POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Benchmark Suite of RT-level Hardware Trojansfor Pipelined Microprocessor Cores

Original

A Benchmark Suite of RT-level Hardware Trojansfor Pipelined Microprocessor Cores / Damljanovic, Aleksa; Ruospo,
Annachiara; Sanchez Sanchez, Ernesto; Squillero, Giovanni. - ELETTRONICO. - (2021). (Intervento presentato al
convegno 24th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems (DDECS)
tenutosi a Vienna, Austria nel April 7-9).

Availability:
This version is available at: 11583/2882631 since: 2021-04-02T14:08:02Z

Publisher:
IEEE

Published
DOI:

Terms of use:

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

17 April 2024

A Benchmark Suite of RT-level Hardware Trojans
for Pipelined Microprocessor Cores

Aleksa Damljanovic, Annachiara Ruospo, Ernesto Sanchez, Giovanni Squillero
{aleksa.damljanovic, annachiara.ruospo, ernesto.sanchez, giovanni.squillero} @polito.it
Dipartimento di Automatica ed Informatica, Politecnico di Torino — Torino, Italy

Abstract—Recent trends in integrated circuits industry include
decentralization of the production flow by involving different
integration teams, third-party IP vendors and other untrusted
entities. As a result, this is opening up a door to new types of
attacks that may lead to devastating consequences, such as denial
of service or data leakage. Therefore, the problem of ensuring
hardware security has gained much attention in the last years,
especially early in the design cycle, when an attacker may insert
malicious circuitry at register transfer (RT) or gate level. Due to
the increased complexity of modern devices, the research commu-
nity is spending a lot of effort in developing more sophisticated
detection methodologies and smarter attacks. However, the main
problem is that they are validated on the existing benchmarks
that do not reflect the real complexity. Trying to fill this gap, this
paper proposes a set of RT-Level Hardware Trojan benchmarks
injected in a RISC-based pipelined microprocessor core. To prove
the viability, the impacts on area, power and frequency are
presented and discussed. For any proposed Hardware Trojan,
the functional description, the implementation details and the
effects once activated are provided.

Index Terms—Hardware Security, Benchmark, Hardware Tro-
jans, RTL, Microprocessor Cores

I. INTRODUCTION

In the last years, the growing complexity of modern de-
vices and the fabrication costs led the Integrated Circuit
(IC) industry to pursue a new global business model. Dif-
ferent companies are deeply involved in all phases of the
IC supply chain. The outsourcing of part of the process to
untrusted third-party entities makes such decentralized supply
chain vulnerable to security attacks and malicious insertions.
Furthermore, it raises increasing concerns about hardware
security of the products, especially when dealing with strict
security and safety requirements in critical applications such
as avionics, communications, military, etc. In this context,
Hardware Trojans (HTs) are gaining worldwide attention not
only from industry and academia, but also from government
bodies [1]. A HT is any malicious modification of the design
whose purpose is to endanger the security of the hardware. A
malicious alteration can be performed during any phase of the
production cycle. A category of HTs are those inserted at the
manufacturing stage. In this last scenario, an adversary could
access the mask and modify it to add malicious logic. It is
supposed that such logic is inserted in an intelligent manner,

978-1-6654-3595-6/21/$31.00 ©2021 IEEE

TABLE I
NUMBER OF RTL HARDWARE TROJAN BENCHMARKS AVAILABLE ON
TRUST-HUB [4] [5]

LAV o
RE LA N Sy
Design Class 19 0 950 @0 07 050"

Number 21 3 4 7 1 4 0 2 52

difficult to activate with manufacturing tests given the com-
bination of rare internal signals values that is used to trigger
it. However, more interesting are Trojans inserted earlier in
the design cycle, at the register transfer level (RTL) or gate-
level. Apart from superfluous complex reverse engineering,
an attacker inserting a Trojan early in the design process may
take advantage of the vast design space. Also, such Trojan may
potentially remain hidden even in the following generations of
the device.

During the last years, huge effort has been invested in devel-
oping detection methodologies as well as designing benchmark
circuits to favor the advancements in research. Indeed, the
research community has received a strong drive to adopt open
benchmarks for validating their detection techniques. In this
light, many HT models have been proposed [2], [3]. However,
the growing complexity of modern devices as well as more
mature and elaborate detection methodologies call for more
complex benchmark circuits. Some of the authors in their
studies proposed different HT taxonomies based on the inser-
tion phase, location, abstraction level, activation mechanism,
effects, etc. However, it is complicated to create a HT model
given the whole spectrum of constantly evolving attacks and
adversaries that are gaining access to more and more phases
of the IC development.

A common trend is to use benchmarks released from the
Trust-Hub platform [4], [5]. Considering HTs at RT-Level,
only 8 typologies of benchmarks are currently available in
Trust-Hub (Table I), and none of them is applied to a pipelined
processor similar to the ones used in the real life, as for
example the ones in the automotive applications. This is even
more concerning, given a higher flexibility for implementing
different kinds of malicious functions at RTL. The available
HTs are injected on a small 8-bit 8051 microprocessor, and a
detection technique has already been proposed in [6]. Hence,
even the state-of-the-art HT detection techniques are validated
on obsolete benchmarks that do not reflect the true complexity
of the modern embedded devices. As stated in [3], in order

to further support the development of appropriate detection
methods, the design and implementation of practical HTs
needs to be considered.

To fill this gap, this paper releases a total of 28 Hardware
Trojans Benchmarks targeting a pipelined RISC microproces-
sor core!. We started from the structure of 8 HTs placed
in different CPU’s locations. Then, we derived additional
benchmarks by modifying their trigger mechanism. Their
design follows the guidelines for creating a hard-to-detect
Trojan, presented in [7]. The paper is structured as follows.
Section II provides a background on related work: it gives an
overview of the existing design and detection methodologies.
Section III describes the typology and general structure of new
benchmarks. Section IV deepens the HT's design and provides
implementation details together with impact such injection has
on power, area and frequency. Finally, Section V concludes the

paper.
II. RELATED WORK

A HT is a malicious insertion in a circuit whose purpose
is to compromise the security as well as the trustworthiness
of the hardware. It may lead to unexpected behaviour. For
instance, it may degrade the performance, change the circuit’s
functionality or even leak secret information. Based on the
activation principle, a HT is classified as always-on or trigger-
activated [8]. The former gets activated with its host power-
on and remains active. The latter is composed of a trigger
circuit and a payload circuit. The trigger usually keeps track
of signal values, particular states, or events, under some
internal or external conditions. Once the trigger condition
is satisfied, the payload circuit gets informed and executes
the malicious function. The trigger is hard to activate as it
is hidden under a set of complex conditions, so the HT is
dormant for most of the time and the payload, inactive. In
that case, the circuit (functionally) behaves as a Trojan-free
circuit. The benchmarks presented in this article belong to
the trigger-activated class. Besides, a methodology to detect
always-on HTs during the pre-silicon design stage is described
in [9].

A. HT Design

Some works have focused on design possibilities and pro-
posed certain methodologies to create new types of HTs. In
[7], authors discuss design and implementation of RTL HT to
be hard to trigger and able to evade hardware trust verification
based on unused circuit identification (UCI) [6]. They rely on
specific coding style and trigger input selection. Additionally,
signal controllability is examined from the attacker’s perspec-
tive. In [3], authors explored different implementations of
HTs with different combinations of triggers, payloads, as well
as unique sections of the architecture that each HT attacks.
They were all designed with a varying level of sophistication,
allowing the attacker to trade-off design time, ability to evade
detection, and payload. They concluded that RTL designs can

IThe presented HT Benchmarks will be made available for the research
community and will be uploaded on Trust-Hub platform.

be quite vulnerable to hardware attacks given the vast insertion
space and functional testing can often be useless in detecting
them. Apart from introducing a metric for quantifying HT
activation and effect, [4] introduces vulnerability analysis
flow by determining hard-to-detect areas and provide public
trust benchmarks. Some works proposed automatic techniques
(malicious CAD tool) for HT insertion. To generate HTs
using a highly configurable generation platform, authors in
[10] use transition probability to identify the rarely activated
internal nodes to target for HT insertion, rather than functional
simulation as used in existing platforms. The platform has
been tested to generate HT-infected circuits and then evaluated
by the ML detection technique [11] - the Controllability and
Observability for HT Detection (COTD).

B. Detection techniques

The proposed methods for detecting HT's are intended either
as pre-silicon or post-silicon. They include different techniques
and combine various paradigms: Machine Learning (ML),
verification techniques (both formal and functional), power
analysis, using data obtained from static analysis of the model,
or dynamic analysis with simulation applying a set of stimuli.
Some of the techniques require a golden model. Examples of
post-silicon methods are those based on side-channel analy-
sis to measure circuit parameters such as current, operating
frequency, power, temperature, radiation. The added circuitry
may downgrade device’s performance and affect power and
delay of wires and gates without fully activating the malicious
circuitry. However, if the HT circuit has a small size, the
effects on the side-channel parameters could be negligible
and the HT could escape the detection. The authors in [12]
suggest generating test patterns and combining logic tests
with side-channel analysis. Generally, Machine Learning has
been successfully applied in the context of HTs. In [13], [14]
authors use ML as a side-channel detection methodology, as
well as in reverse engineering [15] and circuit feature analysis
[16]. Concerning the pre-silicon detection approaches, two
main classes can be identified. Techniques in the first one
exploit formal methods to prove the existence of malicious
hardware [17]. The second class adopts simulation, structural
analysis and functional tests generation to excite the suspicious
parts of the circuit where HTs can be hidden [18]-[20].

Apart from techniques used during the design cycle for the
IPs such as processor core or memory, some of the methods are
to be applied run-time (to detect anomalies in communication
transfers). A real-time online learning approach for Securing
many-core design was proposed in [21] training on hardware
feature analysis and HT insertion effects.

III. HARDWARE TROJANS

The proposed benchmarks are intellectual property (IP) level
Hardware Trojans conceived for a pipelined Central Processing
Unit (CPU). Such Trojans are implanted into an individual
IP core of the SoC and can affect only the specific IP in
which they are embedded [22]. The benchmarks comply with
the taxonomy and the classification scheme outlined in [1],

[4], [5]. Furthermore, the following attributes are outlined for
each benchmark: abstraction level, insertion phase, location,
activation mechanism, trigger, payload, effect. For the sake
of completeness, the insertion phase of the HTs is the Design
phase, while the abstraction level is the Register-Transfer level
for all of the introduced benchmarks. Concerning the effects,
the benchmarks might prove to be disastrous or introduce
minor damage. Three different categories have been identified:

1) Degrade Performance (DP): The availability of the
system under attack might not be affected, remaining
fully operational. However, the HT might damage the
performance of an IC and, in a worst-case, cause it to
fail.

2) Denial Of Service (DoS): The HT when activated stops
all the activities of the system.

3) Change the Functionality (CF): The HT alters the
functionalities of the system, causing it to perform
malicious, unauthorized operations. The CF might also
lead to a DP or DoS.

TABLE I
TROJAN BENCHMARKS DESCRIPTION

Name Location Trigger Payload Cat
ORIK- Decode Sequence of in- Periodically forc- DP
T100 Unit structions ing signal values
ORI1K- Control Counters Entering the su- DoS
T200 Unit monitoring pervisor mode

read accesses to

SPRs
ORIK- PIC Counters for Disabling exter- CF
T300 Unit? mask and status nal interrupts

reg. write access
ORI1K- Control 3 counters for Disabling control ~CF
T400 Unit monitoring flag bit

instructions
ORIK- Decode A specific Introducing DP
T500 Unit sequence of "bubbles" to stall

instructions the pipeline
ORIK- Data Counters Invalidating DP
T600 Cache monitoring dcache content

Data Cache Final

State Machine

(FSM) transitions
ORIK- Load & Instruction type, Exception on the DoS
T700 Store order and number data bus

Unit

ORIK- Instr. Counters Invalidating DoS
T800 Cache monitoring icache content

Instr. Cache FSM
transitions

Regarding the trigger part in the introduced Trojan bench-
marks, they can be grouped into two main categories. The first
category is represented by a sequence of events that, when
triggered, enable the payload. Such events can be related to
different signals in the model, for instance an exact sequence
of instructions, or a set of consecutive values observed on a
given bus. There are different possibilities for implementing it;
however, two main parts can be identified: a set of conditions
that activate or deactivate a targeted flag, and the second one
for registering that flag with some auxiliary combinational
or sequential logic. Given the complexity of the condition,
this type of trigger may be difficult to activate, and therefore
may escape to standard verification approaches. The second

category of triggers is used to create and check sub-conditions.
Once all of them are satisfied, the payload is activated.
They can be implemented by monitoring different processor
resources, for example, by observing certain values on the
bus, the order and/or the number of certain instructions, the
read/write access to the registers, or tracking the value of
control signals between different stages of the pipeline. Sub-
conditions may also check the state of counters in charge
of monitoring different activities in the processor. The im-
plemented counters may be the part of a separate process
observing the aforementioned activities or be hidden, for
instance, in an already existing state machine. In fact, this
type of trigger gives the possibility to create a wide-range
of complex conditions. A HT would generally be expected
to be as much controllable as possible from the attacker’s
perspective. However, working with a microcontroller, i.e.,
a System-on-chip (SoC) that integrate additional components
such as peripherals, memories, etc. renders such access more
difficult. Given that all of the benchmarks are developed for a
processor core, and that there are no mechanisms relying on
the user input, i.e., component output, such as switches, key-
boards or keywords/phrases in the input data stream to activate
a Trojan, all of the HTs in our set are considered internally
triggered. Moreover, they are activated either depending on
the time-based events or on the instructions that are being
executed. Table II reports all the essential details related to
the newly developed benchmarks: their name, location, trigger
and payload brief description and their category.

IV. TROJAN IMPLEMENTATION AND ANALYSIS

The proposed RTL Hardware Trojans are implemented in
the morlkx CPU, whose architecture and HTs’ respective
faulty location being depicted in Fig. 1. The morlkx is an
open-source core provided by the OpenRISC community; it
is a configurable 32/64-bit load and store RISC architecture,
written in Verilog Hardware Description Language (HDL).
Due to the high design flexibility, it is possible to customize
the core by choosing the best trade-off between area and
performance. The version selected in this work (Cappuccino)
has a pipeline with 4 stages, supports delay slot and is tightly
coupled with the caches. It also integrates a Programmable
Interrupt Controller (PIC), a Tick Timer (TT) and Debug units.
In this work, HTs are injected in the original HDL design,
one at a time, by directly modifying the RTL code. On top
of 8 primary HT designs, detailed in Table II, we performed
modifications concerning the complexity of trigger conditions

Reg File
T becoae oL
) 2 T a0
icacHE x)}‘“’” =S X X
19¢ (su Control >
= T30
Data Insn MMU ™ ke x>
e Branch
i Prediction
IData MMU| || Debug

mor1kx CPU core

[100
Bus Fetch x>/, 00)| | Execute
if

I’

[

Fig. 1. Proposed RTL Hardware Trojans in the Cappuccino configuration of
the morlkx CPU.

) && (counter2 ==
&5 (counter? == 5
?71:8;

H

assign trojan_en = (counterl
(counter6
(counterll 7321)

always @(posedge clk "OR_ASYNC_RST)
if (rst)
trojan_en_r <= 03
else if (trojan_en & !trojan_en_r)
trojan_en_r <= 1;

assign trojan_edge = trojan_en & !trojan_en_r;

2) && (counter3 ==
3) && (counterg == 10

323) && (counterd
1) & (counterd ==

3) & (counter5 ==
) && (counterl® ==

43) &&
424) &&

Fig. 2.

always @(posedge clk "OR_ASYNC_RST)
if (rst) begin
counterl = 0;
counter2 = 0;
counter3
counterd
counter5
counteré

counter?
counterg8
counterg
counterl@®
counterll = @;
end
else if {spr_we | spr_read) begin
if (spr_access[OR1K_SPR_SYS_BASE]) begin
if ('SPR_OFFSET(spr_addr)=='SPR_OFFSET(OR1K_SPR_CPUCFGR_ADDR))
counterl = counterl + 1;
else if ("SPR_OFFSET(spr_addr)=="SPR_OFFSET(OR1K_SPR_EPCRO_ADDR))
counter? = counter2 + 1;
else if ("SPR_OFFSET(spr_addr)=="SPR_OFFSET(OR1K_SPR_SR_ADDR))
counter3 = counter3 + 1;
end
else if (spr_access[ORIK_SPR_DC BASE]) begin
if ('SPR_OFFSET(spr_addr }="SPR_OFFSET('OR1K_SPR_DCCR_ADDR))
counterd = counterd + 1;
end
else if (spr_access[OR1K_SPR_PC_BASE]) begin
if ('SPR_OFFSET(spr_addr)="SPR_OFFSET({ OR1K_SPR_PCCR@_ADDR))
counter5 = counter5 + 1;
else if (' SPR_OFFSET(spr_addr)=="SPR_OFFSET(OR1K_SPR_PCMRO_ADDR))
counteré = counterf + 1;
end
else if (spr_access[OR1K_SPR_PM_BASE]) begin
if (SPR_OFFSET(spr_addr)=="SPR_OFFSET(OR1K_SPR_PMR_ADDR))
counter? = counter7 + 1;
end
else if (spr_access[ORIK SPR_PIC BASE]) begin
if (SPR_OFFSET(spr_addr)= SPR_OFFSET(OR1K_SPR_PICMR_ADDR))

Fig. 3. Trigger T200 counters

and coding style to expand our benchmark library and to obtain
additional 20 HT designs.

Trojan T100: This Trojan is located in the processor’s decode-
execute unit (decode to execute signal stage passing). A new
process has been added to monitor the instructions being
executed. An if-then-else nested structure controls the op-
code value originating from the decode unit. Each time an
instruction gets decoded, if the sequence is correct, a counter
is incremented; if the sequence is interrupted, the counter is
reset. The sequence of instructions is ORI-ADDI-AND-ORI-
SUB-XOR-AND-XORI-ADD-OR. Once the counter reaches
the value 10, i.e., consecutive instructions correspond to the
above sequence, payload gets activated. In this case, pipeline
is stalled indefinitely, thus disrupting the service.

Trojan T200: This implementation is located in the control
unit of the processor. Eleven counters in the newly added
process monitor read and write access of special purpose
registers (CPUCFGR, EPCRO, SR, DCCR, PCCR0O, PCMRO,
PMR, PICMR, PICSR, TTMR, TTCR) (Fig. 2). With each
access, a corresponding counter is incremented. When all of
the counters reach pre-defined values, a trigger is activated
(Fig. 3). The payload in this case is integrated into existing
code by adding a single OR condition to go from user to
supervisor mode. Such behaviour is typical when an exception

Trigger T200 condition

occurs. The effect is interrupts and timer exceptions being
disabled, as well as Data and Instruction MMU. Additionally,
a device that is in the supervisor mode enables access to some
sensitive registers.

Trojan T300: This HT is located in the programmable interrupt
controller. Two counters are inserted to count write accesses
to picmr (PIC mask) and picsr (PIC status) special-purpose
supervisor-level registers. Once the trigger part is activated
and there are no pending interrupts, payload gets to perform its
role by masking all maskable interrupts, which may result in
disastrous consequences in safety-critical systems. Reset needs
to be performed to unmask such interrupts and disable the HT.
Trojan T400: Malicious trigger-part of this HT consists of
three counters counting the number of 3 instructions in the
control stage (rfe — return from exception, mfspr — move from
special purpose register, mtspr — move to special purpose
register). When all three counters count up to a predefined
value, the payload is activated. Once activated, the malicious
function is designed to prevent the first succeeding setting
of the compare-conditional branch flag by adding a simple
condition in the assign statement. However, the effect can
be severe, given that often a processor when dealing with
some instructions uses exactly this flag to calculate the address
or/and choose the operand, which may disrupt the desired
flow and cause serious problems depending on the application.
Once the request for setting the flag arrives Trojan performs its
malicious function and gets deactivated. Additionally, a reset
signal resets the counters and deactivates the Trojan.

Trojan T500: In the decode to execute unit, a Trojan is
implanted to monitor the consecutive instructions. Once the
sequence of instructions corresponds to the sequence of 14
pre-defined instructions a trigger is activated. The difference
with respect to some of the others HTs introduced in this
paper is that this HT introduces two processes for registering
the activation signal and producing a pulse. In that manner,
the payload gets activated periodically. The payload is added
to the condition to form the decode_bubble_o signal and insert
periodically a bubble into the pipeline. The effect is no change
in functionality of the processor. However, due to the stalls it
becomes slower, thus, degrading the performance.

Trojan T600: This HT has been inserted into the data cache
module. The trigger part consists of 3 counters inserted in
the state machine. The Cache FSM has five states: IDLE,
WRITE, READ, REFILL, INVALIDATE. The counters have
been inserted to count the transitions between the states: IDLE
to INVALIDATE, READ to REFILL, WRITE to READ. Once

TABLE III
SYNTHESIS RESULTS

Size

Power mW

Design dAreal%] dPower[%)]
Ports Nets Cells Comb./Seq. Area Intern. Switch. Leak. Total

. 60L116
Orig. 90679 931538 92619 WUC 47moeis - 25762 493 6942 33199 -
- 601,145 - .
T100 9679 931567 924648 UM 477710066 01x1072 25762 493 6942 33199 —181x10

. 602,038 > -,
T200 90679 932716 925797 S0 478172000 08x 1072 25782 494 6948 33224 7.60x 10

. 601412 > ,
T300 90679 931899 924980 SOLZ 47743710 291072 25767 493 6944 33206 2.08x 10
T400 0679 932033 95114 WIS 47700158 411072 25770 493 6945 33209 .07 x 102
601,333 - ‘ -,
7500 9679 931793 92874 LI 477799870 20x102 25765 493 6943 33203 13510
T600 0679 932056 925137 SOL35 477906678 421072 25769 493 6943 33206 2111072

601,330 - o,

T700 9679 931787 924867 000 477793266 18x 1072 25765 493 6943 33203 L1610
T800 0697 932052 925043 SOLHML 499903008 41x10-2 25770 494 6945 33209 3.8 x 10-2

323,351

all of the three counters reach certain values, cache invalidation
is forced.

Trojan T700: This HT is located in the load-store unit. Trigger
part consists of nested if-else examining the sequence of
consecutive multiple load i.e., store operations with 3 different
types of access: byte (8), half-word (16) and word (32). Once
the complex condition gets satisfied, a pulse signal is generated
to activate the payload. The payload in this case is integrated
into the process dealing with the data bus exceptions. In this
regard, once the payload becomes activated, it will execute
its malicious function by simulating a data bus exception and
stepping into the exception routine. As a result, the processor
proceeds to the next instruction in the pipeline skipping the
current one at the moment when the exception occurred.
Such event may definitely disrupt the normal operation of the
processor.

Trojan T800: This HT is implanted into the instruction cache
unit. Its trigger part is incorporated within the FSM with
counters following FSM state transitions. Once all the counters
get set to predefined values, a payload is activated: the internal
hit signal is tied to zero, therefore, every time a request is sent,
the instruction cache reports a miss, i.e., not found in cache
memory. Consequently, a refill operation is performed, thus
significantly slowing down processor’s performance.

To demonstrate the feasibility of performing the proposed
modifications and inserting malicious code, we synthesized
all of our 8 HT designs, including the original one, with a
65nm industrial technology. Successively, we collected reports
regarding area, power and frequency. The results given in
Table III clearly show that such insertions are negligible in
terms of area and power overhead. The relative area difference
is below 9.8 x 104, while the total power relative difference
is below 7.6 x 10~%. Furthermore, we have confirmed that the
critical path in the design does not change by introducing the
proposed modifications.

Starting from the structure of these original 8 HTs, 20
additional benchmarks have been derived by making changes
mainly on the trigger part (complexity of trigger conditions,

changing the comparison values, and changing them struc-
turally). For instance, if the trigger looks for a particular
instructions sequence, this has been shortened or extended.
Additional wire signals for controlling the conditions are in-
troduced, and the position and number of counters is changed
together with comparison values. Furthermore, if the trigger
sequence was hosted in a single RTL process, it has been split
up to use two or more processes, clearly maintaining the same
sequence. For example, Trojan T200, originally uses the value
of 11 counters to control the trigger condition. A modified
version of this Trojan uses 14 counters for its activation. Their
values are incremented within two separate processes (10 + 4).
The aforementioned changes are especially useful for evading
detection by some methodologies that rely on one particular
coding style. On the whole, the benchmark set finally contains
a total of 28 HT.

Functional testing is quite unlikely to detect malicious
circuitry based on instruction or access sequences as the input
space is too large. The number of instructions in 32-bit version
of the processor is 96 (including custom ones). Therefore, the
probability of activating Trojan T100 is 10 x 10~2% order of
magnitude. Moreover, functional verification/testing is statisti-
cally useless trying to detect HTs observing multiple counter
values. It is not only because of the large number of conditions
but also given the large comparison values and limited time
required to run the simulations. All of the listed HTs can
get excited and are not completely dormant/silent in terms of
activity. Nevertheless, the probability of activating the payload
is extremely low without the knowledge of HT’s structure
inserted by the attacker. UCI detection technique has certain
limitations. UCI can be avoided by inserting malicious cir-
cuits that affect unchecked outputs. Unchecked outputs could
arise from incomplete test cases or from unspecified output
states. Additionally, an attacker might exploit implementation-
specific behavior and hide a HT in a module such as cache.
Such affected outputs might be difficult for a testing program
to check deterministically, thus causing malicious circuits to
affect outputs and avoid UCI analysis.

V. CONCLUSIONS AND FUTURE WORKS

In this paper we proposed a set of 8 new principle HTs
and their 20 modifications for a pipelined processor core. The
proposed HTs have been injected in very different parts of
the processor design. They differ in the trigger and payload.
The synthesis reports show the negligible impact that the
introduced modifications have on area, power and frequency.
We believe that the set of benchmarks could be extremely
useful for validating dynamic HT detection methodologies
since the core is open-source and in the near future the HTs
will be also publicly available. The proposed set of HTs are
easily modifiable and allow to create even more complex set
of trigger conditions, while the space for inserting payloads
is quite vast and allows to execute different type of malicious
functions. That is why the future work will be focused on
diversifying and developing the HT Benchmarks Library even
further. Although most of the detection techniques work at
the gate level, shifting the detection of HTs inserted at RTL to
the gate level would result in increased design and verification
costs. Therefore, our future work will also focus on developing
a new, fast and efficient method for detecting such Trojans,
based on both static and dynamic analyses of the circuit.

ACKNOWLEDGEMENTS

The work has been partially supported by the European
Commission through the Horizon 2020 RESCUE-ITN project
under the agreement No. 722325.

REFERENCES

[1] K. Xiao, D. Forte, Y. Jin, R. Karri, S. Bhunia, and
M. Tehranipoor, “Hardware trojans: Lessons learned
after one decade of research,” ACM Trans. Des. Autom.
Electron. Syst., 2016.

[2] S. King et al., “Designing and implementing malicious
hardware.,” Jan. 2008.

[3] Y. Jin, N. Kupp, and Y. Makris, “Experiences in hard-
ware trojan design and implementation,” in 2009 IEEE
International Workshop on Hardware-Oriented Security
and Trust, 2009, pp. 50-57.

[4] H. Salmani, M. Tehranipoor, and R. Karri, “On design
vulnerability analysis and trust benchmarks develop-
ment,” in 2013 IEEE 31st International Conference on
Computer Design (ICCD), 2013, pp. 471-474.

[5] B. Shakya et al., “Benchmarking of hardware trojans
and maliciously affected circuits,” Journal of Hardware
and Systems Security, 2017.

[6] M. Hicks et al., “Overcoming an untrusted computing
base: Detecting and removing malicious hardware au-
tomatically,” in 2010 IEEE Symposium on Security and
Privacy, 2010, pp. 159-172.

[71 J. Zhang and Q. Xu, “On hardware trojan design and
implementation at register-transfer level,” 2013.

[8] M. Tehranipoor and F. Koushanfar, “A survey of hard-
ware trojan taxonomy and detection,” Design & Test of
Computers, IEEE, 2010.

(9]

[11]

[21]

A. Ruospo and E. Sanchez, “On the detection of
always-on hardware trojans supported by a pre-silicon
verification methodology,” in 2019 20th International
Workshop on Microprocessor/SoC Test, Security and
Verification (MTV), 2019, pp. 25-30. po1: 10.1109/
MTV48867.2019.00013.

S. Yu, W. Liu, and M. O’Neill, “An improved automatic
hardware trojan generation platform,” in 2019 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI),
2019, pp. 302-307. por1: 10.1109/ISVLSI.2019.00062.
H. Salmani, “Cotd: Reference-free hardware trojan
detection and recovery based on controllability and
observability in gate-level netlist,” IEEE Transactions
on Information Forensics and Security, vol. 12, no. 2,
pp- 338-350, 2017. po1: 10.1109/TIFS.2016.2613842.
S. Bhunia, M. Hsiao, M. Banga, and S. Narasimhan,
“Hardware trojan attacks: Threat analysis and counter-
measures,” Aug. 2014, pp. 1229-1247.

S. Wang et al., “Hardware trojan detection based on elm
neural network,” in 2016 First IEEE International Con-
ference on Computer Communication and the Internet
(ICCCl), 2016, pp. 400-403.

Y. Liu, Y. Jin, A. Nosratinia, and Y. Makris, “Silicon
demonstration of hardware trojan design and detection
in wireless cryptographic ics,” IEEE Transactions on
Very Large Scale Integration (VLSI) Systems, 2017.

C. Bao, D. Forte, and A. Srivastava, “On application of
one-class svm to reverse engineering-based hardware
trojan detection,” in Fifteenth International Symposium
on Quality Electronic Design, 2014, pp. 47-54.

K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-
feature extraction at gate-level netlists and its applica-
tion to hardware-trojan detection using random forest
classifier,” in 2017 IEEE International Symposium on
Circuits and Systems (ISCAS), 2017, pp. 1-4.

M. Rathmair, F. Schupfer, and C. Krieg, “Applied
formal methods for hardware trojan detection,” in 2014
IEEE International Symposium on Circuits and Systems
(ISCAS), 2014, pp. 169-172.

X. Zhang and M. Tehranipoor, “Case study: Detecting
hardware trojans in third-party digital ip cores,” in 2011
IEEE International Symposium on Hardware-Oriented
Security and Trust.

A. Waksman, M. Suozzo, and S. Sethumadhavan,
“Fanci: Identification of stealthy malicious logic using
boolean functional analysis,” 2013.

J. Zhang, F. Yuan, L. Wei, Y. Liu, and Q. Xu, “Veritrust:
Verification for hardware trust,” IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Sys-
tems, vol. 34, no. 7, pp. 1148-1161, 2015.

A. Kulkarni, Y. Pino, and T. Mohsenin, “Adaptive
real-time trojan detection framework through machine
learning,” in 2016 IEEE International Symposium on
Hardware Oriented Security and Trust (HOST), 2016.

R. Elnaggar and K. Chakrabarty, “Machine learning for
hardware security: Opportunities and risks,” Journal of
Electronic Testing, 2018.

https://doi.org/10.1109/MTV48867.2019.00013
https://doi.org/10.1109/MTV48867.2019.00013
https://doi.org/10.1109/ISVLSI.2019.00062
https://doi.org/10.1109/TIFS.2016.2613842

	Introduction
	Related Work
	HT Design
	Detection techniques

	Hardware Trojans
	Trojan Implementation and Analysis
	Conclusions and Future Works

