
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

NEMA: Automatic Integration of Large Network Management Databases / Wu, F.; Song, H. H.; Yin, J.; Gao, L.; Baldi, M.;
Anand, N.. - In: IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT. - ISSN 1932-4537. -
18:3(2021), pp. 3783-3797. [10.1109/TNSM.2020.3036414]

Original

NEMA: Automatic Integration of Large Network Management Databases

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TNSM.2020.3036414

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2882339 since: 2021-04-01T23:51:26Z

Institute of Electrical and Electronics Engineers Inc.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

1

NEMA: Automatic Integration of Large Network
Management Databases

Fubao Wu, Han Hee Song, Jiangtao Yin, Lixin Gao, Mario Baldi, Narendra Anand

Abstract—Network management, whether for malfunction
analysis, failure prediction, performance monitoring and im-
provement, generally involves large amounts of data from differ-
ent sources. To effectively integrate and manage these sources,
automatically finding semantic matches among their schemas or
ontologies is crucial. Existing approaches on database matching
mainly fall into two categories. One focuses on the schema-level
matching based on schema properties such as field names, data
types, constraints and schema structures. Network management
databases contain massive tables (e.g., network products, inci-
dents, security alert and logs) from different departments and
groups with nonuniform field names and schema characteristics.
It is not reliable to match them by those schema properties.
The other category is based on the instance-level matching using
general string similarity techniques, which are not applicable
for the matching of large network management databases. In
this paper, we develop a matching technique for large NEt-
work MAnagement databases (NEMA) deploying instance-level
matching for effective data integration and connection. We
design matching metrics and scores for both numerical and
non-numerical fields and propose algorithms for matching these
fields. The effectiveness and efficiency of NEMA are evaluated
by conducting experiments based on ground truth field pairs
in large network management databases. Our measurement on
large databases with 1,458 fields, each of which contains over 10
million records, reveals that NEMA can achieve accuracy of 95%.
We further compare with several other existing algorithms, and
show that NEMA outperforms them by 7%− 15% in numerical
matching and achieves the best trade-off for non-numerical
matching.

Index Terms—Network management, Database Matching,
Graph Database.

I. INTRODUCTION

W ITH the development of big data analytics and data
mining techniques, scalable network measurement and

analysis techniques have been used in finding hidden in-
formation or patterns to help with network management,
network monitoring and network security [35], [15], [29]. In
one scenario of important network management, big network
operators/vendors serving various customers own a multi-
tude of databases on network products, configurations, inci-
dents, troubleshooting and diagnosis information, etc. Since
the databases serve different departments, they are usually
separated from each other and independently managed by
different departments and groups. However, network data are
inherently designed to host “connections” among different

Fubao Wu and Lixin Gao are with the Department of Electrical
and Computer Engineering, University of Massachusetts, Amherst. E-mail:
fubaowu@umass.edu

Han Hee Song, Jiangtao Yin, Mario Baldi and Narendra Anand are with
Cisco.

devices, groups that the devices are in, and functionality
the devices serve together; they are often required to be
shared and put together used in many important tasks such
as network prediction, semantic query, network diagnosis and
fault detection. With the database connection and integration,
network administrators can easily query related product con-
figurations and performances around devices or services. This
could also help them automatically identify the correlated
network trouble tickets/issues and pinpoint problems [25], [1].
As many studies [11], [8], [32] point out, the discovery of
matching fields is the most crucial and foremost step for the
integration of databases. For this reason, in this paper we aim
to automatically construct such matchings that lead to efficient
network management and analysis.

There is an abundance of research on field matching and
integration approaches for different data formats in different
contexts such as relational databases, XML and object-oriented
data formats [13], [27], [33], [6]. Existing database matching
approaches include two main categories of techniques. One
is based on schema-level matching, which exploits meta-
data using schema characteristics such as field names, data
types, structural properties and other schema information [4],
[14]. However, network management databases from different
sources have different design standards and naming conven-
tions [16], [10]. Even similar fields can have different names
(e.g. “product family” can also be named as “product series”).
The other category is instance-level matching, which uses
the record values of two fields to obtain the similarity and
determine matched fields [9], [26], [24], [21]. Most of the
previously proposed schemes rely on syntactic similarities,
sampling or machine learning techniques that are meant to
extract common patterns from the matching data corpus. How-
ever, it is difficult to directly apply these techniques to network
databases or challenging to reliably construct dictionaries,
corpus with large datasets when the naming convention is not
consistent and diverse.

The challenges for matching these network databases are:
(1) The database design is not ideally uniform. The data tables
are created in different groups and departments by different
people. Therefore, it is not reliable to use schema information
to match data directly and easily. (2) The data is noisy and
irregular. Some table fields contain unexpected records such as
null, invalid values and typos. Some table records are either
partly missing, incomplete or incorrect. Some fields have a
large amount of records, while some have very few records.
(3) The table contents are complicated and heterogeneous with
numerical and non-numerical data formats. (4) No thesauri or
auxiliary information exist that we can rely on for matching.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

2

The only set of observation available is the database itself.
To solve these challenges, we propose an automatic match-

ing technique for large NEtwork MAnagement databases
(NEMA) to construct a graph database for network man-
agement and analysis effectively and efficiently. We propose
several algorithms for numerical and non-numerical field
matching respectively based on instance matching. Our main
contributions are as follows:

1) We propose effective range difference and bucket dot
product similarity metric to match numerical fields, and
top priority metrics to match non-numerical fields.

2) To make the algorithm more scalable for large network
management databases, we utilize min-hash-locality sen-
sitive hashing algorithm for faster processing with a little
scarification of accuracy.

3) We further propose to use the proposed similarity met-
ric scores as features for classification to improve the
reliability of our matching technique.

4) We experimentally demonstrate the effectiveness and
efficiency of our matching algorithms in the real Cisco
network management databases.

The rest of this paper is organized as follows. We define the
problem in Section II. Section III describes NEMA matching
algorithms in detail including both numerical field matching
and non-numerical field matching. Experimental evaluation is
presented in Section IV and related work is shown in Section
V. We conclude our paper and present future work in Section
VI and VII respectively.

II. PROBLEM DESCRIPTION

Given structured network management databases, our goal is
to create a graph database of network management by finding
the most accurate matched field pairs among different tables in
these databases. The matching of two fields is determined by
the matching score measured by their record pair similarities.
We utilize the matched results to construct a graph database
for semantic query, network analysis, network prediction, etc.
[23], [19].

To illustrate our problem and algorithms clearly, we use
three sample tables below as a toy example throughout the
rest of this paper. In Table I, PRODUCT Table (TP) contains
2 fields product id (primary key), and family with 7 records
respectively. In Table II, INCIDENT Table (TI) contains
2 fields incident key (primary key), and prod key with
7 records respectively. In Table III, ORDER Table (TO)
contains 3 fields order key (primary key), incident id, and
product name with 7 records respectively. The problem is to
find whether these 7 fields match among the Table I, II and III
by evaluating the matching of their records, then to construct
a graph database for network analysis and management.

Record Matching: Given two instances e1 and e2, a record
matching function is defined as a 4-tuple: ⟨e1, e2, v, r⟩ where
e1 and e2 are two field records; v is a similarity score
(typically in the [0, 1]) between e1 and e2; r is a relation (e.g.,
equivalence, part-of, etc.) between e1 and e2. The matching
function ⟨e1, e2, v, r⟩ asserts that the relation r holds between
the record e1 and e2 with score v. For numerical field

Table I: PRODUCT (TP)
product id family
107 AIR series
108 con series
109 con series
150 47-7000
151 cisco0500
152 80-7066C
153 con5100

Table II: INCIDENT (TI)
incident key prod key
201 107
202 107
203 108
204 109
207 150
208 151
209 152

Table III: ORDER (TO)
order key incident id product name
301 201 AIR1212AC
302 201 AIR1002
303 203 con5122
304 204 mem-4700m-64d=
305 207 47-7066C
306 208 cisco0510
307 208 cs6012

matching, only if two records are equal, they are considered
matched. For example, records {107, 108, 109, 150, 151, 152
} in product id field in Table I are matched as the equal
records in prod key field in Table II, respectively. For a non-
numerical pair, however, if the similarity score of two records
are higher than a threshold based on a similarity metric,
they are considered matched. Here we consider the part-of
relation in the network management databases for meaningful
relations including subgroup versus group, product versus
product family, subseries versus series, etc. For example,
the record “con5122” in product name field and the record
“con5100” in family field can have high similarity score with
part-of relation. A record pair which is matched is called a
matched record pair, and it is called a non-matched record
pair if the pair is not matched.

Field Matching: A field here means a database field
indicating the names of a column and the single piece
of data stored. Given two fields f1, f2 and a threshold
T , we define sim(f1, f2) as the matching/similarity score
(e.g. Jaccard similarity [5]) between two fields f1 and
f2. If sim(f1, f2) value is above T , we call (f1, f2) a
matched field pair, otherwise it is called a non-matched
field pair. In the toy example, sim(product id, prod key)
has a high matching score with Jaccard similarity, so
(product id, prod key) can be correlated and matched.
Moreover, the field pair (family, product name) can also
be matched in terms of many matched record pairs such as
some pairs (AIRseries,AIR1002), (47−7000, 47−7066C)
and (con5100, con5122), etc.

Graph Database: One effective way to utilize matched
results is to construct a graph database for semantic query,
network analysis, network prediction, etc. [23], [19], which
is also our goal. We define a graph database as a labeled,
attributed and undirected graph G = (V,E, Lv, Le) where V
is the node set containing all the records appearing in the fields
which match, E is the edge set between node pairs for node
set V . Lv is a set of label information of node set V , which are
the index attributes for the columns of a table. Le is a set of
label information of edge sets E, which are the relations of two
records from two tables’ column attributes. Specifically, when
we construct a graph database from matching of relational
databases, a node v consists of a field and a record value in a

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

3

row; the label Lv of v comprises of the other field information
in the same row as node v; an edge e is the matching
between two records; le indicates the field information when
two records of the fields matches. Fig. 1 shows an example of
a constructed graph database from parts of matched results in
Tables I, II and III. For example, a specific node v “product id:
107” in the Table I has a node label lv “PRODUCT” and
“Family:AIR series”. Node v matches with “prod key: 107” in
Table II, so it is connected to the node “Incident key:202” with
a Product-incident relation, to the node “Incident key: 201”
with a Product-incident relation, and to the node “Family:AIR
series” with a Product-family relation.

 Product id:
107

Incident_key
201

Order_key:
301

Order_key:
302

Label:
PRODUCT
Family: AIR
series

Label: INCIDENT
prod_key:107

Label: ORDER
incident_id:201
product_name:AIR1212AC

product_name:
AIR 1212AC

Label: ORDER
incident_id:201
order_key:301Family:

AIR series

Label: PRODUCT
product_id:107

Product-family

Product-
incident

Order-
product

Product_name:
AIR 1002

Label: ORDER
incident_id:201
product_name:AIR1002

Incident_key :
202

Label: INCIDENT
prod_key:107

Product-
incident

Label: ORDER
incident_id:201
order_key:302

.

.

.

.

.

.

.

.

.

Order-
incident

Order-
product

Product-family

Product-family

Order-
incident

Fig. 1: Graph database created from Table I, II and III.

III. MATCHING ALGORITHM

To find whether two fields match, one simple way is to use
field name matching. If the name of two fields are the same
or similar, they are matched. However, this is not reliable for
many database sources because they are noisy and irregular.
Moreover, the network databases comprise of numerical and
non-numerical fields with different attributes and matching
requirements. For numerical field matching, we consider
equivalence relation between record pairs. For non-numerical
field matching, however, we do not directly consider the equiv-
alence relation as the matching standard. non-numerical record
values are possible to be semantically correlated with different
names. For example, the non-numerical fields family and
product name in the Table I and III have very few common
characters on their names, but they are semantically corre-
lated that product name has a part-of relation with family.
Moreover, in terms of field records, records “cisco0510” and
“cisco0500” in these two fields can be considered belonging
to the same family and being matched with a high similarity.
However, the record pair “47-7066C” and “80-7066C” are
considered to be non-matched with different families, even if
the two strings have many common characters. (Details will be
covered in III-C). Hence, we use the record matching to decide
whether two fields match to improve matching accuracy and
satisfy semantic matching. Overall, we match numerical and
non-numerical fields separately and design different matching
algorithms respectively.

A. System Overview

The system overview is shown in Fig. 2. We divide the
structured data into numerical data with only numerical fields
and non-numerical data with only non-numerical fields. In
each part, we develop an independent matching algorithm for
field matching. Matching algorithms for numerical and non-
numerical data are quite different, which will be introduced in
section III-B and III-C. The results of each part are combined
together to load into a graph database.

Numerical
fields

Non-numerical
fields

Column-wise
Matching

Record-wise
Matching

Graph processing
System

Network
databases

Numerical
data

Non-numerical
data

Column-wise
Matching

Record-wise
Matching

Graph
database

Network
databases

Fig. 2: System diagram of automatic integration for network
management databases.

B. Numerical Field Matching

Numerical fields are table fields with records which are nu-
merical values. For example, the incident key and prod key
in Table II are numerical fields. Their record values serve as a
basis for similarity metrics of fields. We define each numerical
field record values as a set. This is transferred to a problem
of set similarity.

1) Range Difference and Bucket Dot Product Similarity
Metrics: There are some common methods for solving set sim-
ilarity including Jaccard index, Dice index, Hamming distance,
cosine similarity [7], etc. However, it is not practical to just
use one method to get accurate decision bounds of matching
because of the noisiness and complexity of the structured
databases. We propose a synthetic column-wise numerical field
matching algorithm to get the decision bounds to determine
whether two fields are matched or not. The numerical field
algorithm is shown in Fig. 3.

 Numerical
data Preprocessing

Range difference
metric(RD)

Bucket dot
product(BDP)

similarity

Rule out RD
 results (below a

 threshold)
Top-k results

Network
Management

databases

 Numerical
data

Preprocessing Range difference
metric(RD)

Bucket dot
product(BDP)

similarity

Rule out RD
 results (below a

 threshold)
Top-k results

Fig. 3: Numerical field matching flow.

The process of this algorithm is shown as follows:
• We preprocess the numerical data, such as removing

null values, negative values and some exceptional non-
numerical values in every field.

• We apply range difference similarity metric to all the
preprocessed numerical field pairs between every two
tables.

• After we get the range difference similarity score for each
field pair, a threshold Tr (which will be discussed later)
will be decided to cut the filtered results.

• Finally, bucket dot product similarity metric will be
applied to the range difference similarity metric’s filtered

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

4

results. Then we sort the similarity scores of all the pairs
to select the most correlated field pairs, that is, top-
k result as matched pairs with scores above a certain
threshold Tb will be selected to input to a graph database.
a) Preprocessing: To deal with the irregular and noisy

data, we do some preprocessing of field record values before
the formal similarity calculations. This includes removing null
values, negative values, and considering unique values only.
We do not consider negative values because they are useless
and noisy data in the real databases. Almost all the table fields
are about identifications, or numbers which can possibly be
matched among them. In our databases, an average of 6% of
field records are removed (excluding unique value reduction)
which does not impact the instance-based algorithms.

b) Range Difference Similarity Metric: Considering the
noisy and sparse characteristics of data, Jaccard similarity [5]
as a similarity metric, which measures how many common
values between two sets, is not ideal for differentiating some
matched pairs and non-matched pairs. For example, for an
non-matched field pair with limited number of records, the
number of common values in these two fields might take a
large portion and hence the Jaccard similarity is very high
for them. Their distribution of range, however, can be quite
different, which is probably not to be matched in most cases.
Therefore, we propose range difference (RD) similarity metric
to measure the distribution of these field pairs first. Using
RD similarity metric first, we can effectively prune lots of
unwanted computations, which can also hugely reduce time
consumption for further matching. Given a field set A, we
sort the record value and then get the different percentile (10th,
20th, 30th,..., 90th percentile). The percentile ith value in A
is recorded as Ai. Therefore, given two field record sets, A
and B, the RD value Di for each percentile i is given as

Di =
|Ai −Bi|
|Ai +Bi|

(1)

We use 20th plus 30th percentile as the low range coverage,
and 80th plus 90th percentile as the high range coverage, to
cover the distribution of field record values. Hence the RD
similarity score for a field pair (A, B) is defined as:

RDS(A,B) = 1− D20 +D30 +D80 +D90

4
(2)

To keep consistent with the general similarity metric and
be convenient for comparisons, we use 1 minus the averaged
RD value as the RD similarity score RDS. The metric based
on this similarity score is called RD similarity metric. Using
this similarity metric, we can get the similar distribution for
matched pairs. RDS value is in [0, 1]. The bigger the similarity
score, the more correlated the pair. There are three cases about
the similarity score here: (1) If there are no overlaps between
two field ranges, RDS would be as low as the minimum value
0. (2) If two fields have similar distributions, RDS would be
higher, up to 1. (3) If two field ranges overlap at the head, tail
or in the middle, RDS can fall into a middle value.

In our toy example, the matched pairs
(incident key, incident id) and (product id, prod key)
have RDS values as high as 0.996 and 0.999 respectively.

In contrast, the pairs (incident key, product id) and
(prod key, incident id) have no overlaps with RDS value
0, which are not matched pairs. The more correlated the field
pairs are, the higher RD similarity score they have. Therefore,
using a threshold Tr to filter results, we can almost rule out
case (1) and part of case (3), then mainly consider case (2)
to differentiate them further. To minimize the error of RD
similarity score in the first step, we can use a conservative
threshold close to the boundary to only filter out definite
non-matched pairs, which will be discussed in the section IV.

c) Bucket Dot Product Similarity Metric: After we con-
sider the distribution of field pairs with range difference simi-
larity metric, we propose bucket dot product (BDP) similarity
metric to further refine the filtered results of RD similarity met-
ric. BDP similarity metric is to divide the whole concatenated
ranges of two fields into different bucket/bins and compress
each bucket as one point to calculate dot product similarity.
The intuition behind this is that matched pairs generally have
more common values than non-matched pairs. If we increase
the bucket size up to a certain value to calculate dot product, it
can make the similarities of all the non-matched pairs decrease
more, and meanwhile make the similarities of all the matched
pairs drop less, therefore it effectively increases the similarity
gaps between matched pairs and non-matched pairs. Therefore,
a good design of BDP will help significantly differentiate
between matched pairs and non-matched pairs.

The general dot product similarity of two vectors X and
Y with n elements is DP , defined as follows: DP (X,Y) =∑n

i=1 Xi ·Yi. We use the bucket number (bn) to determine the
number of buckets for calculating the dot product. Given two
field record sets A and B, we first derive the required vectors
Av and Bv for the input to the BDP similarity calculation. The
vectors Av and Bv derived from A and B are constructed in
this way. Given two sets A and B, we concatenate A and B’s
value ranges as a combined set C, and then divide C into
several buckets according to the bn. If there is any one value
in A or B falling in a bucket, the bucket point for Av or Bv’
is 1, otherwise it is 0. Then we apply the general dot product
similarity to Av and Bv . Therefore, the BDP similarity score
(normalized) is defined as follows:

BDPS(Av, Bv) =

∑bn
i=1 AviBvi

|Av||Bv|
(3)

where bn decides the sparsity/density of range distributions.
Since sets A and B usually have different sizes with differ-
ent ranges, it would make sense for bn the same for each
set. For example, we calculate the BDPS for a field pair
(incident key, incident id) in Table II and III as A and B
with bn = 3. We first concatenate these two field ranges into a
set {201, 202, 203, 204, 207, 208, 209}. Then we construct a
set C ={{201, 202, 203},{204, 207, 208}, {209}} according
to the bucket number bn. After that, we get the vector Av =
{1, 1, 1} and Bv = {1, 1, 0}. Finally, the BDPS is 0.816,
which is high for matching. If we set bn as 4, BDPS for this
pair is 1, which is the highest for matching.
bn is also an important factor to affect the quality of this

metrics. According to our experimental observations, it is
affected by the data range and distribution. Generally, matched

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

5

pairs would have more similar ranges than non-matched pairs.
A trade-off value of bn would effectively improve matched
pairs’ similarities more and also not help grow non-matched
pairs’ similarities much, which can potentially increase more
gaps between matched and non-matched pairs. The selection
of bn will be discussed later in the section IV.

d) Final Top-k Selection: To construct a high quality
graph database, more true positive field pairs are preferable
from higher similarity scores. Also, manual thresholds could
lead to selection instability of field pairs with low similarity
scores, so we seek top-k to further refine the quality of
matching for the graph database. We sort all the candidate
pairs by the similarity scores in a non-ascending order, then
we verify this final field pair matching results to select top-k
field pairs, which involves only a little human labor.

2) SVM Classification-based Matching: Our previous pro-
posed similarity metric-based algorithm for numerical field
matching involves three manual thresholds to determine field
matching. To overcome the problem of selecting thresholds
manually, we propose a classification-based learning approach
to decide matching or non-matching for numerical fields
here. The target label is whether a field pair matched or
not matched. Hence, the matching could be modeled as a
binary classification problem. Using a classification model and
previously proposed similarity scores as features, the model
can learn the internal thresholds and decide a given field pair
is matched or not. We select support vector machine (SVM)
as our binary classification for the reason that it works well on
unstructured data and scales well with high dimensional data.

Features for Classification: In the numerical field match-
ing, we have previously generated RD similarity score (RDS)
and BDP similarity score (BDPS). We propose to use these
similarity scores as features. To generalize our model, we
generate 19 different BDPS based on different bucket numbers
with 19 percentiles [5th, 10th, 15th,..., 85th, 90th, 95th] of
combined records from each ground truth field pair. As a
consequence, we have 20 features in total for classification.
With these features and data, the thresholds in previous
similarity metric-based numerical field matching algorithm
involved in deciding the boundary decision of RD or BDP,
and bucket number bn could be internally learned through our
SVM model.

C. Non-numerical Field Matching

Here we proposed algorithms for non-numerical field
matching, including top priority match metric, minHash-
locality sensitive matching, and SVM-based classification.

1) Top Priority Match Metric: We propose an algorithm
for non-numerical field matching–top priority match metric
(TPM) for fast filtering, and match ratio score for final
similarity computations. The diagram is shown in Fig. 4. The
main process of this algorithm is as follows:

• Preprocess non-numerical data: this is an important step
that decides the quality of our non-numerical field match-
ing algorithm. After splitting non-numerical data from the
original databases, we use our designed natural language
processing methods of segmentation, stemming and pre-
fixing for every field record.

Non-numerical
data

Sample
record-wise
Similarity

Calculation

Preprocessing

Matching
Ratio

Calculation

Select Top K
results

Network
 databases

Non-numerical
data

Top-priority match
 Metric (TPM) Preprocessing

Top-k
results

Check record
similarity

termination

Match ratio
score calculation

Non-numerical
data

Top-priority
Record-wise

 Similarity (TPM)
Preprocessing

Top-k
results

Check record
similarity

termination

Match score
ratio calculation

Network
Management

databases

Fig. 4: Non-numerical field matching flow based on TPM.

• Calculate the record-wise similarities iteratively: It is very
time-consuming to apply cosine similarity to the combi-
nation of every record pair in a field pair. Considering
the scalability of large-scale data matching, we propose
top priority match metric for record-wise similarity cal-
culation. In the process of iterative computations, we
check the termination condition to terminate the iterations
earlier, which significantly reduces time complexity.

• Calculate match ratio score: after record-wise similarity
computations for every field pair are finished, we calcu-
late the defined matching ratio score for each field pair.

• Select top-k results: we sort the field pairs by the match-
ing ratio score in a non-ascending order, and top-k field
pairs are selected as the final results for a graph database.

Here, we discuss each proposed steps in detail.
a) Preprocessing: Non-numerical field matching consid-

ers partial match between two strings. For example, product
“cisco0510” and product “cisco0500” are in the same series,
which is considered as a partial match. Hence, we propose
the following preprocessing method. (1) Parse every record
string A, remove null value, separate alphabetic and numerical
characters into different new substrings, and tokenize the string
words. (2) Stem the alphabetic strings of the original record
and new substrings. (3) Reserve the prefixes with a certain
length of the original numerical strings and the new substrings
if they are digital substrings. The prefix length is 2 here
according to our experiments.

Each record string is preprocessed in those three steps
above. For example, we have an original field record R
{’mem-4700m-64d=’} in Table III. We can obtain a string
collection X {’4700’, ’64’, ’4700m’, ’d’, ’m’, ’mem 4700m
64d’, ’64d’, ’mem’, ’47xx’} after preprocessing R.

b) Top Priority Match Metric for Record-wise Similarity:
One intuitive way is to preprocess all the combination of
record pair comparisons and calculate the similarity of each
record-wise pairs. That would be very time-consuming or even
unfeasible when the data are large. Specially, if two fields
are not correlated as a matched pair, it would be costly for
useless computations. Therefore, we propose a fast record-
wise matching algorithm called top priority match (TPM)
metric for record-wise similarity to fulfill this. Intuitively,
if two fields A and B are correlated, there will be a high
percentage of record-wise pairs that have higher similarities.
The probability of a matched record pair encountered is higher
than non-matched record pairs. Therefore, we first sort all the
preprocessed records in each two fields A and B, then we
compute how many of records in A are matched with records
in B from top to bottom, and vice-versa. The comparisons

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

6

can hence be terminated as long as the current record pair
similarity achieves below the similarity threshold Trn we set
for deciding the matching of a record pair, which greatly
reduce the times of comparisons with combinations.

c) Record Pair Similarity: In this fast record-wise com-
parisons, the record pair similarity used is cosine similar-
ity between two record collections after preprocessing two
records. It decides how and when to reduce the comparisons
of matching in a fast and effective way. A threshold Trn is to
decide how similar a record pair is as a matched record pair,
which can also be adjusted by users.

Given a preprocessed string collection X and another pre-
processed string collection Y , we remove duplicated elements
and transfer them into a set XY (X union Y). Next we
generate a binary vector Vx and a binary vector Vy according to
the value distribution of X and Y in XY , then we calculate the
cosine similarity sim(Vx, Vy) between Vx and Vy by getting
their dot product divided by their magnitude multiplication.

sim(Vx, Vy) =
Vx · Vy

|Vx| |Vy|
(4)

For example, we have a preprocessed string collection X
{cisco, 0510, cisco0510, 05xx}, and Y {cisco, 05xx, 0500,
cisco0500}, we transfer them into a set of X union Y , XY
{cisco, 0510, cisco0510, 05xx, 0500, cisco0500}. Then the
binary vectors generated according to X , Y and XY are Vx

{1, 1, 1, 1, 0, 0} and Vy {1, 0, 0, 1, 1, 1}. Finally, we calculate
the cosine similarity of Vx and Vy as the similarity of X and
Y , that is, sim(X,Y) = (1 + 1)/(2 ∗ 2) = 0.5.

d) Matching Ratio Score: Matching ratio score is pro-
posed to calculate the final similarity for a field pair. After we
have gone through the reducing comparisons for record-wise
similarities, we select the number of record pairs that have
similarity scores above Trn. A matching ratio score as a final
field pair similarity is the average of ratios of top matched
record pairs calculated as follows:

Given two non-numerical sets A and B, there are m items
{a1, a2, ..., am} in A and n items {b1, b2, ..., bn} in B. The
matching ratio score (MRS) between A and B is defined as
follows.

MRS(A,B) =
1

2
∗ (

∑m
i=1 Ai

m
+

∑n
j=1 Bj

n
) (5)

where

Ai =

{
1 if ∃ bj ∈ B, sim(ai, bj) >= Trn

0 otherwise
(6)

and

Bj =

{
1 if ∃ ai ∈ A, sim(bj , ai) >= Trn

0 otherwise
(7)

where sim(ai, bj) and sim(bj , ai) are the cosine similarities
of the record pairs (ai, bj) and (bj , ai), respectively. MR value
is in [0, 1] and it is the final similarity score to decide the
correlation of each field pair.

e) Final Top-k Results: Similar to numerical field match-
ing, matched non-numerical field pairs in the result list are
more meaningful and important than non-matched field pairs,
so we select top-k results of non-numerical field pairs sorted
with MRS in non-ascending order for a graph database. K
value can be selected by users for deciding most effective field
pairs in a graph database and limiting the size of the graph
database.

2) MinHash-Locality Sensitive Matching: The proposed
TPM metric can be effective to distinguish between matched
and non-matched non-numerical fields. However, it possibly
involves all the pairwise record combinations in the worst
time complexity, which is time-consuming for large databases
with millions of records. Therefore, we propose applying more
scalable minHash-locality sensitive hashing algorithm (MH-
LSH) [18] to estimate the matching score of non-numerical
fields in the databases. It can greatly reduce the comparison
size and time for non-numerical record-wise pairs with little
cost of matching accuracy down.

The proposed diagram for non-numerical field matching
based on MH-LSH is shown in Fig. 5. The main process of
the algorithm is as follows:

• Preprocess non-numerical data: this step is the same as
the preprocessing step of TPM algorithm.

• Select matched field pairs fast: we apply the locality
sensitive hashing technique in the database field matching
for fast selecting field pairs that are correlated.

• Field pair similarity calculation: We use minHash tech-
nique to estimate the matching score of field pairs.

• Select top-k results: Same as the operation for non-
numerical field matching based on TPM, we sort the field
pairs by the estimated matching score in a non-ascending
order, the top-k field pairs are selected as the final results
of field pairs for a graph database.

Non-numerical
data

MinHash
similarity

Preprocessing

Top-k
results

Locality sensitive
hashing

Fig. 5: Non-numerical field matching flow based on MH-LSH.

Here, we discuss important steps in detail.
a) Matching Score Estimation with MinHash: The sim-

ilarity score of matched field pairs can be estimated fast
with minHash signatures. Given two fields A and B, we can
evaluate the similarity between them as follows. We choose n
hash functions h1, h2, ..., hn. For each hash function hj , we let
a signature of set A be sgn(A) = mini:ai∈A hj(ai) for j ∈ n.
Let a signature of set B be sgn(B) = mini:bi∈B hj(bi) for
j ∈ n. Then, the probability that the two sets have the same
minHash signatures is used to estimate their similarity.

MHSim(A,B) = P{sgn(A) = sgn(B)} (8)

Here each record in a field A or B is also preprocessed
with the same preprocessing method of TPM algorithm. The

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

7

preprocessed record strings are combined into a new set like
a word set in a document. We also use k shingle (a substring
of length k) to create a set of k-shingles strings and apply n
different hash functions on the set of strings.

b) Field Pair Selection with Locality Sensitive Hashing:
Performing pairwise similarity measurement can be time con-
suming with large amounts of field pairs available. In order
to identify which field pairs are similar quickly, we propose
using locality sensitive hashing (LSH) to select the candidate
field pairs.

The values of minHash signature sgn(A) for one field A
are grouped into b-tuples (referred to as sketches) with r
rows. Similar field pairs have similar minHash signatures and
hence have a high probability of having the same sketches.
Moreover, dissimilar pairs have low chance of falling into the
same sketch. The probability that two fields of A and B have
at least one sketch (of size b) in common out of r is

PC(A,B) = 1− (1−MHSim(A,B)b)r (9)

Therefore, we can find the candidate pairs with the designed
number b and r. The selection of b and r is generally decided
by a threshold t = (1/b)1/r shown in [18], which indicates
how similar the two fields is to be considered as a candidate
pair, and can also be set by users. In this way, if pairs with
similarity above PC(A,B) , they will be selected as candidate
pairs to be further estimated, and the matching score between
them with minHash will be calculated.

3) SVM Classification-based Matching: Similarly as nu-
merical field matching, we propose a SVM classification-based
matching method to avoid the manual thresholds involved in
the top-priority match (TPM) or minHash-locality sensitive
(MH-LSH) metrics for non-numerical matching.

Features for Classification: During the calculation of TPM
matching ratio score (MRS) and MH-LSH score (MHSim), we
have one important record-pair threshold Trn while calculating
TPM matching ratio score. To avoid the record similarity
threshold Trn, we use a broad range of 7 different Trn values
in [0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8] to calculate different
matching ratio scores as features. Combined with MHSim, 8
features of scores are obtained for each non-numerical field
pair. With these features and data, the thresholds Trn and
the final threshold for deciding the matching boundary are
internally learned through our SVM classifier.

IV. EXPERIMENTAL EVALUATION

We evaluate our technique NEMA for structured network
management database matching. Specifically, we measure the
effectiveness of NEMA using ground truth for numerical and
non-numerical data that are annotated by humans. Meanwhile,
experiments on a large dataset are also conducted, and we
show the top-k effective results of matching field pairs. More-
over, comparisons of NEMA with other existing algorithms
are also shown.

A. Dataset

The structured network management databases available in
the form of database tables are provided by Cisco Systems,

Inc. The dataset includes heterogeneous and diversely dis-
tributed “install base” and “service request” databases, which
are generated by various departments of the corporation.

In these databases, there are 21 tables which contain 1,458
columns. Each column has 10 million records on the average.
Out of them, there are 679 numerical fields and 779 non-
numerical fields. Therefore, a complete match involves the
maximum 1,067,882 field matching decisions. With primary
key constrains in numerical field matching, there are 5 “pri-
mary keys” on average in each table, which would reduce to
374,326 field pairs matching.

We have ground truth field pairs that are annotated by
humans to be matched or non-matched field pairs for a subset
of the data. There are 60 balanced ground truth field pairs
in numerical dataset and 40 balanced ground truth field pairs
in non-numerical dataset. For future reference, table names in
service request database start with “T ”, and start with “X ”
in install base database, respectively.

B. Experimental Setup

We implement NEMA system in Python. To evaluate the
effectiveness of NEMA , we evaluate the numerical and non-
numerical algorithm parts, respectively. For each part, we first
evaluate its algorithms based on the ground truth data. Then
all the column pairs in the large dataset are evaluated in the
following experiments shown in sections IV-C2 and IV-D2,
which shows the effectiveness of NEMA. Then we evaluate
the SVM classification-based algorithms. Finally, we compare
with the common matching system COMA [3] on the ground
truth for both schema-level and instance-level matching. Our
quality evaluation is based on the balanced ground truth of
positive and negative field pairs. We use common metrics-
precision, recall, “accuracy” (ACC) and “F1” score (F1) to
evaluate our field matching algorithms.

C. Evaluation based on Numerical Data
We evaluate our technique NEMA on the numerical data in

two parts. Because of the limited ground truth field pairs, other
than the common 80/20 splitting ratio, we randomly select
60% of matched field pairs and 60% of non-matched field pairs
to make balanced ground truth from the whole ground truth
field pairs to determine the thresholds of NEMA numerical
algorithms. The rest 40% of them will be tested to show the
quality in Section IV-F. The more proportion for test data also
helps reduce the randomness and improve the generalization of
our algorithms. The matching results of all of other numerical
field pairs are also described in Section IV-C2.

1) Evaluating of Ground Truth: We show the evaluation
result of NEMA numerical algorithms and the compared
baseline method-Jaccard similarity using numerical ground
truth (We choose Jaccard similarity since it is an exemplar
method considering common values of two sets for similarity
calculation). In the dataset, there are 30 matched ground truth
field pairs which are originally from fields pairs annotated by
humans or from join operations in the databases and proved
to be matched field pairs. Referring to the undersampling
technique, we randomly sample 300 non-matched field pairs

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

8

confirmed by humans and select 30 non-matched field pairs
from them as non-matched ground truth to construct balanced
data instances of positive and negative field pairs.

Table IV: Example of numerical ground truth field pairs

No. Table.fieldA Table.fieldB Matched class

1 T INCI.prod hw key T HW PROD.bl prod key 1
2 T INCI.cur ct key T CT.bl ct key 1
3 T INCI.up tech key T TECH.bl tech key 1
4 T INCI.inci id T INCI I2.inci id 1
5 T INCI.bl cot key T COT.bl cot key 1
6 T INCI.inci id T OR HD.inci id 1
7 T INCI.item id T PROD.item id 1
8 T INCI.ins site key T SITE.bl site key 1
9 T OR LN.prod key T PROD.bl prod key 1
10 T OR HD.header id T OR LN.header id 1
1 T OR HD.order dur T OR LN.loc key 0
2 T CAL.bl cal key T PROD.item id 0
3 T INCI I2 T DEFT.deft id 0
4 T INCI I2.res time T TECH.sub tech id 0
5 X PRO.list price T TECH.sub tech id 0
6 T INCI I2.res time T TECH.bl tech key 0
7 T OR HD.deliv dur T DEFT.deft key 0
8 T OR LN.hold dur T TECH.sub tech id 0
9 T IN.serlevel key T INCI.last dur 0
10 T IN.closect key T INCI.resp tz 0

Table IV shows 10 matched and 10 non-matched field pair
examples of numerical ground truth. Columns “Table.field A”
or “Table.field B” shows a table name and its field pair name
to be compared. The matched class column indicates that the
field pair is matched with value “1” or non-matched with value
“0”. For example, in the first row, “T INCI.prod hw key”
indicates a field “prod hw key” in the table “T INCI”, and
“T HW PROD.bl prod key” indicates a field “bl prod key”
in the table “T HW PROD”. This field pair about products’
key is matched, indicated with “1” in the matched class value.
The remaining rows share the same characteristics too.

The problem of similarity of a numerical field pair is
modeled as similarity problem of a set pair. The baseline
method for the similarity is the well-known Jaccard similarity
which measures the similarity of two given sets.

Fig. 6 shows the Jaccard similarity scores on these ground
truth field pairs. Red circle represents matched pairs and blue
star represents non-matched pairs. X axis denotes the index of
these 30 matched and 30 non-matched field pairs, and Y axis
indicates Jaccard similarity score. From this figure we can see
that there are about half of positive and negative pairs mixed
together from which are difficult to differentiate.

Fig. 6: Matching with Jaccard similarity metric.

1BDPS values are obtained from the rest of 24 field pairs after RD similarity
metrics is applied with a threshold Tr = 0.1 and normalized in [0.1, 1].

Fig. 7: Matching with combined RDS and BDPS 1.

Fig. 7 shows our numerical field matching algorithm. It
shows the applied result on 18 positive and 18 negative
field pairs with combined RD similarity and BDP similarity
metrics. For RD similarity metric, we use a threshold Tr

and rule out the result pairs below Tr as non-matched field
pairs. Then we keep the rest of field pairs to BDP similarity
metric for further matching. We show this combined RDS and
BDPS together for better visualizing the decision boundary of
matching. The decision threshold for RDS is Tr = 0.1. When
0 < Tr < 0.1, y-axis shows the RDS. When Tr ≥ 0.1, it
shows the normalized BDPS for the rest of field pairs. There
are 12 field pairs which are considered as non-matched pairs
and removed with 0 < RDS < 0.1. The rest 24 field pairs
(18 matched pairs and 6 non-matched pairs) with RDS ≥ 0.1
are easily differentiated with BDP similarity metric. We can
see that the BDP result could provide an excellent decision
boundary among matched pairs and non-matched pairs in
which the final threshold Tb is chosen around 0.2. With this
combined RD and BDP similarity metrics, we have greatly
improved the result over the Jaccard similarity result.

Fig. 8: Selection of the best Tb based on the matching
accuracy.

The bucket number bn is the main factor affecting the BDP
similarity and the final results. To determine the optimal bn
value, we use a number of different bn values to apply on that
60% of ground truth field pairs to evaluate on the accuracies.
The bn values are obtained from different percentiles (5th,
10th,..., 90th and 95th percentile) of record values of each
combined field pair when computing BDPS. Fig. 8 shows the
accuracy of BDP similarity metric with different percentiles
(bn values) when the threshold Tb is set at 0.1 and 0.2. It shows
a similar summit that the accuracy is at an optimal value when
the bn is around from 35th percentile. BDP accuracy goes
down when the bn becomes smaller or bigger. Thus the bn
is selected as 35th percentile for matching other part of our

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

9

dataset in the later experiments.
2) Top-20 Similarity Results: The matching experiment

based on all the 679 numerical fields is shown here. Table
V shows top-20 matching results. We use RDS threshold
Tr = 0.1 and bucket number bn = 50, 000 for BDP similarity
computation. All the rows are accurate matches, which are also
confirmed by humans. The accuracy can be up to 100% for
the top-20 results, which shows a great potential for our nu-
merical field matching algorithm applied on the large dataset,
also reducing lots of human labor for matching. Moreover,
with our system-aided matching findings, we can find some
pairs matching which are difficult to be found with human
annotations such as “changewg key” and “subregion key”,
indicating which regions that the workgroup mainly serves.

To ensure a graph database more meaningful and complete,
the selection of top-k results is finally decided by users.
Users can observe the top-k results and rule out the unwanted
matches as the final input pairs to a graph database so as to
introduce less “noisy” connections of the graph database.

Table V: Top-20 similarity result of numerical field pairs

Table.field A Table.field B BDP similarity

T DEFT.deft key T INCI DE.bl def key 0.844
T OR LN.item id X PRO.item id 0.698
T DEFT.deft id T INCI DE.defect id 0.682
T INCI.item id X PRO.item id 0.673
T DEFT.deft key T PROD.item id 0.64
X INS.item id X PRO.item id 0.597
T PROD.bl prod key T SUR.task key 0.567
T INCI.changewg key T WK.subregion key 0.551
T INCI.changewg key T WK.wkgrp key 0.551
T INCI.changewg key T WK.theater key 0.551
T INCI.currentwg key T WK.theater key 0.545
T INCI.currentwg key T WK.subregion key 0.545
T INCI.currentwg key T WK.wkgrp key 0.545
T INCI.hwversion id T PROD.bl prod key 0.507
T INCI.createwkgrp key T WK.theater key 0.507
T INCI.createwkgrp key T WK.subregion key 0.507
T INCI.createwkgrp key T WK.wkgrp key 0.507
T PROD.item id X PRO.item id 0.468
T INCI.prod hw key T HW PROD.bl prod key 0.463
T SUR.evalwkgrp key T WK.wkgrp key 0.433

D. Evaluation based on Non-numerical Data

We evaluate our NEMA non-numerical algorithms based on
TPM and Hashing on the non-numerical data in two parts as
well. We use non-numerical ground truth data to evaluate the
effectiveness of our algorithms. The matching results of all the
other non-numerical field pairs are then described.

1) Evaluating of Ground Truth: There are 20 positive
ground truth field pairs which are annotated by humans. Also,
20 negative ground truth field pairs are randomly selected
from the dataset and verified to make balanced data instances
of positive and negative field pairs. Similarly to numerical
evaluation, we randomly select 60% matched field pairs and
60% non-matched field pairs to make balanced ground truth
from the whole ground truth field pairs to determine the
thresholds of NEMA non-numerical algorithms. The rest 40%
will be tested to show the quality in Section IV-F. Part of field
pair examples are shown in table VI.

We first analyze the ground truth record-pairs and show
the viability for the record pair similarity threshold Trn.

Table VI: Examples of non-numerical ground truth

No. Table.field A Table.field B Matching class

1 T PROD.item name X INS.item name 1
2 T COT.cpr country T SITE.country 1
3 T CT.temp desc T PROD.item desc 1
4 T CT.ctserv line X SAH.servline name 1
5 T INCI.curr wg name T WK.wkgp name 1
6 T CT.temp desc X SAH.temp name 1
7 T SITE.cust state X SAH.billto state 1
8 T CT.temp name X SAH.temp desc 1
9 T PROD.prod family T HW PROD.family 1
10 T PROD.prod family T HW PROD.erp family 1
1 T INCI.init gp name T SITE.address 0
2 T DEFT.deft submitter T SITE.email addr 0
3 T COT.cpr country T INCI.summary 0
4 T SITE.address1 X PRO.prod family 0
5 T PROD.prod family X SAH.hdrcust name 0
6 T INCI.tacpica ct T HW PROD.family 0
7 T WK.wkgp desc X PRO.physisn loc 0
8 T SITE.county T SUR.batchcot name 0
9 T INCI.customersw ver T SITE.state 0
10 T OR LN.partsloc code X INS.item name 0

Table VII shows the record pair similarity scores of 9 dif-
ferent record pairs in a field pair (“T PROD.prod subgrp”,
“T HW PROD.platform”). The first 7 rows of pairs with high
similarity scores are matched record pairs. The last 2 rows are
not matched record pairs with lower score of 0.333. They have
a decision boundary of score around 0.4. Also, based on the
database matching standards of prefixing and our experimental
observations on ground truth field records, we set Trn = 0.4
as the record similarity threshold.

Table VII: Sample of non-numerical record pairs

T PROD.prod subgrp T HW PROD.platform Record similarity

c900 series c900 series 1
c2950 series c2916 series 0.8
1601r series 1601 series 0.775
css2950 css2916 0.667
C2960 C2960CX 0.577
C3560CX C3560X 0.5
AIR35CE AIR35SE 0.4
ts900 cs900 0.333
c800 s800 0.333

Fig. 9: TPM-based matching ratio score.

We demonstrate the effectiveness of non-numerical algo-
rithms of TPM and MH-LSH by calculating matching ratio
score based on TPM and estimated matching score based
on MH-LSH on non-numerical ground truth. Fig. 9 shows
matching ratio scores of this ground truth data matching in
a non-ascending order on TPM. The matching ratio scores
of almost all the matched pairs are above the non-matched
pairs’s. If we use the threshold 0.1 or select top-20 results
from this, the accuracy can achieve about 95%, which shows

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

10

Fig. 10: MH-LSH-based matching score.

the effectiveness of NEMA based on TPM. Fig. 10 shows the
matching scores of these ground truth in a non-ascending order
based on MH-LSH. Although the decision boundary is not as
good as the TPM-based result, the accuracy can achieve 90%
when the threshold is 0.1 or top 19 results are selected.

2) Top-20 Similarity Results: There are 779 non-numerical
fields in the large dataset. Considering that almost all the
primary keys in a table are numerical fields, we do not consider
primary key constraint matching method for non-numerical
field matching. The record similarity threshold Trn is set to
be 0.4 here based on the analysis of Table VII. The final top list
of matching ratio scores are obtained based on TPM algorithm
from all the non-numerical field pairs.

Table VIII shows the top-20 results of field pair matching
based on TPM. We can see that all the field pairs are matched
pairs, and they are also confirmed by humans later, which
shows the effectiveness of NEMA based on TPM algorithm.

Table VIII: Top-20 matching results of non-numerical field
pairs

Table.field1 Table.field2 Matching ratio

T INCI I2.currentwg key T WK.wkgp name 0.637
T INCI I2.currentwg key T WK.wkgp desc 0.632
T INCI.initwg name T WK.wkgp name 0.63
T INCI.initwg name T WK.wkgp desc 0.628
T WK.wkgmgr email T SUR.eval email 0.626
T INCI.creatorwg name T WK.wkgp name 0.624
T INCI.creatorwg name T WK.wkgp desc 0.622
T INCI.curr wg name T WK.wkgp name 0.611
T INCI.curr wg name T WK.wkgp desc 0.607
X SAH.billto state T SITE.state 0.504
X SAH.billto state T SITE.cust state 0.499
T INCI.initwg name T INCI I2.curr wg name 0.462
T INCI.initwg name T INCI I2.wkgrp name 0.457
T COT.cpr country T SITE.country 0.453
T SITE.cust country T COT.cpr country 0.453
T INCI I2.wkgrp name T INCI.curr wg name 0.451
T COT.cpr country T SITE.cust country 0.447
T INCI.curr wg name T INCI I2.curr wg name 0.442
T SITE.country T COT.cpr country 0.44
T HW PROD.erpplatform X SCDC.productsub grp 0.431

E. Evaluation of SVM Classification-based Matching

1) Extending Ground Truth Data: To address the problem
of limited availability of the positive ground truth in our
dataset, we refer to a sampling method by H. Kohler [17] to
synthesize more positive ground truth field pairs as “synthet-
ically positive field pairs”. It preserves the “synchronization
property” (to preserve the Jaccard similarity of original sets).
Given an original ground truth field pair (A, B), we sample
a new field pair based on this original pair. The sampling
process is to make sure if a particular record sample e is

sampled in A and e is also in B, then it is also sampled
from B. If the original ground truth pair is positive, the
synthetic field pair is considered as positive as well. We
synthesize x (e.g. 100) more field pairs out of each ground
truth field pair. Here 20% of records values from each field are
sampled. In the original dataset there are 30 positive ground
truth field pairs in numerical matching. For each one of the
ground truth field pairs, we synthesize 100 field pairs out of it,
thus 3,000 synthetically positive field pairs are created. Also,
we randomly select 3,000 negative ground truth field pairs
from the original dataset. Therefore, we create balanced data
instances of 6,000 field pairs where 3,000 positive field pairs
and 3,000 negative field pairs for classification. Similarly, for
non-numerical fields, we create data instances of 6,000 field
pairs where 3,000 synthetically positive field pairs from the 20
positive field pairs and randomly select 3,000 negative ground
truth field pairs as the classification dataset.

Fig. 11: RDS values for original and synthetic field pairs in
numerical fields.

Fig. 12: MRS values for original and synthetic field pairs in
non-numerical fields.

We show some comparisons of original ground truth dataset
and synthetic dataset here. There are 30 positive ground truth
field pairs from original dataset for numerical fields and 20
positive ground truth field pairs for non-numerical fields. For
each field pair we compare with 3 randomly selected synthetic
field pairs labeled as S1, S2, and S3 respectively. Fig. 11
shows the comparison of range difference score (RDS) for
these synthetic dataset with original dataset in numerical field
matching. Fig. 12 shows the comparison of these matching
ratio score (MRS) for these synthetic dataset with original
dataset in non-numerical field matching. Both results show
that synthetic field pairs have similar scores with original field
pairs. It further implies that synthetic dataset has similar range
and distribution with the original dataset.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

11

2) SVM Classification Results: Here we show the experi-
mental results of numerical and non-numerical field matching
with cross-validation and testing. For each classification, we
randomly split our large synthetic dataset into 80% as training
dataset, and 20% as test dataset according to the common
splitting ratio based on the Pareto principle [34]. In the training
stage, 5-fold cross-validation is used for validation. We run
the same procedure of the whole experiment 20 times and
obtain the average measures of precision, recall, ACC and F1
for validation and testing shown in the Table IX. It shows
our SVM classification-based matching has high and similar
performance compared to previous similarity metric-based
algorithms.

Table IX: SVM validation and testing results on synthetic
numerical and non-numerical ground truth

Fields Data Precision Recall ACC F1
Numerical Validation 0.997 0.994 0.995 0.995

Testing (20%) 0.973 0.972 0.972 0.972
Non Validation 0.949 0.958 0.953 0.953
-numerical Testing (20%) 0.938 0.955 0.946 0.947

F. Comparisons with Other Existing Algorithms

We compare our technique NEMA with other existing
algorithms-COMA system [12] and rule-based Regex [21]
here. COMA is a state-of-the-art and popular hybrid matching
tool and system supporting both schema-level and instance-
level matching. Regex is an instance-level rule-based matching
method based on regular expressions. We test and compare
their matching results on the rest 40% of numerical and non-
numerical ground truth field matching, respectively.

1) Comparison of quality: We measure the quality of
precision, recall, ACC, and F1 and compare the COMA in
the schema level and instance level and Regex in the instance
level for numerical and non-numerical data matching. On the
schema level matching, COMA uses the best field matching
similarity ”0” (which has no corresponding line in the COMA
system) as a threshold in the schema-level matching. On the
instance level matching, COMA has one similar instance-
level matching that uses aggregated maximum record-wise
similarities to obtain the final field pair similarities. The
record-wise similarity is based on common similarity metrics
such as edit distance [28] and trigram [2]. Edit distance is
to measure how dissimilar two strings are to one another
by counting the minimum number of operations required to
transform one string into the other. Trigram is to split a string
into triples of characters and comparing those to the trigrams
of another string. The field matching similarity between two
fields A and B in COMA is defined as follows:

sim(A,B) =
1

m+ n
· (

m∑
i=1

maxj=1...,n(sim(ai, bj))+

n∑
j=1

maxi=1...,m(sim(bj , ai))) (10)

Regex is a matching method based on regular expression by
creating patterns from sampling instances of one field and then
match against instances of another field to decide matching.

Table. X shows the quality comparisons among COMA,
NEMA and Regex. COMA-SCH is COMA with schema-
level matching algorithm. COMA-ED and COMA-TRG means
that COMA uses edit distance and trigram to measure
the record similarity in instance-level matching, respectively.
Regex is the matching based on regular expression. NEMA-
(RD+BDP) is NEMA using combined RD and BDP in numer-
ical field matching, while NEMA-TPM is NEMA using TPM
in non-numerical field matching. NEMA-MH LSH indicates
that NEMA uses minHash-locality sensitive hashing in non-
numerical field matching. The accuracies and F1 scores of
NEMA-(RD+BDP) and NEMA-TPM in numerical and non-
numerical data matching can be up to 95%, as high as COMA’s
non-numerical data matching, but having better performance
than COMA-SCH and Regex matching. For numerical field
matching, the accuracies of COMA-ED, COMA-TRG and
Regex are 7%-15% lower than NEMA-(RD+BDP) because of
the ineffectiveness to identify non-matched pairs of numerical
ground truth. For non-numerical field matching, the highest
accuracies and F1-scores of COMA-ED and COMA-TRG
are only 1-2% higher than NEMA-TPM. However, the field
matching score of COMA is measured based on its general
string similarity matching, which is not well applied to the
network management database matching for record pair simi-
larity requirements. A large number of pairs with high record
similarities in COMA are not thought of as matches in the
network management databases, which shows the usefulness
of the NEMA non-numerical algorithm.

Table X: Quality comparisons with other existing algorithms

Field Algorithms Precision Recall ACC F1
Numerical COMA-SCH 0.867 0.838 0.85 0.852

COMA-ED 0.848 0.933 0.883 0.889
COMA-TRG 0.765 0.867 0.8 0.813
Regex 0.833 0.833 0.833 0..833
NEMA-
(RD+BDP)

0.966 0.933 0.95 0.949

Non COMA-SCH 0.781 0.833 0.8 0.806
-numerical COMA-ED 1.0 0.933 0.967 0.966

COMA-TRG 0.967 0.967 0.967 0.967
Regex 0.867 0.897 0.883 0.881
NEMA-TPM 0.936 0.967 0.95 0.951
NEMA-MH LSH 0.933 0.848 0.883 0.889

Table XI: Efficiency comparison with other existing algorithms

Non-numerical Algorithms Time Mean (s) Time SD (s)
COMA-SCH 251 21
COMA-ED 13,322 1,289
COMA-TRG 12,890 1,329
Regex 425 89
NEMA-TPM 2,832 159
NEMA-MH LSH 939 62

2) Comparisons of Mismatched Examples: We further an-
alyze the differences of COMA and NEMA in matching the
ground truth field pairs. Table XII shows the field pairs in
every row and its similarity scores by COMA and NEMA.
These field pairs are found to be matched pairs by NEMA
with relatively high similarity scores, but COMA shows no
similarities with score 0. For COMA, the field names have very
few common characters in spelling, even though the semantic
commonality exists. NEMA does not rely on the inaccurate

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

12

schema-level properties, but it uses the record instance for
the decisions of field matching, which indirectly considers
the semantic correspondences. If the record instances for
some matched pairs are incomplete or missing, however, the
similarity scores for these field pairs are also low. Table XIII
shows the two field pairs that have low similarities in NEMA.
Although the field names in each pair express the same thing
semantically, the record instances in the fields are actually
incomplete and have very few in common between each other.
However, in our databases, the missing or incomplete field
pairs are very few compared to the large number of field
pairs, which does not affect the overall performance for the
numerical field matching with NEMA.

Table XII: Example of field pairs matched by NEMA, but not
by COMA

Table.fieldA Table.fieldB COMA-ED NEMA-TPM

T INCI.ins site key T SITE.partysite id 0 0.208
T OR HD.creator id T INCI.lastup by 0 0.643
T CT.temp desc T PROD.item desc 0 0.05

Table XIII: Example of field pairs matched by COMA, but
not by NEMA

Table.fieldA Table.fieldB COMA-ED NEMA-TPM

T INCI.bl cot key T CT.bl cot key 0.750 0.091
T SUR.bl surv key T SUR ANS.bl surv key 0.76 0.009

Here we analyze the specific record pair examples of non-
numerical instance-level matching. COMA uses standard edit
distance and trigram to calculate the similarities of records,
which is not quite suitable for the matching requirement of
network management databases. Table XIV below shows 9 ex-
amples of records pairs and three different kinds of similarities
(NEMA-TPM, COMA-ED, COMA-TRG). The first 7 rows as
one group are thought of as matched record pairs, the last two
rows in the other group are non-matched record pairs. We can
see from that the similarity of matched pairs based on COMA
are quite similar around 0.7 for these two groups, from which
is not easy to differentiate. While the similarities by NEMA
have good differences (0.333 for non-matched pairs, 0.4 above
for matched pairs). This further demonstrates that NEMA is
more suitable for the network database matching.

Table XIV: Examples of record similarity comparisons

Record 1 Record 2 NEMA-TPM COMA-ED COMA-TRG

c900 series c900 series 1 1 1
c2950
series

c2916
series

0.8 0.833 0.6

1601r series 1601 series 0.775 0.909 0.738
css2950 css2916 0.667 0.714 0.6
C2960 C2960CX 0.577 0.6 0.775
C3560CX C3560X 0.5 0.833 0.671
AIR35CE AIR35SE 0.4 0.857 0.6
c800 s800 0.333 0.75 0.5
ts 900 cs900 0.333 0.8 0.667

3) Comparison of Efficiency: Considering the expensive
time consumption for non-numerical field pair matching, we
test the efficiency based on the whole non-numerical ground
truth. We run the experiment 20 times on the same machine
with the same data to calculate the average computation

time and standard deviation (SD) without data loading time.
Table XI shows the total computation time spent for COMA-
SCH, COMA-ED, COMA-TRG, Regex, NEMA-TPM and
NEMA-MH LSH. Among them, COMA-SCH and Regex are
two fastest among all the algorithms, but the accuracies are
the lowest. COMA-ED is the slowest, taking about 13,322
seconds. NEMA-TPM takes 2,832 seconds, about 5x speedup
over COMA-ED. NEMA-MH LSH takes 939 seconds, which
is about 14 times faster than COMA-ED in the cost of
8% accuracy lost. NEMA-TPM is slower than COMA-SCH
and Regex algorithms, but with about 8% higher accuracy.
Therefore, NEMA-TPM outperforms most of other existing
algorithms and reaches the best trade-off of quality and
efficiency among them.

V. RELATED WORK

The structured data matching is an old and important
research topic but unsolved and ever-growing problem, which
has a wide range of applications in database integration, mi-
gration, semantic query, etc. [6]. In the survey paper [30], the
authors propose a solution taxonomy differentiating between
element and structure level, schema and instance level, lan-
guage and constraint-based matching techniques. Furthermore,
P. Shivaiko et al. [31] review the state-of-the-art matching
systems which were based on strings, structure, data instance
and semantics matching techniques using different schema
formats such as database, XML, OWL, RDFS, etc. In database
schema matching, previous common matching systems in
schema-level are introduced in several prototypes such as
Similarity Flooding (SF) [22], Coma [3], etc.

SF [22] is a matching algorithm that models two structured
columns to be compared as two directed labeled graphs. It
makes use of field data, key properties and the string-based
alignment (prefix and suffix test) to obtain the alignments
between two nodes of the graph. The similarity is calculated
from similar nodes to adjacent neighbors through propagation.
Our NEMA only relies on the data instance values to infer
the matching of fields, which does not utilize the structured
properties and data types. However, SF uses a metric for
matching quality based on the intended matching results,
which is similar to our accuracy metric based on top-k results.

Coma [3] is a composite matching system providing exten-
sible library and framework for combining obtained results.
It contains mainly 6 elementary matchers using string-based
techniques, 5 hybrid matchers using names and structural
paths, and one reuse-oriented matcher based on previous
matching results . The composite matcher effectively improves
the match quality over a single matcher using the default
combination strategy. Compared to SF, the overall average
matching quality are the best among them [3]. The extended
version Coma++ [12] utilizes the shared taxonomy and pivot
schema to further improve the overall matching quality. In our
evaluation, we compare with the Coma++ method using the
default combination strategy and find our technique NEMA
overall outperforms than COMA in schema-level matching.

Except from the previous matching approaches using field
and structural information matching, data instanced-based

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

13

approaches [24], [20], [9], [36] use the similarity metric or
machine learning or rule-based methods to determine the
similarity of fields. In [20], the authors utilize a corpus that
contains schema and mappings between some schema pairs,
and learn the constraints from schema statistics to help gen-
erate more matching pairs. In [9], the authors use the mutual
information of statistics to measures the similarity of schema
instances between two columns to decide the matching, which
shows an effective method based on instances. Also, the
authors in [26] propose a new sample-driven approach which
enables the end-users to easily construct their own data to
match the source and target schema. [21] proposes a rule-
based method by creating regular expression pattern to match
against columns. [36] uses matching-learning technique of
training neural networks for getting candidate pairs and then
filters the pairs with a rule-based algorithm. Our NEMA uses
proposed similarity metrics as features to train a SVM to
classify for matching effectively and efficiently. COMA [12]
proposes two instance-level matching methods based on the
constraint of instance data and the content-based matching to
measure field matching. The constraint-based method relies
on the general, numerical and pattern constraint which has
specific limitation to the specific data which is not suitable for
the network databases. The content-based matching depends
on the aggregation of similarity scores of instance contents and
it is kind of similar to our NEMA technique on content-based
similarity measurement.

To sum up, most of currently popular matching approaches
and systems focus on schema-level information matching.
The data instances level matching approaches using field
record values are mostly based on some statistical models
and machine learning from corpus. We further explore the
database instance matching by comparing field records using
different metrics and propose effective and overall matching
algorithms considering the characteristic of network database
matching for a graph database construction for efficient data
query, analysis and management.

VI. CONCLUSION

In this paper we propose a systematic technique NEMA
to match databases for network management. Different from
previous database matching approaches, we design a technique
to match numerical and non-numerical fields in instance-
level respectively, which can effectively be integrated into a
graph database for network management and analysis. For
numerical field matching, we propose range difference sim-
ilarity and bucket dot product similarity metrics. For non-
numerical field matching, we design top priority match metric
and also propose applying minHash-locality sensitive hash-
ing algorithm, which reduces the matching time for large
databases. To address the drawback of manual thresholds, an
effective classification-based method is also proposed based
on the proposed similarity metrics. NEMA are experimentally
demonstrated with best trade-off of qualify and efficiency
among other existing algorithms.

With the explosion of big data and popularity of distributed
graph processing systems, this work has the potential to

significantly reduce the human work involving identifying the
matching fields for a large graph database construction and
also be applied for large-scale data matching. A majority
of partial matching pairs can be found by our matching
algorithms which are not easily detected by humans.

VII. DISCUSSION AND FUTURE WORK

This work primarily discusses the big database integration
and lays the foundation for network management on a graph
database. It has direct implications for network management
to help network operators/administrators with network query,
network diagnosis, fault detection, network performance mon-
itoring, etc. One specific example for network query is that
it is more efficient to use graph traversal algorithms to find
out which network routers communicated with CiscoASR9010
have the most frequent incidents in the last year. Another
example is that if a network ticket/incident occurs, with the
help of graph clustering or propagation models, the admin-
istrators could easily locate the network failure and other
affected networks, and analyze its root cause. The system can
also automatically suggest a potential solution to the network
failure based on previous histories of tickets/incidents. In the
future, we would like to explore two areas (1) investigate
existing graph databases such as Neo4j [23] or develop a graph
database, and integrate the matching results into it to build a
network analytics and management system; (2) research and
explore real network field problems in the area of network
query, analysis, prediction, security, etc. on the system.

REFERENCES

[1] C. C. Aggarwal and H. Wang. Graph data management and mining: A
survey of algorithms and applications. In Managing and mining graph
data, pages 13–68. Springer, 2010.

[2] R. C. Angell, G. E. Freund, and P. Willett. Automatic spelling
correction using a trigram similarity measure. Information Processing
& Management, 19(4):255–261, 1983.

[3] D. Aumueller, H.-H. Do, S. Massmann, and E. Rahm. Schema and
ontology matching with coma++. In Proceedings of the 2005 ACM
SIGMOD international conference on Management of data, pages 906–
908. ACM, 2005.

[4] A. Bhattacharjee and H. Jamil. Ontomatch: A monotonically improving
schema matching system for autonomous data integration. In Informa-
tion Reuse & Integration, 2009. IRI’09. IEEE International Conference
on, pages 318–323. IEEE, 2009.

[5] M. Bilenko, R. Mooney, W. Cohen, P. Ravikumar, and S. Fienberg.
Adaptive name matching in information integration. IEEE Intelligent
Systems, 18(5):16–23, 2003.

[6] S. Castano, A. Ferrara, and S. Montanelli. Matching techniques for
data integration and exploration: From databases to big data. In A
Comprehensive Guide Through the Italian Database Research Over the
Last 25 Years, pages 61–76. Springer, 2018.

[7] M. Cheatham and P. Hitzler. String similarity metrics for ontology
alignment. In The Semantic Web–ISWC 2013, pages 294–309. Springer,
2013.

[8] C. Chen, B. Golshan, A. Y. Halevy, W.-C. Tan, and A. Doan. Biggorilla:
An open-source ecosystem for data preparation and integration. IEEE
Data Eng. Bull., 41(2):10–22, 2018.

[9] W. Chen, H. Guo, F. Zhang, X. Pu, and X. Liu. Mining schema matching
between heterogeneous databases. In Consumer Electronics, Communi-
cations and Networks (CECNet), 2012 2nd International Conference on,
pages 1128–1131. IEEE, 2012.

[10] C. Coronel and S. Morris. Database systems: design, implementation,
& management. Cengage Learning, 2016.

[11] C. Daraio, M. Lenzerini, C. Leporelli, P. Naggar, A. Bonaccorsi, and
A. Bartolucci. The advantages of an ontology-based data management
approach: openness, interoperability and data quality. Scientometrics,
pages 1–15, 2016.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

1932-4537 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TNSM.2020.3036414, IEEE
Transactions on Network and Service Management

14

[12] D. Engmann and S. Massmann. Instance matching with coma+. 2007.
[13] D. Gomez-Cabrero, I. Abugessaisa, D. Maier, A. Teschendorff,

M. Merkenschlager, A. Gisel, E. Ballestar, E. Bongcam-Rudloff,
A. Conesa, and J. Tegnér. Data integration in the era of omics: current
and future challenges, 2014.

[14] B. Gu, Z. Li, X. Zhang, A. Liu, G. Liu, K. Zheng, L. Zhao, and X. Zhou.
The interaction between schema matching and record matching in data
integration. IEEE Transactions on Knowledge and Data Engineering,
29(1):186–199, 2016.

[15] D. S. Himmelstein and S. E. Baranzini. Heterogeneous network edge
prediction: a data integration approach to prioritize disease-associated
genes. PLoS computational biology, 11(7):e1004259, 2015.

[16] D. Jang, T. Kim, and H. Kim. History management for network
information of iot devices. In International Conference on Security with
Intelligent Computing and Big-data Services, pages 138–145. Springer,
2017.

[17] H. Köhler, X. Zhou, S. Sadiq, Y. Shu, and K. Taylor. Sampling dirty
data for matching attributes. In Proceedings of the 2010 ACM SIGMOD
International Conference on Management of data, pages 63–74, 2010.

[18] J. Leskovec, A. Rajaraman, and J. D. Ullman. Mining of massive
datasets. Cambridge University Press, 2014.

[19] T. Lose, P. van Heusden, and A. Christoffels. Combat-tb-neodb: fostering
tuberculosis research through integrative analysis using graph database
technologies. Bioinformatics, 2019.

[20] J. Madhavan, P. A. Bernstein, A. Doan, and A. Halevy. Corpus-based
schema matching. In 21st International Conference on Data Engineering
(ICDE’05), pages 57–68. IEEE, 2005.

[21] O. A. Mehdi, H. Ibrahim, and L. S. Affendey. Instance based matching
using regular expression. Procedia Computer Science, 10:688–695,
2012.

[22] S. Melnik, H. Garcia-Molina, and E. Rahm. Similarity flooding:
A versatile graph matching algorithm and its application to schema
matching. In Data Engineering, 2002. Proceedings. 18th International
Conference on, pages 117–128. IEEE, 2002.

[23] J. J. Miller. Graph database applications and concepts with neo4j.
In Proceedings of the Southern Association for Information Systems
Conference, Atlanta, GA, USA, volume 2324, 2013.

[24] H. Nottelmann and U. Straccia. Information retrieval and machine
learning for probabilistic schema matching. Information processing &
management, 43(3):552–576, 2007.

[25] G. Pantuza, F. Sampaio, L. F. Vieira, D. Guedes, and M. A. Vieira.
Network management through graphs in software defined networks. In
10th International Conference on Network and Service Management
(CNSM) and Workshop, pages 400–405. IEEE, 2014.

[26] L. Qian, M. J. Cafarella, and H. Jagadish. Sample-driven schema
mapping. In Proceedings of the 2012 ACM SIGMOD International
Conference on Management of Data, pages 73–84. ACM, 2012.

[27] A. D. Raut and M. Atique. A survey of indexing techniques for xml
database. Compusoft, 3(1):461, 2014.

[28] E. S. Ristad and P. N. Yianilos. Learning string-edit distance. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 20(5):522–
532, 1998.

[29] S. Sahu, A. Mhedhbi, S. Salihoglu, J. Lin, and M. T. Özsu. The
ubiquity of large graphs and surprising challenges of graph processing.
Proceedings of the VLDB Endowment, 11(4):420–431, 2017.

[30] P. Shvaiko and J. Euzenat. A survey of schema-based matching
approaches. In Journal on data semantics IV, pages 146–171. Springer,
2005.

[31] P. Shvaiko and J. Euzenat. Ontology matching: state of the art and future
challenges. IEEE Transactions on knowledge and data engineering,
25(1):158–176, 2013.

[32] M. Stonebraker and I. F. Ilyas. Data integration: The current status and
the way forward. IEEE Data Eng. Bull., 41(2):3–9, 2018.

[33] N. Sünderhauf, T. T. Pham, Y. Latif, M. Milford, and I. Reid. Meaningful
maps with object-oriented semantic mapping. In Intelligent Robots and
Systems (IROS), 2017 IEEE/RSJ International Conference on, pages
5079–5085. IEEE, 2017.

[34] A. Ultsch. Pareto density estimation: a density estimation for knowledge
discovery. In Innovations in classification, data science, and information
systems, pages 91–100. Springer, 2005.

[35] J. Wang, Y. Wu, N. Yen, S. Guo, and Z. Cheng. Big data analytics for
emergency communication networks: A survey. IEEE Communications
Surveys & Tutorials, 18(3):1758–1778, 2016.

[36] Y. Yang, M. Chen, and B. Gao. An effective content-based schema
matching algorithm. In 2008 International Seminar on Future Infor-
mation Technology and Management Engineering, pages 7–11. IEEE,
2008.

Fubao Wu received his Bachelor degree in Elec-
tronic Information Engineering from Northeastern
University, China and Master of Engineering in
Electronic Science and Technology from University
of Science and Technology of China in 2011. He
is currently pursuing his Ph.D. degree in Electrical
and Computer Engineering at University of Mas-
sachusetts Amherst. His research interests are data
analytics, graph analytics and video analytics.

Han Hee Song is a Research Scientist at Apple
and leads development of deep-learned training and
online serving pipelines on distributed platforms. He
was a Lead Data Scientist at Cisco Systems and
Senior Member of Technical Staff at CTO office of
Narus, Inc. His research focuses on big data mining
on mobile users and on-device machine learning
for privacy-preserving personalization. He received
his Ph.D. degree in Computer Science from the
University of Texas at Austin in 2011.

Jiangtao Yin received the Ph.D. degree in Electrical
and Computer Engineering from the University of
Massachusetts at Amherst, in 2016. He is currently
working at Palo Alto Networks. His current research
interests include big data, cloud computing, dis-
tributed systems, large-scale data processing, scal-
able data storage, and stream processing.

Lixin Gao received the Ph.D. degree in com-
puter science from the University of Massachusetts
Amherst in 1996. Now she is a professor of electrical
and computer engineering with the University of
Massachusetts at Amherst. Her research interests
include social networks, Internet routing, network
virtualization and cloud computing. Between May
1999 and January 2000, she was a visiting researcher
in AT&T Research Labs and DIMACS. She was
an Alfred P. Sloan fellow between 2003-2005 and
received an NSF CAREER Award in 1999. She won

the best paper award from IEEE INFOCOM 2010 and ACM SoCC 2011,
and the test-of-time award in ACM SIGMETRICS 2010. She received the
Chancellors Award for Outstanding Accomplishment in Research and Creative
Activity in 2010. She is a fellow of the IEEE and ACM.

Mario Baldi is a Distinguished Technologist at
Pensando Systems, Inc. and Associate Professor at
Politecnico di Torino. He was Director of Technol-
ogy at Cisco Systems, Data Scientist Director at
Symantec Corp., Inc., Principal Member of Tech-
nical Staff at Narus, Inc., Principal Architect at
Embrane, Inc.; Vice Dean of the PoliTong Sino-
Italian Campus at Tongji University, Shanghai; Vice
President for Protocol Architecture at Synchrodyne
Networks, Inc., New York. His research, teaching
and professional activities have covered data plane

programmability, big data analytics, next generation network data analysis,
internetworking, high performance switching, optical networking, quality of
service, multimedia networking, trust in distributed software execution.

Narendra Anand is R&D Technology Associate
Principal at Accenture. He worked as a Research
Scientist at Cisco Systems. He received his Ph.D.
degree in May of 2015 at Rice University in the
Department of Electrical and Computer Engineering.
His research focuses on the design and implemen-
tation of novel, cross-layer, Multi-user Multiple-
Input-Multiple-Output (MU-MIMO) communication
protocols.

Authorized licensed use limited to: Politecnico di Torino. Downloaded on April 01,2021 at 21:49:14 UTC from IEEE Xplore. Restrictions apply.

