Rd×N ) the
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limiting energy I(g,G) in (3.10) is given by

I(g,G) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x), (3.11)

with Ψ∞ defined by (2.19).

Remark 3.3. We observe the following:
• The recession function Ψ∞ defined by (2.19) is finite whenever Ψ is in (E) or (L). Notice that it is

a limit if Ψ is in (E), see (2.15).
• In Theorem 3.2, the resulting bulk energy density retains the character of the function Ψ that

defines the initial non-local energy (3.7). Moreover, we observe that since Ψ∞ vanishes in the case
of sublinear growth at infinity formula (3.11) reduces to

I(g,G) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx (3.12)

when Ψ has sublinear growth. �

It is now natural to consider an initial energy that combines both a local contribution, described by the
functional EL in (3.1), and a non-local one, described by the functional Eαr in (3.7). We now focus our
attention on the relaxation/upscaling, in the context of [12], of the energy functional

Fαr (u) := EL(u) + Eαr (u), (3.13)

namely, we consider

Jαr (g,G) := inf
{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

Fαr (un) : un converges to (g,G) according to (2.2)

and sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

} (3.14)

where, as in (3.2), p > 1. We will prove in Theorem 5.4 that the relaxation/upscaling of the sum Fαr in
(3.13) is the sum of the upscaling Iαr in (3.9) of Eαr and the relaxation/upscaling IL in (3.2) of EL:

Jαr (g,G) = IL(g,G) + Iαr (g,G; Ωr), (3.15)

so that, defining
J(g,G) := lim

r→0+
Jαr (g,G) (3.16)

and keeping (3.10) in mind, we obtain

J(g,G) = IL(g,G) + I(g,G). (3.17)

Eventually, from (3.3) and (3.11) the energy J(g,G) has the explicit expression (see (5.9) in Corollary 5.5)

J(g,G) =

ˆ
Ω

H(∇g(x), G(x)) dx+

ˆ
Ω∩Sg

h([g](x), νg(x)) dHN−1(x)

+

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x).

(3.18)

The formula above couples together the contributions to the total energy J(g,G) coming from the local
part IL(g,G) and from the limit I(g,G) of the non-local energy. The contribution of the singularities of g
enters the expression of J(g,G) both through the surface term of IL(g,G) and through the surface term of
I(g,G), via the function Ψ∞, thus retaining the linear character at infinity of Ψ. The effect of Ψ on the
disarrangements is encoded in the bulk term of I(g,G). Corollary 5.5 provides the explicit representation
(3.18) and shows that the nonlinearities introduced in the microlevel energy Eαr through Ψ persist under
the two operations of relaxation/upscaling and spatial localization.

4. Proofs of Theorems 3.1 and 3.2

In this section we perform the two limiting operations described in the Introduction. We first upscale
the non-local energy Eαr defined in (3.7), that is, we prove Theorem 3.1, and then we spatially localize the
energy Iαr defined in (3.9), that is, we prove Theorem 3.2.
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4.1. Upscaling of the non-local energy Eαr . This subsection is devoted to the proof of Theorem 3.1.

Proof of Theorem 3.1. Let αr be as in (2.11) and let (g,G) ∈ SD(Ω;Rd × Rd×N ). For any sequence un ∈
Ad(g,G) (see the definition (2.9)) let µn, µ ∈M(Ω;Rd×N ) be defined as

µn := Dsun, µ := (∇g −G)LN +Dsg. (4.1)

Then, since un ∈ Ad(g,G), we have that
µn

∗
⇀ µ. (4.2)

For r ∈ (0, 1) and for x ∈ Ωr define

fr,n(x) :=

ˆ
Ω∩Br(x)∩Sun

αr(y − x)[un](y)⊗ νun(y) dHN−1(y) = (µn ∗ αr)(x),

fr(x) :=

ˆ
Ω∩Br(x)

αr(y − x)(∇g(y)−G(y)) dy +

ˆ
Ω∩Br(x)∩Sg

αr(y − x)[g](y)⊗ νg(y) dHN−1(y) = (µ ∗ αr)(x).

By (2.10), for every x ∈ Ωr = {x ∈ Ω : dist(x, ∂Ω) > r}

lim
n→∞

fr,n(x) = fr(x), (4.3)

and we claim that

lim
n→∞

ˆ
Ωr

Ψ(x, fr,n(x)) dx =

ˆ
Ωr

Ψ(x, fr(x)) dx. (4.4)

Indeed, bounds on αr, which follow from (2.11), guarantee that |fr,n(x)| 6 CαrC‖(g,G)‖SD which, in turn,
using the continuity of Ψ, provides the uniform upper bound∣∣Ψ(x, fr,n(x)

)∣∣ 6 max
{

Ψ(x,A) : x ∈ Ωr, |A| 6 CαrC‖(g,G)‖SD
}
, (4.5)

for every x ∈ Ωr. Here, Cαr is a constant depending only on αr, whereas C is the constant in (2.3). By
(4.3) and the continuity of Ψ, Ψ(x, fr,n(x))→ Ψ(x, fr(x)) in Ωr as n→∞ for every x, and (4.4) follows by
Lebesgue’s theorem on dominated convergence. This concludes the proof. �

4.2. Spatial localization of the upscaled non-local energy. We now turn to the study of the limit
(3.10), that is, we find an explicit formula for the energy Iαr (g,G; Ωr) in the limit as the measure of non-
locality r tends to zero. As mentioned in Sections 2 and 3, we restrict our attention to continuous functions
Ψ: Ω×Rd×N → [0,+∞) belonging to the classes (E) or (L). As a first step, given (g,G) ∈ SD(Ω;Rd×Rd×N ),
we provide a pair (ḡ, Ḡ) ∈ BV (RN ;Rd)× L1(RN ;Rd×N ) satisfying

(e1) (ḡ, Ḡ)|Ω = (g,G);
(e2) |Dḡ|(RN ) 6 C‖g‖BV (Ω;Rd), for some constant C > 0;
(e3) |Dsḡ|(∂Ω) = 0.

Because ∂Ω is Lipschitz and, in particular, g ∈ BV (Ω;Rd), a function ḡ ∈ BV (RN ;Rd) satisfying ḡ|Ω = g,
(e2), and (e3) is provided by [29, Theorem 1.4]. Any function Ḡ ∈ L1(RN ;Rd×N ) satisfying Ḡ|Ω = G
provides the second element of the pair (ḡ, Ḡ) satisfying (e1-3). For any (ḡ, Ḡ) satisfying (e1-3) and for αr
as in (2.11), in analogy to (4.1), we define

µ̄ := (∇ḡ − Ḡ)LN +Dsḡ and µ̄r := (µ̄ ∗ αr)LN , (4.6)

where we observe that the latter expression is well defined for every x ∈ RN . Moreover, |µ̄| = |∇ḡ− Ḡ|LN +

|Dsḡ|. Finally, we define the functional I
αr

(ḡ, Ḡ; Ω) by

I
αr

(ḡ, Ḡ; Ω) :=

ˆ
Ω

Ψ(x, (µ̄ ∗ αr)(x)) dx. (4.7)

Noting that, by (e1), µ̄ Ω = µ (see (4.1) and (4.6)), and recalling (3.9), (4.7) can be written as

I
αr

(ḡ, Ḡ; Ω) = Iαr (g,G; Ωr) +

ˆ
Ω\Ωr

Ψ(x, (µ̄ ∗ αr)(x)) dx. (4.8)

We are now ready to prove Theorem 3.2
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Proof of Theorem 3.2. Let us fix (g,G) ∈ SD(Ω;Rd×Rd×N ) and let (ḡ, Ḡ) ∈ BV (RN ;Rd)×L1(RN ;Rd×N )

satisfy (e1-3). In view of (4.8), it suffices to show that limr→0+ I
αr

(ḡ, Ḡ; Ω) exists and is equal to the
expression for I(g,G) in (3.11) and to show that the integral in the right-hand side of (4.8) tends to zero as
r → 0+, namely

lim
r→0+

ˆ
Ω\Ωr

Ψ(x, (µ̄ ∗ αr)(x)) dx = 0. (4.9)

Because limr→0+ LN (Ω \ Ωr) = 0, (4.9) follows by using Fubini’s Theorem. Indeed, (2.11), (2.12), (2.13),
and (2.14) give the following chain of inequalities∣∣∣∣ˆ

Ω\Ωr
Ψ(x, (µ̄ ∗ αr)(x)) dx

∣∣∣∣ 6CΨ

ˆ
Ω\Ωr

(
1 + |(µ̄ ∗ αr)(x)|

)
dx

6CΨ

(
LN (Ω \ Ωr) +

ˆ
Ω\Ωr

|(µ̄ ∗ αr)(x)|dx
)

6CΨ

(
LN (Ω \ Ωr) + |µ̄|

(
(Ω \ Ωr)

r
))
,

(4.10)

where we used (2.13). The last term above converges to 0 as r → 0+, since (Ω \ Ωr)
r → ∂Ω as r → 0+ and

LN (∂Ω) = 0, and |µ̄|(∂Ω) = 0 by the lower semicontinuity of the total variation with respect to the weak-*
convergence of measures (see (4.6)) and (e3). We now prove that

lim
r→0+

I
αr

(ḡ, Ḡ; Ω) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x). (4.11)

To do so, let us define the functional I : M(Ω;Rd×N )→ [0,+∞) by

I (λ) :=

ˆ
Ω

Ψ
(
x,

dλ

dLN
(x)
)

dx+

ˆ
Ω∩spt(|λs|)

Ψ∞
(
x,

dλ

d|λs|
(x)
)

d|λs|(x), (4.12)

for λ ∈ M(Ω;Rd×N ), where Ψ∞ denotes the recession function at infinity of Ψ (see (2.19)). Keeping (4.6),
(4.7), and (4.12) in mind, we can write I

αr
(ḡ, Ḡ; Ω) = I (µ̄r); similarly, invoking (e1), the right-hand side

of (4.11) can be written as I (µ̄), so that (4.11) is proved if we show that

lim
r→0+

I (µ̄r) = I (µ̄). (4.13)

Recalling the definitions of µ̄, µ̄r in (4.6), we use (2.13) to obtain the estimate

|µ̄r|(V ) 6 ‖∇ḡ − Ḡ‖L1(V r;Rd) + |Dsḡ|(V r),

for every open set V ⊆ RN . In turn, Theorem 2.6(i) and Proposition 2.5(b) entail that µ̄r converges locally
weakly-* inM(Ω;Rd×N ) to µ̄ and µ̄r(Ω̄)→ µ̄(Ω̄). Moreover, |µ̄r| converges locally weakly-* inM+(RN ) to
|µ̄| = |∇ḡ − Ḡ|LN + |Dsḡ|. Furthermore, since |µ̄|(∂Ω) = 0,

|µ̄|(Ω) = |µ̄|(Ω) 6 lim inf
r→0+

|µ̄r|(Ω) 6 lim inf
r→0+

(
|Dsḡ|(Ωr) + ‖∇ḡ − Ḡ‖L1(Ωr;Rd×N )

)
= |Dsg|(Ω) + ‖∇g −G‖L1(Ω;Rd×N ).

This, together with Proposition 2.5(a) gives

|µ̄r|
∗
⇀ |∇ḡ − Ḡ|LN + |Dsḡ| inM+(Ω).

Finally, by Theorem 2.6(ii) we obtain that 〈µ̄r〉(Ω)→ 〈µ̄〉(Ω), yielding that µ̄r 〈·〉-strict converges to µ̄ (see
Definition 2.4(iv)).

If Ψ belongs to the class (E), since the lim sup in the definition of Ψ∞ is indeed a limit (see Remark 3.3)
we can apply Theorem 2.9, to obtain (4.13). In turn (4.11) is proved and therefore (3.11), which concludes
the proof.

If Ψ belongs to the class (L), Theorem 2.8 provides the upper bound

lim sup
r→0+

ˆ
Ω

Ψ
(
x, (µ̄ ∗ αr)(x)

)
dx 6

ˆ
Ω

Ψ
(
x, (∇ḡ − Ḡ)(x)

)
dx+

ˆ
Ω∩Sḡ

Ψ∞
(
x,

dDsḡ

d|Dsḡ|
(x)
)

d|Dsḡ|(x)

=

ˆ
Ω

Ψ
(
x, (∇g −G)(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x),

(4.14)
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where the equality holds by (e1). We now prove that
ˆ

Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x,

dDsg

d|Dsg|
(x)
)

d|Dsg|(x) 6 lim inf
r→0+

ˆ
Ω

Ψ
(
x, (µ̄ ∗ αr)(x)

)
dx. (4.15)

To this end, consider the measures θ̄r ∈ M+(Ω) defined by θ̄r := Ψ(·, (µ̄ ∗ αr)(·))LN . Since they form a
bounded family of Radon measures, they converge weakly-* to some positive measure θ̄. We obtain (4.15) if
we show that

dθ̄

dLN
(x) > Ψ

(
x, (∇g −G)(x)

)
for LN -a.e. x ∈ Ω, (4.16a)

dθ̄

d|Dsg|
(x) > Ψ∞

(
x,

dDsg

d|Dsg|
(x)
)

for HN−1-a.e. x ∈ Sg. (4.16b)

We start with (4.16a). By the linearity of the convolution operator and the definition of µ̄r, we know that,
as r → 0+, (

(∇ḡ − Ḡ)LN ∗ αr
)
LN ∗

⇀ (∇g −G)LN and (Dsḡ ∗ αr)LN
∗
⇀ Dsg, (4.17)

inM(Ω;Rd×N ) and, by [30, Corollary 2.1.17], we have(
(∇ḡ − Ḡ)LN ∗ αr

)
(x)→ (∇g −G)(x) for LN -a.e. x ∈ Ω. (4.18)

Let us fix x0 ∈ Ω \ Sg which is a Lebesgue point for ∇g −G, let δk ∈ R be a vanishing sequence such that
θ̄(∂Q(x0; δk)) = 0. and let us compute

dθ̄

dLN
(x0) = lim

k→∞

θ̄(Q(x0; δk))

LN (Q(x0; δk))
= lim
k→∞

lim
r→0+

θ̄r(Q(x0; δk))

δNk
= lim
k→∞

lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ(x, (µ̄ ∗ αr)(x)) dx

= lim
k→∞

lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, ((∇ḡ − Ḡ)LN ∗ αr)(x) + (Dsḡ ∗ αr)(x)

)
dx

> lim
k→∞

lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, ((∇ḡ − Ḡ)LN ∗ αr)(x)

)
dx− lim

k→∞
lim
r→0+

LΨ

δNk

ˆ
Q(x0;δk)

|(Dsḡ ∗ αr)(x)|dx,

where we have used (2.16). Since, by the second convergence in (4.17), the last integral is the Radon-Nikodým
derivative of |Dsḡ| with respect to LN , it vanishes, so that we have

dθ̄

dLN
(x0) > lim

k→∞
lim
r→0+

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, ((∇ḡ − Ḡ)LN ∗ αr)(x)

)
dx

> lim
k→∞

1

δNk

ˆ
Q(x0;δk)

Ψ
(
x, (∇g −G)(x)

)
dx

> lim
k→∞

ˆ
Q

Ψ
(
x0 + δky, (∇g −G)(x0 + δky)

)
dy > Ψ

(
x0, (∇g −G)(x0)

)
,

where we have used the continuity of Ψ, (4.18), and Fatou’s Lemma in the second inequality, a change of
variables and (2.16) and (2.17) in the subsequent estimates. This proves (4.16a). To prove (4.16b), let us

fix x0 ∈ Sg and let τ(x0) :=
dDsg

d|Dsg|
(x0). By Lemma 2.10, the recession function Ψ∞(x0, τ(x0)) can be

computed using formula (2.21). Let now tk ∈ R be a sequence diverging to +∞ as k →∞ along which the
lim sup in (2.21) is indeed a limit, that is,

Ψ∞(x0, τ(x0)) = lim
k→∞

Ψ(x0, tkτ(x0))

tk
.

Since Ψ is Lipschitz continuous, a reasoning analogous to that of [5, Lemma 4.2] grants that the tk’s can be
chosen as

tk :=
|Dsḡ|(Q(x0; δk))

δNk
, (4.19)
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with δk ∈ R a vanishing sequence such that θ̄(∂Q(x0; δk)) = 0. Then

dθ̄

d|Dsg|
(x0) = lim

k→∞

θ̄(Q(x0; δk))

|Dsg|(Q(x0; δk))
= lim
k→∞

lim
r→0+

θ̄r(Q(x0; δk))

|Dsg|(Q(x0; δk))

= lim
k→∞

lim
r→0+

ˆ
Q(x0;δk)

Ψ
(
x, (µ̄ ∗ αr)(x)

)
dx

|Dsg|(Q(x0; δk))

= lim
k→∞

lim
r→0+

1

tk

ˆ
Q

Ψ
(
x0 + δky, (µ̄ ∗ αr)(x0 + δky)

)
dy

where the last equality follows by a change of variables, taking (4.19) into account. Defining

w̄k,r(y) :=
(µ̄ ∗ αr)(x0 + δky)

tk
,

we can continue the chain of equalities above as follows

dθ̄

d|Dsg|
(x0) = lim

k→∞
lim
r→0+

1

tk

ˆ
Q

Ψ
(
x0 + δky, (µ̄ ∗ αr)(x0 + δky)

)
dy

= lim
k→∞

lim
r→0+

1

tk

ˆ
Q

Ψ
(
x0 + δky, tkw̄k,r(y)

)
dy

> lim
k→∞

lim
r→0+

[
1

tk

ˆ
Q

Ψ
(
x0, tkτ(x0)

)
dy − LΨ

ˆ
Q

∣∣w̄k,r(y)− τ(x0)
∣∣ dy

− 1

tk

ˆ
Q

ω(δk|y|)(1 + tk|τ(x0)|) dy

]
= Ψ∞(x0, τ(x0)),

where we have used (2.16) and (2.17) and where the last two terms in the square bracket vanish since
limk→∞ limr→0+

´
Q
w̄k,r(y) dy = τ(x0) by (4.19) and by the properties of the modulus of continuity ω. This

concludes the proof of (4.16b) and, consequently, of (4.15). Combining (4.14) and (4.15) yields a chain of
equalities, which is precisely (3.11). The theorem is proved. �

Recalling (2.1), the limiting energy I(g,G) in (3.11) can be written as

I(g,G) =

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x, [g](x)⊗ νg(x)

)
dHN−1(x). (4.20)

Moreover, as a particular case of Ψ with sublinear growth, one can consider a bounded Ψ. In this case, the
formula above reduces to (3.12) (since Ψ∞ = 0).

5. Coupling local and non-local energies

In this section we extend the results first proved in the pioneering paper [12] to the case of x-dependent
energy densities. The integral representation results [12, Theorems 2.16 and 2.17] are expected to hold with
the obvious modifications, namely with the relaxed/upscaled energy densities depending on x as well. This
generalization is somewhat natural and can be obtained with minor modifications to the original proofs,
but since it is not presented elsewhere, we highlight here the adaptation of the proofs from [12] for sake of
completeness.

5.1. Relaxation/upscaling of the local energy EL. In this subsection we present the relaxation/upscaling
results for local energies, like EL defined in (3.1), contained in the paper [12]. We start by introducing the as-
sumptions on the bulk and interfacial energy densities W and ψ. Let p > 1 and let W : Ω×Rd×N → [0,+∞[
and ψ : Ω× Rd × SN−1 → [0,+∞[ be continuous functions satisfying the following conditions
(W1)p there exists C > 0 such that, for all x ∈ Ω and A,B ∈ Rd×N ,

|W (x,A)−W (x,B)| 6 C|A−B|
(
1 + |A|p−1 + |B|p−1

)
(W2) there exists a continuous function ωW : [0,+∞) → [0,+∞) with ωW (s) → 0 as s → 0+ such that,

for every x, x0 ∈ Ω and A ∈ Rd×N ,

|W (x,A)−W (x0, A)| 6 ωW (|x− x0|)(1 + |A|p);
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(W3) there exist C, T > 0 and 0 < α < 1 such that, for all x ∈ Ω and A ∈ Rd×N with |A| = 1, and, if
p = 1, ∣∣∣∣W∞(x,A)− W (x, tA)

t

∣∣∣∣ 6 C

tα
, for all t > T ,

where W∞ denotes the recession function at infinity of W (with respect to A), see (2.21);
(ψ1) there exist c, C > 0 such that, for all x ∈ Ω, λ ∈ Rd, and ν ∈ SN−1,

c|λ| 6 ψ(x, λ, ν) 6 C|λ|;

(ψ2) (positive 1-homogeneity) for all x ∈ Ω, λ ∈ Rd, ν ∈ SN−1, and t > 0

ψ(x, tλ, ν) = tψ(x, λ, ν),

(ψ3) (sub-additivity) for all x ∈ Ω, λ1, λ2 ∈ Rd, and ν ∈ SN−1,

ψ(x, λ1 + λ2, ν) 6 ψ(x, λ1, ν) + ψ(x, λ2, ν).

(ψ4) there exists a continuous function ωψ : [0,+∞)→ [0,+∞) with ωψ(s)→ 0 as s→ 0+ such that, for
every x, x0 ∈ Ω, λ ∈ Rd, and ν ∈ SN−1,

|ψ(x, λ, ν)− ψ(x0, λ, ν)| 6 ωψ(|x− x0|)|λ|.

Given W and ψ as above, and u ∈ SBV (Ω;Rd), we defined the initial energy EL(u) as

EL(u) :=

ˆ
Ω

W (x,∇u(x)) dx+

ˆ
Ω∩Su

ψ(x, [u](x), νu(x)) dHN−1(x) (5.1)

and, given (g,G) ∈ SD(Ω;Rd × Rd×N ), we defined the relaxed energies Ip(g,G) as

Ip(g,G) := inf
{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

EL(un) : un → (g,G) in the sense of (2.2),

(1− δ1(p)) sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

}
.

(5.2)

In the formula above, and in what follows, we use the symbol δ1(p) as the Kronecker delta computed at p,
namely δ1(p) = 1 if p = 1 and zero otherwise, and use it as a selector between the cases p = 1 and p > 1. In
particular, in (5.2), the control on the Lp norm of |∇un| does not appear in the formula if p = 1, since in that
case 1−δ1(p) = 0. We introduce now the classes of competitors for the cell formulae for the relaxed/upscaled
bulk and surface energy densities. For A,B ∈ Rd×N let

Cbulk
p (A,B) :=

{
u ∈ SBV (Q;Rd) : u|∂Q(x) = Ax,

ˆ
Q

∇udx = B, |∇u| ∈ Lp(Q)

}
(5.3)

and for λ ∈ Rd and ν ∈ SN−1 let

Csurface
p (λ, ν) :=

{
u ∈ SBV (Qν ;Rd) : u|∂Qν (x) = uλ,ν(x), δ1(p)C1(u) + (1− δ1(p))C(u)

}
,

where the function uλ,ν is defined by

uλ,ν(x) :=

{
λ if x · ν > 0,
0 if x · ν < 0,

and the conditions C1(u) and C(u) are

C1(u)⇐⇒
ˆ
Q

∇udx = 0 and C(u)⇐⇒ ∇u(x) = 0 for LN -a.e. x ∈ Qν . (5.4)

We state now the integral representation theorem for the relaxed/upscaled energies Ip defined in (5.2). It
generalizes the results contained in [12, Theorems 2.16 and 2.17] to the inhomogeneous case considered here.
For the sake of being concise, we give a unified statement through the use of the selector δ1(p), which takes
into account the different nuances between the case p = 1 and the case p > 1. Note that the formulae for
the relaxed energy densities Hp and hp are obtained via the blow-up method [7, 25, 26] and involve the
contributions of both W and ψ for Hp, and of ψ and possibly W∞ for hp.
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Theorem 5.1. Let p > 1 and let W : Ω × Rd×N → [0,+∞[ and ψ : Ω × Rd × SN−1 → [0,+∞[ be con-
tinuous functions satisfying hypotheses (W1)p, (W2), δ1(p)(W3), (ψ1), (ψ2), (ψ3), and (ψ4); let (g,G) ∈
SD(Ω;Rd × Rd×N ) with G ∈ Lp(Ω;Rd×N ) and let Ip(g,G) be given by (5.2). Then there exist Hp : Ω ×
Rd×N × Rd×N → [0,+∞) and hp : Ω× Rd × SN−1 → [0,+∞) such that

Ip(g,G) =

ˆ
Ω

Hp(x,∇g(x), G(x)) dx+

ˆ
Ω∩Sg

hp(x, [g](x), νg(x)) dHN−1(x). (5.5)

For all x0 ∈ Ω and A,B ∈ Rd×N ,

Hp(x0, A,B) := inf

{ˆ
Q

W (x0,∇u(x)) dx+

ˆ
Q∩Su

ψ(x0, [u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
p (A,B)

}
; (5.6)

for all x0 ∈ Ω, λ ∈ Rd, and ν ∈ SN−1,

hp(x0, λ, ν) := inf

{
δ1(p)

ˆ
Qν

W∞(x0,∇u(x)) dx+

ˆ
Qν∩Su
ψ(x0, [u](x), νu(x)) dHN−1(x) : u ∈ Csurface

p (λ, ν)

}
, (5.7)

with W∞ defined in (2.21).

Remark 5.2. Theorem 5.1 collects the content of Theorems 2.16 and 2.17 in [12] in a compact form. In
particular, the form of the integral representation of the relaxed/upscaled energies (5.2) provided by formula
(5.5) is structurally the same both for p = 1 and for p > 1: it features a bulk energy and an interfacial
energy. We make the following observations.

• The condition |∇u| ∈ Lp(Q) in (5.3) is redundant if p = 1 (see [12, Remark 2.15]);
• If p = 1, hypothesis (W3) is required and we notice that in formula (5.7) the recession function at

infinity W∞ defined in (2.21) appears, to account for concentration phenomena arising when taking
the limit of functions in L1.
• In (5.4), condition C1 contains condition C, so that, for every λ ∈ Rd and ν ∈ SN−1, we have the

inclusion Csurface
p>1 (λ, ν) ⊂ Csurface

1 (λ, ν).
• The cell formula (5.7) for p > 1 corrects formula (2.17) in [12], where the dependence on the normal
ν was mistakenly omitted, as already noted in [38, Theorem 3] and [41, formula (4)].

We point out the following final remarks.
• Hypothesis (W1)p could be strengthened to include coercivity (p-growth from below). Although this

would be a strong restriction from the mechanical point of view, it would make the proofs easier.
We refer the reader to [12, Step 1 in the proof of Proposition 2.22] for a discussion on this.
• If p > 1, hypotheses (ψ1) and (ψ2) can be relaxed. We refer the reader to [12, Remark 3.3] for a

discussion on this.
• If p > 1, Theorem 5.1 provides a representation of the relaxed/upscaled energy density Ip(g,G) only

in the case G ∈ Lp(Ω;Rd×N ) (see again [12, Remark 2.15]).
These final remarks pave the way for a statement of Theorem 5.1 under the minimal set of hypotheses.

Sketch of the proof of Theorem 5.1. Formula (5.5) is obtained by using the blow-up method [7, 25, 26] to
prove that the energy densities (5.6) and (5.7) provide upper and lower bound for the Radon-Nikodým deriva-
tives of suitable measures associated with Ip(g,G) with respect to LN and |[g]|HN−1 Sg. The dependence
on x is not involved in this process, and the existence of the moduli of continuity ωW and ωψ is a strong
enough assumption to estimate the error when passing from the evaluation of the energy densities at generic
x ∈ Q(x0, δ) to the evaluation at x0. A similar strategy was undertaken in [9], in the spirit of [7]. �

We remark that Theorem 5.1 does not address effects such as the bending due to jumps in ∇un, that are
captured by second-order structured deformations [9, 24, 37].

5.2. Relaxation/upscaling of the total energy EL + Eαr . We now address the relaxation/upscaling
of the total energy including both the local initial energy EL and the non-local initial energy Eαr . By
Remark 5.3 below we can perform the relaxation/upscaling of EL and the upscaling of Eαr as two separate
processes.
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Remark 5.3. We note that given (g,G) ∈ SD(Ω;Rd×Rd×N ), any sequence of functions un ∈ SBV (Ω;Rd)
admissible for the relaxation/upscaling process of Theorem 5.1, such that lim infn→∞EL(un) is finite, be-
longs to Ad(g,G). In fact, by (5.2), un converges to (g,G) in the sense of (2.2), thus providing a uniform
bound on the L1 norm of un and on the Lp norm of ∇un. Then, the coercivity of ψ in (ψ1) ensures that
|Dsun| is also a unifomly bounded sequence of measures, hence Dun is bounded in total variation and
therefore has a weakly-* converging subsequence (not relabelled) such that Dsun

∗
⇀ (∇g − G)LN + Dsg,

that is, (2.4) holds true. Moreover, by the metrisability on compact sets of the weak-* convergence, (see [2,
Remark 1.57, Theorem 1.59, and subsequent comments]) and Urysohn’s principle, the whole sequence un
belongs to Ad(g,G). Moreover, the collection of such sequences un is non-empty, and the infimum over such
un of lim infn→∞EL(un) equals IL(g,G). �

Theorem 5.4. Under the conditions of Theorem 3.1 and Theorem 5.1, the relaxation/upscaling (3.14) of the
initial energy (3.13) admits the integral representation (3.15), where, for any (g,G) ∈ SD(Ω;Rd × Rd×N ),
the relaxed/upscaled energy IL(g,G) of the local initial energy EL in (5.1) is given by (5.5) and the upscaled
energy Iαr (g,G; Ωr) of the non-local initial energy Eαr is provided by Theorem 3.1. In particular,

Jαr (g,G) =

ˆ
Ω

Hp(x,∇g(x), G(x)) dx+

ˆ
Ω∩Sg

hp(x, [g](x), νg(x)) dHN−1(x)

+

ˆ
Ωr

Ψ
(
x, ((∇g −G) ∗ αr)(x) + (Dsg ∗ αr)(x)

)
dx.

(5.8)

Proof. The representation formula (5.8) is an immediate consequence of Theorem 3.1, Theorem 5.1, Re-
mark 5.3, and the superadditivity properties of the lim inf. �

Corollary 5.5. Under the conditions of Theorem 3.2 and Theorem 5.4, for any (g,G) ∈ SD(Ω;Rd×Rd×N ),
the functional J(g,G) defined in (3.16) admits the integral representation in (3.17), namely,

J(g,G) =

ˆ
Ω

Hp(x,∇g(x), G(x)) dx+

ˆ
Ω∩Sg

hp(x, [g](x), νg(x)) dHN−1(x)

+

ˆ
Ω

Ψ
(
x,∇g(x)−G(x)

)
dx+

ˆ
Ω∩Sg

Ψ∞
(
x, [g](x)⊗ νg(x)

)
dHN−1(x).

(5.9)

Proof. The result follows immediately by Theorem 3.2 and Theorem 5.4. �

As noticed in the last bullet of Remark 5.2, if p > 1 Theorem 5.4 and Corollary 5.5 provide integral
representation results only for fields G ∈ Lp(Ω;Rd×N ).

5.3. On the reverse order of the limits. After the presentation of the iterated limiting procedure carried
out in Sections 4.1 and 4.2, a legitimate question is whether the two operations commute, namely, whether
we obtain the same result if we reverse the order in which the two limits are taken: first letting r → 0+

and then letting n → ∞. The problem is a relevant one in the scientific community and a similar question
was studied in [10] for a problem of dimension reduction in the context of structured deformations. In the
following few lines, we will give a brief explanation of why in the present case a commutability result does
not hold. Under the hypotheses of the previous sections onW , ψ, and Ψ, let us consider the reversed iterated
limiting procedure for an initial energy of the type EL + Eαr , with EL as in (5.1) and Eαr as in (3.7). We
first let the measure of non-locality tend to zero and then relax/upscale to structured deformations, namely
we consider, for u ∈ SBV (Ω;Rd)

IL(u) := lim
r→0+

(
EL(u) + Eαr (u)

)
(5.10)

and then we relax/upscale this energy as in (5.2), for (g,G) ∈ SD(Ω;Rd × Rd×N ):

I(R)
p (g,G) := inf

{un}⊂SBV (Ω;Rd)

{
lim inf
n→∞

IL(un) : un → (g,G) in the sense of (2.2),

(1− δ1(p)) sup
n
‖∇un‖Lp(Ω;Rd×N ) <∞

}
.

(5.11)
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Given that EL is independent of r, it is easy to deal with (5.10). Since Ψ belongs to the class (E), an
application of the Reshetnyak Continuity Theorem 2.9 with Φ = Ψ gives

lim
r→0+

Eαr (u) = lim
r→0+

ˆ
Ωr

Ψ
(
x, (αr ∗Dsu)(x)

)
dx =

ˆ
Ω

Ψ(x, 0) dx+

ˆ
Ω∩Su

Ψ∞
(
x,

dDsu

d|Dsu|
(x)
)

d|Dsu|(x)

=

ˆ
Ω

Ψ(x, 0) dx+

ˆ
Ω∩Su

Ψ∞
(
x, [u](x)⊗ νu(x)

)
dHN−1(x).

The chain of equalities above is justified upon extending the function u outside of Ω, as it was done in
Section 4.2 for the function g (through the application of [29, Theorem 1.4]), and recalling that the energy
does not depend on the chosen extension in the limit as r → 0+ (see also (4.10)). Therefore, in (5.10) we
obtain

IL(u) = EL(u) +

ˆ
Ω

Ψ(x, 0) dx+

ˆ
Ω∩Su

Ψ∞
(
x, [u](x)⊗ νu(x)

)
dHN−1(x).

Therefore, for Ψ belonging to (E) with Ψ∞ Lipschitz in the second variable uniformly with respect to the first
one, it is immediate to see that Ψ∞ is a surface energy density that satisfies hypotheses (ψ1), (ψ2), (ψ3) and
(ψ4) (see [12, Remark 3.3] and [35, Remark 3.1]). Thus, the relaxation/upscaling process (5.11) is the same
as that of Theorem 5.1 for a local energy of the type (5.1) whose densities are W̃ (x,A) := W (x,A) + Ψ(x, 0)

and ψ̃(x, λ, ν) := ψ(x, λ, ν) + Ψ∞(x, λ⊗ν). The cell formulas (5.6) and (5.7) imply that only the behavior of
Ψ(x,A) at A = 0 or as |A| → ∞ can influence the relaxed/upscaled energy in (5.11), whereas the presence of
the third integral in (5.9) shows that all of the values of Ψ(x,A) can influence the relaxed/upscaled energy
J(g,G) in (5.9).

5.4. Bulk relaxed densities of the form F1(x,G(x)) +F2(x,∇g(x)−G(x)). The representation (5.9) of
the relaxed energy J(g,G) established in Corollary 5.5 contains the bulk partˆ

Ω

(
Hp(x,∇g(x), G(x)) + Ψ(x,∇g(x)−G(x))

)
dx,

in which the bulk relaxed density is a sum of the contribution Hp(x,∇g(x), G(x)) from the initial local energy
EL(u) in (5.1) and the contribution Ψ(x,∇g(x)−G(x)) from the initial non-local energy Eαr in (3.8). The
second term Ψ(x,∇g(x)−G(x)) has the distinction of capturing a bulk energy density due to disarrangements
alone through its sole dependence on the deformation due to disarrangements M(x) = ∇g(x)−G(x), while
the first term Hp(x,∇g(x), G(x)) can be written as Hp(x,G(x) + M(x), G(x)) and so depends in general
on both the deformation due to disarrangements M(x) and the deformation without disarrangements G(x).
This situation leads naturally to the question of finding conditions on the initial local energy EL(u) that
imply that the term Hp(x,G(x) +M(x), G(x)) depends on G(x) alone or, more generally, that

Hp(x,G(x) +M(x), G(x)) = H\(x,G(x)) +Hd(x,M(x)), (5.12)

in which case the bulk relaxed density becomes

Hp(x,G(x) +M(x), G(x)) + Ψ(x,M(x)) = H\(x,G(x)) + (Hd(x,M(x)) + Ψ(x,M(x))), (5.13)

a function H\ of deformation without disarrangements plus a function Hd + Ψ of deformation due to disar-
rangements. The existence of a decomposition of the form (5.12) was raised in [12] and [11] and was shown
not to be available, in general, in the study [33]. A modified form of (5.12) was established in [6]: there
the x-dependence was absent, and the term H\(x,G(x)) in (5.13) was replaced by H\(G(x),∇G(x)). In the
context of plasticity addressed in the articles [11, 14, 18], the availability of (5.12) was shown to provide a
variational basis for describing and predicting the phenomena of yielding, hysteresis, and hardening observed
in both single crystals and in polycrystalline materials. In this subsection we verify that conditions on the
initial local energy EL(u) in (5.1) that were identified in [12, pages 100-101] guarantee the validity of the
special additive decomposition (5.12) for the bulk relaxed/upscaled energy density H1 and provide explicit
formulas for the functions H\ and Hd in that decomposition. Because no proof of the special additive de-
composition (5.12) is given in [12], we provide a proof in the context of the following remark that employs
the recent results in [41]. In the following remark and in its proof, A, B, and A − B play the roles of the
values of the fields ∇g, G, and M , respectively.
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Remark 5.6. For the initial local energy EL(u) in (5.1), assume that W : Ω× RN×N → R is a continuous
function, convex in the second variable, that satisfies (W1)1 and (W2) and that ψ : Ω×RN×SN−1 → [0,+∞)
is continuous, satisfies (ψ1)–(ψ4), and is such that ψ(−λ,−ν) = ψ(λ, ν). It follows that the cell formula
(5.6) for p = 1 becomes

H1(x0, A,B) = W (x0, B) + inf

{ˆ
Q∩Su

ψ(x0, [u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
(5.14)

for every x0 ∈ Ω and A,B ∈ RN×N . Moreover, the infimum on the right-hand side is given by the following
two equal expressions

H1(x0, A,B)−W (x0, B) = sup
{

Θ(x0, A−B) : Θ(x0, ·) : RN×N → [0,+∞) is subadditive and

Θ(x0, λ⊗ ν) 6 ψ(x0, λ, ν) for all λ ∈ RN and ν ∈ SN−1
}
.

(5.15)

Proof. It is convenient to omit the explicit appearance of the point x0 ∈ Ω that appears on both sides of the
desired decomposition and that remains fixed throughout the proof. Let A,B ∈ RN×N and u ∈ Cbulk

1 (A,B)
be given. The cell formula (5.6) along with the convexity and continuity of W yield the inequalities
ˆ
Q

W (∇u(x)) dx+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) >W

(ˆ
Q

∇u(x) dx

)
+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x)

>W (B) + inf

{ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
,

and, therefore, also yield the lower bound

H1(A,B) >W (B) + inf

{ ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
. (5.16)

To obtain an upper bound for H1(A,B) we note from (5.3) that Cbulk
1 (A,B) ⊃

{
u ∈ SBV (Q,RN ) : u|∂Q =

Ax, ∇u = B LN -a.e. on Q
}

=: C(A,B), so that

H1(A,B) = inf

{ ˆ
Q

W (∇u(x)) dx+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ Cbulk
1 (A,B)

}
6 inf

{ˆ
Q

W (∇u(x)) dx+

ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ C(A,B)

}
= W (B) + inf

{ ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ C(A,B)

}
= W (B) + inf

{ ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ SBV (Q,RN ), u|∂Q = (A−B)x,∇u = 0 a.e.
}

= W (B) + inf

{ˆ
Q∩Su

ψ([u](x), νu(x)) dHN−1(x) : u ∈ SBV (Q,RN ), u|∂Q = (A−B)x,

ˆ
Q

∇u = 0

}
,

(5.17)

where the last equality is established in [41, Theorem 2.3(iii) and (iv)]. It is now easy to see that the upper
bound (5.17) and lower bound (5.16) just obtained for H1(A,B) are the same. The relation (5.15) follows
from (5.14) and from [41, Theorem 2.3(i)]. �

6. Example from crystal plasticity

We turn to the subject of the mechanics of single crystals to identify an example of bulk energies of the
type recovered in the volume integral in (3.11) through our combined upscaling and spatial localization of
non-local energies. The example emerges within the special class of invertible structured deformations (g,G)
in which the tensors G and K(g,G) in (6.2) below play the role of F e and (F p)−1 in the standard treatments
of crystal plasticity.
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6.1. Invertible structured deformations. The main mechanisms of deformation in single crystals are
the distortion without disarrangements of the crystalline lattice and the shearing due to disarrangements.
The articles [15, 20] show that the class of invertible structured deformations is appropriate for capturing
such multiscale geometrical changes. In the present setting, we can identify (g,G) as an invertible structured
deformation when (see [15] for a broader setting for this notion)

(I1) g is a diffeomorphism of class C1 for which ∇g and (∇g)−1 are Lipschitzian,
(I2) G is continuous on Ω with invertible values,
(I3) the macroscopic volume change multiplier det∇g and the multiplier for volume change without

disarrangements detG are equal: det∇g = detG.
For an open set Ω ⊂ R3, we define

ISD(Ω;R3 × R3×3) :=
{

(g,G) ∈ SD(Ω;R3 × R3×3) : (I1), (I2), and (I3) hold
}
.

Invertible structured deformations turn out to be a useful setting for understanding some kinematical ingre-
dients in continuum models of single crystals undergoing plastic deformations, partly because the relation
det∇g = detG reflects the fact that the disarrangements occurring in single crystals typically do not involve
changes in volume, i.e., arise without the formation of submacroscopic voids. One useful mathematical
property of invertible structured deformations rests on the notion of composition of invertible structured
deformations: if (g,G) ∈ ISD(Ω;R3 × R3×3) and (h,H) ∈ ISD(g(Ω);R3 × R3×3), then the composition
(h,H) � (g,G) is defined by

(h,H) � (g,G) := (h ◦ g, (H ◦ g)G). (6.1)
It is easy to show that (h,H) � (g,G) ∈ ISD(Ω;R3 × R3×3) and each (g,G) ∈ ISD(Ω;R3 × R3×3) has the
factorization

(g,G) = (g,∇g) � (i,K(g,G)) (6.2)
where i := x 7→ x is the identity mapping on Ω and K(g,G) := (∇g)−1G. The factor (g,∇g) ∈ ISD(Ω;R3 ×
R3×3) carries all of the macroscopic deformation and is a classical deformation, i.e., it causes no disarrange-
ments becauseM(g,∇g) := ∇g−∇g = 0. The factor (i,K(g,G)) ∈ ISD(Ω;R3×R3×3) is purely submacroscopic,
i.e., it causes no macroscopic deformation, and carries the disarrangements

M(i,K(g,G)) := ∇i−K(g,G) = I − (∇g)−1G = (∇g)−1(∇g −G) = (∇g)−1M(g,G). (6.3)

Moreover, both factors in (6.2) are invertible structured deformations, because detK(g,G) = detG/det∇g =
1 = det∇i and, trivially, det∇g = det∇g.

6.2. Slip systems for single crystals; crystallographic structured deformations. For a single crystal
in the reference configuration Ω the crystallographic data required for the analysis of crystallographic slip
consists of pairs of orthogonal unit vectors (sa,ma) for a = 1, . . . , A, with A the number of potentially active
slip systems. For crystallographic slip, the discontinuity in deformation arises only across a limited family
of slip planes identified via the slip systems. The unit vector sa provides the direction of slip, while the
unit vector ma is a normal to the slip plane for the ath slip-system (sa,ma). For the case of face-centered
cubic crystals, the vectors ma are chosen from the normals to the faces of a preassigned regular octahedron
and the slip vectors sa are chosen to be one of the directed edges of the face associated with ma. We wish
next to identify a collection of invertible structured deformations for which the disarrangements arise only
through the action of the slip systems of a given crystal. To this end, we recall [16] that for each structured
deformation (g,G) in the sense of [15] and, hence, for each invertible structured deformation there exists a
sequence of injective, piecewise smooth deformations un such that

un → g in L∞(Ω;R3), ∇un → G in L∞(Ω;R3×3),

and, for every such sequence and for every x ∈ Ω, the disarrangement tensor M(g,G) is given by the identifi-
cation relation

M(g,G)(x) := ∇g(x)−G(x) = lim
r→0

lim
n→∞

1

V3(r)

ˆ
Br(x)∩Sun

[un](y)⊗ νun(y) dHN−1(y), (6.4)

and the deformation without disarrangements G is given by the identification relation

G(x) = lim
r→0

lim
n→∞

1

V3(r)

ˆ
Br(x)

∇un(y) dy. (6.5)
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In both (6.4) and (6.5), V3(r) denotes the volume of the three-dimensional ball of radius r. Suppose now
that the approximating deformations un are such that the dyadic fields [un]⊗ νun are compatible with the
A slip-systems of the crystal in the sense that for every n ∈ N and for every r > 0 there exist continuous
fields γan(·, r) : Ω→ R for a = 1, . . . , A such that

ˆ
Br(x)∩Sun

[un](y)⊗ νun(y) dHN−1(y) =

A∑
a=1

V3(r)γan(x, r)∇g(x)sa ⊗ma, (6.6)

and such that limr→0 limn→∞ γan(x, r) =: γa(x) exists for every x ∈ Ω and for a = 1, . . . , A. Under these
assumptions, the identification relation (6.4) becomes

M(g,G)(x) =

A∑
a=1

γa(x)∇g(x)sa ⊗ma,

so that the first relation in (6.3) becomes

M(i,K(g,G)) (x) = I −K(g,G)(x) =

A∑
a=1

γa(x)sa ⊗ma (6.7)

and, therefore,

K(g,G)(x) = I −
A∑
a=1

γa(x)sa ⊗ma. (6.8)

We have provided through (6.6) sufficient conditions that the disarrangement tensor field M(i,K(g,G)) for
the purely submacroscopic part (i, (∇g)−1G) of (g,G) is a linear combination of the (spatially constant)
crystallographic slip dyads sa ⊗ma for a = 1, . . . , A associated with the given crystal. In this context we
may say that the invertible structured deformation (g,G) generates disarrangements only in the form of
crystallographic slips or, more briefly, that (g,G) is crystallographic. We note in passing that the article
[20] provided a precise sense in which one may consider approximations by crystallographic slips of the
disarrangement matrix M(g,G) = ∇g − G of any invertible structured deformations. Since we here restrict
our attention to those invertible structured deformations for which (6.7) holds, the approximations in [20]
become exact in the present context. For a crystallographic structured deformation (g,G) and a point x ∈ Ω
we say that a slip-system a is active at x if γa(x) 6= 0, and we say that single slip occurs at x if there is
only one slip-system that is active at x. If more than one slip system is active at x we say that multiple
slip occurs at x. If (g,G) is crystallographic, so that (6.6), (6.7), and (6.8) hold, we may use the relations
tr(sa ⊗ma) = sa ·ma = 0 for all a and detK(g,G) = detG/det∇g to conclude from (6.8) and the definition
of invertible structured deformations that

trK(g,G) = 3 and detK(g,G) = 1. (6.9)

Consequently, the crystallographic structured deformations are among those for which K(g,G) = (∇g)−1G
satisfies (6.9). We note that a slip system a is active at x for (g,G) if and only if a is active at x for the
purely submacroscopic part (i,K(g,G)) of (g,G).

Examples of crystallographic structured deformations that undergo single slip at every point are the
two-level shears (gaµ,xo , G

a
γ) for a = 1, . . . , A, for µ, γ ∈ R and for xo ∈ Ω:

gaµ,xo(x) := xo + (I + µsa ⊗ma)(x− xo)
Gaγ(x) := I + γsa ⊗ma,

(6.10)

for which it can be verified [15] via the “deck of cards” family of approximations un that (6.6) is satisfied,
and for which

∇gaµ,xo(x) = I + µsa ⊗ma, (6.11a)
M(gaµ,xo ,G

a
γ)(x) = (µ− γ)sa ⊗ma, (6.11b)

and
K(gaµ,xo ,G

a
γ)(x) = I + (γ − µ)sa ⊗ma = I −M(gaµ,xo ,G

a
γ)(x). (6.12)

The “deck of cards” approximations un show that each two-level shear (gaµ,xo , G
a
γ) is approximated for each n

by smooth shears of amount γ of the crystal lattice between n− 1 slip planes, along with slip-discontinuities
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in the direction sa across the n−1 planes, each slip-discontinuity of amount µ−γ
n times a reference dimension

in the direction ma. By virtue of the “deck of cards” approximations un and, in view of (6.11a), (6.10)2,
(6.11b), and the trivial relation

µ = γ + (µ− γ),

we may then call µ the macroscopic shear, γ the shear without slip, and µ− γ the shear due to slip for the
two-level shear (gaµ,xo , G

a
γ). Of particular interest is the case γ = 0, i.e., the two-level shear (gaµ,xo , I), in

which the region between slip planes undergoes no shear and the macroshear µ arises entirely from slips on
slip-system a.

6.3. Slip-neutral two-level shears. We now summarize arguments provided in [11] in a more limited
setting that are based on the observation that crystallographic slip is physically activated within very thin
bands, the so-called slip-bands, whose thickness is typically of the order 102 atomic units, while the separation
of active slip-bands is typically of order 104 atomic units. The arguments in [11] indicate the following: for
each a = 1, . . . , A, there is a number pa > 0 such that a two-level shear (gaµ,xo , G

a
γ) for which the shear due

to slip µ − γ is an integral multiple of pa gives rise to submacroscopic slips equal to an integral number of
atomic units in the direction of slip sa. The dimensionless number pa equals a shift of one atomic unit in
the direction of slip sa divided by the separation 104 in the direction ma of consecutive active slip-bands
associated with system a (measured in the same atomic units). Consequently, pa is of the order of 10−4, and
a two-level shear (gaµ,xo , G

a
γ) with

µ− γ = npa, with n ∈ Z, (6.13)
produces a shift of n atomic units and so does not produce a misfit of the crystalline lattice across the active
slip bands, no matter what the amount of shear without slip γ. Thus, when (6.13) holds, the disarrangements
due to slip are not revealed by the deformed positions under the two-level shear attained by the lattice points
away from the slip bands. We refer to a two-level shear (gaµ,xo , G

a
γ) satisfying (6.13) as slip-neutral for the

slip-system a. In particular, when γ = 0 we have Gaγ = I, and the two-level shear (gaµ,xo , I) is slip-neutral if
the macroshear µ = µ− γ is an integral multiple of pa. Although a slip-neutral shear of the form (ganpa,xo , I)
causes a macroscopic shearing of the body, not only does it cause no misfit of the lattice across slip bands,
it also causes no distortion of the lattice. Consequently, we call the two-level shear (ganpa,xo , I) completely
neutral for the slip-system a. We suppose now that the given body undergoes a completely neutral two-level
shear (gaµ,xo , I) with µ = npa, starting from the region Ω, and suppose further that (gaµ,xo , I) is then followed
by a crystallographic deformation (g,G), so that we have the composition and factorization as in (6.1) and
(6.2):

(g,G) � (gaµ,xo , I) = (g ◦ gaµ,xo , G ◦ g
a
µ,xo) = (g ◦ gaµ,xo ,∇(g ◦ gaµ,xo)) �

(
i,K(g◦gaµ,xo ,G◦g

a
µ,xo

)

)
,

with K(g◦gaµ,xo ,G◦g
a
µ,xo

) given by

K(g◦gaµ,xo ,G◦g
a
µ,xo

) = (∇(g ◦ gaµ,xo))
−1(G ◦ gaµ,xo) =

(
(∇g ◦ gaµ,xo)∇g

a
µ,xo

)−1
(G ◦ gaµ,xo)

= (∇gaµ,xo)
−1(∇g ◦ gaµ,xo)

−1(G ◦ gaµ,xo) =
(
(∇gaµ,xo)

−1(∇g)−1G
)
◦ gaµ,xo

=
(
∇gaµ,xo)

−1K(g,G)

)
◦ gaµ,xo

and with K(gaµ,xo ,I)
given by (6.12):

K(gaµ,xo ,I)
= I − µsa ⊗ma = (∇gaµ,xo)

−1.

Therefore, we have the relation

K(g,G)�(gaµ,xo ,I)
= K(gaµ,xo ,I)

(K(g,G) ◦ gaµ,xo),

and the relations M(i,K(g,G)) = I −K(g,G), (6.8), (6.11b), and (6.12) then yield

I −M(i,K(g,G)�(gaµ,xo ,I)
) = K(g,G)�(gaµ,xo ,I)

= K(gaµ,xo ,I)
(K(g,G) ◦ gaµ,xo)

= (I −M
(gaµ,xo

,I)
)(I −M(i,K(g,G)) ◦ g

a
µ,xo)

= I −M(i,K(g,G)) ◦ g
a
µ,xo −M(gaµ,xo ,I)

+M
(gaµ,xo

,I)
M(i,K(g,G)) ◦ g

a
µ,xo

= I −M(i,K(g,G)) ◦ g
a
µ,xo −M(gaµ,xo ,I)

+ µ(sa ⊗ma)M(i,K(g,G)) ◦ g
a
µ,xo

= I −M(i,K(g,G)) ◦ g
a
µ,xo −M(gaµ,xo ,I)

+ µsa ⊗ (MT
(i,K(g,G))

◦ gaµ,xo)m
a.

(6.14)
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When µ 6= 0 the last term in (6.14) vanishes at a point x if and only if MT
(i,K(g,G))

(gaµ,xo(x))ma = 0, and,
because gaµ,xo(xo) = xo, we conclude from (6.7) the following remark.

Remark 6.1. The disarrangement tensor M(i,K(g,G)�(gaµ,xo ,I)
)(xo) at xo ∈ Ω for the submacroscopic part

of the composition (g,G) � (gaµ,xo , I) of a crystallographic deformation (g,G) with the completely neutral
two-level shear (gaµ,xo , I), where µ = npa, is given by

M(i,K(g,G)�(gaµ,xo ,I)
)(xo) = M(i,K(g,G))(xo) +M(gaµ,xo ,I)

(xo) (6.15)

if and only if
A∑
b=1

γb(x)(sb ·ma)mb = MT
(i,K(g,G))

(xo)m
a = 0. (6.16)

The identification relation (6.4) forM shows that the vanishing ofMT
(i,K(g,G))

(xo)m
a in (6.16) is the statement

that, on average, as n→∞ and r → 0, the jumps in approximating deformations un must be parallel to the
slip plane for the ath slip system. A sufficient condition on the crystallographic deformation (g,G) in order
that the sum in (6.16) vanish is the following: every slip system b that is active at xo for (g,G) satisfies
sb · ma = 0, i.e., the slip plane for the completely neutral two-level shear (ganpa,xo , I) contains every slip
direction sb of every slip system b, active at xo for (g,G). In particular, if (g,G) is a double slip at xo with
active slip systems (s1,m1) and (s2,m2), then (6.15) holds for every a such that s1 ·ma = s2 ·ma = 0. Such
double slips (g,G) include the case of “cross slip” in which (s1,m1) = (sa,m1) and (s2,m2) = (sa,m2) with
ma = m1 6= m2 in which slips in one and the same direction sa occur in two different slip systems at xo.

Our discussion above of the relationship between the disarrangement tensor M(i,K(g,G)�(gaµ,xo ,I)
) for the

purely submacroscopic part of the composition (g,G) � (gaµ,xo , I) and the disarrangement tensor M(i,K(g,G))

for the purely submacroscopic part of (g,G) is of particular interest for energetics, because (gaµ,xo , I) was
assumed to be completely neutral for the slip-sytem a, i.e., µ = npa with n an integer. In that case, the
lattice on which (g,G) acts when following (gaµ,xo , I) differs from that on which (g,G) acts when not fol-
lowing (gaµ,xo , I) only by undetectable translations of the lattice between active slip-planes for system a.
Consequently, the submacroscopic kinematical states of the crystal attained by means of the two purely
submacroscopic structured deformations (i,K(g,G)�(gaµ,xo ,I)

) and (i,K(g,G)) are indistinguishable. Therefore,
the energetic responses to the corresponding disarrangement fields M(i,K(g,G)�(gaµ,xo ,I)

) and M(i,K(g,G)) would
be indistinguishable, so that the validity of (6.15) would have significant implications with respect to prop-
erties of the energetic response of the crystal. We now provide specific circumstances under which the
relaxed energies recovered in Corollary 5.5 would be subject to those implications, and we set the stage by
highlighting the role of M(i,K(g,G)), the disarrangement tensor for the purely submacroscopic deformation
(i,K(g,G)), in providing constitutive relations for the energetic response to crystallographic deformations
that are frame-indifferent (independent of observer).

6.4. Frame-indifferent energetic responses. We noted in the text above the relation (6.3) that contains
the formulas

M(i,K(g,G)) = I −K(g,G) = (∇g)−1M(g,G),

relating M(g,G), the disarrangement tensor for an invertible structured deformation (g,G), and M(i,K(g,G)),
the disarrangement tensor for the purely submacroscopic deformation (i,K(g,G)) in (6.2). Because ∇g and
M both are premultiplied by a rotation Q under a change of observer associated with the rotation Q, the
tensor field K(g,G) as well as the disarrangement tensor M(i,K(g,G)) are unchanged under such a change of
observer. Therefore, for a function Ψi : R3×3 → R the mapping

x 7→ Ψi(M(i,K(g,G))(x)) = Ψi((∇g(x))−1M(g,G)(x))

has the property that its dependence on the structured deformation (g,G) is independent of observer. The
function Ψi specifies the energetic response of a body from the reference configuration Ω to the disarrange-
ments arising in purely submacroscopic deformations. If we define for the given macroscopic deformation g
the mapping Ψg : Ω× R3×3 → R by,

Ψg(x, L) := Ψi((∇g(x))−1L), for all L ∈ R3×3, (6.17)
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then the mapping x 7→ Ψg(x,M(g,G)(x)) = Ψi((∇g(x))−1M(g,G)(x)) also has the property that its depen-
dence on (g,G) is independent of observer. The following constitutive assumption for the dependence on
invertible structured deformations (g,G) of ψ : Ω → R, the free energy density due to disarrangements,
namely,

ψ(x) = Ψi(M(i,K(g,G))(x)) = Ψi((∇g(x))−1M(g,G)(x)) = Ψg(x,M(g,G)(x)), x ∈ Ω, (6.18)

then is independent of observer and carries the assumption that the free energy density due to disarrange-
ments depends only on the disarrangements associated with the submacroscopic factor (i,K(g,G)) in (6.2).
When (g,G) is a crystallographic deformation, then the response functions Ψi and Ψg determine the free
energy density due to crystallographic slip as a function of the disarrangement tensorsM(i,K(g,G)) andM(g,G),
respectively.

6.5. Periodic properties of the energetic response Ψi to crystallographic slip. Let xo ∈ Ω, a ∈
{1, . . . , A}, µ = npa with n ∈ Z, and a crystallographic structured deformation (g,G) be given. We argued
above that the lattice on which (g,G) acts, when following the completely neutral two-level shear (gaµ,xo , I),
differs from that on which (g,G) acts, when not following (gaµ,xo , I), only by the undetectable transla-
tions of the lattice between active slip bands for system a. Consequently, the submacroscopic kinematical
states of the crystal lattice attained by means of the two purely submacroscopic structured deformations
(i,K(g,G)�(gaµ,xo ,I)

) and (i,K(g,G)) are indistinguishable. We invoke this indistinguishability to assert that
the free energy density ψ(xo) due to crystallographic slip should be the same for (i,K(g,G)�(gaµ,xo ,I)

) and for
(i,K(g,G)) at the fixed point xo of gaµ,xo . Under the constitutive assumption (6.18) applied to the point xo
this assertion means that, for every µ = npa with n ∈ Z,

Ψi(M(i,K(g,G)�(gaµ,xo ,I)
)(xo)) = Ψi(M(i,K(g,G))(xo)). (6.19)

We wish to translate (6.19) into a property of the response function Ψi : R3×3 → R by invoking the additivity
property (6.15) in Remark 6.1. This property requires that we restrict attention to matrices M ∈ R3×3 of
the form

M =

A∑
b=1

βbsb ⊗mb (6.20)

with β1, . . . , βA ∈ R such that
M>ma = 0, (6.21)

and such that
det(I −M) = 1. (6.22)

If we define
Ma := {M ∈ R3×3 : (6.20), (6.21), (6.22) hold},

then it is easy to show that if there exists b ∈ {1, . . . , A}, s ∈ R3, ξ ∈ R, such that s ·ma = 0 and

M = s⊗ma + ξ(ma ×mb)⊗mb (6.23)

then M ∈Ma. When mb = ±ma then the matrix M in (6.23) reduces to s⊗ma and represents disarrange-
ments arising from slips in the crystallographic plane with normal ma, but not necessarily in one of the slip
directions in the list of slip systems for the crystal. When mb 6= ±ma, sa = ma ×mb = s, and ξ 6= 0, M
represents disarrangements of the previous type along with slips in the direction ma ×mb in the crystallo-
graphic plane with normal mb and so corresponds to the cross-slip described in Remark 5.6. Suppose now
that (g,G), a, and xo are such that M(i,K(g,G))(xo) ∈Ma. By Remark 6.1, (6.15) holds for every completely
neutral two-level shear (ganpa,xo , I), i.e.,

M(i,K(g,G)�(ga
npa,xo

,I))(xo) = M(i,K(g,G))(xo) +M(ga
npa,xo

,I)(xo)

which by (6.11b) we may write in the following form

M(i,K(g,G)�(gaµ,xo ,I)
)(xo) = M(i,K(g,G))(xo) + npasa ⊗ma.

Consequently, whenM(i,K(g,G))(xo) ∈Ma, this formula and the constitutive restriction (6.19) on the response
function Ψi yield the relation

Ψi

(
M(i,K(g,G))(xo) + npasa ⊗ma

)
= Ψi

(
M(i,K(g,G))(xo)

)
, for every n ∈ Z. (6.24)
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For matrices M ∈ Ma satisfying (6.23) this restriction takes the form

Ψi((s+ npasa)⊗ma + ξ(ma ×mb)⊗mb) = Ψi(s⊗ma + ξ(ma ×mb)⊗mb) (6.25)

for every s ∈ {ma}⊥, b ∈ {1, . . . , A}, ξ ∈ R, and n ∈ Z. In other terms, (6.25) is the assertion that for each
b ∈ {1, . . . , A} and ξ ∈ R the mapping

s 7→ Ψi(s⊗ma + ξ(ma ×mb)⊗mb) (6.26)

is periodic on {ma}⊥ with (vector) period pasa. Thus, the presence of completely neutral two-level shears
(gapa , I) has led via (6.24) to the identification of a family of affine subspaces

Ma
b,ξ := {s⊗ma + ξ(ma ×mb)⊗mb : s ∈ {ma}⊥}

of R3×3, each two-dimensional and on each of which the restriction of Ψi is periodic with corresponding
period pasa.

6.6. Form of the initial non-local energy appropriate for crystalline plasticity. In this subsection
we take the basic constitutive assumption (6.18) and the property (6.24) of Ψi that reflects the complete
neutrality of certain two-level shears, and we identify additional properties of Ψi that permit the application
of Theorem 3.2 when Ψg appears in place of Ψ in the formula (3.8) for the averaged interfacial energy.
The following theorem provides conditions on Ψi and (g,G) sufficient for the application of Theorem 3.2
in the context of crystal plasticity. We note in advance that the fact that the macroscopic deformation g
for a crystallographic structured deformation (g,G) is smooth (as is the case, more generally, for (g,G) ∈
ISD(Ω;R3 × R3×3)) means that the singular part Dsg of the distributional derivative Dg is zero and,
consequently, that the term in (3.11) involving the recession function Ψ∞g is zero. (This would not be the
case were one to use the original definition of invertible structured deformation in [15] in which g is allowed
to be discontinuous.)

Theorem 6.2. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary, and let Ψi : R3×3 → R be
a sublinear Lipschitz continuous mapping satisfying, for each a, b ∈ {1, . . . , A} and for each ξ ∈ R, the
periodicity condition (6.26). Moreover, for each crystallographic structured deformation (g,G), let Ψg : Ω×
R3×3 → R be given in terms of Ψi by (6.17), and for each u ∈ SBV (Ω;R3) define as in (3.7) the averaged
interfacial energy

Eαrg (u) :=

ˆ
Ωr

Ψg(x, (D
su ∗ αr)(x)) dx.

Then if αr is as in (2.11), the upscaled energy Iαr (g,G; Ωr) in (3.9) is given by

Iαr (g,G; Ωr) =

ˆ
Ωr

Ψg

(
x, ((∇g −G) ∗ αr)(x)

)
dx, (6.27)

and the spatially localized, upscaled energy I(g,G) in (3.10) takes the form given in (3.12)

I(g,G) = lim
r→0+

Iαr (g,G; Ωr) =

ˆ
Ω

Ψg(x,∇g(x)−G(x)) dx =

ˆ
Ω

Ψi(I −∇g(x)−1G(x)) dx

=

ˆ
Ω

Ψi

(
I −K(g,G)(x)

)
dx =

ˆ
Ω

Ψi

(
M(i,K(g,G))(x)

)
dx.

(6.28)

In particular, the bulk density for I(g,G) is frame-indifferent and retains the periodicity property (6.26).

Proof. We note that for each (g,G) ∈ ISD(Ω;R3 × R3×3) there also holds (g,G) ∈ SD(Ω;R3 × R3×3).
Moreover, the Lipschitz continuity of (∇g)−1 and the assumed Lipschitz continuity of Ψi imply that Ψg

belongs to the class (L), so that we may invoke Theorem 3.1 to obtain (6.27) and Theorem 3.2 to obtain
(6.28). �

We close by noting that, for the case p = 1, the formulas (5.9), (5.14), (5.15), and (6.28) provide the
desired, fully three-dimensional analogue of the decomposition (1.1).
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