
09 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Performance Analysis of Multi-Task Deep Learning Models for Flux Regression in Discrete Fracture Networks / Berrone,
Stefano; DELLA SANTA, Francesco. - In: GEOSCIENCES. - ISSN 2076-3263. - 11:3(2021), pp. 1-24.
[10.3390/geosciences11030131]

Original

Performance Analysis of Multi-Task Deep Learning Models for Flux Regression in Discrete Fracture
Networks

Publisher:

Published
DOI:10.3390/geosciences11030131

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2882073 since: 2021-04-01T16:48:35Z

MDPI

geosciences

Article

Performance Analysis of Multi-Task Deep Learning Models for
Flux Regression in Discrete Fracture Networks

Stefano Berrone 1,2 and Francesco Della Santa 1,2,*

����������
�������

Citation: Berrone, S.; Della Santa, F.

Performance Analysis of Multi-Task

Deep Learning Models for Flux

Regression in Discrete Fracture

Networks. Geosciences 2021, 11, 131.

https://doi.org/10.3390/

geosciences11030131

Academic Editors: Chaoshui Xu and

Jesus Martinez-Frias

Received: 18 January 2021

Accepted: 9 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Dipartimento di Scienze Matematiche (DISMA), Politecnico di Torino, Corso Duca degli Abruzzi 24,
10129 Turin, Italy; stefano.berrone@polito.it

2 SmartData@PoliTO Center, Politecnico di Torino, 10138 Torino, Italy
* Correspondence: francesco.dellasanta@polito.it

Abstract: In this work, we investigate the sensitivity of a family of multi-task Deep Neural Networks
(DNN) trained to predict fluxes through given Discrete Fracture Networks (DFNs), stochastically
varying the fracture transmissivities. In particular, detailed performance and reliability analyses
of more than two hundred Neural Networks (NN) are performed, training the models on sets of
an increasing number of numerical simulations made on several DFNs with two fixed geometries
(158 fractures and 385 fractures) and different transmissibility configurations. A quantitative evalua-
tion of the trained NN predictions is proposed, and rules fitting the observed behavior are provided
to predict the number of training simulations that are required for a given accuracy with respect to
the variability in the stochastic distribution of the fracture transmissivities. A rule for estimating
the cardinality of the training dataset for different configurations is proposed. From the analysis
performed, an interesting regularity of the NN behaviors is observed, despite the stochasticity that
imbues the whole training process. The proposed approach can be relevant for the use of deep
learning models as model reduction methods in the framework of uncertainty quantification analysis
for fracture networks and can be extended to similar geological problems (for example, to the more
complex discrete fracture matrix models). The results of this study have the potential to grant concrete
advantages to real underground flow characterization problems, making computational costs less
expensive through the use of NNs.

Keywords: discrete fracture networks; neural networks; deep learning; uncertainty quantification

MSC: 65D40; 68T07; 68T37; 76-10; 76-11

1. Introduction

Analysis of underground flows in fractured media is relevant in several engineering
fields, e.g., in oil and gas extraction, in geothermal energy production, or in the prevention
of geological or water-pollution risk, to mention a few. Many possible approaches exist
for modeling fractured media, and among the most used is the Discrete Fracture Network
(DFN) model [1–3]. In this model, fractures in the rock matrix are represented as planar
polygons in a three-dimensional domain that intersect each other; through the intersection
segments (called “traces”), a flux exchange between fractures occurs while the 3D domain
representing the surrounding rock matrix is assumed to be impermeable. On each fracture,
the Darcy law is assumed to characterize the flux and head continuity and flux balance are
assumed to characterize all traces.

Underground flow simulations using DFNs can be, however, a quite challenging
problem in the case of realistic networks, where the computational domain is often charac-
terized by a high geometrical complexity; in particular, fractures and traces can intersect,
forming very narrow angles, or can be very close to each other. These complex geometrical
characteristics make the creation of the mesh a difficult task, especially for numerical

Geosciences 2021, 11, 131. https://doi.org/10.3390/geosciences11030131 https://www.mdpi.com/journal/geosciences

https://www.mdpi.com/journal/geosciences
https://www.mdpi.com
https://orcid.org/0000-0001-8642-4258
https://orcid.org/0000-0002-2202-9600
https://doi.org/10.3390/geosciences11030131
https://doi.org/10.3390/geosciences11030131
https://doi.org/10.3390/geosciences11030131
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/geosciences11030131
https://www.mdpi.com/journal/geosciences
https://www.mdpi.com/article/10.3390/geosciences11030131?type=check_update&version=2

Geosciences 2021, 11, 131 2 of 23

methods requiring conforming meshes. Therefore, new methods using different strate-
gies have been proposed in the literature to avoid these meshing problems. In particular,
in [4–7], the mortar method is used, eventually together with geometry modifications,
while in [8–10], lower-dimensional problems are introduced in order to reduce the com-
plexity. Alternatively, a new method that allowed the meshing process be considered an
easy task was illustrated in [11–17]; in this case, the problem was reformulated as a Partial
Differential Equation (PDE) constrained optimization one; thanks to this reformulation,
totally non-conforming meshes are allowed on different fractures and the meshing process
can be independently performed on each fracture. The simulations used in this study are
performed with this approach. Other approaches can be found in [18–21].

In real-world problems, full deterministic knowledge of the hydrogeological and
geometric properties of an underground network of fractures is rarely available. Therefore,
these characteristics are often described through probability distributions, inferred by
geological analyses of the basin [22–25]. This uncertainty about the subsurface network of
fractures implies a stochastic creation of DFNs, sampling the geometric features (position,
size, orientation, etc.) and hydrogeological features from the given distributions; then,
the flux and transport phenomena are analyzed from a statistical point of view. For this
reason, Uncertainty Quantification (UQ) analyses are required to compute the expected
values and variances (i.e., the momentums) of the Quantity of Interests (QoI), e.g., the
flux flowing through a section of the network. However, UQ analyses typically involve
thousands of DFN simulations to obtain trustworthy values of the QoI momentums [26,27]
and each simulation may have a relevant computational cost (both in terms of time and
memory). Then, it is worth considering some sort of complexity reduction techniques,
e.g., in order to speed up the statistical analyses, such as the multi-fidelity approach [28] or
graph-based reduction techniques [29].

Machine Learning (ML), and in particular Neural Networks (NNs), in recent years
has been proven to be a potential useful instrument for frameworks related to complexity
reduction due to their negligible computational cost in making predictions. Some recent
contributions involving ML and NNs applied to DFN flow simulations or UQ analysis are
proposed in [30–35]. To the best of the authors’ knowledge, other than [35–37] there are no
works in the literature that involve the use of NNs as a model reduction method for DFN
simulations. In particular, in [35], multi-task deep neural networks are trained to predict
the fluxes of DFNs with fixed geometry, given the fracture transmissivities. A well-trained
Deep Learning (DL) model can predict the results of thousands of DFN simulations in
the order of a second and, therefore, lets a user estimate the entire distribution (not only
momentums) of the chosen QoI; the simulations that must be run to generate the training
data are the actual computational cost. The results of [35] showed not only that NNs can
be useful tools for predicting the flux values in a UQ framework but also that the quality of
the flux approximation is very sensitive to some training hyperparameters. In particular,
a strong dependence of the performance was observed when the training set size varied.

In this paper, we deeply investigate the dependence of the performances of a trained
NN and the size of the training set required for good flux prediction on variance in the
stochastic parameter of fracture transmissivities. When variability in the phenomenon
increases, good training of an NN requires more and more data. If the data are generated
by numerical models, a large number of simulations are necessary for the creation of the
dataset involved in training the NN. Then, it can be useful to have a tool that provides
an estimate of NN performances for different amounts of training data and for different
values of variance in the stochastic input parameters. This issue is relevant to predict the
convenience of the approach in real-world applicative situations. Indeed, we recall that the
DFN simulations required to generate the training data are the only nonnegligible cost for
training NNs on these problems. Therefore, it is important to provide a rule that estimates
the number of simulations needed to train an NN model with good performances: if the
number of simulations for NN training is less than the number required by a standard UQ

Geosciences 2021, 11, 131 3 of 23

analysis, it is convenient to use an NN reduced model; otherwise, other approaches can
be considered.

In this work, we take into account the same flux regression problem described in [35]
and we explicitly analyze the performance behavior of the NNs trained for DFN flux
regression. The analysis is applied to a pair of DFN geometries and to multiple NNs with
different architectures and training configurations, showing interesting behaviors that let
us characterize the relationship between the number of training data, the transmissivity
standard deviation, and the NN performances. From this relationship, we determine a “UQ
rule” that provides an estimate of the minimum number of simulations required for training
an NN with a flux approximation error less than an arbitrary ε > 0. The rule is validated
on a third DFN, proving concrete efficiency and applicability to real-world problems.

The paper is organized as follows. In Section 2, we start with a brief description of the
DFN numerical models and their characterization for the analyses of this work; then, we
continue with a short introduction on the framework of NNs in order to better describe the
concepts discussed in Section 2.2.3 that concerns the application of deep learning models
for flux regression in DFNs. In Section 2.3, the performance analysis procedure used in
this work is described step by step. In Section 3, we show the application of the analysis
described in the previous section and the results obtained for the two test cases considered;
in particular, here, we introduce interesting rules that characterize the error behaviors and
that are useful for estimating the minimum number of data required for good NN training.
We conclude the work with Sections 4 and 5, where the main aspects of the obtained results
are commented upon and discussed.

2. Methods
2.1. Discrete Fracture Networks

We recall here, for the reader’s convenience, the model problem of Discrete Fracture
Networks (DFNs). The model is described briefly, and for full details, we point the
interested reader to [3,10,11,14]. After the model description, we also introduce the main
characteristics of the DFNs used for the performance analysis of Neural Networks (NNs)
trained for flux regression.

2.1.1. Numerical Model and Numerical Solution

A DFN is a discrete model that describes an underground network of fractures in a
rock medium. In a DFN, the network of fractures is represented as a set of intersecting
two-dimensional polygons in a three-dimensional space (see Figure 1).

Figure 1. External surface of a natural fractured medium (left) and a Discrete Fracture Network
(DFN) (right).

Each one of the polygons that stands for the network fractures was labeled with an
index in a set I, and each fracture was denoted by Fi, with i ∈ I; then, a DFN was given by
the union

⋃
i∈I Fi of all the fractures. The intersections between fractures of the DFN are

called traces, and through them, the flow crosses the network.

Geosciences 2021, 11, 131 4 of 23

The flow model we assumed in the network was a simple Darcy model, and the
DFN numerical simulation consisted in finding for each i ∈ I the hydraulic head Hi of
fracture Fi. In our simulations, the flow was induced by a fixed pressure difference ∆H
between two arbitrary surfaces of the 3D domain of the DFN. In order to solve the problem,
some matching conditions were imposed at each trace of the network: we assumed the
hydraulic head continuity and the flux balance. In this work, the DFN numerical sim-
ulations were computed following the approach described in [11,12], reformulating the
problem as a PDE-constrained optimization one and using the finite elements as the space
discretization method.

The flow simulation in a DFN was characterized by the geometry and by hydroge-
ological properties. In particular, for each i ∈ I, the transmissivity parameter κi of the
fracture Fi characterized the flow facilitation through the fracture. In the most general case,
the fracture transmissivity κi can be a function of the fracture points, but in this work, we
considered it as a constant parameter for each fracture Fi.

In this work, we trained the NN regression models to predict the fluxes exiting from
the DFN given the set of transmissivities of its fractures for a fixed geometry and ∆H.

2.1.2. DFN Characterization

In the problem addressed in this work, we considered two DFN geometries and the
transmissivities were modelled as random variables with a known distribution.

In particular, each DFN considered in this paper was characterized by the
following properties:

• A fixed geometry with n ∈ N fractures F1 , . . . ,Fn in a cubic domain D = [0 , `]3 ⊂
R3 with edge length ` = 1000 m. The fractures were assumed to be octagons and
randomly generated as in [22,23], i.e., with geometrical features such that we had the
following:

– The fracture radii were sampled with respect to a truncated power law distribu-
tion with exponent γ = 2.5, upper cutoff ru = 560, and lower cutoff r0 = 50.

– The fracture orientations were sampled from a Fisher distribution with mean
direction µ = [0.0065,−0.0162, 0.9998]> and dispersion parameter δ = 17.8.

– The mass center of fractures were sampled with respect to a uniform distribution
in D.

• The Darcy flow model on each fracture was induced by a fixed head difference
∆H = 10 m between the two surfaces of D corresponding to x = 0 and x = `. More
specifically, we imposed a Dirichlet boundary condition H = 10 m on fracture edges
obtained intersecting the DFN with the plane x = 0 and we imposed H = 0 m on the
fracture edges obtained intersecting the network with the plane x = `.

• Transmissivities κ1 , . . . , κn ∈ R of the n fractures were assumed to be isotropic param-
eters, modeled as random variables with respect to a log-normal distribution [24,25],
i.e., such that

log10(κi) ∼ N (−5, σ) , for each i = 1, . . . , n , (1)

where σ ∈ R is an arbitrary parameter that characterizes the standard deviation of the
transmissivity distribution.

• Due to the fixed geometry of the DFN, the fracture positions in the space did not
change. Then, given the fixed pressure difference ∆H, we had that the boundary
fractures with flux entering and exiting the network were the ones intersecting the
plane x = 0 and the plane x = `, respectively, independently from the transmissivity
values. We denoted with m ∈ N the number of boundary fractures with exiting flux.

2.2. Neural Networks

Neural Networks are powerful ML models that were first introduced more than fifty
years ago (see, e.g., [38–40]). In the last decade, the usage of NNs has been characterized by

Geosciences 2021, 11, 131 5 of 23

incredible growth, thanks to new and more powerful computer hardware and the increase
in available data (see Chapter 1 in [41]).

In this section, we recap briefly the main properties of NNs, and in Section 2.2.3, we
describe the multi-task architecture adopted for the flux regression problem in DFNs.

2.2.1. General Concepts about Neural Networks and Learning Models

An NN, similar to most other ML models, is a parametric model F̂w : Rn → Rm, where
the vector of parameters (also called weights) w is adjusted through an error-minimization
process in order to approximate a fixed target function F : Ω ⊆ Rn → Rm, i.e., looking for
a final vector of parameters wfin such that F̂wfin(x) ≈ F(x) for each x ∈ Ω. In typical ML
problems, the function F is unknown or requires high computational efforts to be executed,
justifying the need to find a computationally cheap approximation of it. The parameters
wfin are computed starting from a dataset of pairs:

D = {(xd , yd = F(xd)) ∈ Ω×Rm | d = 1 , . . . , D} , (2)

where D ∈ N and D are obtained from observation of real data (when F is unknown) or
built after random sampling of D elements xd from the domain Ω and evaluating yd when
F is known but computationally expensive. The search for an optimal weight vector, such
that F is approximated by F̂w, is based on a subset T ⊆ D called the training set. The idea
is to find a weight vector that minimizes an arbitrary error measure, e.g., the square of the
euclidean norm ‖ F̂w(x)− y ‖2 for each pair (x, F(x) = y) ∈ Ω×Rm; to do so, in NNs
typically, we solve a stochastic optimization problem of the following form:

min
w

{
Loss(w) = L(F̂w , B) | B ⊆ T

}
, (3)

where the subset B, also called minibatch, is a set of B ∈ N pairs randomly sampled from T
and L(F̂w , B) is the loss function on B, e.g., the sum of Mean Square Errors (sMSE) over
the pairs of the minibatch:

sMSE(F̂w , B) =
m

∑
j=1

 1
B ∑

(x,y)∈B

(
ŷj − yj

)2

 , (4)

where ŷ := F̂w(x) for each x ∈ Rn, and ŷj and yj are the jth components of ŷ and y,
respectively, for each j = 1 , . . . , m (vectors are denoted by boldface symbols).

The problem (3) is solved with arbitrary variants of the stochastic gradient descent
method (see Chapter 8.3 in [41]), i.e., variants of the gradient iterative method that perform
a minimization iteratively on a random minibatch B ⊂ T of fixed size B at each step.
In particular, the sampling of B at each step occurs without repetition until all the pairs
(x, y) ∈ T have been extracted; once the pairs (x, y) ∈ T are finished, an epoch of the
training is completed and a new one starts, until it reaches a stopping criterium. An NN
model can be trained for many epochs to improve the approximation of F.

The remaining pairs of data, i.e., the pairs (x, y) ∈ D \ T , are used for monitoring and
evaluating the quality of the NN training. Usually, the setD is split in three disjoint subsets:

• the training set T (already introduced above),
• the validation set V , and
• the test set P .

The validation set V is often the smallest of the three subsets, and it is used to measure
the approximation error of F̂w at the end of each training epoch; the test set P , on the con-
trary, is often bigger than V (and sometimes also bigger than T), and it is used to measure
the approximation quality of the trained NN on new data that the model never used during
the training phase. Then, P is useful to understand if the NN is a good approximation of
the target function for new input data, whereas V is useful to monitor the training activity

Geosciences 2021, 11, 131 6 of 23

and to define the proper stopping criteria for avoiding underfitting/overfitting problems
(see Chapter 5.2 in [41]).

2.2.2. Neural Network Structure

The structure of an NN is what actually makes it different from other ML models.
An NN is a learning algorithm that can be described through an oriented weighted graph
(U, A), where U is the set of nodes and A is the set of edges, i.e., the set of ordered pairs of
nodes aij = (ui, uj) ∈ A ⊆ U ×Un each one endowed with a weight wij ∈ R.

Each node of an NN, also called a unit or a neuron, can receive signals either from
other nodes (through the edges) or from one external source; in the latter case, the unit is
defined as the input unit of the NN and it returns as output the same signal received as an
input. Each non-input unit uj ∈ U performs arbitrary fixed operations on the input signals
xi1 , . . . , xiN (sent by units ui1 , . . . , uiN ∈ U) and returns an output signal xj. Typically, a unit
is characterized as in Figure 2, i.e., with output signal xj such that

xj = f

 ∑
i∈{i1,...,iN}

xiwij

 , (5)

where f is an arbitrary function called the activation function.

xi1

...

xiN

∑iN
i=i1

xiwij
f7→ xj

uj
wi1 j

w iNj

Figure 2. Scheme of a typical Neural Network (NN) unit operation.

If the output xj of uj is sent only to other units of the NN, then uj is defined as a hidden
unit; otherwise, if the signal xj is sent “outside” as a general output of the NN model, then
uj is defined as an output unit.

One special type of hidden unit is the bias units that are characterized by a fixed unit
output. For this reason, Equation (5) is rewritten with a different notation that highlights
the action of the bias unit:

xj = f

 ∑
i∈{i1,...,iN}

i 6=bias

xiwij + bj

 , (6)

where bj is the weight of the edge (ubias, uj) and ubias ∈ U is a bias unit connected to uj.
Even if it is not forbidden, in practice, no more than one bias unit is connected to one
hidden or output unit.

We conclude this brief description of NN structure by introducing the concept of
“layers” for NNs. NN architectures organize their units in subsets that interact with each
other; these subsets are called layers and can be divided in three main types (as the units):
the input layers, the hidden layers, and the output layers.

The simplest type of hidden and output layers are the so-called fully connected layers.
A fully connected layer L that receives signals from a layer I is characterized by the fact
that each unit in L is connected to all the units in I and that all the units in L have the

Geosciences 2021, 11, 131 7 of 23

same activation function f ; then, assuming that all the units in L are characterized by (6),
the layer action of the output signals from I can be described as the function L such that

x(L) = L
(

x(I)
)
= f

(
W>x(I) + b

)
, (7)

where

• x(L) ∈ RM and x(I) ∈ RN are the vectors of the output signals of L and I, respectively;
• f : RM → RM is the element-wise application of the activation function f of the

layer units;
• W ∈ RN×M is the weight matrix with entry weights wij, corresponding to the edge

that connects unit ui of I to unit uj of L; and
• b ∈ RM is the vector of bias weights for the M units of L.

See Figure 3 for a graphical representation of a fully connected layer.

1

x(I)
1

x(I)
2

x(I)
3

Layer I

x(L)
1

x(L)
2

x(L)
3

x(L)
4

Layer L

W> and b

Figure 3. Example of layers I and L fully connected, made of 3 and 4 units, respectively. The bias
unit is highlighted in yellow.

Layer formulation in NNs is extremely useful when better describing the function F̂w
as a composition of layer functions and for NN implementation in computer programs.
The representation of F̂w as a composition of functions is used to build a computational
graph that is extremely useful in speeding up the computation of both NN outputs and
the gradient of the loss function during the training phase. For more details about these
properties, see Chapter 6 in [41].

2.2.3. Deep Learning Models for Flux Regression in DFNs

Let us consider a DFN with a geometry defined as in Section 2.1.2, where n is the
number of fractures and m is the number of boundary fractures with exiting flux; we
recall that the case has fixed geometry and that only the fracture transmissivities change
(see (1)). For each vector of transmissivity samples κ = [κ1, . . . , κn]>, we can run a flow
simulation for the given DFN and compute the m fluxes ϕ = [ϕ1, . . . , ϕm]> of the m
boundary outflowing-flux fractures. Let F : Rn → Rm be a function related to the given
DFN such that

F(κ) = ϕ , (8)

for each κ ∈ Rn sampled following (1); then, we want to define a multi-task architecture
for Deep Neural Network (DNN) models able to approximate F, i.e., able to predict
the corresponding fluxes ϕ ∈ Rm for each transmissivity vector κ ∈ Rn in the input.
The DFN flow simulations are performed using the GEO++ software [42], based on a PDE-
constrained reformulation of the problem, using finite elements for the spatial discretization.
For further details, we point the interested reader to [11,14,42].

For the DNN models of this work, we adopt a multi-task architecture (see Chapter 7.7
in [41]) of the same structure described in [35]. Given a fixed hyperparameter α ∈ N and
the target function F, we define the DNN multi-task architectureAα (see Figure 4) such that

Geosciences 2021, 11, 131 8 of 23

• Aα has one input layer L0 of n units;
• the input layer L0 is fully connected to the first layer L1 of a sequence of α fully con-

nected layers: (L1, . . . , Lα). All the layers of the sequence have n units characterized
by the softplus activation function (i.e., f (x) = log(1 + ex));

• let us consider m sequences of fully connected layers (L(j)
α+1, . . . , L(j)

2α), for each j =

1, . . . , m; then, the layer Lα is fully connected to each one of the first layers L(j)
α+1 of

these sequences. All the layers (L(j)
α+1, . . . , L(j)

2α), for each j = 1, . . . , m, have n units
characterized by the softplus activation function; and

• for each j = 1, . . . , m, the layer L(j)
2α is fully connected to an output layer L(j)

2α+1 made
of only one linear unit.

We can easily see that the characteristic function of a DNN model with architecture
Aα accepts n inputs and returns m outputs; then, it is a function F̂w : Rn → Rm, and the
NN can be trained for approximating the function F.

Input
Layer

Output
Layer

Figure 4. Example of a multi-task architecture Aα with n = 3, m = 2, and α = 2. For simplicity, bias
units are not represented.

In order to evaluate the quality of the approximation, for each outflow fracture, we
consider an error measure that evaluates the relative distance between the flux estimated
by the NN and the real flux. Let us assume that we have a trained DNN with function F̂w
approximating F; then, the chosen error measure is the following:

• relative error: for each κ ∈ Rn, we can measure the vector of prediction errors
normalized by the actual total exiting flux, i.e., the vector

e(κ) :=
1

∑m
j=1 ϕj

[|ϕ1 − ϕ̂1|, . . . , |ϕm − ϕ̂m|]> , (9)

where ϕ̂ := F̂w(κ) = [ϕ̂1, . . . , ϕ̂m]> is the flux prediction for κ. Then, given the input
κ, for each j = 1, . . . , m, the jth element of error (9) tells us how much the prediction
for the jth exiting flux differs from the original value, represented as a fraction of the
total flux outflowing from the DFN.

The errors introduced above, are very useful in studying the prediction ability of a flux
regression NN. However, in order to directly compare the predictions of different NNs, we
need to define some cumulative scalar values that summarize the approximation quality of
the NN models. Then, we introduce a quantity that is obtained from the aggregation of (9)
once an arbitrary test set P of pairs (κ,ϕ) is given. This quantity is

• average mean relative error:

E(P) :=
1
|P| ∑

(κ,ϕ)∈P

1
m

m

∑
j=1

ej(κ) , (10)

Geosciences 2021, 11, 131 9 of 23

where ej(κ) is the jth element of the vector e(κ). For simplicity, from now on, we will
call the quantity E(P) simply average error instead of average mean relative error.

2.3. Performance Analysis of Deep Learning Models for Flux Regression

In Sections 2.1 and 2.2, we introduced all the notions needed to analyze the perfor-
mances of multi-task Deep Learning (DL) models trained to predict the fluxes exiting from
a DFN. In [35], the NN sensitivity to the cardinality of the training set T was noticed, but in
those cases, a fixed value σ = 1/3 for (1) was chosen. In this work, we deeply investigate
this sensitivity, quantifying it through the measurement of average errors varying the
available number of training data and the sparsity of the data itself.

The analysis performed in this paper compares the average errors E(P) of a set of NNs
with a common architecture Aα and the same configuration of training hyperparameters
and functions but trained on different training data; in particular, the differences between
the training data are characterized by two hyperperparameters:

• the parameter σ ∈ R≥0, characterizing the standard deviation of the transmissivity
distribution (see (1)). This parameter varies among a discrete and finite set of values
Σ, arbitrarily chosen;

• the number ϑ ∈ N of data (κ,ϕ) used for training the NN, i.e., the sum of the training
set and validation set cardinalities:

ϑ := |T |+ |V| . (11)

Similar to σ, this parameter varies among a discrete and finite set of values Θ, arbitrar-
ily chosen;

In other words, the analysis procedure consists of training (|Σ| · |Θ|) times a fixed
untrained NN, each time with respect to a set of training data characterized by a different
combination of hyperparameters (σ, ϑ) ∈ Σ×Θ (i.e., with different size ϑ and different
sparsity, dependent from σ); then, the performances (average errors) of all the new (|Σ| ·
|Θ|) trained NNs are measured on test sets of the same size and compared, searching for
the behavior of average errors with respect to values of σ and ϑ.

2.3.1. Performance Analysis: Method Description

Let us consider a DFN of the type described in Section 2.1.2 and let

Σ = {σ1, . . . , σs} ⊂ R≥0 (12)

be the set of values for the distribution parameter σ that we want to consider for the NN
performance analysis; similarly, let

Θ = {ϑ1, . . . , ϑt} ⊂ N (13)

be the set of values for the number of training data ϑ considered, and let ρ ∈ N be
the chosen cardinality of the test set P used for measuring the average errors and the
mean divergences.

The method that we use in this work in order to measure and compare the NN
performances in flux regression problems for DFNs is characterized by the following steps:

1. Select a DFN, generated as described in Section 2.1.2, with n fractures and where m of
them have exiting fluxes.

2. Define the arbitrary sets of values Σ and Θ for the hyperparameters that characterize
the analysis.

3. Choose the cardinality ρ = |P| of the test set.
4. For each σ ∈ Σ, generate a set of δ ∈ N transmissivity vectors

Kσ = {κ1, . . . , κδ} ⊂ Rn , (14)

Geosciences 2021, 11, 131 10 of 23

where δ := (max(Θ) + ρ) and, for each κ ∈ Kσ, the transmissivity vector elements
have been sampled following (1).

5. For each σ ∈ Σ, for each κ ∈ Kσ, compute the corresponding flux vector ϕ = F(κ)
running a DFN flow simulation. Then, for each σ ∈ Σ, we obtain a dataset

Dσ = {(κi,ϕi) ∈ Kσ ×Rm |ϕi = F(κi) , ∀ i = 1, . . . , δ} . (15)

6. For each σ ∈ Σ, create a test set Pσ with a random sampling of ρ pairs from Dσ.
7. Choose a value α ∈ N, and build a not trained NN N with architecture Aα.
8. For each σ ∈ Σ, for each ϑ ∈ Θ, sample randomly a number ϑ of pairs (κ,ϕ) from

Dσ \ Pσ (i.e., the dataset without the test set). We decides to use 20% of the ϑ sampled
pairs as the validation set Vϑ

σ and the remaining 80% as the training set T ϑ
σ .

9. For each pair (σ, ϑ) ∈ Σ×Θ, train the untrained NN N using the data of T ϑ
σ and

Vϑ
σ , obtaining a trained NN N ϑ

σ . For all the cases, the training is characterized by the
same hyperparameters and functions arbitrarily chosen.

10. For each pair (σ, ϑ) ∈ Σ×Θ, measure the quantity Eϑ
σ that is the average error E(Pσ)

computed for the NN N ϑ
σ .

11. Analyze the set of points

E :=
{
(σ, ϑ, Eϑ

σ) ∈ Σ×Θ×R
}

, (16)

and then find the best fitting function Ê : R2 → R with respect to the points in E such
that they characterize the average error as a function of the parameters σ and ϑ.

2.3.2. Training Hyperparameters and Functions

For step 9 of the method described above, we talk about a fixed and arbitrary config-
uration of the hyperparameters and functions of the training phase. In particular, in this
work, we perform the analysis considering two cases with two fixed configurations that
are different only for the minibatch size adopted; we have that the first configuration is
characterized by a minibatch size |B| = 10 while the second one has a minibatch size
|B| = 30.

Let β be a parameter denoting which training configuration we choose; then, β = 1
represents the choice for the first configuration (|B| = 10) and β = 2 represents the
choice for the second configuration (|B| = 30). All the other properties of the training
configurations are the same for both the cases β = 1 and β = 2 and are as follows:

• input data preprocessing: the input data are transformed applying first the function
log10 (element-wise) and then the z-normalization [43];

• output data preprocessing: the output data are rescaled by a factor equal to 106;
• layer-weights initialization: Glorot uniform distribution [44];
• biases initialization: zeroes;
• maximum number of epochs: 1000;
• regularization methods: early stopping, Chapter 7.8 in [41] (patience parameter

p = 150);
• optimization algorithm: Adam [45] (learning rate ε = 0.001, first moment decay

parameter γ1 = 0.9, and second moment decay parameter γ2 = 0.999);
• loss function: sMSE (see (4)).

The shared hyperparameters and functions chosen for the configurations β = 1, 2
consist mainly in the default options provided by most of the frameworks for NN imple-
mentation; indeed, in this analysis, we focus our attention on the effects of the parameters
σ and ϑ on the NNs and, therefore, we choose standard training configurations that should
grant a reasonable training quality.

Geosciences 2021, 11, 131 11 of 23

3. Results

Here, we show the application of the performance analysis method described in
Section 2.3 on two test cases. In particular, we consider two DFNs, DFN158, and DFN395,
generated with respect to the characterization of Section 2.1.2; the total number of fractures
n is equal to 158 and 395 for DFN158 and DFN395, respectively, and the number of outflux
fracture m is equal to 7 and 13 for DFN158 and DFN395, respectively.

For each of these two DFNs, we train three different NNs with architectures Aα (see
Section 2.2.3) for each α = 1, 2, 3 and with respect to the two training configurations β = 1
and β = 2 (see Section 2.3.2); then, we have a total number of six trained NNs, one for
each (α, β) combination, for both DFN158 and DFN395. Moreover, we fixed the values
ρ = 3000 for the test set cardinality and the set Θ = {500, 1000, 2000, 4000, 7000} of training-
validation set cardinalities ϑ. For the two DFNs considered, we define the set of distribution
parameters σ such that

DFN158: Σ = {1/5 = 0.20, 1/4 = 0.25, 1/3 ≈ 0.33, 2/5 = 0.40, 1/2 = 0.50, 0.70}.
DFN395: Σ = {1/5 = 0.20, 1/3 ≈ 0.33, 1/2 = 0.5}.

In total, for the following analyses, we trained 180 NNs for DFN158 (30 for each (α, β)
case) and 90 NNs for DFN395 (15 for each (α, β) case); the reason for the smaller set Σ and,
therefore, a smaller number of trainings for DFN395 depends on the more expensive DFN
simulations (with respect to the ones of DFN158) that are needed for the creation of the
dataset Dσ (see step 5 of the method in Section 2.3). The results found for the two DFNs
are in very good agreement.

The analysis was performed for different combinations of the parameters α and β
in order to show that the results found are general for the family of NNs. After these
performance analyses, in Section 3.3, we describe the rules for the best choice of ϑ value
given a σ value.

3.1. DFN158

Given the 180 trained NNs with respect to the datasets T ϑ
σ and Vϑ

σ of DFN158, we
analyzed the set of points E (see (16)) for any fixed combination (α, β) ∈ {1, 2, 3} × {1, 2};
this set of points is described in Table 1 and illustrated in Figure 5.

Table 1. DFN158. Table of the Eϑ
σ values, varying (σ, ϑ) ∈ Σ×Θ, for each NN of architecture Aα trained with configuration

β, for each α = 1, 2, 3, and for each β = 1, 2.

Eϑ
σ α = 1 α = 2 α = 3

σ/ϑ 500 1000 2000 4000 7000 500 1000 2000 4000 7000 500 1000 2000 4000 7000

0.20 0.0097 0.0076 0.0066 0.0063 0.0055 0.0104 0.0074 0.0065 0.0046 0.0028 0.0106 0.0077 0.0055 0.0047 0.0036

0.25 0.0132 0.0097 0.0086 0.0080 0.0073 0.0129 0.0099 0.0085 0.0068 0.0044 0.0134 0.0103 0.0081 0.0068 0.0051

∼0.33 0.0190 0.0148 0.0129 0.0119 0.0109 0.0190 0.0148 0.0128 0.0109 0.0081 0.0205 0.0154 0.0130 0.0107 0.0084

0.40 0.0248 0.0196 0.0171 0.0160 0.0136 0.0263 0.0184 0.0166 0.0150 0.0119 0.0264 0.0193 0.0166 0.0146 0.0120

0.50 0.0494 0.0423 0.0369 0.0335 0.0288 0.0515 0.0410 0.0355 0.0308 0.0267 0.0539 0.0434 0.0345 0.0307 0.0262

β = 1

0.70 0.2366 0.2066 0.1837 0.1687 0.1538 0.2434 0.1942 0.1787 0.1515 0.1451 0.2406 0.1991 0.1629 0.1477 0.1438

0.20 0.0103 0.0077 0.0064 0.0055 0.0047 0.0103 0.0072 0.0062 0.0049 0.0033 0.0106 0.0066 0.0057 0.0042 0.0032

0.25 0.0136 0.0102 0.0085 0.0074 0.0063 0.0131 0.0097 0.0078 0.0068 0.0047 0.0139 0.0096 0.0077 0.0063 0.0043

∼0.33 0.0199 0.0150 0.0128 0.0115 0.0093 0.0195 0.0147 0.0126 0.0010 0.0079 0.0206 0.0140 0.0116 0.0103 0.0074

0.40 0.0258 0.0195 0.0172 0.0157 0.0133 0.0262 0.0184 0.0162 0.0149 0.0113 0.0259 0.0199 0.0158 0.0137 0.0115

0.50 0.0512 0.0428 0.0366 0.0336 0.0278 0.0506 0.0408 0.0334 0.0296 0.0247 0.0523 0.0412 0.0345 0.0318 0.0242

β = 2

0.70 0.2650 0.2115 0.2221 0.1740 0.1534 0.2304 0.1942 0.1689 0.1518 0.1293 0.2329 0.1871 0.1591 0.1436 0.1315

Geosciences 2021, 11, 131 12 of 23

0.2
0.4

0.6

200040006000

0

0.1

0.2

σ

ϑ

Eϑ
σ

(α = 1 , β = 1)

0.2
0.4

0.6

200040006000

0

0.1

0.2

σ

ϑ

Eϑ
σ

(α = 2 , β = 1)

0.2
0.4

0.6

200040006000

0

0.1

0.2

σ

ϑ

Eϑ
σ

(α = 3 , β = 1)

0.2
0.4

0.6

200040006000

0

0.2

σ

ϑ

Eϑ
σ

(α = 1 , β = 2)

0.2
0.4

0.6

200040006000

0

0.1

0.2

σ

ϑ

Eϑ
σ

(α = 2 , β = 2)

0.2
0.4

0.6

200040006000

0

0.1

0.2

σ

ϑ

Eϑ
σ

(α = 3 , β = 2)

Figure 5. DFN158. Three-dimensional plot of the Eϑ
σ values, varying (σ, ϑ) ∈ Σ×Θ, for each NN of architecture Aα trained

with configuration β, for each α = 1, 2, 3, and for each β = 1, 2.

For the average errors Eϑ
σ , we observed the following behavior characteristics:

1. The general trend of Eϑ
σ decreases with respect to ϑ and increases with respect to σ.

Indeed, higher values of ϑ provide more data for better training the NN whereas
higher values for σ mean a larger variance for input data and, therefore, a more
difficult target function F to be learned.

2. Keeping the value of σ fixed, we observed that, in the logarithmic scale, the values of
Eϑ

σ are inversely proportional to ϑ (see Figure 6-left).
3. Keeping the value of ϑ fixed, we observe that, in the logarithmic scale, the values of

Eϑ
σ increase with respect to σ (see Figure 6-right), with an almost quadratic behavior

with respect to σ.

The numerical results and these observations actually suggest that the performances of
an NN for flux regression seem to be characterized by well-defined hidden rules. Therefore,
as proposed at the end of step 11 of the method, we sought a function Ê(σ, ϑ) such that

Ê(σ, ϑ) ≈ Eϑ
σ , (17)

for each (σ, ϑ) ∈ Σ×Θ.
Taking into account the observations at items 2 and 3, we decided to look for Ê(σ, ϑ)

among the set of exponential functions characterized by exponents inversely proportional
to ϑ and proportional to σ with linear or quadratic behavior, i.e., functions with the
following expressions:

g1(σ, ϑ) = e (c1+
c2
ϑ +c3σ+c4σ2) and g2(σ, ϑ) = e (c1+

c2
ϑ +c3σ) , (18)

where c1, c3 ∈ R and c2, c4 ∈ R≥0 are parameters of the functions.

Geosciences 2021, 11, 131 13 of 23

2000 4000 6000

10−2

10−1

ϑ

Eϑ
σ

fixed σ

0.2 0.4 0.6

10−2

10−1

σ

Eϑ
σ

fixed ϑ

Figure 6. DFN158. Example for the case (α = 2, β = 1). Three-dimensional plot projections in order
to observe the behavior of Eϑ

σ while maintaining fixed σ (left) or ϑ (right). Eϑ
σ points are reported in

logarithmic scale.

Through a least square error minimization process, we found the best-fitting coeffi-
cients for the functions (18) with respect to the data points Eϑ

σ (see Table 2). Looking at the
results, we see that the observation made at item 3 concerning the quadratic behavior of Eϑ

σ

with respect to σ is confirmed; indeed, the approximation error of g1 is always smaller than
the one of g2 (with a nonzero coefficient c4). Then, we have that a good function Ê(σ, ϑ) for
the characterization of the average errors is

Ê(σ, ϑ) := e (ĉ1+
ĉ2
ϑ +ĉ3σ+ĉ4σ2) , (19)

where ĉ1 , . . . , ĉ4 are the fixed parameters obtained with the least square minimization.

Table 2. DFN158. Mean Square Error (MSE) and coefficients of the least square minimization with respect to Eϑ
σ .

α = 1 α = 2 α = 3

Eϑ
σ MSE c1 c2 c3 c4 MSE c1 c2 c3 c4 MSE c1 c2 c3 c4

g1 1.848× 10−2 −5.678 206.3 1.869 5.139 1.802× 10−2 −5.928 261.0 2.551 4.535 1.778× 10−2 −5.969 276.3 2.843 4.129
β = 1

g2 2.255× 10−2 −7.188 206.3 7.649 - 2.109× 10−2 −7.262 260.9 7.628 - 2.054× 10−2 −7.177 276.2 7.457 -

g1 4.014× 10−2 −5.652 233.1 1.515 5.742 2.521× 10−2 −5.884 262.3 2.342 4.653 1.709× 10−2 −6.084 285.8 3.171 3.785
β = 2

g2 4.262× 10−2 −7.356 233.0 7.966 - 2.757× 10−2 −7.248 262.2 7.545 - 1.936× 10−2 −7.190 285.5 7.399 -

We conclude this section with a visual example (Figure 7) of the fitting quality of
Ê(σ, ϑ) for the values Eϑ

σ of the case (α = 2, β = 2).

3.2. DFN395

Given the 90 trained NNs with respect to the datasets T ϑ
σ and Vϑ

σ of DFN395, we
analyzed the set of points E for any fixed combination (α, β) ∈ {1, 2, 3} × {1, 2}. This set of
points is described in Table 3 and illustrated in Figure 8.

Geosciences 2021, 11, 131 14 of 23

Figure 7. DFN158. Example for the case (α = 2, β = 2). Plot of the function Ê(σ, ϑ) and the data
points Eϑ

σ (red stars).

Table 3. DFN395. Table of the Eϑ
σ values, varying (σ, ϑ) ∈ Σ×Θ, for each NN of architecture Aα trained with configuration

β, for each α = 1, 2, 3, and for each β = 1, 2.

Eϑ
σ α = 1 α = 2 α = 3

σ/ϑ 500 1000 2000 4000 7000 500 1000 2000 4000 7000 500 1000 2000 4000 7000

0.20 0.0132 0.0079 0.0055 0.0047 0.0046 0.0143 0.0110 0.0067 0.0050 0.0037 0.0145 0.0110 0.0073 0.0056 0.0040

∼0.33 0.0226 0.0140 0.0102 0.0087 0.0078 0.0238 0.0176 0.0122 0.0090 0.0072 0.0243 0.0185 0.0128 0.0102 0.0083β = 1

0.50 0.0673 0.0500 0.0389 0.0334 0.0288 0.0729 0.0594 0.0418 0.0350 0.0297 0.0761 0.0614 0.0467 0.0399 0.0318

0.20 0.0124 0.0077 0.0052 0.0041 0.0039 0.0141 0.0096 0.0063 0.0044 0.0041 0.0135 0.0102 0.0060 0.0045 0.0043

∼0.33 0.0217 0.0139 0.0103 0.0086 0.0075 0.0230 0.0158 0.0106 0.0087 0.0075 0.0235 0.0175 0.0120 0.0094 0.0080β = 2

0.50 0.0692 0.0490 0.0389 0.0343 0.0290 0.0738 0.0569 0.0419 0.0349 0.0312 0.0744 0.0558 0.0449 0.0379 0.0320

0.2

0.4

200040006000

0

5

·10−2

σ

ϑ

Eϑ
σ

(α = 1 , β = 1)

0.2

0.4

200040006000

0

5

·10−2

σ

ϑ

Eϑ
σ

(α = 2 , β = 1)

0.2

0.4

200040006000

0

5

·10−2

σ

ϑ

Eϑ
σ

(α = 3 , β = 1)

0.2

0.4

200040006000

0

5

·10−2

σ

ϑ

Eϑ
σ

(α = 1 , β = 2)

0.2

0.4

200040006000

0

5

·10−2

σ

ϑ

Eϑ
σ

(α = 2 , β = 2)

0.2

0.4

200040006000

0

5

·10−2

σ

ϑ

Eϑ
σ

(α = 3 , β = 2)

Figure 8. DFN395. Three-dimensional plot of the Eϑ
σ values, varying (σ, ϑ) ∈ Σ×Θ, for each NN of architecture Aα trained

with configuration β, for each α = 1, 2, 3, and for each β = 1, 2.

Geosciences 2021, 11, 131 15 of 23

Looking at the results in Table 4, it is very interesting to observe that the average errors
Eϑ

σ are characterized by the same behaviors observed for DFN158 and, therefore, they can
be described by a functions Ê(σ, ϑ) with the same expressions deduced for DFN158.

Table 4. DFN395. MSE and coefficients of the least square minimization with respect to Eϑ
σ .

α = 1 α = 2 α = 3

Eϑ
σ MSE c1 c2 c3 c4 MSE c1 c2 c3 c4 MSE c1 c2 c3 c4

g1 7.057× 10−3 −5.638 417.8 0.0002 8.544 1.289× 10−2 −5.531 422.0 0.0001 8.459 1.236× 10−2 −5.465 391.0 ∼ 10−5 8.596
β = 1

g2 8.431× 10−3 −6.839 417.9 6.665 - 1.402× 10−2 −6.718 422.0 6.596 - 1.358× 10−2 −6.675 390.9 6.711 -

g1 5.874× 10−3 −5.719 426.4 0.0006 8.872 9.826× 10−3 −5.624 425.1 ∼ 10−5 8.817 8.934× 10−3 −5.548 400.6 0.0002 8.716
β = 2

g2 7.283× 10−3 −6.974 426.3 6.941 - 1.137× 10−2 −6.875 425.0 6.903 - 1.015× 10−2 −6.777 400.5 6.808 -

We remark that the values of Eϑ
σ increase faster with respect to σ than in Section 3.1.

3.3. Error Characterization with Training Data

In Proposition 1 of this section, assuming that the average error of an untrained NN
is characterized by the function Ê(σ, ϑ) described in (19), we can identify the minimum
value of ϑ (i.e., the minimum number of training data) required to obtain an average error
smaller than an arbitrary quantity ε > 0 for each fixed σ ∈ R≥0; in brief, for each fixed
σ ∈ R, the proposition tells which is the minimum ϑ ∈ N such that Ê(σ, ϑ) ≤ ε.

We conclude this introduction to Proposition 1 by making a few remarks to its assump-
tion on the coefficients ĉ1, . . . , ĉ4. By construction, it holds that ĉ2, ĉ4 ∈ R≥0 and ĉ1, ĉ3 ∈ R
but, looking at the coefficients in Tables 2 and 4, we observe that ĉ1 is always negative, ĉ2 is
always positive, and ĉ3 is always nonnegative; then, in the proposition, we assume ĉ1 < 0,
ĉ2 > 0 and ĉ3 ≥ 0.

Proposition 1. Let Ê(σ, ϑ) be a function defined as in (19), such that ĉ1 < 0, ĉ2 > 0 and
ĉ3, ĉ4 ≥ 0. Then, for each ε > 0 and σ ∈ R≥0, the set of natural solutions Θ∗ ⊂ N of the inequality

Ê(σ, ϑ) ≤ ε (20)

is characterized by the following:

1. any ϑ ∈ N such that

ϑ ≥ ϑε := − ĉ2

(Cσ − log ε)
, (21)

if ε > εσ := eCσ , where Cσ := ĉ1 + ĉ3σ + ĉ4σ2;
2. no ϑ ∈ N (i.e., Θ∗ = ∅), if ε ≤ εσ.

Proof. Inequality (20) has the same solutions as inequality

ĉ2

ϑ
+ Cσ ≤ log ε , (22)

that can be rewritten as ϑ(Cσ − log ε) ≤ −ĉ2. Therefore, (22) has no solutions if (Cσ −
log ε) ≥ 0 and solution ϑ ≥ ϑε if (Cσ − log ε) < 0; then, both the assertions of Proposition 1
are proven.

The threshold value εσ = eCσ of Proposition 1 is actually the infimum of Ê(σ, ϑ),
assuming a fixed σ:

inf
ϑ∈N

Ê(σ, ϑ) = lim
ϑ→+∞

e
ĉ2
ϑ +Cσ = eCσ .

Thanks to Proposition 1, we can define a rule-of-thumb “UQ rule” for users who need
to perform UQ on a DFN, with a number of fractures n in the order of magnitude around

Geosciences 2021, 11, 131 16 of 23

158–395 generated by similar laws (Section 2.1.2) and who want to understand whether it
is convenient to train an NN as a reduced model. This rule is based on the regular behavior
characterizing the coefficients ĉ1, . . . , ĉ4 of Ê(σ, ϑ), varying the hyperparamenters α and
n for each fixed β. Indeed, for each fixed β and i = 1, . . . , 4, we observe that the values
of the coefficient ĉi with respect to (α, n) are well-approximated by the function ĉ(β)

i (α, n)
defined in Tables 5 and 6 and illustrated in Figures 9 and 10. The expression of the function
ĉ(β)

i was chosen by looking at the positions of the points (α, n, ĉi) in the space R3, for each
i = 1, . . . , 4 and each β = 1, 2; future analyses, involving more DFNs (i.e., more cases for n),
may surely help find better-fitting functions to describe the behavior of the coefficients ĉi.

Table 5. Parametric expressions of the functions ĉ(β)
i (α, n) fitting the coefficients ĉ1, . . . , ĉ4.

i Function ĉ(β)
i (α, n)

1 ĉ1 = (d1 + d2n)α + (d3 + d4α)n + d5
2 ĉ2 = (d1 + d2/n)α + d3n + d4
3 ĉ3 = (d1 + d2/n)α
4 ĉ4 = (d1 + d2/n)α + d3n + d4

Table 6. Coefficient values for parametric expressions of the functions ĉ(β)
i (α, n) fitting the coefficients

ĉ1, . . . , ĉ4.

i β d1 d2 d3 d4 d5

1 −0.3002 0.1372 −0.0006 −0.1362 −5.467
1

2 −0.417 −0.3173 −0.0015 0.3185 −5.201

1 −45.67 12 750 1.094 5.067 -
2

2 −39.07 10 340 0.9935 50.72

1 −0.738 291.5 - - -
3

2 −0.748 295.5 - - -

1 0.38 −139.8 0.0121 3.698 -
4

2 0.52 −237.1 0.0096 5.168 -

Given the functions ĉ(β)
1 (α, n) , . . . , ĉ(β)

4 (α, n), for each fixed β = 1, 2, we can define
a function

Êβ(σ, ϑ, α, n) = e

(
ĉ(β)

1 (α,n)+
ĉ(β)
2 (α,n)

ϑ +ĉ(β)
3 (α,n)σ+ĉ(β)

4 (α,n)σ2

)
(23)

that returns estimates of the average errors Eϑ
σ for any NN with architecture Aα trained

with respect to a number ϑ of simulations (and configuration β) to approximate the fluxes
of a DFN with n fractures (see Section 2.1.2) and transmissivity variation characterized by σ.
Then, the UQ rule exploits (23) and Proposition 1, and it is outlined by the following steps:

1. Let n ∈ {159, . . . , 394} ⊆ N be the number of fractures of a given DFN with fixed
geometry generated with respect to the characterization of Section 2.1.2, and let σ be
the parameter characterizing the standard deviation of the transmissivity distribution
(see (1));

2. For each (α, β) ∈ {1, 2, 3} × {1, 2} and each arbitrary ε ∈ (eC(β)
σ (α,n), 1) ⊂ R, following

the results of Proposition 1, compute the values

ϑ
(α,β)
ε = −

ĉ(β)
2

(C(β)
σ (α, n)− log ε)

, (24)

Geosciences 2021, 11, 131 17 of 23

where C(β)
σ (α, n) := ĉ(β)

1 (α, n) + ĉ(β)
3 (α, n)σ + ĉ(β)

4 (α, n) + σ2. Then, the values ϑ
(α,β)
ε

represent the estimates of the minimum number of simulations required by the NNs
Aα, trained with respect to configuration β, in order to return an average error Eϑ

σ less
than or equal to ε.

The reliability of the values ϑ
(α,β)
ε depends strictly on the reliability of Ê(σ, ϑ) rep-

resenting the values Eϑ
σ and on the reliability of the functions ĉ(β)

i (α, n) representing the
coefficients ĉi. Therefore, we conclude this section by testing the efficiency of the UQ rule
and, consequently, the reliability of the expressions chosen in this work for the functions
Ê(σ, ϑ), ĉ(β)

1 (α, n), . . . , ĉ(β)
4 (α, n).

We validate and test the UQ rule with respect to DFN202, a DFN with n = 202 fracture
(m = 14 outflow fractures) and transmissivity distribution characterized by σ = 1/3.
We train an NN Aα with configuration β ∈ {1, 2} on a number of simulations ϑact equal
to (24) rounded up to the nearest multiple of five for each ε ∈ {0.01, 0.02, 0.03} and each
α ∈ {1, 2, 3}. For the case (α, β) = (3, 1), we do not use a value ε = 0.01 but a value

ε = 0.011 because 0.01 is too close to the infimum error value eC(β)
σ (α,n) = 0.0099 and,

indeed, in this case, ϑ
(α,β)
ε is approximately equal to 20, 000; since we do not have enough

simulations available to test ε = 0.01, we adopt ε = 0.011.

Figure 9. Plots of the functions ĉ(β)
i (α, n) fitting the coefficients ĉ1, . . . , ĉ4 (from left to right), for β = 1.

The average errors obtained for the test on DFN202 are reported in Table 7. For each

(α, β), we report the minimum error value eC(β)
σ (α,n), the chosen target error ε > eC(β)

σ (α,n),
the estimated minimum number of simulations ϑ

(α,β)
ε , the number of simulations ϑact ∼

ϑ
(α,β)
ε performed for the training of the NN, and the final average error Eϑ

σ returned by the

Geosciences 2021, 11, 131 18 of 23

trained NN on a test set Pσ (with |Pσ| = 3000). In all the cases, with ϑact ∼ ϑ
(α,β)
ε , the error

Eϑ
σ is very close to the target error ε.

Figure 10. Plots of the functions ĉ(β)
i (α, n) fitting the coefficients ĉ1, . . . , ĉ4 (from left to right), for β = 2.

Table 7. Values returned by validation of the Uncertainty Quantification (UQ) rule on DFN202
(n = 202, σ = 1/3).

β = 1 β = 2

α eC(β)
σ (α,n) ε ϑ

(α,β)
ε ϑact Eϑ

σ eC(β)
σ (α,n) ε ϑ

(α,β)
ε ϑact Eϑ

σ

0.01 1162.2 1165 0.0097 0.01 2449.3 2450 0.0080

0.02 269.68 270 0.0221 0.02 329.09 330 0.02081 0.0081

0.03 186.09 190 0.0250

0.0090

0.03 218.47 220 0.0323

0.01 2339.1 2340 0.0085 0.01 2709.7 2710 0.0071

0.02 324.17 325 0.0226 0.02 346.75 350 0.02152 0.0089

0.03 215.55 220 0.0249

0.0090

0.03 229.62 230 0.0254

0.011 2555.8 2560 0.0086 0.01 3001.9 3005 0.0079

0.02 393.75 395 0.0195 0.02 364.66 365 0.01973 0.0099

0.03 250.20 255 0.0250

0.0091

0.03 240.88 245 0.0253

Geosciences 2021, 11, 131 19 of 23

4. Discussion

Some examples concerning the use of deep learning models to speed up UQ analysis
can be found in [33,34]. The use of DNNs as surrogate models for UQ is still a novel
approach that requires deep investigations but is very promising. To the best of the authors’
knowledge, other than [35–37], there are no works in the literature that train DNNs to
perform flux regression tasks on DFNs and, in particular, that use these NNs in the context
of UQ as in [35]. While the results illustrated in [35] are very promising, the ones presented
in Section 3 of this work concerns the use of NN reduced models as a practical possibility
in the UQ framework for flow analyses of a subsurface network of fractures.

Let us assume that we deal with a natural fractured basin that can be described by a
number of principal fractures in the order of {158, . . . , 395} and probability distributions
for fractures and hydrogeological properties as in Section 2.1.2, with a fixed value σ ∈
[0.2, 0.7] ⊂ R. The stochastic flow analysis can be very relevant for geothermal energy
exploitation and for enhanced oil and gas exploitation. Flux investigations can also be
relevant in risk assessment for geological storage of nuclear waste. The approach could be
extended to different situations, for example, to provide a statistical analysis of the effects
of different fracturing approaches [46–48].

Uncertainty in fractures and hydrogeological properties requires the generation of an
ensemble of DFNs describing the principal flow properties of the basin, and consequently,
a UQ analysis of the flow properties is required. The results presented in Section 3.3 can be
useful for deciding if the training of a DNN is convenient with respect to a Monte Carlo
approach or the use of a different surrogate flow model. Thanks to the results in Section 3.3,
we have the possibility to fix an approximation tolerance ε > 0 such that an NN trained on
∼ ϑε simulations fits the target tolerance.

Let us provide an example with DFN202, the validation DFN of Section 3.3 (σ =
1/3). During a UQ analysis for this DFN, a standard approach may need thousands of
simulations to obtain good estimations of the mean value and the standard deviation of the
flux exiting from the DFN. Nevertheless, the UQ rule tells us that we can train an NN with
approximately 2% or 1% average error with less than 300 simulations or approximately
1000 simulations, respectively (see Table 7, (α, β) = (1, 1) case). Then, once that has been
trained, a NN can return virtually infinite reliable predictions (i.e., approximations) of the
DFN exiting fluxes, varying the fracture transmissivities, in the order of seconds; therefore,
we can estimate the exiting flux’s momentum using the NN predictions with a total cost of
only the ∼ ϑε DFN simulations used to train the NN. If we repeat the procedure for each
geometry of DFN generated for the study, the advantages are significant.

A possible drawback of our method is that a UQ rule must be defined for the family
of problems and NN architectures considered. Indeed, the UQ rule defined in Section 3.3
is tailored on the multi-task architecture described in Section 2.2.3, applied to the family
of DFNs defined by the probability distributions in Section 2.1.2. Moreover, the UQ rule
of this work can be considered reliable at most for DFNs with few hundreds of fractures.
The analysis performed here can be extended to larger DFNs and can provide useful
information to wider applications.

The approach presented here is not immediately extensible to the case of DFNs with a
stochastic geometry (see [49]) due to the continuous change in inflow and outflow fractures.
Nevertheless, a similar approach could be extended to the case of analysis of flows through
the DFN that occurs between a fixed set of wells. In that case, the NN can provide flow
through fixed wells varying the DFN geometry and the hydraulic properties of the fractures.
In that case, we expect that the number of training simulations increases but the proposed
approach could provide information correlating the target error tolerance with the variance
in the stochastic distributions and the number of fractures.

5. Conclusions

With this work, we proposed an analysis for the characterization of a family of DNNs
with multi-task architecture Aα trained to predict the exiting fluxes of a DFN given the

Geosciences 2021, 11, 131 20 of 23

fracture transmissivities. The novelty of this analysis consists in characterizing these NNs,
searching for rules that describe the performances, varying the available training data (ϑ)
and the standard deviation of the inputs (σ). The results of our study show interesting
common behaviors for all the trained NNs, providing characterization of the average error
with the functions Ê(σ, ϑ) and Êβ(σ, ϑ, α, n) (see (19) and (23)). This result is interesting,
since it shows that common characterizing formulas for NN performances exist, despite
the stochastic nature of the NN training processes; thanks to these regularities, we are
able to define a “UQ rule” that returns an estimate of the minimum number of simulations
required for training an NN with an average error less than or equal to an arbitrary value
ε > eCσ .

This estimate can be fruitfully exploited in real-world problems. Indeed, in the
framework of UQ, it suggests whether it is convenient to train an NN as a reduced model
and that a user can choose the best strategy between the use of an NN or direct simulations.
In particular, the estimate returned by the UQ rule can be exploited in all “real-world”
applications in which flow through a DFN with stochastic trasmissivities is recommended.
The fields of interest could be oil and gas extraction, where flows through a fractured
medium that occur between a fixed set of wells need to be analyzed and the possible
effects of phenomena that can impact the fracture transmissivities (for example clogging)
should be foreseen. Similar needs could occur in designing geothermal sites for which the
performances strongly depend on the flow properties. Other application examples could be
flow analysis for geological risk assessments of geological carbon dioxide or nuclear waste
storage or water prevention close to other pollutant storage sites. The usage of NNs as
reduced models for DFN flow simulations, optimizing the number of required numerical
simulations for training through the UQ rule, can save precious time when computing
an estimate of the risks and, therefore, deciding how to intervene when preventing or
managing a calamity.

In general, we believe that many approaches for underground flow analysis through
DFNs can be endowed with a tailored version of the method proposed in this paper;
then, the method can speed up the simulation process, which is often slow and expensive,
granting considerable advantages in many real-world geophysical applications.

Author Contributions: Conceptualization, S.B. and F.D.S.; data curation, S.B. and F.D.S.; formal
analysis, S.B. and F.D.S.; funding acquisition, S.B.; investigation, S.B. and F.D.S.; methodology, S.B. and
F.D.S.; project administration, S.B. and F.D.S.; resources, S.B. and F.D.S.; software, F.D.S.; supervision,
S.B.; validation, S.B. and F.D.S.; visualization, F.D.S.; writing—original draft, S.B. and F.D.S.; writing—
review and editing, S.B. and F.D.S. Both authors have read and agreed to the published version of the
manuscript.

Funding: Research performed in the framework of the Italian MIUR Award “Dipartimento di
Eccellenza 2018-2022” to the Department of Mathematical Sciences, Politecnico di Torino, CUP:
E11G18000350001. The research leading to these results was also partially funded by INdAM-GNCS
and by the SmartData@PoliTO center for Big Data and Machine Learning technologies.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The datasets used for training and testing the Neural Networks are
available at https://smartdata.polito.it/discrete-fracture-network-flow-simulations/ (accessed on
18 January 2021).

Acknowledgments: The authors acknowledge support from the GEOSCORE group (https://areeweb.
polito.it/geoscore/ accessed on 18 January 2021) of Politecnico di Torino (Department of Mathemati-
cal Sciences).

Conflicts of Interest: The authors declare no conflict of interest.

Sample Availability: Samples of the datasets used for the training of neural networks are available
from the authors.

https://smartdata.polito.it/discrete-fracture-network-flow-simulations/
https://areeweb.polito.it/geoscore/
https://areeweb.polito.it/geoscore/

Geosciences 2021, 11, 131 21 of 23

Abbreviations
The following abbreviations and nomenclatures are used in this manuscript:

DFN Discrete Fracture Network
DL Deep Learning
DNN Deep Neural Network
ML Machine Learning
MSE Mean Square Error
NN Neural Network
PDE Partial Differential Equation
QoI Quantity of Interest
sMSE sum of Mean Square Errors
UQ Uncertainty Quantification
α, Aα NN depth parameter, multi-task NN architecture with depth parameter α

β NN training configuration parameter
B Minibatch
D, Dσ Dataset, dataset sampled with standard deviation parameter σ

E(P), Eϑ
σ Average error (measured on the test set P), average error measured on Pσ

for an NN trained on ϑ samples
F, F̂w Flux simulation function of DFN, NN approximated flux simulation function
Fi ith DFN fracture
H Hydraulic head
κi, κ Transmissivity of the ith DFN fracture, vector of DFN fracture transmissivities
m Number of boundary DFN fractures with exiting flux
n Total number of fractures of the DFN
P , Pσ Test set, test set sampled with standard deviation parameter σ

ϕj, ϕ Exiting flux of the jth DFN boundary fracture, vector of DFN exiting fluxes
σ, Σ parameter characterizing the transmissivity standard deviation, set of considered

values for σ

T , T ϑ
σ Training set, training set sampled with standard deviation

parameter σ and cardinality parameter ϑ

ϑ, Θ cardinality of training set plus validation set, set of considered values for ϑ

V , Vϑ
σ Validation set, validation set sampled with standard deviation parameter σ and

cardinality parameter ϑ

References
1. Adler, P.M. Fractures and Fracture Networks; Kluwer Academic: Dordrecht, The Netherlands, 1999.
2. Cammarata, G.; Fidelibus, C.; Cravero, M.; Barla, G. The Hydro-Mechanically Coupled Response of Rock Fractures. Rock Mech.

Rock Eng. 2007, 40, 41–61. [CrossRef]
3. Fidelibus, C.; Cammarata, G.; Cravero, M. Hydraulic characterization of fractured rocks. In Rock Mechanics: New Research; Abbie,

M., Bedford, J.S., Eds.; Nova Science Publishers Inc.: New York, NY, USA, 2009.
4. Pichot, G.; Erhel, J.; de Dreuzy, J. A mixed hybrid Mortar method for solving flow in discrete fracture networks. Appl. Anal. 2010,

89, 1629–1643. [CrossRef]
5. Pichot, G.; Erhel, J.; de Dreuzy, J. A generalized mixed hybrid mortar method for solving flow in stochastic discrete fracture

networks. SIAM J. Sci. Comput. 2012, 34, B86–B105. [CrossRef]
6. de Dreuzy, J.R.; Pichot, G.; Poirriez, B.; Erhel, J. Synthetic benchmark for modeling flow in 3D fractured media. Comput. Geosci.

2013, 50, 59–71. [CrossRef]
7. Pichot, G.; Poirriez, B.; Erhel, J.; de Dreuzy, J.R. A Mortar BDD method for solving flow in stochastic discrete fracture networks. In

Domain Decomposition Methods in Science and Engineering XXI; Lecture Notes in Computational Science and Engineering; Springer:
Berlin/Heidelberg, Germany, 2014; pp. 99–112.

8. Nœtinger, B.; Jarrige, N. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks. J.
Comput. Phys. 2012, 231, 23–38. [CrossRef]

9. Nœtinger, B. A quasi steady state method for solving transient Darcy flow in complex 3D fractured networks accounting for
matrix to fracture flow. J. Comput. Phys. 2015, 283, 205–223. [CrossRef]

10. Dershowitz, W.S.; Fidelibus, C. Derivation of equivalent pipe networks analogues for three-dimensional discrete fracture
networks by the boundary element method. Water Resour. Res. 1999, 35, 2685–2691. [CrossRef]

11. Berrone, S.; Pieraccini, S.; Scialò, S. A PDE-constrained optimization formulation for discrete fracture network flows. SIAM J. Sci.
Comput. 2013, 35, B487–B510. [CrossRef]

http://doi.org/10.1007/s00603-006-0081-z
http://dx.doi.org/10.1080/00036811.2010.495333
http://dx.doi.org/10.1137/100804383
http://dx.doi.org/10.1016/j.cageo.2012.07.025
http://dx.doi.org/10.1016/j.jcp.2011.08.015
http://dx.doi.org/10.1016/j.jcp.2014.11.038
http://dx.doi.org/10.1029/1999WR900118
http://dx.doi.org/10.1137/120865884

Geosciences 2021, 11, 131 22 of 23

12. Berrone, S.; Pieraccini, S.; Scialò, S. On simulations of discrete fracture network flows with an optimization-based extended finite
element method. SIAM J. Sci. Comput. 2013, 35, A908–A935. [CrossRef]

13. Berrone, S.; Pieraccini, S.; Scialò, S.; Vicini, F. A parallel solver for large scale DFN flow simulations. SIAM J. Sci. Comput. 2015,
37, C285–C306. [CrossRef]

14. Berrone, S.; Pieraccini, S.; Scialò, S. An optimization approach for large scale simulations of discrete fracture network flows. J.
Comput. Phys. 2014, 256, 838–853. [CrossRef]

15. Berrone, S.; Borio, A.; Scialò, S. A posteriori error estimate for a PDE-constrained optimization formulation for the flow in DFNs.
SIAM J. Numer. Anal. 2016, 54, 242–261. [CrossRef]

16. Berrone, S.; Pieraccini, S.; Scialò, S. Towards effective flow simulations in realistic discrete fracture networks. J. Comput. Phys.
2016, 310, 181–201. [CrossRef]

17. Berrone, S.; D’Auria, A.; Vicini, F. Fast and robust flow simulations in Discrete Fracture Networks with GPGPUs. GEM Int. J.
Geomathematics 2019, to appear. [CrossRef]

18. Hyman, J.D.; Gable, C.W.; Painter, S.L.; Makedonska, N. Conforming Delaunay Triangulation of Stochastically Generated Three
Dimensional Discrete Fracture Networks: A Feature Rejection Algorithm for Meshing Strategy. SIAM J. Sci. Comput. 2014,
36, A1871–A1894. [CrossRef]

19. Fumagalli, A.; Scotti, A. A numerical method for two-phase flow in fractured porous media with non-matching grids. Adv. Water
Resour. 2013, 62, 454–464. [CrossRef]

20. Jaffré, J.; Roberts, J.E. Modeling flow in porous media with fractures; Discrete fracture models with matrix-fracture exchange.
Numer. Anal. Appl. 2012, 5, 162–167. [CrossRef]

21. Karimi-Fard, M.; Durlofsky, L.J. Unstructured Adaptive Mesh Refinement for Flow in Heterogeneous Porous Media. In Pro-
ceedings of the ECMOR XIV-14th European Conference on the Mathematics of Oil Recovery, Sicily, Italy, 8–11 September
2014.

22. Svensk Kärnbränslehantering AB. Data Report for the Safety Assessment, SR-Site; Technical Report TR-10-52; SKB: Stockholm,
Sweden, 2010.

23. Hyman, J.D.; Aldrich, G.; Viswanathan, H.; Makedonska, N.; Karra, S. Fracture size and transmissivity correlations: Implications
for transport simulations in sparse three-dimensional discrete fracture networks following a truncated power law distribution of
fracture size. Water Resour. Res. 2016, 52, 6472–6489. [CrossRef]

24. Sanchez-Vila, X.; Guadagnini, A.; Carrera, J. Representative hydraulic conductivities in saturated grqundwater flow. Rev. Geophys.
2006, 44, 1–46. [CrossRef]

25. Hyman, J.D.; Hagberg, A.; Osthus, D.; Srinivasan, S.; Viswanathan, H.; Srinivasan, G. Identifying Backbones in Three-Dimensional
Discrete Fracture Networks: A Bipartite Graph-Based Approach. Multiscale Model. Simul. 2018, 16, 1948–1968. [CrossRef]

26. Berrone, S.; Canuto, C.; Pieraccini, S.; Scialò, S. Uncertainty quantification in Discrete Fracture Network models: Stochastic
fracture transmissivity. Comput. Math. Appl. 2015, 70, 603–623. [CrossRef]

27. Berrone, S.; Pieraccini, S.; Scialò, S. Non-stationary transport phenomena in networks of fractures: Effective simulations and
stochastic analysis. Comput. Methods Appl. Mech. Eng. 2017, 315, 1098–1112. [CrossRef]

28. Canuto, C.; Pieraccini, S.; Xiu, D. Uncertainty Quantification of Discontinuous Outputs via a Non-Intrusive Bifidelity Strategy. J.
Comput. Phys. 2019, 398, 108885. [CrossRef]

29. Hyman, J.D.; Hagberg, A.; Srinivasan, G.; Mohd-Yusof, J.; Viswanathan, H. Predictions of first passage times in sparse discrete
fracture networks using graph-based reductions. Phys. Rev. E 2017, 96, 013304. [CrossRef] [PubMed]

30. Srinivasan, G.; Hyman, J.D.; Osthus, D.A.; Moore, B.A.; O’Malley, D.; Karra, S.; Rougier, E.; Hagberg, A.A.; Hunter, A.;
Viswanathan, H.S. Quantifying Topological Uncertainty in Fractured Systems using Graph Theory and Machine Learning. Sci.
Rep. 2018, 8, 11665. [CrossRef] [PubMed]

31. Srinivasan, S.; Karra, S.; Hyman, J.; Viswanathan, H.; Srinivasan, G. Model reduction for fractured porous media: A machine
learning approach for identifying main flow pathways. Comput. Geosci. 2019. [CrossRef]

32. Chan, S.; Elsheikh, A.H. A machine learning approach for efficient uncertainty quantification using multiscale methods. J.
Comput. Phys. 2018, 354, 493–511. [CrossRef]

33. Tripathy, R.K.; Bilionis, I. Deep UQ: Learning deep neural network surrogate models for high dimensional uncertainty quantifica-
tion. J. Comput. Phys. 2018, 375, 565–588. [CrossRef]

34. Hu, R.; Fang, F.; Pain, C.C.; Navon, I.M. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep
learning method. J. Hydrol. 2019, 575, 911–920. [CrossRef]

35. Berrone, S.; Della Santa, F.; Pieraccini, S.; Vaccarino, F. Machine Learning for Flux Regression in Discrete Fracture Networks.
Preprint (under Submission), Politecnico di Torino (PORTO@iris), 2019. Available online: http://hdl.handle.net/11583/2724492
(accessed on 18 January 2021).

36. Berrone, S.; Della Santa, F.; Mastropietro, A.; Pieraccini, S.; Vaccarino, F. Backbone Identification in Discrete Fracture Networks
Using Layer-Wise Relevance Propagation for Neural Network Feature Selection. Preprint (under Submission), Politecnico di
Torino (PORTO@iris), 2020. Available online: http://hdl.handle.net/11583/2844659 (accessed on 18 January 2021).

http://dx.doi.org/10.1137/120882883
http://dx.doi.org/10.1137/140984014
http://dx.doi.org/10.1016/j.jcp.2013.09.028
http://dx.doi.org/10.1137/15M1014760
http://dx.doi.org/10.1016/j.jcp.2016.01.009
http://dx.doi.org/10.1007/s13137-019-0121-y
http://dx.doi.org/10.1137/130942541
http://dx.doi.org/10.1016/j.advwatres.2013.04.001
http://dx.doi.org/10.1134/S1995423912020103
http://dx.doi.org/10.1002/2016WR018806
http://dx.doi.org/10.1029/2005RG000169
http://dx.doi.org/10.1137/18M1180207
http://dx.doi.org/10.1016/j.camwa.2015.05.013
http://dx.doi.org/10.1016/j.cma.2016.12.006
http://dx.doi.org/10.1016/j.jcp.2019.108885
http://dx.doi.org/10.1103/PhysRevE.96.013304
http://www.ncbi.nlm.nih.gov/pubmed/29347061
http://dx.doi.org/10.1038/s41598-018-30117-1
http://www.ncbi.nlm.nih.gov/pubmed/30076388
http://dx.doi.org/10.1007/s10596-019-9811-7
http://dx.doi.org/10.1016/j.jcp.2017.10.034
http://dx.doi.org/10.1016/j.jcp.2018.08.036
http://dx.doi.org/10.1016/j.jhydrol.2019.05.087
http://hdl.handle.net/11583/2724492
http://hdl.handle.net/11583/2844659

Geosciences 2021, 11, 131 23 of 23

37. Berrone, S.; Della Santa, F.; Mastropietro, A.; Pieraccini, S.; Vaccarino, F. Discrete Fracture Network Insights by eXplainable AI.
In Conference Paper, Poster and Presentation, Machine Learning and the Physical Sciences, Proceedings of the 34th Conference on Neural
Information Processing Systems (NeurIPS), online, 11 December 2020. Neural Information Processing Systems Foundation 2020, online,
108885. Available online: https://ml4physicalsciences.github.io/2020/ (accessed on 18 January 2021).

38. McCulloch, W.S.; Pitts, W. A logical calculus of the ideas immanent in nervous activity. Bull. Math. Biophys. 1943, 5, 115–133.
[CrossRef]

39. Hebb, D.O. The Organization of Behavior; Wiley: New York, NY, USA, 1949.
40. Rosenblatt, F. The Perceptron: A Probabilistic Model for Information Storage and Organization in The Brain. Psychol. Rev. 1958,

65, 386–408. [CrossRef]
41. Goodfellow, I.; Bengio, Y.; Courville, A. Deep Learning; MIT Press: Cambridge, MA, USA, 2016. Available online: http:

//www.deeplearningbook.org (accessed on 18 January 2021).
42. GEOSCORE Research Group. GEO++; Department of Mathematical Sciences, Politecnico di Torino: Turin, Italy. Available online:

https://areeweb.polito.it/geoscore/software/ (accessed on 18 January 2021).
43. Nawi, N.M.; Atomi, W.H.; Rehman, M. The Effect of Data Pre-processing on Optimized Training of Artificial Neural Networks.

Procedia Technol. 2013, 11, 32–39. [CrossRef]
44. Glorot, X.; Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. J. Mach. Learn. Res. 2010,

9, 249–256.
45. Kingma, D.P.; Ba, J. Adam: A Method for Stochastic Optimization. In Proceedings of the 3rd International Conference on

Learning Representations, San Diego, CA, USA, 7–9 May 2015.
46. Davarpanah, A.; Shirmohammadi, R.; Mirshekari, B.; Aslani, A. Analysis of hydraulic fracturing techniques: Hybrid fuzzy

approaches. Arab. J. Geosci. 2019, 12, 402. [CrossRef]
47. Sun, S.; Zhou, M.; Lu, W.; Davarpanah, A. Application of Symmetry Law in Numerical Modeling of Hydraulic Fracturing by

Finite Element Method. Symmetry 2020, 12, 1122. [CrossRef]
48. Zhu, M.; Yu, L.; Zhang, X.; Davarpanah, A. Application of Implicit Pressure-Explicit Saturation Method to Predict Filtrated Mud

Saturation Impact on the Hydrocarbon Reservoirs Formation Damage. Mathematics 2020, 8, 1057. [CrossRef]
49. Pieraccini, S. Uncertainty quantification analysis in discrete fracture network flow simulations. GEM Int. J. Geomath. 2020, 11, 12.

[CrossRef]

https://ml4physicalsciences.github.io/2020/
http://dx.doi.org/10.1007/BF02478259
http://dx.doi.org/10.1037/h0042519
http://www.deeplearningbook.org
http://www.deeplearningbook.org
https://areeweb.polito.it/geoscore/software/
http://dx.doi.org/10.1016/j.protcy.2013.12.159
http://dx.doi.org/10.1007/s12517-019-4567-x
http://dx.doi.org/10.3390/sym12071122
http://dx.doi.org/10.3390/math8071057
http://dx.doi.org/10.1007/s13137-020-0148-0

	Introduction
	Methods
	Discrete Fracture Networks
	Numerical Model and Numerical Solution
	DFN Characterization

	Neural Networks
	General Concepts about Neural Networks and Learning Models
	Neural Network Structure
	Deep Learning Models for Flux Regression in DFNs

	Performance Analysis of Deep Learning Models for Flux Regression
	Performance Analysis: Method Description
	Training Hyperparameters and Functions

	Results
	DFN158
	DFN395
	Error Characterization with Training Data

	Discussion
	Conclusions
	References

