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Abstract: Vibration-based monitoring was performed on a short-span skewed highway bridge on
the basis of wireless measurements. By means of operational modal analysis, highly accurate modal
results (frequencies and mode shapes) were extracted by using a self-developed wireless acquisition
system, for which the performance was verified in the field. In order to reproduce the experimental
modal characteristics, a refined finite element model was manually tuned to reduce the idealization
errors and then updated with the sensitivity method to reduce the parametric errors. It was found that
to build a reliable Finite element (FE) model for application in structural health monitoring, the effects
of superelevation and boundary conditions of a skewed bridge should be taken into account carefully.

Keywords: vibration-based monitoring; operational modal analysis; wireless sensors; skewed bridge;
bridge dynamics; superelevation

1. Introduction

Structural health monitoring (SHM) aims at observation and interpretation of full-scale and
long-term performance of civil infrastructures. As a subset of SHM, vibration-based monitoring
focuses on the dynamic responses of structures [1]. Although vibration data have a broad application
in diagnosis and prognosis of the structural condition, identified modal characteristics are of specific
interest because they are reflective of structural mass, stiffness, and even damping mechanism, which
are representative of the structural condition [2,3]. Therefore, in the past decades, vibration-based
monitoring has rapidly grown into important academic research and the industrial application field.
Among the development and applications of vibration-based monitoring, vibration-based damage
assessment is of extreme importance due to the increasing costs of the maintenance of existing
infrastructures and the catastrophic results of the structural failures [4–6].

A relatively large portion of vibration-based damage assessment methods is implemented by
using a numerical model. By correlating the numerical model to the identified modal data of the
real structures under the undamaged and damaged states, damage could be identified by the relative
changes of the model parameters, such as the elemental or substructural stiffness [7]. However, for
model-based damage assessment, real-world applications are sometimes prone to failure due to the

Appl. Sci. 2020, 10, 2347; doi:10.3390/app10072347 www.mdpi.com/journal/applsci

http://www.mdpi.com/journal/applsci
http://www.mdpi.com
https://orcid.org/0000-0002-8002-2298
http://www.mdpi.com/2076-3417/10/7/2347?type=check_update&version=1
http://dx.doi.org/10.3390/app10072347
http://www.mdpi.com/journal/applsci


Appl. Sci. 2020, 10, 2347 2 of 13

inaccuracy of the numerical models, the measurement errors, and the associated numerical challenges
to be addressed in solving the inverse problems [8–10].

The importance of the aforementioned problems has been gradually noticed and their solutions
have been recently proposed both theoretically and practically [11–15]. First, the use of an accurate and
highly reliable reference model has been emphasized by some researchers [16–20]. Errors of a Finite
Element model can generally be classified into idealization error, discretization error, and parametric
error. Although the last two kinds of errors can be significantly reduced by means of refined modelling
and parametric model updating, the idealization errors can only be removed if appropriate modelling
assumptions are introduced [21–23]. Especially, some dynamic characteristics of the bridges that are
usually neglected during the design and construction stages should be investigated thoroughly, since
the higher modes are typically more sensitive to the structural damage. Secondly, testing procedure,
identification methods, and instrumentation require further improvement. Operational modal analysis
(OMA) has arisen to be a viable technique to identify the modal parameters of structures under ambient
conditions, i.e., wind and traffics, etc. [24,25]. Since no artificial excitation, such as drop weight or
shakers are needed, the method is relatively more competitive and efficient compared to the traditional
experimental technique. Moreover, bridges can still be in operation, as traffic needs not to be blocked
during the tests. Nevertheless, the response signals of ambient vibrations are typically of a very small
amplitude, which are easily polluted by measurement noises. Not only some advanced identification
methods are required [26], but also the versatile testing technique and highly sensitive and reliable
acquisition systems are important. In this regard, the combination of accelerometer and strain senor
can contribute to derive very accurate modal curvature of bridges for damage assessment [27,28].
Moreover, the use of the novel wireless sensing system is advantageous in comparison to traditional
cabled system for its quick deployment, easy configuration, and little interference, which helps to
improve the spatial resolution of the experimental mode shapes [29,30].

Under a research project financed by the Spanish Ministry of Science and Innovation,
a high-synchronous wireless sensing system has been developed for OMA [31]. Synchronization errors
in wireless measurements are known to have a profound effect on the identified modal results. Although
their influence on the identified frequencies and damping ratios is generally negligible, errors in the
identified mode shapes can be significant due to the asynchronous data [32,33]. This article presents
the results of OMA performed on a skewed highway bridge for in-field performance verification of the
developed wireless sensors. A traditional wired system was used as the reference for comparison of
the experimental results.

The intention of the experimental campaign was also to build a highly accurate reference model
for long term performance evaluation of the structure. The dynamic behavior of the skewed concrete
bridge has been investigated by many researchers in previous years. Nevertheless, further studies
remain to be done on these kinds of bridges from the perspective of SHM [34,35]. A very good effort was
made to study the compound effects of skew angle, superelevation, mesh refinement, and boundary
conditions on the modal characteristics of skewed bridges [36]. By the current study, it is shown that
superelevation and boundary conditions play an important role for deriving a reliable FE model of
a short-span skewed highway bridge for its monitoring.

2. Operational Modal Analysis of a Skewed Highway Bridge

2.1. Bridge Description

The tested structure is a prestressed concrete box-girder bridge of a span of 16.4 m (see Figure 1).
It is a part of the A-67 highway linking Venta de Banos and Santander, in Spain, known as “Viaducto
sobre arroyo de Bustillo”. There are two parallel spans accommodating the traffic of the opposite
directions, respectively. As shown in Figure 1, only the front span was tested. As shown in Figure 2,
the cross section consists of two prefabricated box girders joined by the cast-in-situ deck slab. Each
box girder is simply supported on neoprene bearing pads. Located on a curved path, the bridge
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is constructed with a superelevation of around 5%, which provides a transverse slope of 3 degrees.
The width of the deck is 11.8 m and the skew angle is 14 degrees, as shown in Figure 3.
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2.2. Operational Modal Analysis

In order to identify the experimental modes of the bridge, vibration measurements were performed
on the structure under operational conditions. During the tests, one of the traffic lanes was closed
to allow the sensor placement, while the other was still open (see Figure 1b). The excitation of the
structure was mainly ambient, due to mild wind and traffic on both the tested and the adjacent spans.
The tests were performed during the day time. The traffic was not very busy, but there was generally at
least one vehicle passing over the tested bridge for each measurement duration. The passing vehicles
included cars and even some heavy trucks, as shown in Figure 1b.

As shown in Figure 3, there were thirty-four measurement points in total, mostly on one of the
traffic lanes. The points were aligned along the skew direction of the bridge in agreement to the
bending direction, as suggested by the a priori finite element model built before the testing. Vertical
accelerations of the bridge deck were recorded. Since the width of the bridge deck is of a similar
magnitude as the span length, the dynamic behavior of the deck is expected to be close to that of
a plate instead of a beam. In order to catch the torsion modes and the bending modes in the transversal
cross-section, a node, labeled as No. 34, was placed on the other side of the bridge close to the side
barrier where the traffics were open. The measurements had to be divided into several setups since the
number of the points exceeded the number of the acquisition system channels. Three reference nodes,
indicated by R1, R2, and R3, common to all the setups, served as the basis for combining the mode
shapes identified from each individual setup.

The adopted measurement system was the wireless sensing system developed in the
aforementioned project. Figure 4a shows one of the wireless units deployed during the measurements,
to which four external piezoelectric (PCB) accelerometers were connected. In total, there were four
wireless units, also known as the clients, installed in the experimental campaign. A self-developed
graphical user interface of the wireless measuring system was operated from a laptop, which also acted
as the acquisition server (see Figure 4b). All the functions of the system could be easily managed through
the user interface, including data acquisition, wireless communication, and time synchronization
among all the client units.
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System identification was carried out by the stochastic subspace identification (SSI) algorithm,
as implemented in the MACEC software package [37]. Data processing included the following steps:
(1) reduction of the sampling rate of the wireless data from 3906 Hz to 100 Hz; (2) removal of the drift
of the signal due to its DC components; (3) removal of the low-frequency noise through a high-pass
filter with a cut-off frequency of 2 Hz. For the covariance-driven SSI algorithm, the algorithmic
parameter i—half the number of block rows—is set to 180. The system identification is performed
for the state-space systems sequentially in orders from 2 to 250. In the corresponding stabilization
diagram, the stabilization criteria are: 1% for frequencies, 5% for damping ratios and 1% for Modal
assurance criterion (MAC) of the mode shapes.
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Two ambient vibration measurement campaigns were conducted on the bridge on 25–26 November
2009 and 2 February 2011, respectively. During the first test, a traditional wired acquisition system was
used in order to obtain the operational modal results as the reference. The measurement periods were
both ten minutes for the wired and the wireless systems. During the second test, the measurements
were repeated with a ten-min and a fifteen-min period, respectively, for each setup of the wireless
system. The corresponding experimental results were denoted by Wired, WL1, WL2, and WL3 in
turn, as shown in Table 1. Seven modes were identified below 40 Hz by all the tests. Table 1 shows
the identified natural frequencies, together with the relative difference between the wireless and the
wired results. For WL1, the relative differences of the identified frequencies were quite low (<3.5% in
absolute values). Whereas, for WL2 and WL3, the relative differences of the identified frequencies
were much higher, especially for Mode No. 4 and Mode No. 5. The differences may be attributed to
the changing ambient conditions between the first and the second tests, including excitation levels,
temperature, and humidity. MAC values were also calculated between the wireless and wired results,
which provided a measure of consistency or degree of linearity between the mode shape vectors [38].
Most of the MAC values were higher than 0.9. The results were plausible, since unity represents
a perfect fit. The experimental mode shapes are plotted in Figure 5. Most of the mode shapes were
found to be smooth and consistent. In addition, MAC values calculated between the results of WL2 and
WL3 suggested that the differences in the mode shapes between the last two wireless measurements
were usually very small.

Table 1. Experimental modes as identified from the measurements.

Mode Wired WL1 WL2 WL3

No. fw [Hz] fwl1 [Hz] ∆fwl1 [%] fwl2 [Hz] ∆fwl2 [%] fwl3 [Hz] ∆fwl3 [%] MAC

1 7.41 7.49 1.1 7.42 0.1 7.54 1.8 0.98

2 8.04 8.3 3.2 8.03 −0.1 8.04 0.0 0.90

3 12.67 12.4 −2.1 13.24 4.5 13.08 3.2 0.97

4 17.14 17.37 1.3 15.37 −10.3 15.28 −10.9 0.87

5 20.13 19.96 −0.8 22.17 10.1 21.99 9.2 0.95

6 29.05 29.18 0.4 29.32 0.9 29.24 0.7 0.96

7 36.06 36.92 2.4 35.66 −1.1 34.96 −3.1 0.68

Note: Df = (fwl−fw)/fw; MAC values were calculated between Wired and WL2.
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3. FE Model Updating with Experimental Modal Data

3.1. Manual Tuning

A first refined finite element model was built by using the FE software ANSYS [39]. The box
girders, deck slab, and side barriers were all simulated with three-dimensional tetrahedral solid
elements, known as Solid-92. Material properties, as listed in Table 2, which are typical of prestressed
concrete, were assigned to the model. In particular, a reduction factor was applied to the elasticity
modulus (and the shear modulus) of the side barrier. On-site observation found that high uncertainty
existed in the connectivity between side barriers and the bridge deck and those between adjacent side
barrier assemblies, which varied among different locations. The fifteen percent reduction was assigned
by assumption, since the exact stiffness contribution of the side barrier to the whole structure was
difficult to be modeled accurately. Moreover, the supports were simply represented by rigid constraints
and the transverse slope of the bridge deck surface was neglected. See Figure 6a. In comparison to the
experimental results, the numerical modal characteristics were not satisfactory for the initial model.
First, as shown in Table 3, the relative difference of the natural frequencies was higher than 5% in
absolute values for some modes. Secondly, one of the modes that was identified by the experiments
was missed in the numerical prediction. Thirdly, a significant discrepancy could be found with respect
to the cross-sectional deformation in the mode shape (see, for instance, Figure 7).
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Table 2. Material properties of the initial FE model.

Components E (MPa) n G (MPa) q (kg/m3)

Box Girder 32,373 0.2 13,489 2500
Slab 32,373 0.2 13,489 2500

Side Barriers 16,187 0.2 6745 2500

Note: E for modulus of elasticity, u for Poisson’s ratio, G for shear modulus and q for density.

In order to improve the numerical results, the following aspects were considered in the manual
tuning of the FE model: (1) the geometry of the FE model was re-built by taking into account the
superelevation of around 5%; (2) the cast-in-situ close-ends of the box girder at each side were modeled;
(3) the neoprene supports were simulated by means of springs (Element COMBIN-14), instead of
rigid constraints. See Figure 6b. Material properties are however unchanged from the initial model.
Table 3 lists the modal results of the initial and tuned FE models with comparison to their experimental
counterparts. The manually tuned model provided better modal results as compared to the initial
model. In particular, one of the identified modes that was missed (mode No. 4) was found by the tuned
model. Moreover, with respect to the modal deflection of the transversal cross section, the numerical
results of the tuned model were closer to the experimental results than those of the initial model
(see Figure 7).
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3.2. Sensitivity-Based FE Model Updating

A sensitivity-based FE model updating approach was applied to the tuned model in order to
obtain more accurate numerical results. The updating process was formulated into a numerical
optimization problem. It aimed at finding the best model parameters that minimizes the difference
between the numerical and experimental modal data. Herein, the following nonlinear least-squares
problem had to be solved:

θ∗ = argmin
θ

J(θ) = argmin
θ

εz(θ)
TWεεz(θ) = argmin

θ

∑
i

wε,i(εz,i(θ))
2, (1)

εz denotes the residuals between the experimental and numerical modal data z. For the undamped
eigenvalue z = λ, the residuals ελ,i(θ) are given by
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ελ,i(θ) =
λi(θ) − λ̃i

λ̃i
, for λi= ωi

2= (2πfi)
2 and i ∈ {1, 2, · · · , nλ}, (2)

where the upper tilde denotes the experimental values and f (and w) stands for the (angular) natural
frequency. For the mode shape z =Φ, the residuals εΦ,i(θ) are given by

εφ,i(θ) =
Φi(θ) − Φ̃i

‖Φ̃i‖1

, for i ∈
{
1, 2, . . . , nφ

}
, (3)

where both the experimental and numerical mode shape vectors (Φ̃i and Φi) are normalized to the
maximum unity by considering only the real parts of Φ̃i. ‖x‖1:=

∑
j

∣∣∣xj
∣∣∣ is the sum of the absolute values

of the vector x, according to the 1-norm. In Equation (1), Wε is the diagonal weighting matrix, which
provides a means to balance the contributions from each individual residual. In detail, the following
weighting factors were considered:

wελ,i = 1 , for i ∈ {1, 2, · · · , nλ} and wεφ,i= 10 , for i ∈ {1, 2, · · · , nφ
}
, (4)

in order to provide a heavier weight for the mode shapes.
Equation (1) was solved by using the in-built MATLAB function “lsqnonlin”. It is a trust-region-

reflective optimization algorithm, also known as the Levenberg-Marquardt method. The iterative
process was terminated when a certain convergence criterion was satisfied, such as the relative change
in θ being less than the specified tolerance.

A preliminary sensitivity study was performed in order to decide the design variables for model
updating. The following definition of the parametric sensitivity was considered,

sij =
∆ωi

ωi
×
θj

∆θj
, (5)

The chosen criterion of the maximum value of |Sij| > 5%, for each individual θj, led to the six
parameters for updating, as shown in Table 4. In total, fourteen model parameters had been investigated.
The others that were discarded for updating included the stiffness of the boundary springs in the
longitudinal, lateral, and vertical directions, respectively (in total, six on one side of the bridge) and the
elastic modulus of the close-ends of the two box girders, respectively.

3.3. The Updating Results

Table 3 provides a summary of the numerical modal results compared with the experimental
ones. It should be noted that the sensitivity-based parametric updating was also applied to the initial
model, but without giving significant improvements in the modal results. As mentioned previously, in
comparison to the initial model, the improvement of the manually tuned FE model was significant
both in terms of the relative differences of natural frequencies and the MAC values, with the exception
of the last mode. It was concluded that the modelling errors due to simplification or idealization from
the assumptions, such as those related to the superelevation and boundary conditions, could only
be reduced by improvement of the FE model, instead of the parametric updating. It suggested that
superelevation and the corresponding transverse slope, even of a small degree, may have a profound
influence on the dynamics of the short-span skewed bridge.
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Table 3. Comparison of the experimental and numerical modal results.

Exp. Mode No. 1 2 3 4 5 6 7

fwl3 [Hz] 7.54 8.04 13.08 15.28 21.99 29.24 34.96

Initial FE Model
fn1 [Hz] 7.46 8.36 12.29 n/a 21.41 27.64 34.23
∆f [%] −1.1 4.0 −6.0 n/a −2.6 −5.5 −2.1
MAC 0.95 0.77 0.91 n/a 0.77 0.88 0.84

Manually Tuned FE Model
fn2 [Hz] 7.48 7.95 13.14 15.13 22.23 28.85 33.48
∆f [%] −0.8 −1.1 0.5 −1.0 1.1 −1.3 −4.2
MAC 0.97 0.86 0.94 0.69 0.79 0.88 0.77

Updated FE Model
fn3 [Hz] 7.75 7.95 12.70 15.19 21.97 29.55 35.08
∆f [%] 2.8 −1.1 −2.9 −0.6 −0.1 1.1 0.3
MAC 0.97 0.93 0.90 0.64 0.80 0.87 0.80

Note: Df = (fn − fwl3)/fwl3; MAC values are calculated between the experimental and numerical modes.

The sensitivity-based model updating procedure led to the more satisfactory modal outcomes
in reference to the experimental modal results. The absolute value of ∆f, averaged over six modes
excluding Mode 4, is 3.6%, 1.5%, and 1.4% for the initial model, tuned model, and updated model,
respectively. The absolute value of ∆f, averaged over seven modes, is 1.4% and 1.3% for the tuned
model and updated model, respectively. Moreover, the MAC value, averaged over six modes excluding
Mode 4, is 0.85, 0.87, and 0.88 for the initial model, tuned model, and updated model, respectively.
The MAC value, averaged over seven modes, is both 0.84 for the tuned model and updated model.
Although the relative differences of frequencies and the MAC values were not so much different
between the tuned and updated models, the improvement was more significant when the modal
displacements of the transversal cross section were plotted. As shown in Figure 7, the updated FE
model provided an even better match to the experimental results with respect to the cross-sectional
deflection than the manually tuned model. It was speculated that the similar MAC values for the
tuned and updated models were related to the fact that only one node (No. 34) was measured on the
other side of the bridge. Therefore, improvement in the mode shapes, especially those related to the
vertical bending in the transversal direction and torsion, were not evident by measure of the MAC
values. Figure 5 provides the mode shape plots of the updated model in alignment with the identified
experimental modal results. It was evident that most of the modes were associated with a significant
cross-section deflection and deformation.
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The initial and updated values of the updating parameters are given in Table 4. In agreement with
on-site observations, the largest variation of the parameters was related to the side barriers, for the
relatively high uncertainty. Increase of the stiffness and density was also identified on the slab, which
should be attributed to the influence of neglecting the road pavements by the initial and manually
tuned models. In general, the updated parameters were acceptable for their physical meanings.

Table 4. Values of the initial and updated parameters θ.

Box Girder Slab Side Barrier

Eb (MPa) q (kg/m3) Eb (MPa) q (kg/m3) Eb (MPa) q (kg/m3)

Initial 32,373 2,500 32,373 2,500 16,187 2,500
Updated 33,069 2,418 35,371 2,835 18,208 3,283

∆θ 2% −3% 9% 13% 12% 31%

Note: ∆θ = (θupdated−θinitial)/θinitial.

4. Conclusions

In vibration-based structural health monitoring, the highly accurate reference model derived
through the FE model updating plays an important role. In the current case study, OMA was
performed on a short-span skewed highway bridge by using a self-developed wireless acquisition
system. Very accurate modal data obtained under the operational condition of the structure provides
a reliable measure of the healthy state of the bridge. A refined FE model, built of solid elements, was
successfully updated in reference to the experimental modal data by means of both manual tuning
and the sensitivity-based model updating approach. The profound effects of the superelevation and
boundary conditions to the dynamics characteristics of the skewed bridge were highlighted in the
current study. In particular, the importance to remove idealization errors before parametric model
updating is verified in obtaining the accurate reference FE model.
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