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Abstract   (248 words out of 250 words allowed) 

 

Objective. This work compares two known and one novel techniques for the detection of surface 

EMG (sEMG) quasi-periodic burst-like signals and estimation of their frequency.  Two methods use 

a fixed (FT) or automatically selected threshold (OT) and the third (ES) is based on the spectral 

analysis of the envelope signal. 

Methods. The methods are compared using both simulated signals and samples of High Density 

sEMG experimental signals collected using electrode arrays applied to the erector spinae muscles of 20 

sitting violinists. 

Results. The ES method requires only one parameter, detects presence /absence of bursts and their 

frequency, even in cases of a few missing bursts. It does not provide their duration. The FT method 

requires the selection of a fixed threshold value and two parameters, estimates burst duration but is 

applicable only if bursts are present. The OT method identifies an optimal threshold, requires two 

parameters, estimates burst duration but behaves irregularly when bursts are small or absent. 

Conclusions. The ES method provides the estimates closest to those of an expert human counter 

and is not sensitive to amplitude fluctuations. It is suitable when the general bursts “periodicity” is 

of interest but does not provide an exact count. The FT and OT methods are sensitive to amplitude 

fluctuations and identify random threshold crossings as bursts even when burst activity is absent. 30 

Significance.  Postural muscles are often activated in a burst-like fashion. Determining the 

frequency and duty cycle of the bursts is important for studying the neurophysiological mechanism 

generating them. 

 

Keywords: surface electromyography, sEMG, burst detection, burst frequency, intermittent posture 

control, high density sEMG. 
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1. Introduction 50 

 
Surface electromyography (sEMG) is widely used for the study and measurement of muscle 

activity.  The sEMG signal detected by electrodes applied to the skin above the muscle(s) of interest 

is the algebraic summation of the contributions of the individual motor units (MU) forming the 

muscle. A MU is a bundle of muscle fibers innervated by a single motor neuron and, therefore, 

activated synchronously by each discharge of the motor neuron. Each motor neuron discharge 

triggers a MU action potential (MUAP) propagating from the neuro-muscular junction to the fiber-

tendon junctions at the two fiber ends. The algebraic sum of the surface contributions of the 

MUAPs is the sEMG signal. During a constant-force isometric contraction, the discharge rate of 

each MU is approximately constant (within the range of 8-30 discharges/s depending on the effort) 60 

and out of synch with respect to the others so that the summation has an approximately Gaussian 

probability density function (pdf) when at least a few dozens of MU are activated [Merletti2016].   

 

Posture control (quiet standing, sitting, etc) can be modeled like an inverted pendulum. When 

facing this balancing task, the CNS often adopts an intermittent control strategy, that is, the system 

modulates the activation of a muscle or a group of muscles. This phenomenon has been extensively 

investigated [Vieira2012, Gross 2002, Tanabe2017, Morasso 2011, Gawthtrop 2011].  The 

intermittency of this control has been observed as sEMG “bursts” in the activation of the 

gastrocnemius, at the rate about 2 bursts/s during quiet standing [Vieira 2012], and in the right and 

left erector spine in sitting violinists, at the rate of about 2.4-3.1 bursts/s  [Russo 2019].  The most 70 

common methods for burst detection are based on the analysis of the signal “envelope”.  A very 

extensive literature exists on the envelope-based analysis of muscle activation intervals 

[Guerrero2014, Guerrero2019, Bonato1998, Xu2013, Ranaldi2018, Tenan2017, Yang2017, 

Jubany2016, Ozgunen2010, Allison2003]. 

 

The purpose of this work is to compare two known and one novel techniques for detection of sEMG 

bursts and estimation of their frequency. This is achieved using both simulated signals and samples 

of High Density sEMG (HDsEMG) experimental signals collected, in a previous work, from the 

erector spinae of a sitting violinist [Russo 2019]. Two methods use a fixed or automatically selected 

threshold whereas the third is based on the spectral analysis of the envelope signal. 80 
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2. Methods: Experimental protocols and signal acquisition.  
 

 

The problem of sEMG burst analysis can be broken down into a) signal conditioning and envelope 

estimation, described in Section 2.2, b) burst detection, described in Section 2.3, and c) estimation 

of burst properties. This work is focused on the estimation of burst frequency.  

 90 

2.1 Experimental protocol and signal acquisition.  

Experimental signals available from previous work on sitting violinists [Russo 2019] have been 

used. In summary, these signals had been collected using the HDsEMG technique that provides 

“images” of the monopolar evolving instantaneous sEMG potential distribution. Two electrode 

grids, each of 16 rows and 8 columns, had been placed on the right and left lumbar erector spinae of 

nine sitting violinists as indicated in Fig.1a.  The grids (Fig. 1b) had electrode size and inter-

electrode distance satisfying the spatial sampling conditions described in [Merletti2019]. The 

violinists played for two hours without breaks and the sEMG signals were acquired every 5 minutes 

for 20s.  The same piece of music was played during each of these 20 s recordings.  

 100 

In this work, one representative example of 20-s recording will be considered at the beginning of 

the task, consisting of two sets of signals from the right and the left electrode array placed on one 

subject.  Similar results were obtained from other sets of signals from the nine subjects and will be 

reported elsewhere. 

 

Sixteen monopolar signals were recorded from each column, amplified and band-pass filtered at  

20 Hz and 500 Hz (analog antialiasing filter), sampled at 2048 sample/s and A/D converted (16 

bits) with a resolution of 0.5 µV. See [Russo 2019] for further details.  Fifteen longitudinal single 

differential (SD or bipolar) signals where obtained from each column for a total of 120 channels 

from each of the two arrays. 110 

 

The erector spinae is a muscle group formed by the spinalis, iliocostalis and longissimus lumborum, 

whose approximate fiber direction is indicated in Fig 1a [DeFoa1989]. Because of the propagation 

of action potentials along the muscle fibers a high degree of correlation is observed between signals 

of the same column (see Fig.2 in [Russo2019]). Burst correlation/synchronization is observed in 

Fig. 1c between the two sides. Lower signal amplitudes are expected in caudal and lateral parts of 

the arrays because electrodes are on the tendons or away from the muscles, respectively. 
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Fig. 1.  Surface EMG signal: single differential signals along each column of a grid of 16x8 

electrodes (15x8 differential channels). a) position of the electrode grids on the lumbar erector 120 

spinae,  b) electrode grids: two such grids, one proximal and one distal, were placed on each side 

(128 electrodes on each side). c) 5s long signal recording from col 7 (left) and col. 2 (right) of 

subject LS. The numbers on the left of each trace indicate the RMS value of each channel computed 

over the 20 s duration of the recording.  Larger signals are detected in the rostral-medial parts of 

the arrays. Bursts are evident and are synchronized along each column, across columns and in the 

left and right side. 

 

 

2.2. Signal conditioning, removal of power line interference. 

The digital signals were filtered again between 20 Hz and 400 Hz to limit noise.   Since the 130 

substantially isometric effort performed by the erector spinae is moderate, the sEMG amplitude is 

small (Fig. 1c) and the interference from the power line (50 Hz) is relevant. Such interference is 

evident from the spectrum of each sEMG channel as a series of peaks at 50 Hz and its first 3-4 

harmonics. This interference was eliminated using the “spectral interpolation” method proposed by 

[Mewett2004] and used by [Leske2019, Russo 2019]. 

 

2.3. Burst detection methods.  

The simplest and most widely used procedure for envelope estimation implies taking the absolute 

value of the raw signal, apply a moving average window (MAW), or a bidirectional (non causal) 

low-pass filter, to smooth the result and obtain the envelope. Subsequent application of a threshold 140 
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(Th) will produce a binary signal indicating if the muscle is active (envelope above threshold) or not 

(envelope below threshold).   Post-processing algorithms are usually required to remove isolated 

short “spurious” 1s or 0s whose duration is indicated as “tolerance” (TOL)).  These choices 

introduce some degree of arbitrariness that can be reduced by testing the algorithms with simulated 

signals and empirically selecting the MAW, Th, and TOL values leading to the smallest burst 

counting error (Section 3). The “gold standard” count is known in simulations and provided by an 

expert Human Counter (HC) in the case of experimental signals. The behavior of these methods in 

the case of no bursts is not discussed in the literature proposing them. 

 

3.  Methods: Testing burst detection algorithms with simulated signals  150 

 

3.1. Simulated signals 

Computer simulated signals were used for the purpose of testing and comparing burst detection 

algorithms applied to single sEMG channels.  Single channel signals, such as those depicted in Fig 

1c, were simulated as the sum of two components: background noise (and possibly some sEMG) 

and burst sEMG signal. The background noise is mostly due to the electrode-skin interface and to 

the electronics and is generally assumed to have a Gaussian distribution.  At low contraction levels 

the sEMG has a distribution between Laplacian and Gaussian [Nazarpour2013]. Simulated signals 

were computer generated, for the duration of 20 s and sampling frequency of 2048 Hz (40960 

samples) using Matlab 10.  Each channel of sEMG was simulated as:   160 

 

                                                                                                                  (1) 

 

Where X0(t) and X1(t) are two zero-mean Gaussian processes with standard deviation σ0 and σ1, 

filtered by a 4
th

 order non-causal Butterworth bandpass filter with cut-off frequencies of 20 Hz and 

400 Hz, z(t) is a train of Gaussian impulses having frequency of 2.5 bursts/s (50 bursts in 20s) and 

standard deviation σz = 54 ms, used to amplitude  modulate  X1(t) and generate bursts similar to 

those observed experimentally (Fig. 3). The burst duration is ± 2σz, that is about 216 ms.   X0(t) has 

fixed σ0 =1 and X1(t) has variable σ1, simulating weak to strong burst amplitudes. The case of no 

bursts is simulated using normally distributed signals with zero mean and unit variance (X0(t)). 170 
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Fig. 2. Simulated sEMG signals obtained as indicated in eq. 1. a) σ1/ σ0 = 4 (strong bursts),  

b) σ1/ σ0 =1 (weak bursts). Top panels: signal z(t) modulating X1(t). Mid panels: simulated burst 

signals with their probability density functions and detected envelope (rectified values of Y(t) 

smoothed with a 80 ms wide moving average window). Lower panels: binary signal resulting from 

the application of a threshold to the envelope, before and after post-processing with a tolerance of 

50 ms. 

 

The upper panels in Fig. 2 show examples of simulated signals used to test the algorithms described 180 

in Section 3.2.  Fig. 3 compares a 2-s segment of an experimental signal with a simulated signal 

with σ1/ σ0 = 4.  

 

 

 

 

 

 

 

 190 
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Fig. 3. Example of experimental (a) and simulated (b) single channel signals showing clear bursts. 

Each signal is normalized to its positive peak value. 

 

 

 3.2. Burst detection algorithms 200 

Three different approaches for burst detection have been tested in this work. The signal structure 

described in Section 3.1 (eq. 1 and Fig. 2) was used to compare the three methods using a sequence 

of Gaussian bursts with σ = 54 ms for z(t) which provides a good match with experimental bursts 

(Fig. 3). A set of one hundred signal realizations were used to obtain boxplots of the estimated burst 

frequency for each method and each set of simulation parameters, so that the optimal set of 

parameters could be identified. All three approaches operate on the envelope signal (mid panels of 

Fig. 2). The envelope was obtained by applying a moving average window filter (MAW) to |Y(t)| 

and then removing the mean (DC component) and slow random fluctuations by means of a high 

pass bidirectional (non causal) 4
th

 order Butterworth filter with cut-off at 0.5 Hz.  The MAW was 

tested in the range 60 ms to 100 ms, based on the approximate experimentally observed burst 210 

duration (150-250 ms) indicated in previous work [Russo 2019] as well as by visual observation. 

The window was shifted one sample at a time. Fig 4 shows examples of simulated Y(t) signals 

obtained for five values of σ1/σ0 and Gaussian pulse modulation.   

 

The first method is based on the Envelope Spectrum (ES) and is suitable for quasi-periodic bursts.  

It is based on the analysis of the power spectral density (PSD) of the envelope of the rectified 

signal. This approach is used to extract the burst rate as identified by the largest frequency 

component of the PSD in the 1-5 Hz bandwidth. 
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Fig. 4. Examples of simulated Y(t) signals modulated with a Gaussian pulse train and five ratios of  220 

σ1/σ0 (eq. 1). The burst frequency is 2.5 bursts/s and can be visually detected by an expert human 

assessor for σ1/σ0 > 0.7. 

 

The second method tested is based on the empirical selection of a Fixed Threshold value based on 

testing with simulated signals (Section 3.2.2) and is referred to as FT.  The third method is based on 

the statistical analysis of the signal, to obtain an “Optimal” Threshold value using a Bayesian 

approach, as proposed by Guerrero et al.  [Guerrero2014, Guerrero2019] and is referred to as OT. 

All three methods require the definition of “optimal” parameters that are estimated from simulated 

signals and verified in experimental signals against counts provided by the HC “gold standard”.   

 230 

3.2.1.  Method ES.  Burst counting by spectral analysis of the signal envelope. 

The method operates on the power spectral density (PSD) of the envelope of each simulated or 

experimental SD conditioned signal and is based on the inspection of the peak of 

the PSD. For each 20 s recording, the PSD of the envelope is computed by means of the Welch 

periodogram on nine time windows of 4 s each, with 50% overlapping and zero padding to 8 s 

(resulting in a spacing between spectral lines = 0.125 Hz). If a “sharp isolated peak” is identified in 

the frequency range 1-5 Hz, bursts are defined as present at the peak’s frequency. To recognize a 

“sharp isolated peak” three conditions must be satisfied after the largest spectral line of the PSD of 

the envelope signal is identified: 1) no more than three adjacent spectral lines above 80% of the 

peak, b) no more than three additional adjacent spectral lines between 50% and 80% of the peak, 240 
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and c) all other spectral lines (within 1-5 Hz) below 50% of the peak. If these three conditions are 

satisfied, the frequency of the peak is taken as the burst frequency, otherwise, no bursts are 

detected. These conditions were identified, after extensive testing on simulated and experimental 

signals and comparison with visual burst counts by a human expert.  They can be modified to 

“tune” the algorithm sensitivity to bursts.  

 

3.2.2. Method FT.  Burst counting based on fixed threshold value. 

A threshold (Th) is set at a specified quantile of the distribution of the envelope signal (Fig. 2).  

A “tolerance” (TOL) is set in the post-processing to eliminate spurious 1s and 0s of duration lower 

than TOL (bottom plots of Fig. 2b). A number of algorithms have been proposed to eliminate these 250 

uncertainties by post processing [Bonato1998, Yang2017].   

Based on these works interval tolerances in the range of 30-50 ms were tested and did not appear to 

be very critical.  A value TOL = 50 ms was selected. 

 

 

3.2.3.  Method OT. Burst counting based on an optimal threshold value. 

This burst detection algorithm is described by Guerrero et al. [Guerrero2019], and is shortly 

summarized in the Appendix. It assumes that the signal consists of a mixture of two Gaussian 

components. When σ1 << σ0,  or σ1 = 0, the starting assumption no longer holds, the two Gaussian 

components cannot be identified and the algorithm finds a high threshold (no longer meaningful) 260 

resulting in a burst count very low or null, as expected. Both methods FT and OT require a TOL 

parameter and provide information about the burst duration while method ES provides only the 

“dominant” burst frequency.  

 

4. Methods: Burst detection and counting in experimental signals 
 

After selecting the values of Th, MAW, TOL suggested by simulations, the three algorithms 

described in Section 3 were applied to experimental signals selected among those collected in 

previous work [Russo2019] (see Section 2). One 20-s array recording from the right side and one 

from the left side were used as an application example.  Since not all channels of a grid present 270 

burst-like sEMG signals (Fig. 1c) a criterion must be defined to indicate presence or absence, and 

frequency of the bursts. As discussed in Sections 5 and 6, the three algorithms behave differently 

with respect to both presence/absence of bursts and amplitude regularity. A criterion for deciding 

about the global presence/absence of bursts and their frequency in the muscle(s) under a grid (or a 

portion of it) could be based on  the definition of a sufficiently large “region of bursts” in the grid. 

This problem exceeds the purpose of this work and will be discussed elsewhere. 
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5. Results from signal simulations 

 

To test the statistical performance of each method, for each ratio σ1/σ0, for each MAW and for each 280 

TOL value, 100 realizations of the signal Y(t) (eq. 1) were simulated and the boxplots of the 

estimated 100 burst frequencies were obtained and compared  The frequency of the modulating 

Gaussian signal z(t) was 2.5 bursts/s, that is 50 bursts/20s (see Fig. 2, Fig. 3, Fig. 4, and Section 

3.2). The case of no bursts was simulated by setting z(t) = 0 and σ0 =1. 

 

5.1. Results from Method ES 

Table 1 shows the results obtained by applying the ES Method to 100 signal realizations (see 

Section 3.2) with three ratios of σ1/σ0 and six MAW durations.  This method does not require the 

definition of a threshold or of a TOL value, is largely insensitive to unequal burst amplitudes and 

durations and even to missing bursts; it detects a “periodicity” in the burst sequence.  As evident 290 

from Fig. 4, bursts can be barely detected by a human expert for σ1/σ0 = 0.7 but are detected in most 

of the 100 simulated signals by the ES method, for MAW ≥ 70 ms (Table 1). 

 

Table 1. Percentage of cases of simulated bursts correctly counted by the ES method  

for six values of σ1/σ0 and six values of MAW (100 signal realizations for each case). 

The complement to 100 is the percentage of cases detected as “no bursts”. 

Human counts are no longer reliable for σ1/σ0 ≤ 0.7. 

 

  

 MAW (ms) 

50 60 70 80 90 100 

 

σ1/σ0 = 0.5 18 22 22 24 26 25 

σ1/σ0 = 0.6 47 55 62 70 79 82 

σ1/σ0 = 0.7 65 71 82 83 96 99 

σ1/σ0 = 0.8 87 91 97 98 100 100 

σ1/σ0 = 0.9 98 99 99 100 100 100 

σ1/σ0 = 1.0 99 100 100 100 100 100 

  300 

 

Experimental signals often present occasionally missing, or small, bursts. In these cases, if the 

criteria defined in Section 3.2.1 are satisfied, the ES method provides an estimate of the frequency 

of the dominant periodicity; otherwise it indicates zero bursts. To investigate this point, simulations 

were carried out with sinusoidal modulation z(t) = (1- cos 2πfbt)/2 where fb is the burst frequency. 
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Sinusoidal modulation was selected to reduce the effect of the peak at the second harmonic that 

might interfere.  Results obtained from signals created with missing bursts are depicted in Fig. 5. 

The technique is quite robust and provides correct estimates of burst periodicity even if about 50% 

of the bursts are missing, as long as there are sequences of a few bursts with the proper periodicity. 

This result may be desirable if the global burst periodicity pattern is of interest. The burst count will 310 

be different from the counts provided by the FT and OT methods, as indicated in Fig. 5. 

Method ES performs well even when only 26 bursts are present (in small groups) out of 50 in 20 s 

and provides the burst periodicity of 2.5 bursts/s observed in the groups of bursts. With less than 20 

scattered bursts the ES method underestimates the burst frequency or does not detect bursts. The 

sensitivity of the method may be adjusted by changing the criterion for the identification of the 

“sharp isolated peak” defined in Section 3.2.1.   See Section 5.3 for the case of no burst present. 

 

 

Fig. 5. Response of the three algorithms (ES, FT, OT) to a 20-s simulated signal Y(t) modulated by 

a sinusoidal signal z(t) =(1-cos 2πfbt)/2 with fb =2.5 burts/s (but with only 38 bursts present) and 320 

four ratios of σ1/σ0.  a) modulating signal z(t), b) signal Y(t) for σ1/σ0 = 2.0,  c)-f) envelopes 

reconstructed by taking |Y(t)| with MAW = 80 ms, after mean removal.  The FT threshold is set at 

the 70
th

 percentile of the distribution of the envelope (Section 5.3) while the dot-dash line is the 

threshold identified by method OT (Section 5.4), g) Normalized PSD of the envelope for σ1/σ0=0.4 

and σ1/σ0=2.0, clearly detecting 2.5 bursts/s (50 bursts in 20 s).  The FT and OT counts are 

indicated in each panel. The X0 and X1 random signals are the same in all cases. 
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5.2. Results from methods FT and OT 

For testing methods FT and OT, the 100 simulated Y(t) signals created to test Method ES were used 330 

with σ1/σ0 ratios 0.4, 0.7, 1, 2. Four threshold values, set at the 50
th

, 60
th

, 70
th

 and 80
th

 percentile of 

the distribution of the estimated envelope signal, were applied to generate a binary signal.   

 

Three values of MAW duration (60ms, 80ms, 100 ms) were tested to empirically identify the 

“optimal” range of MAW. Three TOL value of 30ms, 40ms and 50ms, were applied first to the 

short 1’s and then to the short 0’s.  The threshold is a critical parameter for Method FT and its best 

value is near the 75
th

 percentile for  σ1/σ0 < 1 and near the 70
th

 percentile for σ1/ σ0 > 1. See Section 

5.3 for the behavior of the two methods in case of no burst. Results are shown in Fig. 6. 

 

 340 

Fig. 6. Boxplots of the burst frequencies estimated from 100 signal realizations using Method FT 

and OT. The quartiles, range and outliers (crosses) are indicated.  The correct frequency value is 

2.5 bursts/s (50 bursts in 20 s). See Section 3.2.2. and 3.2.3. for details.  

a) Estimated burst frequencies and counts for threshold Th in the range of  the 50
th

 – 80
th

  

percentile of the pdf of the envelope with Method FT (MAW 80 ms and TOL =50 ms). 

b) Estimated burst frequencies and counts with Method FT for MAW = 60, 80,100 ms, TOL = 50 ms 

and Th=70
th

 percentile. 

c) Estimated burst frequencies and counts with Method OT for MAW = 60, 80, 100 ms and TOL = 

50 ms.  The percentage of signals with identified bursts is indicated in each panel. 

 350 

Method OT is based on the algorithm proposed by Guerrero et al [Guerrero2019] shortly described 

in the Appendix.  The threshold is obtained from the signal itself using a Bayesian optimality 
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criterion. As indicated in Fig 6c and Fig. 7, acceptable burst frequency estimates are obtained for 

σ1/ σ0 > 1.5. This method requires the setting of only two parameters (MAW and TOL).  

Fig. 8 provides eight examples of envelope signals (after mean removal) obtained from signals Y(t)  

where z(t) is sequence of Gaussian pulses having σ = 54 ms (see Fig. 4 and Section 3.1).  

Method ES provides correct results for σ1/σ0 > 0.7. 

  

Fig. 7. Results from simulations of eight signals                       with different ratios 

σ1/σ0 where z(t) is a sequence of 50 periodic Gaussian pulses in 20 s (see Fig. 4).   For clarity, only 360 

the first 10 s are shown for each case. The fixed threshold of Method FT (solid line) and the 

threshold identified by Method OT (dash line) are depicted as well as the burst counts provided by 

the two methods over 20 s. The pattern similarities are due to the same realization of random 

signals X1 and X0 used, with proper scaling, for all cases. Burst frequency can be obtained by 

dividing the counts by 20.  

 

 

5.3. The no burst case 

A burst detection algorithm should detect no bursts when bursts are absent. This is an important 

requirement usually called  "specificity" in the diagnostic literature and distinct from  370 

"sensitivity", the ability to detect the presence of a feature when the feature is actually there, 

studied in the previous sections when the feature is the presence of bursts. To test the performance 

of the three methods in this condition 100 Gaussian signal realizations, with zero mean, unit 

variance, and 20 s duration were computer generated and filtered as indicated in Section 3.1.  Four 

values of MAW were tested (with TOLL = 50 ms for the FT and OT methods).  As expected, and as 
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indicated in Table 2, the two threshold-based methods provide burst counts. The FT method 

provides burst counts in each of the 100 cases. Such counts are close the values obtained from 

simulated and experimental signals with clear bursts, indicating that this method is very vulnerable 

to false positives. The OT method provides fewer cases of false burst detection (near 45 %) and the 

count values are either zero or much lower than the “physiological” values observed in 380 

experimental signals. As expected, the ES method provides rare cases (1-2 %) of observed envelope 

“periodicity”. 

 

Table 2: Counts provided by the three methods applied to 100 20-s-long signal realizations with no 

bursts (100 cases with counts = 0) for four MAW values. 

 

MAW 

(ms) 

Min 

count 

Max  

count 

Mean 

count 

St. dev. of 

counts 

N. of cases 

with counts =0 

ES 

70 77 77 77 0 99 

80 77 77 77 0 99 

90 0 0 0 0 100 

100 32 32 32 0 98 

FT 

70 47 70 61,0 1,15 0 

80 48 69 59,1 0,90 0 

90 48 66 56,9 0,79 0 

100 41 61 54,4 0,89 0 

OT 

70 1 43 22.6 10.34 46 

80 1 38 22.4 10.14 45 

90 1 38 22.2 9.33 45 

100 1 37 21.9 8.90 45 
 
 

 

6. Results from experimental signals 

 390 

6.1. Burst estimation from single channel signals 

On the basis of the simulation results, a threshold equal to the 70
th

 percentile of the distribution of 

the envelope signal was selected for the analysis of bursts using method FT. The values MAW = 80 

ms and TOL = 50 ms were selected for both methods FT and OT. MAW = 80 ms was also selected 

for method ES. The criterion described in Section 3.2.1. was adopted to detect the presence/absence 

of bursts and their frequency with Method ES.  Fig. 8 shows four examples of experimental 

envelope signals, the thresholds associated to Method FT and OT, the PSDs of the envelope signals, 

and the corresponding burst frequencies.  
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. 

 400 

Fig. 8. Four examples of envelopes obtained from experimental signals detected near the spine, two 

on the left and two on the right side of the same subject. The mean was removed from the envelopes 

in order to have them centered on the zero value. The thresholds and the burst frequencies were 

estimated on each entire 20-s recording but only 5 s of the 20-s recordings are reported for clarity. 

The continuous line indicates the threshold used for the FT method (70
th

 percentile of the pdf of the 

envelope signals), the dashed line indicates the estimated threshold provided by method OT. The 

PSDs of the envelopes are reported to the right of the corresponding signals; all four satisfy the 

criterion indicated in Section 3.2.1. and provide an estimate of the burst frequency. The on-off burst 

intervals identified by methods FT and OT are indicated at the bottom of each signal panel.  

MAW = 80 ms was used for the three methods and TOL = 50 ms was used for methods FT and OT.  410 

 R = right side, L = left side, 0h =initial time, 2h= after 2 hours of playing. 

 

 

6.2. Burst estimation from array signals 

The threshold-based methods show that presence of synchronous bursts can be observed along each 

column (as expected) as well as across columns of each array (across MUs and muscles). Bursts on 

the right and left sides appear to be synchronized, as indicated in Fig. 9 (Method FT).  This 

phenomenon cannot be shown by the ES method. 

 

Table 3 shows an example of maps of burst counts, obtained using the three methods and the human 420 

expert count (HC), from the grid of 120 SD channels on the left side of one subject at time zero. 

Similar results are obtained from the right side, at different times and in different subjects and will 

be reported elsewhere.  The HC is taken as a gold standard but the burst count of each channel may 
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easily differ by ± 1 or ± 2 when the count is repeated twice on “poor” channels. “Poor” channels 

show very small bursts, similar to those simulated for σ1/σ0 ≤ 0.7, and, in Table 3a, are mostly in the 

lower left portion of the grid, on the edge of the muscles (Fig. 1a and 1c). 

 

Fig. 9. Binary signals, representing bursts, obtained with Method FT after post processing. Method  

FT provided a 20s-long time line containing a sequence of black (envelope above threshold) and 

white (envelope below threshold) segments for each channel. Lines corresponding to individual 430 

channels of the same array are placed one below the other, in each panel, to show synchronized 

bursts on the different channels. The number of channels showing bursts identified by Method ES 

(out of 120) is indicated on the right for each panel. Synchronization between bursts observed 

within each array as well as between the right and left arrays is evident and strong. Occasional 

missing bursts are outlined by the dashed ellipses. Most of them are “filled in” by the ES method.  

R = right side, L = left side, 0h = initial time, 1h = after 1 hours of playing, 2h = after 2 hours of 

playing. 

 

 

Table 3. Burst counts (bursts/20 s) obtained with methods ES, FT, OT and HC from each of the 120 440 

SD sEMG channels of the left grid at time 0 hours from subject LS [Russo2019]. b) mean, standard 

deviation, range of counts and burst frequency of the N channels showing non-zero counts. The 

RMS error of the counts (RMSEC) between each map and the HC is 2.42 counts between ES and 

HC, 3.58 between FT and HC, 9.96 between OT and HC). but highly significant distribution 

differences are pointed out by the Wilcoxon signed rank test that gives p < 0.003 for all the three 

comparisons (ES-HC, FT-HC, OT-HC). Pairs of channels containing one or two zeros were not 

included in the statistical tests. See text for furthers explanation.   b/s = bursts/s.   

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



17 

 

 

b) 450 

N 
 

mean   std 
 

range N mean   std range N mean   std range N mean   std range 

116 
 

48.5   0.9 
 

48 - 50 120 50.6   3.0    45 - 58 120 53.6   10.5 12 - 75 110 49.0   2.1 42 - 54 

Freq 
(b/s) 

 

2.42   0.04 
 

2.40 - 2.50 Freq 
(b/s) 

 

2.53   0.15  2.25 - 2.90 Freq 
(b/s) 

 

2.68   0.53 0.60 -3.75 Freq 
(b/s) 

 

2.45   0.10 2.10 - 2.70 

RMSEC = 2.42 burst (ES – HC) RMSEC = 3.58  burst (FT – HC) RMSEC = 9.96 burst  (OT – HC)  

 

The methods occasionally disagree about the presence/absence of bursts. Channel pairs where at 

least one of the two channels have burst count = 0 are not included in the calculations RMSEC. 

 

7. Discussion and conclusions. 

 

7.1 Discussion 

At the lumbar level, the erector spinae group comprises three muscles with fibers slightly inclined 

with respect to the spine (Fig. 1a) [DeFoa1989]. They span a width of about 80 mm on each side of 

the spine and run from above T11 to below L4, that is, under the electrode array. It is therefore 460 

expected to see propagation of MUAPs along the columns of the array, as observed by Russo et al. 

[Russo2019]. This propagation explains the synchronization of bursts along each column of each 

arrays. However, marked bursts synchronization across columns of the same array, and across the 

right and left arrays, is evident, as depicted in Fig. 9, indicating that the CNS drives the right and 

the left muscles almost synchronously. This opens up a number of neurophysiological questions 

that will be addressed in future work. 

a)  ES Method  FT Method  
(Th = 70

th
 percentile) 

 OT Method  HC 

  columns  columns  columns  columns 

  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8 

ro
w

s 

1 50 48 48 48 48 48 48 48 
 

55 46 47 52 46 48 48 46 
 

40 39 52 60 53 52 53 55 
 

49 51 50 53 51 50 51 48 

2 48 48 48 48 48 48 48 50 
 

49 49 48 45 46 45 45 45 
 

48 44 62 55 54 56 55 54 
 

44 45 50 49 48 49 49 48 

3 50 48 48 48 48 48 48 48 
 

49 49 48 48 45 46 46 46 
 

45 52 54 56 57 54 54 57 
 

42 44 47 50 47 50 49 49 

4 48 48 48 48 48 48 48 50 
 

55 49 51 49 50 47 47 51 
 

49 55 56 53 54 53 55 58 
 

0 49 50 49 48 48 48 48 

5 50 48 48 48 48 48 50 50 
 

52 55 55 53 50 51 51 50 
 

46 63 66 57 57 58 57 58 
 

48 49 51 51 48 49 49 49 

6 50 48 48 48 48 48 48 48 
 

56 54 54 52 49 48 48 51 
 

58 63 65 61 58 59 58 60 
 

46 49 48 49 49 49 49 50 

7 48 48 48 48 48 48 48 48 
 

55 52 52 51 48 46 49 51 
 

62 54 61 56 56 52 58 60 
 

49 51 53 49 47 49 51 51 

8 48 48 50 48 48 48 48 48 
 

53 55 54 49 48 49 50 51 
 

58 60 63 58 55 53 53 54 
 

49 51 47 49 48 49 50 51 

9 0 0 48 48 48 48 48 48 
 

55 51 48 49 50 49 50 52 
 

46 26 57 57 59 57 53 60 
 

0 0 49 48 51 49 50 49 

10 48 50 50 48 48 48 48 48 
 

50 51 52 50 50 48 49 50 
 

31 29 60 62 59 55 54 62 
 

50 50 51 48 48 48 48 49 

11 48 50 50 50 50 48 48 48 
 

49 54 50 51 53 52 47 52 
 

28 58 59 57 59 60 57 65 
 

50 46 52 49 51 50 53 54 

12 0 50 50 50 50 48 48 50 
 

57 56 54 52 52 52 50 52 
 

12 59 60 57 57 60 57 60 
 

0 49 53 49 50 51 50 48 

13 50 50 50 48 48 48 48 50 
 

52 51 53 52 52 51 51 50 
 

32 37 56 54 57 57 60 62 
 

0 42 47 47 49 47 50 48 

14 50 50 48 48 48 48 48 50 
 

55 53 49 49 51 51 53 55 
 

23 37 45 56 58 61 61 65 
 

0 0 46 47 51 0 52 49 

15 0 50 50 48 48 48 48 50 
 

57 50 55 50 49 54 55 58 
 

17 35 18 38 61 64 64 75 
 

47 0 0 46 50 53 51 49 
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The three methods presented for describing the quasi-periodic sEMG bursts operate on the envelope 

of the rectified signal and have different properties. Method ES is based on the presence of a “sharp 

peak” in the power spectrum of the envelope signal whose frequency reflects the “periodicity” of 470 

the bursts and is not sensitive to occasionally missing or undetectable bursts (Fig. 5 and Fig.8).  

This is the reason for occasional disagreement with the HC. The sensitivity of this method can be 

tuned by adjusting the acceptable width of the sharp peak.  This method recognizes 

presence/absence of bursts and provides the bursts frequency estimates closest to those of a HC. 

Simulations indicate that a) proper length of the MAW is 80-90 ms and b) proper Th for the FT 

method is the 70
th

 – 75
th

 percentile of the distribution of the envelope.  Longer windows smooth the 

envelope but reduce its amplitude, limiting the performance of methods FT and OT.  The previous 

choice of the 50
th

 percentile [Russo2019] tends to overestimate the burst frequency (Fig. 6). The FT 

method does not recognize presence/absence of bursts but provides information about burst 

duration. Method OT automatically identifies the threshold, does not always recognize 480 

presence/absence of bursts, provides information about burst duration, and works well when bursts 

are evident. A good, but not critical, TOL value is 50 ms for both FT and OT.  

 

In some cases the burst amplitude may show a trend or fluctuations either in amplitude or frequency 

and epochs shorter than 20 s might be more appropriate. Epochs of 5 s or 10 s would track a trend 

but the spectral estimates would be performed on shorter time windows and more undesirable 

interpolation would be required by zero-padding in the time domain.  The study of burst duration 

will be addressed in future work as well as the study of intra and inter-subject repeatability.   

 

7.2. Conclusions 490 

A few preliminary analysis like that depicted in Table 3 point out that the best match with HC is 

provided by the ES method but the statistical distribution of the two counts is different despite the 

small difference between mean estimates. RMSEc  values (with respect to HC) range from 2.42 

burst for ES, to 3.58 bursts for FT, to 9.86 bursts for OT. This may likely be attributed, in part, to 

errors in human counts (e.g. separation of very close bursts or missed recognition of small ones).  

An important limitation of the FT and OT methods is their identification of bursts due to random 

local fluctuations of sEMG amplitude without burst activity (Table 2). A preliminary selection of 

sEMG recordings with and without burst should be implemented before applying these threshold-

based methods. The ES method appears to be suitable for this purpose when the bursts are quasi-

periodic. 500 
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This work provides basic tools that will allow further and more detailed investigation of sEMG 

bursts in ergonomic and occupational medicine for the study of posture, chairs, workstations, and 

various conditions (e.g. back pain, fatigue). 

 

 

8. Limitations of the work and future developments 

 

Four limitations of this work could be overcome in future investigations and could provide a more 

accurate comparison between methods. 

1. Simulations have been performed by generating band limited white Gaussian noise band-pass 510 

filtered between 20 Hz and 400 Hz. Better simulations of the sEMG spectrum, such as the one 

proposed by Shwedik et al [Shwedik77] and used in the work of Guerrero [Guerrero2019], or 

simulations based on physiological models [Farina2001] could be more suitable.  However, 

spectral properties of the raw signal are largely smoothed out by the low-pass filter applied to 

obtain the envelope and are not expected to substantially affect the results. 

2. Bursts are simulated by amplitude modulating a Gaussian signal with a train of Gaussian bells 

and adding a second Gaussian signal, as done by Guerrero et al. [Guerrero2019]. Although 

sEMG signals produced by strong contraction levels are known to have a Gaussian distribution, 

this is not the case for signals produced by low level contractions, as in our case. A Laplacian 

distribution of the simulated signals might be more realistic. 520 

3. A moving average filter was applied to the absolute value of the simulated and experimental 

raw signals in order to obtain the envelope. This is a frequently applied technique in sEMG 

processing but low-pass filtering with cut-off between 5 Hz and 10 Hz is also a common 

practice. Further investigations are needed to decide if either method should be preferred.  

4. In a number of cases bursts appear to be present (according to the ES method) only on a portion 

of the grid channels.  A criterion for defining global presence/absence of bursts and their 

frequency in the muscle(s) under a grid exceeds the purpose of this work but could be based on 

a majority rule or on the features of the burst map. 

 

Further work needs to be carried out concerning the quantification of right-left synchronization by 530 

defining a synchronization index. Interesting results are expected from the decomposition of the 

sEMG into its constituent MUAP trains to study if the same motor units are involved, across time, 

in the burst generation or if they change and are rotating to compensate for fatigue [Farina2010]. 
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Appendix 

Appendix - Brief description of the method proposed by Guerrero and Macias-Diaz. 

The starting assumption of the method proposed in [Guerrero2019] is that each value    of the 

signal is a realization of a continuous r.v.    with mean 0, for each          . Each    belongs 

either to an activity phase or a silence phase, so that we can consider a Bernoulli r.v.  , the 640 

silence/activation r.v., such that 

    
                                                 

             
                   1) 

where    is a realization  . The r.v.   which describes the signal samples is then modelled as a new 

r.v. which is a mixture of two Gaussian r.v.’s                
          as follows 

                                                           2) 

In general, given a random variable  , the so-called Optimal Bayesian Classifier (OBC) is a 

procedure which assigns an observation    to the active phase or to the silence phase according to 

the rule 

         
                                          

            
       3) 

The previous expression assumes a convenient form for Gaussian r.v. 650 

               
         In this case it can be shown that the OBC is given by the disequality   

 
  

  
  

  

  
         

         
 

         
                                                                                     4) 

called the Gaussian classifier. By imposing the equality and solving for  , just the only acceptable 

value is the searched threshold. It is important to notice that Guerrero’s method applies the 

Gaussian classifier not to the r.v.  , but to a Gaussian r.v. used to approximate the moving average 

   of the signal           
The expression of the threshold tOBC is quite complex and it is not reported in this summary. 

The main steps of the algorithm are: 

Step 1. Estimate the parameters           through a classical Expectation Maximization    

            (EM) algorithm for a mixture of two Gaussian random variables. 660 

Step 2. Compute the moving average    of the absolute value of the signal. Using the Central  

            Limit Theorem, the distribution of the mean values above can be approximated using  

             a normal distribution for sufficiently large sample sizes.  

Step 3. Apply the optimal Bayesian classifier with     ,    estimate of        and  

            obtain a threshold tOBC. 

Step 4. Construct the silence/activation process, where activation means     tOBC. 

Step 5. Post-processing by using the morphological operators of opening and closure: apply  

            a closure operation followed by an opening operation on the estimated  

            silence/activation process in Step 4. 
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