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ABSTRACT
Coronal Mass Ejections (CMEs) are massive releases of
plasma from the solar corona. When the charged material is
ejected towards the Earth, it can cause geomagnetic storms
and severely damage electronic equipment and power grids.
Early detection of CMEs is therefore crucial for damage con-
tainment. In this paper, we study detection of CMEs from
sequential images of the solar corona acquired by a satellite.
A low-complexity deep neural network is trained to process
the raw images, ideally directly on the satellite, in order to
provide early alerts.

Index Terms— Deep neural network, CME, space weather

1. INTRODUCTION
A geomagnetic storm is a major disturbance of Earth’s mag-
netosphere. Solar Coronal Mass Ejections (CMEs) [1] consist
in huge releases of plasma from the Sun’s corona and are ma-
jor sources of large geomagnetic storms due to the massive
amount of coronal material arriving at Earth. CMEs can take
several days to affect Earth but in some cases they have been
registered to take less than a day. The effects of the resulting
geomagnetic storms can be extremely dangerous as they can
affect transmissions of radio signals, cause errors in GNSS
systems, as well as inducing currents in the power grid and
electronic devices, possibly causing large scale damage. Ad-
vance warning of impending geomagnetic storms is therefore
vital for damage mitigation. However, it is hard to predict
when the next CME will occur. The problem calls for new
techniques to develop early warning systems. Recent work
[2] uses in-situ measurements of magnetic field and plasma
at the Lagrange L1 point to predict CME-driven magnetic
storms. Images of the solar corona taken by in-orbit obser-
vatories, such as the LASCO instrument on the NASA-ESA
SOHO mission, can be an important additional source of in-
formation for early CME detection.

Some works have addressed automated detection of
CMEs from images of the solar corona. They typically
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rely on change detection algorithms built upon traditional
image processing methods and handcrafted features. For
instance, a running-difference of polar-transformed images
is processed with the Hough transform in the Computer-
Aided CME Tracking (CACTus) algorithm [3], and with
a thresholding-segmentation method in the Solar Eruptive
Events Detection System (SEEDS) method [4]. Machine-
learning algorithms [5, 6] have also been used to detect
CMEs, but still with handcrafted features rather than an end-
to-end learnable approach.

In this paper, we study the problem of detecting CMEs
from sequences of solar corona images acquired by LASCO
using a deep convolutional neural network. An end-to-end
trainable approach based on deep neural networks is proposed
to exploit their powerful representation learning capabilities,
outperforming existing algorithms based on handcrafted fea-
tures. The convolutional neural network (CNN) proposed in
this paper is deliberately kept as simple and basic as possible
with the goal of providing a low-latency and low-complexity
method that could run on dedicated hardware onboard of a
spacecraft. We also deliberately feed raw uncalibrated images
to the neural network to simulate a working condition where
the limited resources of the spacecraft do not need to perform
onboard calibration to use the CNN-based alert system.

2. METHOD
2.1. Dataset

Training of deep neural networks requires a suitable amount
of labeled data and CMEs are relatively rare events. Fortu-
nately, the SOHO LASCO instrument has been in-orbit since
1995 and it is still operational, providing 13 years worth of
solar corona images as well as an annotated catalog of CME
events. The LASCO catalog of events [7] provides the ground
truth labels needed for the supervised training process of the
network. Critically, this catalog has been manually annotated
by a human operator rather than generated by an algorithm.
This is important since it avoids any bias in the dataset and
caps the performance reachable by the network to that of a
human expert rather than a suboptimal algorithm.



Table 1. Dataset. Number of image pairs.
Quality 1-3 Quality 4-5

Train Test Train Test

CME 10621 2656 2590 648
No CME 10621 2656 2590 648

Dates
Aug 1997
Nov 2014

Dec 2014
Sep 2016

Aug 1997
Nov 2014

Dec 2014
Sep 2016

We focus on the images acquired by the C2 coronagraph
onboard of LASCO. In particular, we use the level 0.5 prod-
ucts which consist in uncalibrated raw images. Such images
do not account for flat field correction, radiometric calibra-
tion, stray light, vignetting and geometric distortion compen-
sation which are only available in level 1 products. Indeed,
all those operations require processing resources so we would
like to avoid them onboard.

We are interested in looking at pairs of successive images
in order to let the network detect variations in the scene con-
tent. The image acquisition frequency has been changed over
the course of the mission but a large number of images is
available taken at intervals of about 12 minutes. After filtering
for corrupted images, we only choose image pairs acquired
12 minutes from each other: 178,585 image pairs from the
1997-2016 period are deemed usable. Each image pair is as-
sociated to a label depending on the CME information in the
catalog. In particular, we assign an “event” label if at least one
of the images in the pair is associated to a CME event in the
catalog. We only consider events meeting some significance
requirements, defined as all “Halo” events or “Partial Halo”
with angular width greater than 120◦. We remark that the cat-
alog also reports a quality metric, evaluating the visibility of
the CME on a 0 (poor) to 5 scale on the basis of brightness
and sharpness. Since CMEs are relatively rare events, it is
important to create a balanced dataset where the number of
image pairs with positive labels is equal to the number of im-
age pairs where no CME is observed. This avoids overfitting
the more common occurrence of no CME detection. Table 1
reports the details on train and test splits, as well as the parti-
tion according to event quality. Notice that the train and test
set are temporally disjoint to avoid any possible overfitting.
In addition, we reserve 50 image pairs from 2017 for cross-
validation purposes.

A few preprocessing operations are performed on the raw
images. First, the images are centered so that the center of the
Sun matches the center of the image. Then, images are trans-
formed into polar coordinates. The original image resolution
of 1024×1024 is transformed into 1024×512 by subsampling
the radial direction, which is also cropped to remove the oc-
cluded area corresponding to the center of the Sun. This also
beneficial in terms of computational complexity for the net-
work operation. Finally, the resulting images are normalized
by subtracting their mean and dividing by 216 − 1 so that the

Fig. 1. Mean raw image intensity as function of time.
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Fig. 2. Neural network architecture. Input: pair of succes-
sive images in heliocentric polar coordinates. Output: CME
probability.

intensity is at most 1. Mean value subtraction is especially
important as it acts as a kind of exposure compensation. In
fact, exposure time during image acquisition can be variable
affecting the resulting raw intensity values. The raw intensity
values are also affected by seasonal variations as the space-
craft orbits around the Sun (see Fig. 1). Convolutional neural
networks can learn to be robust to absolute brightness varia-
tions. However, one must consider that a pair of images is
fed to the network and if systematic intensity variations due
to e.g., exposure fluctuations are not compensated, it can be
difficult for the network to learn a change detection function.

2.2. Polar convolutional neural network

In this section we describe the neural network architecture
and the design choices behind it. A high-level overview is
given in Fig. 2. A pair of successive images is fed as an
image with 2 channels to a network composed by 4 convo-
lutional layers with 3 × 3 kernels followed by batch normal-
ization [8] and ReLU nonlinear activations. The number of
feature channels at the output of convolution is 32. The con-
volution operation is strided by a factor of 2, which combined
with reflection padding makes the spatial resolution of the
output feature maps exactly a quarter (half the number of pix-
els per dimension). Striding is often preferable to alternative
downsampling methods such as max pooling as it has been
observed to improve the ability of the learned kernels to spa-
tially summarize features rather than just extracting them [9].
For our problem, it also matters that strided convolution is
computationally cheaper than unstrided convolution followed
by max pooling. In fact, 3 × 3 strided convolution of an in-
put feature map of size H ×W × Fin with Fout channels re-



Fig. 3. Receptive field (green). Left: receptive field of a pixel
in rectangular coordinates. Right: equivalent receptive field
of a pixel in polar coordinates.

quires 2 ·9FinFout
HW
4 −1 FLOPs (Floating Point Operations)

against the 2 · 9FinFoutHW − 1 +HWFout FLOPs required
by unstrided convolution followed by max pooling. A final
fully-connected layer followed by a sigmoid activation esti-
mates the probability of a CME event. The network is trained
minimizing a cross-entropy loss:

L = − 1

N

N∑
i=1

[yi log pi + (1− yi) log(1− pi)] ,

being yi the ground truth label associated with image pair i,
and pi the network output.

It is interesting to remark the reasons why the input im-
ages are transformed into polar coordinates. First, this allows
to reduce the size of the image by removing the central area
of the Sun. This area has no valuable information as it is
physically blocked out by the instrument to avoid glare and
capture the fainter corona signal. Second, CME are inher-
ently radial phenomena as they are ejections of plasma to-
wards space. This means that they can be well represented
in a polar coordinates system. Thanks to the coordinate sys-
tem transformation the convolutional layers can easily learn
features along the radial and angular directions, which would
be more complex to capture by filters operating in rectangu-
lar coordinates. Fig. 3 shows how the shape of the receptive
field of a pixel, i.e., which pixels are affected by the network
operations to produce the value of the features of that pixel
at a given layer, is affected by change of coordinates. The
growth of the receptive field along the radial and angular di-
rections allows to create hierarchies of hidden representations
that preferentially follow those directions.

2.3. Preliminary feasibility analysis for space
Early detection of CMEs allows to prepare critical infrastruc-
ture such as power grids, satellites, etc. to limit the dam-
ages caused by the incoming geomagnetic storm. However,
transmitting all the acquired images to be processed by the
ground segment can result in severe delays due to the lim-
ited available bandwidth, downlink temporal windows, data
corruption, etc.. Onboard processing can significantly reduce

such problems by triggering high-priority alarms as a result
of the on-the-fly detection performed during image acquisi-
tion. Implementing neural networks in space can be chal-
lenging due to the limited resources available on spacecrafts
and the typically high computational demands of neural net-
works. Nevertheless, the network designed in this paper is
sufficiently small to fit off-the-shelf hardware components.

Three main factors should be considered to assess feasi-
bility: storage requirements of the pretrained model, system
memory requirements for the tensors produced by the hidden
layers, and computational complexity.

The network has 94145 trainable parameters, thus requir-
ing about 380 KiB of storage for the trained values repre-
sented as single precision floating point numbers. This a very
small value and poses no challenge at all.

During inference, peak memory utilization is equal to
around 200 MiB (including the tensorflow library). This
amount is compatible with new system-on-a-chip (SoC)
packages for deep learning. For example, the Myriad 2 is
a low-power (1W) SoC which supports up to 4 Gb DDR
memory [10].

The network requires roughly 1 GFLOP to process an in-
put pair. This amount is suitable as recent SoC processors
can reach speeds of tens of GFLOP/s (e.g., Myriad I is bench-
marked at 15 GFLOP/s [11]). Considering memory access
latencies and library overhead, we can safely assume that in-
ference on an image pair with the proposed network can be
done in hundreds of milliseconds on recent SoCs. Evaluation
of computational complexity should always be related to the
amount of time available to carry out the computation. In this
case the bottleneck is the image acquisition frequency: in a
system where images are acquired every 12 minutes such as
LASCO, there is plenty of time for onboard processing. How-
ever, our previous analysis suggests that CME alert generation
could be done with significantly faster frame rates.

3. EXPERIMENTAL RESULTS
In this section we experimentally evaluate the performance of
the proposed network on the dataset presented in Sec. 2.1. In
particular, we compare it against a baseline algorithm based
on change detection [12]. The baseline algorithm works as
follows. First, images are transformed into polar coordinates
and divided into radial sectors of 15◦ each. Then the absolute
relative difference between the sectors of the two images in
the input pair is evaluated and compared with a predefined
threshold τ . If the relative difference of at least k sectors
exceeds τ , then a CME is detected. The values of τ and k can
be tuned to reach the desired true positive and false positive
rate. In this work we set k = 8 and all values τ are tested to
generate ROC plots.

The network is trained with the Adam optimizer [13] and
a 10−7 learning rate, for roughly 10 epochs with a batch size
of 16 image pairs. Early stopping by monitoring the accuracy
on the validation set is adopted to prevent overfitting due to
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Fig. 4. ROC for quality 1-3 test set. Curve is parameterized
by varying detection thresholds τ and γ.
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Fig. 5. ROC for quality 4-5 test set. Curve is parameterized
by varying detection thresholds τ and γ.

the small dataset. CME detection is performed by compar-
ing the network output p with a threshold γ, achieving differ-
ent true positive and false positive rate tradeoffs. The desired
tradeoff can be selected by choosing γ based on the perfor-
mance on the validation set.

Figs. 4 and 5 show the performance of the baseline algo-
rithm and the neural network on the test set with quality 1-3
and quality 4-5 events, respectively. We remind the reader
that the test set is balanced, being half of the image pairs la-
beled as CME events. It can be noticed that the proposed net-
work significantly outperforms the change detection baseline.
In particular, the network shows robust performance even on
the low-quality set where the baseline is just slightly better
than random guess.

4. CONCLUSIONS

We showed that deep neural networks can be successful in
predicting CMEs from raw images of the solar corona, de-
spite limited image quality. Future work will expand on the
approach by focusing on predicting the direction of the CME
to assess if it poses a threat to Earth, as well as implementing
the method on flight-qualified hardware.
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