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Abstract16

Research on phononic crystal architectures has produced many interesting designs in the17

past years, with useful wave manipulation properties. However, not all of the proposed de-18

signs can lead to convenient realizations for practical applications, and only a limited number19

of them have actually been tested experimentally to verify numerical estimations and demon-20

strate their feasibility.21

In this work, we propose a combined numerical-experimental procedure to characterize the22

dynamic behavior of metamaterials, starting from a simplified 2D design to a real 3D man-23

ufacturing structure. To do this, we consider a new simplified design of a resonator-type24

geometry for a phononic crystal, and verify its wave filtering properties in wave propaga-25

tion experiments. The proposed geometry exploits a circular distribution of cavities in a26

homogeneous material, leading to a central resonator surrounded by thin ligaments and an27

external matrix. Parametric simulations are performed to determine the optimal thickness28

of this design leading to a large full band gap in the kHz range. Full field experimental29

characterization of the resulting phononic crystal using a scanning laser Doppler vibrometer30

is then performed, showing excellent agreement with numerically predicted band gap prop-31
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erties and with their resulting effects on propagating waves. The outlined procedure can32

serve as a useful step towards a standardization of metamaterial development and validation33

procedures.34

Keywords: Phononic Crystals, Elastic Metamaterials, Elastic Wave Propagation,35

Experimental Full Wavefield Reconstruction, Wavenumber-Frequency Analysis36

1. Introduction37

The investigation of elastic wave propagation phenomena in artificially structured com-38

posite materials is an active research topic in the scientific community. Shortly after the39

introduction of photonic crystals and electromagnetic metamaterials, their elastic counter-40

part, i.e., phononic crystals (PCs) and elastic metamaterials [1–3], have attracted increasing41

attention due to the possibility of reproducing in elasticity an abundant set of unusual phys-42

ical properties [4], such as stop-band filtering [5, 6], negative refraction [7–9], acoustic lens-43

ing [10], ordinary [11, 12] and topologically protected [13–17] wave localization / splitting,44

and fluid elasticity [18]. Among these, the ability to attenuate elastic waves over entire fre-45

quency ranges, often referred to as phononic band gaps (BGs), is among the most attractive46

and studied properties. BGs occur due to three main mechanism: Bragg scattering, local47

resonance and inertial amplification [19–27].48

Due to this property, phononic plates received great attention because of their potential49

for technological applications: structural health monitoring [28, 29], wave switching [30] and50

demultiplexing [31], micro-electro-mechanical systems [32, 32], cloaking [33], to cite a few.51

Among the possible configurations, phononic plates made of single or multiple constituents52

have been considered, including periodic distributions of inclusions, pillars / gratings on the53

plate surfaces, and empty holes [34].54

In multi-material phononic plates, the shape, material type as well as the orientation of55

the inclusions strongly influence the existence and location in frequency of the BGs. The56

possibility to open both Bragg and locally resonant BG types was reported [35–37]. In single57

phase phononic crystals, it was shown that the local resonance of the pillars / inclusions was58

the dominant mechanism to open / shift BGs [38, 39]. Plates with a periodic grating on the59

surface have also been investigated, and a relationship established between the width of the60
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BG and the depth of the grooves [40]. While these two approaches inevitably lead to some61

geometrical / manufacturing complexity, phononic plates realized by through-the-thickness62

cavities in a homogeneous material remain a good compromise between a simpler fabrication63

procedure and good wave attenuation performance. Whilst numerical / theoretical works64

dealing with cavities perpendicular to the wave propagation plane are numerous, experimen-65

tal measurements are often limited to few measurement points or small scanning regions. Our66

aim in this paper is thus to propose an in-depth numerical and experimental characterization67

procedure to validate metamaterial designs and develop them into functioning realistic struc-68

tures. Inspired by the 2D geometry proposed for the first time by Bigoni and coworkers [10],69

here, we first investigate the influence of extending the design into a 3D realistic single-phase70

phononic plate with internal resonators generated by symmetrically arranged cavities, and71

then provide experimental evidence of a complete BG in the kHz frequency range. Full wave-72

field reconstruction of the wave propagation phenomena and a band diagram analysis in the73

wavenumber-frequency domain is provided and compared to numerical calculations.74

2. Design of the phononic plate75

2.1. Eigenvalue problem76

In this section, we numerically investigate the dispersion properties of a periodic structure77

consisting of an inertial resonator embedded in a matrix through 8 ligaments, as shown in78

Fig. 1A. The structure is obtained by milling 8 cavities arranged in an octagonal pattern in79

a homogeneous Polymethyl methacrylate (PMMA, Perspex Black from Bayer) block, which80

divides the cell into three regions, named matrix, ligaments and resonator, respectively. This81

arrangement of material and cavities represents a good alternative to multi-phase resonators82

often made of a heavy core (in steel, tungsten or similar heavy metals) surrounded by a soft83

core (rubber, for instance) and embedded in an external matrix (often a polymer) [3]. In our84

case, the ligaments play the role of the soft coating.85

In-plane geometrical parameters of the unit cell are given as a function of the ligament86

thickness t = 1 mm as follows: A = 19 · t = 19 mm, Re = 9 · t, Ri = 4 · t, as illustrated in87

Fig. 1A. These parameters have been chosen with specimen fabrication in mind (i.e., with88

the technical limitations of the milling process in mind). The density of PMMA is ρ = 118089
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kg/m3 and the longitudinal and shear wave velocities are cL = 2665 m/s and cT = 1363 m/s,90

respectively.91

As a first step, the band structures are computed considering an infinitely duplicated unit92

cell in a periodic square array, and considering elastic wave propagation in the linear elastic93

regime (under the hypothesis of small displacements). The unit cell domain is meshed by94

means of 8-node hexagonal elements of maximum size LFE = 0.1 mm, which is found to95

provide accurate eigensolutions up to the frequency of interest [41]. Therefore, the resulting96

eigenvalue problem (K − ω2M)u = 0 is solved by varying the non-dimensional wavevector97

k∗ along the irreducible path [M − Γ −X −M ], with M ≡ (π/A, π/A), Γ ≡ (0, 0) and98

X ≡ (π/A, 0) (see Fig. 1B), being A the lattice parameter, namely the unit cell side.99

The corresponding band diagrams are presented in Fig. 2A for different height to the100

lattice parameter ratios H/A = [0.1, 0.5, 0.8, 1.0, 1.2]. The dispersion curves are color coded101

according to the heightH of the unit cell. Specifically, the color bar of Fig. 2A varies gradually102

from dark blue (very thin unit cells) to dark red (thicker ones). The influence of the unit103

cell height on the dispersion curves is clearly visible from the diagrams. When an extremely104

flexible unit cell in the out-of-plane direction is considered (very small H/A ratio, for instance105

0.1), no complete BG is visible in the diagram. This is due to a very low stiffness of the106

unit cell with respect to out-of-plane deformations, implying a large number of dispersion107

branches in the [0 − 70] kHz frequency range. When the height to the lattice parameter108

ratio H/A increases, the structure gains stiffness against out-of-plane deformations and some109

of the previous modes migrate to higher frequencies. As a consequence, fewer curves are110

visible in the diagram in the same frequency range (compare for instance H/A = 0.1 to111

H/A = 0.5). In addition, specific modes (reported in Fig. 2B,C and highlighted in Fig. 2A112

by black arrows), undergo an opposite shift to higher / lower frequencies. This allows to113

open a BG of up to 8 kHz, achieved when H/A = 1, and ranging approximately from 45114

to 53 kHz. If the ratio H/A increases above unity, additional bands are introduced again in115

the [0 − 70] kHz frequency range reducing the BG width (see for instance the flexural mode116

reported in Fig. 2D).117
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2.2. Numerical and experimental time-transient analysis on the finite structure118

In this section, a numerical time transient analysis on a finite structure is performed, and119

compared to experimental measurements, as schematically indicated in Fig. 3. In view of the120

experimental phase, a PMMA rectangular plate of length 4·L1 = 1000 mm, width 2·L1 = 500121

mm and height H = A = 19 mm is considered. PMMA has been chosen as the material122

composing both the matrix and the inertial resonators because of wide availability and the123

possibility of manufacturing it with standard tools such as a milling machine. A PC region124

made of 200 unit cells such as the one reported in Fig. 1A disposed in the shape of square125

rings is introduced on the right side of the plate, as shown in Fig. 3A. In particular, the unit126

cells are distributed over a square frame of external and internal widths of 15A and 5A. An127

unaltered area of 5A× 5A = 95× 95 mm2 is therefore included in the center of the phononic128

region. The sample used for the experimental analysis is manufactured by exporting the129

geometry from the finite element model, and importing it to the milling machine (EGX-600130

Engraving Machine) software.131

The manufacturing process required a tolerance of 0.01 mm which is expected to have132

limited impact on the measurements.133

Elastic guided waves are excited in correspondence of the point E1 by means of a ceramic134

piezoelectric disk of 10 mm diameter bonded to the surface of the sample [42]. The plate135

has been suspended through wires to mimic the free boundary conditions implemented in136

the calculations. As the first step, a pulse made of 2 sine cycles centered at 50 kHz and137

modulated by a Hann window is fed to the function generator. This signal has been chosen138

so as to generate elastic waves with a much larger frequency content compared to the [45 −139

53] kHz frequency range of the BG highlighted in Fig. 2A. The aim is to emphasize and140

quantitatively evaluate the screening power of the phononic region. Out-of-plane velocity is141

acquired through a PSV 400 3D scanning laser Doppler vibrometer by Polytec at the two142

acquisition points named O1 and O2 (Fig. 3A), taken at the same distance from the excitation143

point E1, and chosen outside and inside the phononic region of the waveguide, respectively.144

In both cases, 3 ms long signals are recorded in order to allow multiple wave reflections to145

take place at both the edges of the waveguide, so as to allow elastic waves to impinge on the146

phononic region from multiple angles. After acquisition, signals are Fourier transformed and147
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reported in Fig. 3B in order to highlight the differences between the two responses in terms of148

frequency content. The Fourier spectrum of the signal acquired outside the phononic region149

shows good levels of transmission within the excited frequency range (30− 90 kHz), whereas150

the signal recorded inside the phononic region (red markers) displays a clear amplitude drop151

in the BG region (45−53 kHz). This is in agreement with the dispersion diagram presented in152

Fig. 2A and clearly confirms the possibility of the waveguide to filter waves over the [45−53]153

kHz frequency range.154

To gain further insights, full wave field reconstructions of the wave propagation phe-155

nomena over the orange rectangular area shown in Fig. 3A are performed and compared to156

numerical calculations. In the numerical model, elastic waves are excited by means of an157

out-of-plane imposed displacement (of amplitude 1 × 10−6 mm). At this stage, in addition158

to the previously described excitation, another pulse made of 21 sine cycles centered at 50159

kHz and modulated by a Hann window is used as the excitation signal fed to the function160

generator (and as the imposed displacement in the numerical model). In both cases, the161

spatial scanning grid (orange rectangle in Fig. 3A) covers a 580 × 500 mm2 of the right part162

of the phononic plate and consists of 293×251 equally spaced grid points. A total of 10 time163

averages were performed at each node to increase the signal to noise ratio. The knowledge of164

the velocity time histories at all grid points allows for the reconstruction of the time-evolving165

wavefields established in the scanning domain. Figures 3C,D show the numerical (left panels)166

and experimental (right panels) full wavefield reconstructions of the out-of-plane velocity for167

the Hann windowed excitation signals using 2 (Fig. 3C) and 21 (Fig. 3D) sine cycles centered168

at 50 kHz fed in E1. The out-of plane velocities are normalized with respect to the respective169

maximum amplitudes. When operating with elastic waves with a broadband energy content,170

the laser measures transmission inside the phononic region, allowing the wavefield reconstruc-171

tion at a comparable intensity scale with respect to points of the plate not enclosed by the172

phononic region. However, unit cells scatter the wave field, resulting in an observable delay173

in the wave propagation. In this case, despite the scattering, the phononic region does not174

cause significant attenuation of the wave field. On the contrary, when observing the prop-175

agation of an elastic wave with a narrowband energy content totally falling inside the BG,176

strong destructive interferences due to the Bragg scattering are visible within the phononic177
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region, clearly showing that waves are reflected between the transducer and the lower edge178

of the unit cell ring. This behavior is accompanied by an extremely low transmission due to179

the absence of detectable wave amplitudes inside the phononic region.180

As a final experiment, elastic guided waves are excited in correspondence of the point181

E2. Among several types of excitation (larger number of cycles, other waveform shapes182

[triangular-like, chirp-like], central frequency), the function generator has been fed with a183

pulse made of 2 sine cycles centered at 40 kHz and modulated by a Hann window, which184

showed to better inject energy in the system for the considered frequencies (also outside the185

BG).186

Out-of-plane velocity is measured along 647 equally spaced points (red dashed line re-187

ported in Fig. 3A). Measurements are plotted as a function of the scanning position along188

the scan line (x-axis) and time (y-axis) in Fig. 4A, where straight red lines denote the begin-189

ning and the end of the periodic region. Several reflections due to the impedance mismatch190

are clearly visible. Signals are then 2D-Fourier transformed and reported in Fig. 4B as an191

intensity plot, superimposing the numerical dispersion curves as red dots for the purpose192

of comparison [28, 43]. A very good agreement is found. Due to the type of experimental193

set-up, mainly out-of plane modes are excited.194

3. Conclusions195

In this paper, we have presented a combined numerical and experimental characteriza-196

tion procedure to validate metamaterial designs to create realistic functional wave-filtering197

structures. We have considered an optimized design with respect to the plate thickness for198

a phononic crystal characterized by full BGs in the kHz range, and fully demonstrated its199

efficiency in wave propagation experiments. The design itself can be useful addition to other200

architectures considered in the literature presenting wide BGs, with the additional advantage201

of a simple fabrication process, e.g. by milling. More importantly, the presented experimen-202

tal characterization procedure can serve as a general method for standardized testing and203

evaluation of phononic crystal designs. To the best of our knowledge, this is the first work204
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Figure 1: (A) Three-dimensional schematic representation of the unit cell investigated in this study. The

structure is obtained by drilling eight cavities arranged in an octagonal pattern in a homogeneous block.

The cell is thus divided into three regions, named matrix, ligaments and resonator, respectively. Geometrical

parameters are the following: unit cell lattice parameter A = H = 19 mm, internal and external cavity radii

Ri = 4t and Re = 9t, respectively, and ligament thickness t = 1 mm. (B) Schematic representation of the

first irreducible Brillouin zone along the which the dispersion curves are calculated.

to provide full experimental characterization for this type of geometry.205
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