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A B S T R A C T

This article investigates the large deflection and post-buckling of composite plates by employing the Carrera
Unified Formulation (CUF). As a consequence, the geometrically nonlinear governing equations and the
relevant incremental equations are derived in terms of fundamental nuclei, which are invariant of the theory
approximation order. By using the Lagrange expansion functions across the laminate thickness and the classical
finite element (FE) approximation, layerwise (LW) refined plate models are implemented. The Newton–Raphson
linearization scheme with the path-following method based on the arc-length constraint is employed to
solve geometrically nonlinear composite plate problems. In this study, different composite plates subjected
to large deflections/rotations and post-buckling are analysed, and the corresponding equilibrium curves are
compared with the results in the available literature or the traditional FEM-based solutions. The effects of
various parameters, such as stacking sequence, number of layers, loading conditions, and edge conditions
are demonstrated. The accuracy and reliability of the proposed method for solving the composite plates’
geometrically nonlinear problems are verified.
. Introduction

The availability of new constituents and manufacturing processes
as widely promoted the use of composite laminated structures, which
re now constantly employed in aeronautics, aerospace, automotive
nd construction engineering [1]. Understanding the mechanical be-
aviours of composites is, therefore more than ever, a major concern
or designers and researchers [2].

Although stiff, composite laminates can be designed to carry out
arge elastic displacements and rotations when sufficiently thin. It
s the case, for example, of coilable composite tape springs, see for
xample [3]. In this context, new research trends are arising for char-
cterizing the geometrically nonlinear mechanics of such laminates [4,
]. Zhang and Yang [6] provided a review of recent developments
n finite element (FE) analysis for laminated plate structures. Han
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et al. [7] extended the hierarchical FE method to geometrical non-
linearities for studying the response of composite plates. By using
first-order shear deformation theory (FSDT) and adopting the total La-
grangian formulation, Zhang and Kim [8] performed nonlinear analysis
of different laminated structures, employing a displacement-based 3-
node triangular plate/shell element. The same authors also developed
a displacement-based 4-node quadrilateral element for geometrically
nonlinear analysis of laminated plates [9]. A numerical method based
on the higher-order shear deformation theory (HSDT) and isogeometric
analysis was provided by Tran et al. [10] to investigate geometrically
nonlinear response of two-dimensional (2D) laminated structures. Srid-
har and Rao [11] utilized the four-node quadrilateral composite shell
FE to analyse laminated circular composite plates in the regime of
large-displacement fields. Liew et al. [12] employed a mesh-free kp-Ritz
method combined with the FSDT for the nonlinear flexural analysis of
plates. A geometrically nonlinear parametric instability of functionally
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graded plates was studied by Alijani and Amabili [13] adopting a
multi-degree-of-freedom Lagrangian formulation and nonlinear higher-
order shear deformation theory. Nonlinear static analysis of composite
thick plates resting on nonlinear elastic foundations was conducted
by Baltacıoğlu et al. [14] based on a discrete singular convolution
approach. Reddy et al. [15] studied the effect of different geometrical
and loading parameters on the bending analysis of laminated composite
plates. Readers are referred to [16–18] for more works on the nonlinear
response analysis of the large displacements/rotations of composite
plates. A complete description of nonlinear vibrations and stability of
shell and plates structures was provided by Amabili [19,20].

Among the problems characterized by geometrically nonlinear re-
sponse, the post-buckling phenomenon of composite plates deserves
special attention. Many researchers have addressed this topic indeed
[21–24]. For example, Leissa [25] presented a review of 2D laminated
composite plate buckling analysis. In addition, the book edited by
Turvey and Marshal [26] conducted comprehensive studies on buck-
ling and post-buckling of composite plates. Librescu and Stein [27]
formulated a geometrically nonlinear theory of isotropic symmetri-
cally laminated plates and analysed their post-buckling behaviours.
The effect of material nonlinearity on the post-buckling of composite
plates and shells was studied by Wang and Srinivasan [28]. Sundaresan
et al. [29] described the buckling and post-buckling behaviours of
typically 2D thick laminated rectangular plates, where they developed
a eight-node isoparametric plate FE. Liew et al. [30] proposed a Ritz
method combined with the FSDT and kernel particle approximation
for the field variables to investigate the post-buckling behaviour of
2D laminated structures. Amabili and Tajahmadi [31] performed post-
buckling analysis of isotropic and composite plate structures subjected
to thermal changes. Chen and Qiao [32] carried out a post-buckling
analysis of 2D composite plates subjected to combined compressive
and shear loadings using the finite strip method. Dash and Singh [33]
performed buckling and post-buckling response analyses of laminated
plates with random system properties.

In the present paper, the Carrera Unified Formulation (CUF), which
has been proved to be an efficient and accurate method for solving
nonlinear structural problems [34–40], is now extended to deal with
geometrically nonlinear analysis of composite plates. In this work, the
layerwise (LW) approach based on Lagrange expansions is employed
(see [41,42] for an exhaustive derivation of CUF in LW framework).
This method provides us with interface compatibility conditions to be
easily imposed between different layers. Moreover, by using the CUF,
the expansions along the thickness could be selected of any arbitrary
order. As demonstrated in [34], the advantage of CUF is that the
nonlinear equilibrium and incremental equations are written in terms
of fundamental nuclei (FNs) of the secant and tangent stiffness matrices.
FNs are invariant of the theory approximation order, thus lower- to
higher-order and eventually layerwise CUF structural models can be
formulated with ease [35]. In the same framework, Pagani et al. [43]
evaluated the effect of different geometrically nonlinear models on
the response of thin-walled structures adopting a refined beam model.
Pagani et al. [44] utilized a refined CUF plate model to investigate the
effect of various strain–displacement nonlinear approximations on the
large deflection and post-buckling of isotropic plates. Readers can be
referred to [45–47] for important works on nonlinear analyses of 2D
isotropic and composite shell structures in the CUF framework.

The present research aims to use the CUF and arc-length method
with path-following constraint to study the geometrically nonlinear
composite plate problems. In this regard, different composite plates
subjected to large displacements/rotations and post-buckling are in-
vestigated. Large-deflection and post-buckling problems are solved by
using the Newton–Raphson linearization scheme for different symmet-
ric and antisymmetric composite plates. The corresponding equilibrium
curves are also compared with the results in the available literature
or the traditional FEM-based solutions, and the effects of different
parameters such as the stacking sequence, number of layers, loading

conditions, and edge conditions are investigated. f

2

Fig. 1. The 𝑛-ply laminated plate and related coordinate reference system.

This paper is structured as follows: (i) first, preliminary information
about the nonlinear geometrical relations are provided in Section 2,
including the 2D CUF plate model adopted; (ii) next, numerical results
are reported in Section 3, and they involve laminated composite plates
with different boundary and loading conditions; (ii) finally, conclusions
are presented in Section 4.

2. Geometrically nonlinear unified finite plate element

2.1. Preliminary considerations

In this section, the 𝑛-ply laminated plate, as illustrated in Fig. 1, is
assumed to be located in the 𝑥–𝑦 plane, whereas the thickness direction
lays along 𝑧-axis. The 3D displacement, strain and stress vectors of a
given point in the composite plate are defined, respectively as follows:

𝒖𝑘(𝑥, 𝑦, 𝑧) = {𝑢𝑘𝑥 𝑢𝑘𝑦 𝑢𝑘𝑧}
T

𝝐𝑘 = {𝜀𝑘𝑥𝑥 𝜀𝑘𝑦𝑦 𝜀𝑘𝑧𝑧 𝜀𝑘𝑥𝑧 𝜀𝑘𝑦𝑧 𝜀𝑘𝑥𝑦}
T

𝝈𝑘 = {𝜎𝑘𝑥𝑥 𝜎𝑘𝑦𝑦 𝜎𝑘𝑧𝑧 𝜎𝑘𝑥𝑧 𝜎𝑘𝑦𝑧 𝜎𝑘𝑥𝑦}
T

(1)

where the superscript 𝑘 denotes the 𝑘th-layer of the laminated plate and
the superscript T signifies the transpose. The presented approach, based
on the total Lagrangian formulations, employs the Green–Lagrange
strain 𝝐 and the second Piola–Kirchhoff stress 𝝈, which are work-
conjugate. The Green–Lagrange strain vector 𝝐𝑘 is obtained via the
displacement-strain relations as:

𝝐𝑘 = 𝝐𝑘𝑙 + 𝝐𝑘𝑛𝑙 = (𝒃𝑙 + 𝒃𝑛𝑙)𝒖𝑘 (2)

in which 𝒃𝑙 and 𝒃𝑛𝑙 represent the 6 × 3 linear and nonlinear differential
operators and they are defined as follows:

𝒃𝑙 =
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⎢

⎢
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⎥
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, (3)

where 𝜕𝑥 = 𝜕(⋅)∕𝜕𝑥, 𝜕𝑦 = 𝜕(⋅)∕𝜕𝑦, 𝜕𝑧 = 𝜕(⋅)∕𝜕𝑧 are the partial derivatives.
The following constitutive equation is considered for the stress–

train relationship:

𝑘 = �̃�𝑘𝝐𝑘 (4)

here �̃�𝑘 is the material elastic matrix. Readers are referred to [48,49]
or the complete expressions of this matrix.
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2.2. Carrera unified formulation (CUF)

2.2.1. Theory kinematics and finite element approximation
In the framework of the 2D Carrera Unified Formulation [50], the

3D displacement field 𝒖(𝑥, 𝑦, 𝑧) is written as a general expansion of the
primary unknowns:

𝒖(𝑥, 𝑦, 𝑧) = 𝐹𝑠(𝑧)𝒖𝑠(𝑥, 𝑦), 𝑠 = 0, 1,… , 𝑁, (5)

in which 𝐹𝑠 represents a set of thickness expansion functions, 𝒖𝑠 indi-
cates the generalized displacement vector depending on the in-plane
coordinates 𝑥 and 𝑦, 𝑁 is the order of expansion in the thickness
irection and the repeated index 𝑠 denotes summation [44]. In the

present work, Lagrange polynomials (LE) are assumed for the expan-
sion functions 𝐹𝑠 due to the promising and accurate results of the
LE [51–53]. It should be noted that the unknown variables are pure
displacements in the case of LE. In addition, the LW approach based on
the LE is used in this research. This method provides us with interface
compatibility conditions to be easily imposed between different layers.
By using the CUF, the expansions along the thickness could be selected
of any arbitrary order. Therefore, different refined plate models can be
obtained by changing the expansion order. The acronym LDN (Layer-
wise Displacement-based theory of expansion order N) will be adopted
in this article to refer to specific refined plate models. For instance, LD1,
LD2, and LD3 indicate linear (two-node), quadratic (three-node), and
cubic (four-node) Lagrange expansion functions, respectively, which
are utilized to formulate CUF plate models with linear to higher-order
kinematics.

According to the finite element method (FEM), the generalized dis-
placement vector 𝒖𝑠 is approximated based on the FE nodal parameters
𝒒𝑠𝑗 and shape functions 𝑁𝑗 as:

𝒖𝑠(𝑥, 𝑦) = 𝑁𝑗 (𝑥, 𝑦)𝒒𝑠𝑗 , 𝑗 = 1, 2,… , 𝑛𝑒𝑙 , (6)

in which 𝑁𝑗 are the 𝑗th shape function, 𝒒𝑠𝑗 represents the unknown
nodal variables, 𝑛𝑒𝑙 is the number of nodes per element and 𝑗 indicates
summation. In this article, the classical 2D nine-node quadratic (Q9)
FEs are employed for the shape functions in the 𝑥–𝑦 plane. More details
about the Lagrange polynomials and shape functions can be found
in [48].

2.2.2. Fundamental nuclei of the secant and tangent stiffness matrices
The nonlinear governing equations can be derived by using the

principle of virtual work, that is,

𝛿𝐿int = 𝛿𝐿ext (7)

The virtual variation of internal strain energy in Eq. (7) is calculated
as:

𝛿𝐿int = ⟨𝛿𝝐T𝝈⟩ (8)

in which ⟨(⋅)⟩ = ∫𝑉 (⋅) 𝑑𝑉 , where 𝑉 represents the initial undeformed
volume of the composite plate structure considering the hypothesis of
small deformations, and 𝛿 is the virtual variation operator. According
to FEM approximation (6), CUF (5), constitutive Eqs. (4) and geometric
relations (2), it is proved that:

𝛿𝐿int = 𝛿𝐪T
𝜏𝑖 <

(

𝐁𝜏𝑖
𝑙 + 2𝐁𝜏𝑖

𝑛𝑙
)T 𝐂

(

𝐁𝑠𝑗
𝑙 + 𝐁𝑠𝑗

𝑛𝑙

)

> 𝐪𝑠𝑗

= 𝛿𝐪T
𝜏𝑖 𝐊

𝑖𝑗𝜏𝑠
0 𝐪𝑠𝑗 + 𝛿𝐪T

𝜏𝑖 𝐊
𝑖𝑗𝜏𝑠
𝑙𝑛𝑙 𝐪𝑠𝑗 + 𝛿𝐪T

𝜏𝑖 𝐊
𝑖𝑗𝜏𝑠
𝑛𝑙𝑙 𝐪𝑠𝑗 + 𝛿𝐪T

𝜏𝑖 𝐊
𝑖𝑗𝜏𝑠
𝑛𝑙𝑛𝑙 𝐪𝑠𝑗

= 𝛿𝐪T
𝜏𝑖 𝐊

𝑖𝑗𝜏𝑠
𝑆 𝐪𝑠𝑗

(9)

where the two matrices 𝑩𝒍 and 𝑩𝒏𝒍 are linear and nonlinear geometrical
matrices and 𝐊𝑖𝑗𝜏𝑠

𝑆 = 𝐊𝑖𝑗𝜏𝑠
0 +𝐊𝑖𝑗𝜏𝑠

𝑙𝑛𝑙 +𝐊𝑖𝑗𝜏𝑠
𝑛𝑙𝑙 +𝐊𝑖𝑗𝜏𝑠

𝑛𝑙𝑛𝑙 is the FN of the secant
stiffness matrix. In this paper, the nonlinear model considering the full
components of the matrices 𝑩 and 𝑩 for the Green–Lagrange strain
𝒍 𝒏𝒍

3

vector is referred to as a Full NL model. The specific expressions of these
matrices have been provided in [37] and are omitted here for brevity.

In the case of conservative loading, the tangent stiffness matrix
is obtained by linearizing the virtual variation of the internal strain
energy, which is expressed as:

𝛿(𝛿𝐿int ) = ⟨𝛿(𝛿𝝐T𝝈)⟩ = ⟨𝛿𝝐T𝛿𝝈⟩ + ⟨𝛿(𝛿𝝐T)𝝈⟩ = 𝛿𝐪T
𝜏𝑖𝐊

𝑖𝑗𝜏𝑠
𝑇 𝛿𝐪𝑠𝑗 (10)

here 𝐊𝑖𝑗𝜏𝑠
𝑇 = 𝐊𝑖𝑗𝜏𝑠

0 + 𝐊𝑖𝑗𝜏𝑠
𝑇1

+ 𝐊𝑖𝑗𝜏𝑠
𝜎 . The first term ⟨𝛿𝝐T𝛿𝝈⟩ in Eq. (10)

equires the constitutive equation to be linearized. Therefore, we have:

𝝈 = 𝛿(𝐂𝝐) = 𝐂𝛿𝝐 = 𝐂(𝐁𝑠𝑗
𝑙 + 2𝐁𝑠𝑗

𝑛𝑙 )𝛿𝐪𝑠𝑗 (11)

𝛿𝝐T𝛿𝝈⟩ = 𝛿𝐪T
𝜏𝑖 < (𝐁𝜏𝑖

𝑙 + 2𝐁𝜏𝑖
𝑛𝑙)

T𝐂 (𝐁𝑠𝑗
𝑙 + 2𝐁𝑠𝑗

𝑛𝑙 ) > 𝛿𝐪𝑠𝑗

= 𝛿𝐪T
𝜏𝑖 𝐊

𝑖𝑗𝜏𝑠
0 𝛿𝐪𝑠𝑗 + 𝛿𝐪T

𝜏𝑖
(

2𝐊𝑖𝑗𝜏𝑠
𝑙𝑛𝑙

)

𝛿𝐪𝑠𝑗

+𝛿𝐪T
𝜏𝑖 𝐊

𝑖𝑗𝜏𝑠
𝑛𝑙𝑙 𝛿𝐪𝑠𝑗 + 𝛿𝐪T

𝜏𝑖
(

2𝐊𝑖𝑗𝜏𝑠
𝑛𝑙𝑛𝑙

)

𝛿𝐪𝑠𝑗

= 𝛿𝐪T
𝜏𝑖
(

𝐊𝑖𝑗𝜏𝑠
0 +𝐊𝑖𝑗𝜏𝑠

𝑇1

)

𝛿𝐪𝑠𝑗

(12)

where 𝐊𝑖𝑗𝜏𝑠
𝑇1

= 2𝐊𝑖𝑗𝜏𝑠
𝑙𝑛𝑙 + 𝐊𝑖𝑗𝜏𝑠

𝑛𝑙𝑙 + 2𝐊𝑖𝑗𝜏𝑠
𝑛𝑙𝑛𝑙 represents the nonlinear con-

ribution of the FN of the tangent stiffness matrix resulting from the
inearization of the constitutive relation.

The evaluation of the second term ⟨𝛿(𝛿𝝐T)𝝈⟩ in Eq. (10) requires
he linearization of the nonlinear geometrical relations. From Eqs. (2)
nd (3) and according to Crisfield [54], the linearization of the virtual
ariation of the strain vector reads as in Eq. (13) (see Box I and [37]),
n which the subscript ‘‘v’’ represents the variation. Thus, we have:

(𝛿𝝐) = 𝐁∗
𝑛𝑙

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝛿𝑞𝑥𝜏𝑖𝛿𝑞𝑥𝑠𝑗

𝛿𝑞𝑦𝜏𝑖𝛿𝑞𝑦𝑠𝑗

𝛿𝑞𝑧𝜏𝑖𝛿𝑞𝑧𝑠𝑗

⎫

⎪

⎪

⎬

⎪

⎪

⎭

(14)

where 𝐁∗
𝑛𝑙 is given in Eq. (15), see Box II.

After simple mathematical manipulations, we obtain:

⟨𝛿(𝛿𝝐T)𝝈⟩ = ⟨

⎧

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎩

𝛿𝑞𝑢𝑥𝜏𝑖 𝛿𝑞𝑢𝑥𝑠𝑗

𝛿𝑞𝑢𝑦𝜏𝑖 𝛿𝑞𝑢𝑦𝑠𝑗

𝛿𝑞𝑢𝑧𝜏𝑖 𝛿𝑞𝑢𝑧𝑠𝑗

⎫

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎭

T

(𝐁∗
𝑛𝑙)

T𝝈⟩

= 𝛿𝐪T
𝜏𝑖⟨diag

[

(𝐁∗
𝑛𝑙)

T𝝈
]

⟩𝛿𝐪𝑠𝑗

= 𝛿𝐪T
𝜏𝑖⟨diag

[

(𝐁∗
𝑛𝑙)

T(𝝈𝑙 + 𝝈𝑛𝑙)
]

⟩𝛿𝐪𝑠𝑗

= 𝛿𝐪T
𝜏𝑖(𝐊

𝑖𝑗𝜏𝑠
𝜎𝑙 +𝐊𝑖𝑗𝜏𝑠

𝜎𝑛𝑙 )𝛿𝐪𝑠𝑗

= 𝛿𝐪T
𝜏𝑖𝐊

𝑖𝑗𝜏𝑠
𝜎 𝛿𝐪𝑠𝑗

(16)

here the diagonal terms of the 3 × 3 diagonal matrix diag
[

(𝐁∗
𝑛𝑙)

T𝝈
]

are
he components of the vector (𝐁∗

𝑛𝑙)
T𝝈. According to Eq. (2) and (4), 𝝈𝑙 =

𝝐𝑙, 𝝈𝑛𝑙 = 𝐂𝝐𝑛𝑙. Furthermore, also the called geometric stiffness matrix
𝑖𝑗𝜏𝑠
𝜎 = 𝐊𝑖𝑗𝜏𝑠

𝜎𝑙 +𝐊𝑖𝑗𝜏𝑠
𝜎𝑛𝑙 is defined, which contributes to the tangent stiffness

atrix arising from the strain–displacement geometrical relation. Its
pecific expression can be referred to the work [37] and is omitted for
implicity.

Once the FNs of secant and tangent stiffness matrices are avail-
ble as the basic building blocks, one can expand them to formulate
he nonlinear governing equations and incremental equations of the
lobal system. Thus, the path-following Newton–Raphson linearization
ethod (or tangent method) is chosen to compute the nonlinear sys-

em. Readers are referred to [34,37] for more information about the
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𝛿(𝛿𝝐) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

(𝛿𝑢𝑥,𝑥 )
𝑣 𝛿𝑢𝑥,𝑥 + (𝛿𝑢𝑦,𝑥 )

𝑣 𝛿𝑢𝑦,𝑥 + (𝛿𝑢𝑧,𝑥 )
𝑣 𝛿𝑢𝑧,𝑥

(𝛿𝑢𝑥,𝑦 )
𝑣 𝛿𝑢𝑥,𝑦 + (𝛿𝑢𝑦,𝑦 )

𝑣 𝛿𝑢𝑦,𝑦 + (𝛿𝑢𝑧,𝑦 )
𝑣 𝛿𝑢𝑧,𝑦

(𝛿𝑢𝑥,𝑧 )
𝑣 𝛿𝑢𝑥,𝑧 + (𝛿𝑢𝑦,𝑧 )

𝑣 𝛿𝑢𝑦,𝑧 + (𝛿𝑢𝑧,𝑧 )
𝑣 𝛿𝑢𝑧,𝑧

[

(𝛿𝑢𝑥,𝑥 )
𝑣 𝛿𝑢𝑥,𝑧 + 𝛿𝑢𝑥,𝑥 (𝛿𝑢𝑥,𝑧 )

𝑣
]

+
[

(𝛿𝑢𝑦,𝑥 )
𝑣 𝛿𝑢𝑦,𝑧 + 𝛿𝑢𝑦,𝑥 (𝛿𝑢𝑦,𝑧 )

𝑣
]

+
[

(𝛿𝑢𝑧,𝑥 )
𝑣 𝛿𝑢𝑧,𝑧 + 𝛿𝑢𝑧,𝑥 (𝛿𝑢𝑧,𝑧 )

𝑣
]

[

(𝛿𝑢𝑥,𝑦 )
𝑣 𝛿𝑢𝑥,𝑧 + 𝛿𝑢𝑥,𝑦 (𝛿𝑢𝑥,𝑧 )

𝑣
]

+
[

(𝛿𝑢𝑦,𝑦 )
𝑣 𝛿𝑢𝑦,𝑧 + 𝛿𝑢𝑦,𝑦 (𝛿𝑢𝑦,𝑧 )

𝑣
]

+
[

(𝛿𝑢𝑧,𝑦 )
𝑣 𝛿𝑢𝑧,𝑧 + 𝛿𝑢𝑧,𝑦 (𝛿𝑢𝑧,𝑧 )

𝑣
]

[

(𝛿𝑢𝑥𝑥 )
𝑣 𝛿𝑢𝑥,𝑦 + 𝛿𝑢𝑥,𝑥 (𝛿𝑢𝑥,𝑦 )

𝑣
]

+
[

(𝛿𝑢𝑦,𝑥 )
𝑣 𝛿𝑢𝑦,𝑦 + 𝛿𝑢𝑦,𝑥 (𝛿𝑢𝑦,𝑦 )

𝑣
]

+
[

(𝛿𝑢𝑧,𝑥 )
𝑣 𝛿𝑢𝑧,𝑦 + 𝛿𝑢𝑧,𝑥 (𝛿𝑢𝑧,𝑦 )

𝑣
]

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

(13)

Box I.
𝐁∗
𝑛𝑙 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝐹𝜏𝐹𝑠𝑁𝑖,𝑥𝑁𝑗,𝑥 𝐹𝜏𝐹𝑠𝑁𝑖,𝑥𝑁𝑗,𝑥 𝐹𝜏𝐹𝑠𝑁𝑖,𝑥𝑁𝑗,𝑥

𝐹𝜏𝐹𝑠𝑁𝑖,𝑦𝑁𝑗,𝑦 𝐹𝜏𝐹𝑠𝑁𝑖,𝑦𝑁𝑗,𝑦 𝐹𝜏𝐹𝑠𝑁𝑖,𝑦𝑁𝑗,𝑦

𝐹𝜏,𝑧𝐹𝑠,𝑧𝑁𝑖𝑁𝑗 𝐹𝜏,𝑧𝐹𝑠,𝑧𝑁𝑖𝑁𝑗 𝐹𝜏,𝑧𝐹𝑠,𝑧𝑁𝑖𝑁𝑗

𝐹𝜏𝐹𝑠,𝑧𝑁𝑖,𝑥𝑁𝑗 + 𝐹𝜏,𝑧𝐹𝑠𝑁𝑖𝑁𝑗,𝑥 𝐹𝜏𝐹𝑠,𝑧𝑁𝑖,𝑥𝑁𝑗 + 𝐹𝜏,𝑧𝐹𝑠𝑁𝑖𝑁𝑗,𝑥 𝐹𝜏𝐹𝑠,𝑧𝑁𝑖,𝑥𝑁𝑗 + 𝐹𝜏,𝑧𝐹𝑠𝑁𝑖𝑁𝑗,𝑥

𝐹𝜏,𝑧𝐹𝑠𝑁𝑖𝑁𝑗,𝑦 + 𝐹𝜏𝐹𝑠,𝑧𝑁𝑖,𝑦𝑁𝑗 𝐹𝜏,𝑧𝐹𝑠𝑁𝑖𝑁𝑗,𝑦 + 𝐹𝜏𝐹𝑠,𝑧𝑁𝑖,𝑦𝑁𝑗 𝐹𝜏,𝑧𝐹𝑠𝑁𝑖𝑁𝑗,𝑦 + 𝐹𝜏𝐹𝑠,𝑧𝑁𝑖,𝑦𝑁𝑗

𝐹𝜏𝐹𝑠𝑁𝑖,𝑥𝑁𝑗,𝑦 + 𝐹𝜏𝐹𝑠𝑁𝑖,𝑦𝑁𝑗,𝑥 𝐹𝜏𝐹𝑠𝑁𝑖,𝑥𝑁𝑗,𝑦 + 𝐹𝜏𝐹𝑠𝑁𝑖,𝑦𝑁𝑗,𝑥 𝐹𝜏𝐹𝑠𝑁𝑖,𝑥𝑁𝑗,𝑦 + 𝐹𝜏𝐹𝑠𝑁𝑖,𝑦𝑁𝑗,𝑥

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

(15)

Box II.
u
a

employed Newton–Raphson method with a path-following constraint
and the explicit forms of tangent and secant stiffness matrices.

3. Numerical results

This section presents numerical results of the large deflection and
post-buckling of composite plates based on CUF plate models. First,
different refined composite plates under uniform transverse pressure
are calculated with symmetric and antisymmetric laminations. The
equilibrium curves are compared with those in the available litera-
ture. Then, the post-buckling analyses of laminated plates subjected
to in-plane compressive loads are performed, and a comprehensive
investigation is carried out for the evaluation of the effects of different
edge conditions on the plate post-buckling behaviours.

3.1. Large deflection of composite plates subjected to uniform transverse
pressure

3.1.1. Cross-ply [0/90]𝑠 laminate with different edge conditions
For the first analysis case, a 4-layer [0∕90]𝑠 square composite plate

s studied. The geometric characteristics of the structure are with width
= 𝑏 = 30.48 cm and thickness ℎ = 7.62 mm. This structure is subjected

o a uniform transverse pressure. The transverse pressure is fixed in the
irection (𝑧 axis), and the pressure values are investigated versus the
orresponding displacements along the equilibrium path. The following
wo kinds of boundary conditions are considered for this case: (a) all
dges are fully clamped in such a way that 𝑢 = 𝑣 = 𝑤 = 0 at 𝑥 = 0, 𝑎

and 𝑦 = 0, 𝑏; (b) all edges are simply-supported in such a way that
𝑢 = 𝑣 = 𝑤 = 0 at 𝑥 = 0, 𝑎, 𝑧 = 0 and 𝑦 = 0, 𝑏, 𝑧 = 0. The material
roperties for this composite plate are reported in Table 1.
4

Table 1
Material properties of a 4-layer [0∕90]𝑠 composite plate [16].

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) 𝜈12 = 𝜈13
12.60 12.62 2.15 0.2395

Table 2
Equilibrium points of nonlinear response curves of a 4-layer [0∕90]𝑠 composite plate
nder transverse pressure with clamped edge conditions for different models and loads
t the centre of the composite plate.
CUF plate model DOFs 𝑢𝑧∕ℎ

𝑝𝑧𝑎4∕𝐸2ℎ4 = 4000 𝑝𝑧𝑎4∕𝐸2ℎ4 = 16 000

4 × 4Q9-LD1 1215 4.44 7.16
8 × 8Q9-LD1 4335 4.42 7.03
12 × 12Q9-LD1 9375 4.41 6.98

In this work, convergence analyses illustrated in Fig. 2 are con-
ducted to evaluate the effects of mesh approximation and kinematic
expansion. First, the finite plate elements are 4 × 4Q9, 8 × 8Q9,
and 12 × 12Q9 with the fixed LD1 theory approximation order for
each layer. Then, the kinematic expansion order along the thickness
direction is changed from LD1 to LD3, considering the 12 × 12Q9
in-plane mesh approximation. Moreover, the transverse displacement
values for various models and loads, along with the total degrees of
freedom (DOFs), are reported in Table 2. As observed from Fig. 2 and
Table 2, the convergence is achieved for the nonlinear response curves
based on the 12 × 12Q9-LD1 model, which will be used to investigate
the equilibrium curves of the above-mentioned composite plate. Fur-
thermore, the results show that the difference between the equilibrium
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Fig. 2. Convergence analysis for a 4-layer [0∕90]𝑠 composite plate under uniform transverse pressure with clamped edge conditions at the centre of the composite plate. Comparison
of (a) various in-plane mesh approximations and (b) different orders of Lagrange expansion functions in the thickness direction.
Fig. 3. Comparison of the equilibrium curves for a 4-layer [0∕90]𝑠 composite plate under uniform transverse pressure with different edge conditions.
aths for the investigated CUF plate models is not significant in the case
f the composite plate under bending.

The equilibrium curves for this composite plate subjected to both
lamped and simply-supported edge conditions are illustrated in Fig. 3,
hich plots the normalized values of the displacement in the middle
oint of the plate versus the normalized values of the applied transverse
ressure. As shown in this figure, the equilibrium curves predicted
y the CUF linear and Full nonlinear (Full NL) plate models match
ell with those in the available literature using the FSDT theory [16].

n addition, the difference between linear and nonlinear models is
ore significant as the transverse pressure value is increased. Also,

he load-carrying capacity of the composite plate with the clamped
dge conditions is higher than that of the composite plate with the
imply-supported ones.

Table 3 shows the displacement values based on different 2D CUF
odels and solutions in the available literature [16] at the fixed load

f 𝑃𝑧𝑎4

𝐸2ℎ4
= 100 for the clamped edge conditions, and at the fixed load of

𝑃𝑧𝑎4

𝐸2ℎ4
= 25 for the simply-supported edge conditions. According to this

able, the displacement values of the 2D CUF Full NL and linear models
gree well with the corresponding values of the FSDT nonlinear and
inear models, respectively.

.1.2. [45/-45/0/0/45/-45/90/90]𝑠 laminate with clamped edge condi-
tions

A 16-layer [45∕ − 45∕0∕0∕45∕ − 45∕90∕90]𝑠 square composite plate
is analysed as the second case. The geometric characteristics are with
width 𝑎 = 𝑏 = 25.4 cm and thickness ℎ = 2.11 mm. A schematic view
5

Table 3
The displacement values based on different 2D CUF models and solutions in the
available literature [16] for the 4-layer [0∕90]𝑠 composite plates under transverse
pressure at the fixed load of 𝑃𝑧𝑎4

𝐸2ℎ4 = 100 with clamped edge conditions, and at the

fixed load of 𝑃𝑧𝑎4

𝐸2ℎ4 = 25 with simply-supported edge conditions.

Model Clamped Simply-supported
𝑢𝑧 (mm) 𝑢𝑧 (mm)

Full NL 12 × 12Q9-LD1 7.57 5.62
Ref [16] - FSDT NL 7.71 5.67
Linear 12 × 12Q9-LD1 11.81 10.86
Ref [16] - FSDT Linear 12.19 11.21

Table 4
Material properties of a 16-layer [45∕ − 45∕0∕0∕45∕ − 45∕90∕90]𝑠 composite plate [55].

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) 𝜈12 = 𝜈13
131 13.03 6.41 4.72 0.38

of the investigated composite plate is illustrated in Fig. 4. The plate
generates large deflection due to a uniform transverse pressure, and
the edges are fully clamped so that 𝑢 = 𝑣 = 𝑤 = 0 at 𝑥 = 0, 𝑎 and
𝑦 = 0, 𝑏. The material properties for this composite plate are reported
in Table 4.

The convergence analysis for this laminated case is illustrated in
Fig. 5. Fig. 5a provides the transverse deflection at the centre of the
composite plate for various CUF plate models, and the in-plane meshes
from 16Q9 to 144Q9 FEs are used, whereas only one LD1 is adopted
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Fig. 4. Schematic view of a 16-layer [45∕ − 45∕0∕0∕45∕ − 45∕90∕90]𝑠 composite plate.

able 5
quilibrium points of nonlinear response curves of a 16-layer [45∕ − 45∕0∕0∕45∕ −
5∕90∕90]𝑠 composite plate under uniform transverse pressure with clamped edge
onditions for different CUF plate models and loads. The displacement is calculated
t the centre of the composite plate.
CUF plate model DOFs 𝑢𝑧∕ℎ

𝑝𝑧𝑎4∕𝐸2ℎ4 = 400 𝑝𝑧𝑎4∕𝐸2ℎ4 = 1600

4 × 4Q9-LD1 4131 0.81 1.71
8 × 8Q9-LD1 14 739 0.89 1.80
12 × 12Q9-LD1 31 875 0.90 1.82

for each layer in the thickness direction. Instead, analyses based on
different through-the-thickness kinematic approximations are reported
in Fig. 5b. Moreover, the transverse displacement values for various
CUF plate models and loads are tabulated in Table 5 along with the
DOFs. As shown in Fig. 5 and Table 5, the convergence is obtained
for the nonlinear static response when adopting the 12 × 12Q9-LD1

odel.

Fig. 6 depicts the equilibrium curves at the centre of the laminated
late and the comparison with reference solutions in the available
iterature. As illustrated in this figure, the equilibrium curves obtained
y the CUF linear and Full NL plate models agree well with the
orresponding values from the available literature [55–57].
 a

6

Fig. 6. Comparison of the equilibrium curves for a 16-layer [45∕ − 45∕0∕0∕45∕ −
45∕90∕90]𝑠 composite plate under uniform transverse pressure with clamped edge
conditions.

Table 6
Material properties of a 2-layer [0∕90] composite plate [16].

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) 𝜈12 = 𝜈13
275.79 6.89 4.13 3.44 0.25

3.1.3. Cross-ply [0/90] and [0/90]3 laminates with clamped edge condi-
ions

The last large-deflection cases are 2-layer [0∕90], and 6-layer [0∕90]3
quare composite plates with the width of 𝑎 = 𝑏 = 30.48 cm and
he thickness of ℎ = 2.44 mm. The plates are subjected to the large
eflection due to a uniform transverse pressure, and the edges are fully
lamped such that 𝑢 = 𝑣 = 𝑤 = 0 at 𝑥 = 0, 𝑎 and 𝑦 = 0, 𝑏. The material
roperties for the two composite plates are shown in Table 6.

In this case, the convergence analysis shown in Fig. 7 is conducted to
valuate the effects of in-plane mesh kinematic expansion approxima-
ions. First, the finite plate elements are 2 × 2Q9, 4 × 4Q9, and 8 × 8Q9
ith the fixed LD1 kinematic approximation order for each layer.
hen, the theoretical expansion order along the thickness direction is
hanged from LD1 to LD3, while the finite plate elements are fixed
t 8 × 8Q9. Moreover, the transverse displacement values for various
UF plate models and loads, along with the DOFs, are provided in
able 7. As can be seen in Fig. 7a, the convergence is achieved in
he upper bound and at least for the 4 × 4Q9 plate model, while the
odels with different through-the-thickness kinematic approximations

re converged in Fig. 7b. Therefore, it is clear from Fig. 7 and Table 7
hat the convergence can be reached for the nonlinear response when
dopting the 8 × 8Q9-LD1 CUF plate model.
Fig. 5. Convergence analysis for a 16-layer [45∕ − 45∕0∕0∕45∕ − 45∕90∕90]𝑠 composite plate under uniform transverse pressure with clamped edge conditions.
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Fig. 7. Convergence analysis for a 2-layer [0∕90] composite plate under uniform transverse pressure with clamped edge conditions.
(
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Table 7
Equilibrium points of nonlinear response curves of a 2-layer [0∕90] composite plate
under uniform transverse pressure with clamped edge conditions for different CUF plate
models and loads. The displacement is calculated at the centre of the plate structure.

CUF plate model DOFs 𝑢𝑧∕ℎ

𝑝𝑧𝑎4∕𝐸2ℎ4 = 50 000 𝑝𝑧𝑎4∕𝐸2ℎ4 = 250 000

2 × 2Q9-LD1 225 4.61 7.80
4 × 4Q9-LD1 729 4.18 7.07
8 × 8Q9-LD1 2601 4.17 7.05

Table 8
The displacement values based on different 2D CUF plate models and solutions in the
available literature [16] at the fixed load of 𝑃𝑧𝑎4

𝐸2ℎ4 = 500 for the 2-layer [0/90] composite

plate, and at the fixed load of 𝑃𝑧𝑎4

𝐸2ℎ4 = 1500 for the 6-layer [0/90]3 composite plate under
niform transverse pressure.
Model 2-layer [0/90] 6-layer [0/90/0/90/0/90]

𝑢𝑧 (mm) 𝑢𝑧 (mm)

Full NL 8 × 8Q9-LD1 1.79 2.45
Ref [16] - FSDT NL 1.78 2.43
Linear 8 × 8Q9-LD1 3.57 4.12
Ref [16] - FSDT Linear 3.52 4.11

The equilibrium curves for 2-layer [0∕90] and 6-layer [0∕90]3 com-
posite plates subjected to clamped edge conditions are shown in Fig. 8,
which plots the normalized values of the displacement at the centre of
the plate versus the normalized values of the applied transverse pres-
sure. It is evident in this figure that the equilibrium curves obtained by
the CUF linear and Full NL plate models provide excellent predictions
compared with the solutions in the available literature using the FSDT
theory [16]. In addition, the load-carrying capacity of the composite
plate with a 6-layers is higher than that of the composite plate with a
2-layers.

Table 8 shows the displacement values based on the different 2D
CUF plate models and solutions in the available literature [16] at the
fixed load of 𝑃𝑧𝑎4

𝐸2ℎ4
= 500 for the 2-layer [0/90] composite plate, and

t the fixed load of 𝑃𝑧𝑎4

𝐸2ℎ4
= 1500 for the 6-layer [0/90/0/90/0/90]

omposite plate. Based on Table 8, the displacement values of the CUF
inear and Full NL plate models match well with those of the FSDT
onlinear and linear models, respectively.

.2. Post-buckling of composite plates under in-plane compressive loads

.2.1. Cross-ply [0/90]2 rectangular laminate with simply-supported edge
onditions

A 4-layer [0∕90]2 rectangular composite plate is considered as the
irst post-buckling case. The structure has the length of 𝑎 = 20 cm,
7

Table 9
Material properties of a 4-layer [0∕90]2 composite plate.

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) 𝜈12 = 𝜈13
220 5.5 3.3 2.75 0.25

Table 10
Equilibrium points of nonlinear response curves of a cross-ply [0∕90]2 laminate under
in-plane compressive line loads in the 𝑥-axis direction with simply-supported edge
conditions for different CUF late models and loads — The displacement is calculated
at the centre of the laminated plate.

CUF plate model DOFs 𝑢𝑧∕ℎ

𝑁𝑥𝑏𝑎∕𝐸2ℎ3 = 200 𝑁𝑥𝑏𝑎∕𝐸2ℎ3 = 400

10 × 2Q9-LD1 1575 0.731 1.618
20 × 5Q9-LD1 6765 0.859 1.865
40 × 10Q9-LD1 25 515 0.859 1.865

the width of 𝑏 = 5 cm, and the thickness of ℎ = 2 mm. The plate is
subjected to in-plane compressive line loads in the 𝑥-axis direction, 𝑁𝑥
force per unit width), see Fig. 10. The edges are simply-supported in
uch a way that one set of opposite edges along width 𝑥 = 0, 𝑎 satisfy
𝑣 = 𝑤 = 0 (see S1 in Fig. 10), whereas another set of simply-supported
opposite edges along the length 𝑦 = 0, 𝑏 satisfy 𝑤 = 0 at 𝑧 = 0 (see S2 in
Fig. 10). Furthermore, a constraint condition satisfying 𝑢 = 𝑣 = 0 at the
centre point of the plate is used in order to avoid the rigid-body motion
of the plate. The material properties, loading, and edge conditions for
this composite plate are shown in Table 9 and Fig. 10.

For this composite plate, the convergence analysis of the equilib-
rium curves is reported in Fig. 9, which plots the normalized values
of the displacement at the centre of the plate versus the normalized
values of the applied compressive line load. To evaluate the effect
of in-plane mesh and kinematic expansion approximations, the finite
plate elements are first considered to be 10 × 2Q9, 20 × 5Q9, and
40 × 10Q9 with the fixed LD1 kinematic expansion for each layer. Then,
the expansion order along the thickness direction is changed from LD1
to LD3, while the finite plate element is fixed at 20 × 5Q9. Moreover,
the transverse displacement values for various CUF plate models and
loads are reported in Table 10 along with the DOFs. Fig. 9a shows that
the convergence is achieved in the lower bound and at least for the
20 × 5Q9-LD1 plate model. Thus, as evident from Fig. 9 and Table 10,
the convergence is achieved for the nonlinear response curves when
using the 20 × 5Q9-LD1 plate model.

Fig. 10 shows the equilibrium curves for a cross-ply [0∕90]2 compos-
ite plate obtained by the 2D CUF Full NL model, ABAQUS (ABQ) 2D
shell model and ABQ 3D solid model. As shown in Fig. 10, the equilib-
rium curves obtained by the 2D CUF Full NL model agree well with the
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Fig. 8. Comparison of the equilibrium curves for 2-layer [0/90] and 6-layer [0/90]3 composite plates under uniform transverse pressure with clamped edge conditions.
Fig. 9. Convergence analysis for a cross-ply [0∕90]2 laminate under in-plane compressive line loads in the 𝑥-axis direction with simply-supported edge conditions.
Fig. 10. Comparison of equilibrium curves for a cross-ply [0∕90]2 laminate under
n-plane compressive line loads in the 𝑥-axis direction with simply-supported edge
onditions based on the 2D CUF Full NL model (20 × 5Q9-LD1), ABQ 2D NL model
60 × 15 S8R) and ABQ 3D NL model (60 × 15 × 4 C3D20R).

ABQ 3D solid model. In contrast, the ABQ 2D shell model predicts ac-

curate results in only the range of small/moderate displacements, while

8

Table 11
Comparison of displacements values at the fixed load of 𝑁𝑥𝑏𝑎

𝐸2ℎ3 = 300 and the normalized
linear buckling loads for a cross-ply [0∕90]2 laminate under in-plane compressive line
load in the 𝑥-axis direction with simply-supported edge conditions.

Model 𝑢𝑧 (mm) Linear buckling load (N/m)

2D CUF Full NL 20 × 5Q9+LD1 1.422 503 360
ABQ 2D NL 60 × 15 S8R 1.134 497 658
ABQ 3D NL 60 × 15 × 4 C3D20R 1.428 498 976

the difference become more remarkable when large displacements are
considered. For clarity, in the nonlinear analysis using the ABQ 3D solid
model, a fine mesh employing C3D20R elements is used to overcome
the mesh instability problem due to the hourglassing. Fig. 11 depicts
the deformed configurations and the displacement contours based on
the 2D CUF Full NL model (20 × 5Q9-LD1), ABQ 2D shell model
(60 × 15 S8R) and ABQ 3D solid model(60 × 15 × 4 C3D20R) at
the fixed load of 𝑁𝑥𝑏𝑎

𝐸2ℎ3
= 300 for the above-mentioned rectangular

composite plate. It is clear from this figure that the buckled pattern and
the displacement values of different regions predicted by the 2D CUF
model have a good consistency with those based on the ABQ models.

Table 11 shows the displacements values at the fixed load of 𝑁𝑥𝑏𝑎
𝐸2ℎ3

=
300 and the linear buckling loads predicted by the above-mentioned
three models for the same rectangular composite plate.
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Fig. 11. Comparison of displacement contours at the fixed load of 𝑁𝑥𝑏𝑎
𝐸2ℎ3 = 300 for a

ross-ply [0∕90]2 laminate under in-plane compressive line loads in the 𝑥-axis direction
ith simply-supported edge conditions based on (a) 2D CUF Full NL 20 × 5Q9+LD1
odel, (b) ABQ 2D NL 60 × 15 S8R model and (c) ABQ 3D NL 60 × 15 × 4 C3D20R
odel.

able 12
aterial properties of a [0∕90]𝑛 composite plate [16].
E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) 𝜈12 = 𝜈13 𝜈23
250 6.25 5.125 3.25 0.24 0.49

Table 13
Equilibrium points of nonlinear response curves of a cross-ply [0∕90] laminate under
n-plane compressive line loads in the 𝑦-axis direction with simply-supported edge
onditions for different CUF plate models and loads. The displacement is calculated
t the centre of the laminated plate.
CUF plate model DOFs 𝑢𝑧∕ℎ

𝑁𝑦𝑎2∕𝐸2ℎ3 = 15 𝑁𝑦𝑎2∕𝐸2ℎ3 = 35

6 × 6Q9-LD1 1521 0.90 1.97
9 × 9Q9-LD1 3249 0.97 2.11
12 × 12Q9-LD1 5625 1.01 2.19
18 × 18Q9-LD1 12 321 1.03 2.20

3.2.2. Cross-ply [0/90]𝑛 square laminates with simply-supported edge con-
itions

The cross-ply [0∕90]𝑛 composite square plates are investigated in
this section [16]. The subscript 𝑛 denotes the number of [0/90] layers.
This structure has the width of 𝑎 = 𝑏 = 1 m and the thickness
of ℎ = 2 mm. The plate is subjected to a uniformly distributed in-
plane compressive line load in the 𝑦-axis direction 𝑁𝑦 (force per unit
length, see Fig. 13) and the edges are simply supported that one set of
opposite edges along the 𝑥-axis direction 𝑥 = 0, 𝑎 satisfy 𝑣 = 𝑤 = 0,
whereas another set of simply-supported opposite edges along the 𝑦-
axis direction 𝑦 = 0, 𝑏 satisfy 𝑢 = 𝑤 = 0 (see S in Fig. 13). Table 12
provides the material properties of the composite plate.

For this composite plate structure, the convergence analysis of the
equilibrium curves is plotted in Fig. 12, which plots the normalized
values of the displacement in the middle point of the laminate versus
the normalized values of the applied compressive load. Moreover, the
transverse displacement values for various CUF plate models and loads
 t

9

Fig. 12. Convergence analysis of the in-plane mesh approximation for a cross-ply
[0∕90] laminate under in-plane compressive line loads in the 𝑦-axis direction with
simply-supported edge conditions.

Fig. 13. Comparison of the equilibrium curves for different cross-ply [0∕90]𝑛 lam-
nated plates under in-plane compressive line loads in the 𝑦-axis direction with
imply-supported edge conditions based on 2D CUF Full NL 12 × 12Q9-LD1 model.

re reported in Table 13 along with the DOFs. As shown in Fig. 12 and
able 13, the convergence is achieved at least for the 12 × 12Q9-LD1
odel.

The equilibrium curves obtained by the 2D CUF Full NL model and
olutions in the available literature are compared in Fig. 13. In this
igure, the horizontal lines show the corresponding linear buckling load
y the CUF method. It is clear in Fig. 13 that the equilibrium curves
redicted by the 2D CUF Full NL model agree well with those available
n the literature [16]. The results show the fact that by assuming a
onstant value for the plate thickness, increasing the layer number
f the composite plate results in higher structural stiffness and load-
arrying capacity of the plate. Moreover, the linear buckling strength
s increased significantly for the [0∕90]4 plate with 8-layers compared
o the [0∕90]1 plate with 2-layers. Also, it can be understood that the
inear buckling strength of the [0∕90] composite plate is dramatically
ower than all other investigated composite plates. It is noted from
ig. 13 that no exact buckling load exists for the [0∕90]𝑛 composite plate
tructure based on the CUF Full NL plate model. This is because the
ntisymmetric composite laminate is under in-plane compressive loads.
he buckling load predicted by the linear buckling analysis is much
igher than that based on the Full NL plate model. Therefore, the linear
uckling analysis cannot be utilized to calculate the buckling load of
he antisymmetric plate structure due to the curvature introduced by
he in-plane compressive loads.
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Fig. 14. Combined loading of a laminated composite plate: positive in-plane shear,
in-plane compression, and the uniform transverse pressure.

Table 14
Material properties of a 4-layer [45∕ − 45]𝑠 composite plate [55].

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) 𝜈12 = 𝜈13
206.9 5.2 2.6 0.25

3.2.3. Angle-ply [45/-45]𝑠 laminate with simply-supported edge conditions
This analysis case deals with angle-ply [45∕−45]𝑠 composite square

plate under the combined loading [55]. The width of the plate is
𝑎 = 𝑏 = 0.25 m and the thickness is ℎ = 2.5 mm. Different loading
cases are assumed for the composite plate such as the combination of
uniformly distributed in-plane compressive bi-axial line loads of 𝑁𝑥
and 𝑁𝑦 (𝑁𝑥 = 𝑁𝑦 in the current example), the in-plane shear load of
𝑁𝑥𝑦 = 𝑁𝑥, and the uniform transverse pressure of 𝑃𝑧 = 0.1𝑁𝑥. The edge
conditions are simply-supported in such a way that only the transverse
deflections are restrained at the edges. The material properties and a
schematic view of the loading conditions are shown in Table 14 and
Fig. 14, respectively.

For this composite structure, the convergence analysis of the equi-
librium curves is provided in Fig. 15, which plots the normalized values
of the displacement in the middle point of the plate versus the values
of the loading factor (𝜆).

It is evident from Fig. 15 that the convergence is reached at least
for the 15 × 15Q9-LD1 plate model.

Fig. 16 illustrates how the deflection at the middle of the laminate
varies by increasing the loading after the bifurcation point. The results
show the fact that the direction of the applied shear loading plays a
pivotal role in the post-buckling behaviour of the angle-ply compos-
ite plate. Specially, in contrast with the negative shear loading, the
angle-ply plate with positive shear loading shows higher rigidity and
load-carrying capacity, which will be further displayed below.
10
Table 15
Material properties of a 2-layer [0∕90] composite plate [30].

E1 (GPa) E2 = E3 (GPa) G12 = G13 (GPa) G23 (GPa) 𝜈12 = 𝜈13
220 5.5 3.3 2.75 0.25

The equilibrium curves for this angle-ply composite plate subjected
to different combined loadings are shown in Fig. 17, which plots the
normalized values of the displacement in the middle point of the plate
versus the normalized values of the applied compressive line load in
the 𝑥-axis direction. The horizontal lines in this figure display the
corresponding linear buckling loads predicted by the CUF method. It
is found from Fig. 17 that for this symmetric composite structure, the
buckling loads predicted by the linear buckling analysis are almost
the same as those based on CUF Full NL plate model, even if there
exists uniform transverse pressure applied to the plate. Thus, the linear
buckling analysis can be exploited to first predict the buckling load
of the symmetric composite structure. In addition, the linear buckling
load of the angle-ply plate with positive shear is higher than other
loading cases, which demonstrates the previously mentioned fact that
the angle-ply plate with positive shear loading has higher rigidity
and load-carrying capacity. Finally, it is noted that as the transverse
pressure is relatively small compared with the in-plane loads, the
equilibrium curves with transverse pressure gradually approach those
without transverse pressure when continuously increasing the loading.

3.2.4. Cross-ply [0/90] square laminate with different edge conditions
The effect of different plate edge conditions on the post-buckling

nonlinear response of the cross-ply composite plate under in-plane
compressive load is presented for the final post-buckling example. This
problem deals with a cross-ply [0∕90] square plate with different edge
conditions [30]. This 2D model has the width of 𝑎 = 𝑏 = 1 m and the
thickness of ℎ = 1 cm. In the first analysis case, the plate is subjected
o a uniformly distributed in-plane compressive line load in the 𝑥-axis
irection 𝑁𝑥, while in the second analysis case, the plate is subjected
o a uniformly distributed in-plane compressive line load in the 𝑦-axis

direction 𝑁𝑦. The edge conditions are SSSS, SSCC, SSSC, SSFC, and
SSFS. The letters ‘‘S’’, ‘‘C’’, and ‘‘F’’ indicate simply-supported, clamped,
and free edge conditions. It should be noted that the third and fourth
letters of the boundary condition refer to 𝑦 = 𝑏 and 𝑦 = 0. Furthermore,
the clamped edge conditions satisfy 𝑢 = 𝑣 = 𝑤 = 0 at the corresponding
edge and the simply-supported edge conditions satisfy 𝑣 = 𝑤 = 0
at 𝑥 = 0, 𝑎, or 𝑢 = 𝑤 = 0 at 𝑦 = 0, 𝑏. Material properties for the
bove-mentioned composite plate are shown in Table 15.

For this cross-ply composite plate with simply-supported edge con-

ditions, the convergence analysis of the equilibrium curves for the
Fig. 15. Convergence analysis for an angle-ply [45∕ − 45]𝑠 laminate under the combined loading with simply-supported edge conditions.
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Fig. 16. Comparison of the equilibrium curves based on the values of loading factor
𝜆 for an angle-ply [45∕ − 45]𝑠 laminate under different combined loadings with
simply-supported edge conditions.

Fig. 17. Comparison of the equilibrium curves for an angle-ply [45∕ − 45]𝑠 laminate
under different combined loadings with simply-supported edge conditions.

in-plane compressive loads in the 𝑥-axis direction is provided in Fig. 18.
This figure shows that the convergence is obtained at least for the
12 × 12Q9-LD1 plate model. The equilibrium curves based on this
convergence plate model are investigated for SSSS, SSCC, SSSC, SSFC,
and SSFS edge conditions in Figs. 19 and 20 to evaluate the effect of
different edge conditions on the nonlinear response of the cross-ply
composite plate. The horizontal lines in these two figures’ enlarged
views indicate the corresponding linear buckling loads by the CUF
method. The results show that the load-carrying capacity of the com-
posite plate with the clamped edge conditions is higher than other
investigated edge conditions. Furthermore, it can be understood that
the presence of a free edge reduces the buckling strength significantly.
The current method can also predict the nonlinear response of the
composite plate beyond the limit load and the snap-through instability.

4. Conclusions

In this work, large deflection and post-buckling analyses of lami-
nated composite plates have been investigated by employing the Car-
rera Unified Formulation (CUF) and the layerwise (LW) approach based
on Lagrange expansion. The path-following Newton–Raphson lineariza-
tion method has been adopted to compute the full geometrically non-
linear plate problems. Different two-dimensional (2D) composite plate
11
Fig. 18. Convergence analysis of the in-plane mesh approximation for a cross-ply [0∕90]
aminate under in-plane compressive loads in the 𝑥 axis direction with simply-supported
dge conditions.

Fig. 19. Comparison of the equilibrium curves for a cross-ply [0∕90] laminate under
in-plane compressive line loads in the 𝑥-axis direction with different edge conditions
based on 2D CUF Full NL 12 × 12Q9-LD1 model.

Fig. 20. Comparison of the equilibrium curves for a cross-ply [0∕90] laminate under
in-plane compressive line loads in the 𝑦-axis direction with different edge conditions
ased on 2D CUF Full NL 12 × 12Q9-LD1 model.
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structures subjected to large deflections/rotations and post-buckling
have been analysed and the numerical results have been compared with
solutions in the available literature. Furthermore, the linear buckling
load of the composite plates has been calculated for the post-buckling
cases. The effects of different parameters, such as the stacking se-
quence, number of layers, loading way, and edge conditions, have been
investigated and discussed in detail. The results have demonstrated
that:

• The equilibrium curves obtained by the CUF linear and Full NL
models agree well with those in the available literature or the
ABAQUS 3D solid model solutions;

• Increasing the layer number of the composite plates results in
the higher buckling strength and load-carrying capacity of the
composite structures;

• For the angle-ply laminate subjected to the combined loading
(in-plane shear and bi-axial compression), the direction of the
applied shear plays a pivotal role in the post-buckling behaviour
of the composite plate, and the angle-ply plate with positive shear
loading shows higher rigidity and load-carrying capacity;

• The buckling strength and the load-carrying capacity of the com-
posite plates with the clamped edge conditions are higher com-
pared to other investigated edge conditions, and the presence of
a free edge reduces the buckling strength significantly;

• The linear buckling analysis cannot be utilized to calculate the
buckling load of the antisymmetric structure. However, the buck-
ling loads predicted by the linear buckling analysis for symmetric
composite structures are almost the same as those based on CUF
Full NL plate model.

Further developments of the proposed methodology are being stud-
ied, such as a nonlinear local analysis and a localized buckling with
the advantage of coupling the global/local approach with optimization
tools to reduce computation time. Furthermore, the same nonlinear
methodology will also be adopted to perform dynamic analyses. Other
important topics under development are the extension of CUF-based
nonlinear finite elements for the analysis of deployable space struc-
tures, elastomers and mechanical meta-materials. Preliminary results
have shown some potential and advantages on the accuracy of the
results and processing times.
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