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Abstract: The building energy performance pattern is predicted to be shifted in the future due to
climate change. To analyze this phenomenon, there is an urgent need for reliable and robust future
weather datasets. Several ways for estimating future climate projection and creating weather files
exist. This paper attempts to comparatively analyze three tools for generating future weather datasets
based on statistical downscaling (WeatherShift, Meteonorm, and CCWorldWeatherGen) with one
based on dynamical downscaling (a future-typical meteorological year, created using a high-quality
reginal climate model). Four weather datasets for the city of Rome are generated and applied to the
energy simulation of a mono family house and an apartment block as representative building types
of Italian residential building stock. The results show that morphed weather files have a relatively
similar operation in predicting the future comfort and energy performance of the buildings. In
addition, discrepancy between them and the dynamical downscaled weather file is revealed. The
analysis shows that this comes not only from using different approaches for creating future weather
datasets but also by the building type. Therefore, for finding climate resilient solutions for buildings,
care should be taken in using different methods for developing future weather datasets, and regional
and localized analysis becomes vital.

Keywords: climate change; future weather data; building energy performance; thermal comfort;
statistical downscaling of climate models; dynamical downscaling of climate models

1. Introduction

There is an urgent need to address climate change as a primary global problem.
According to the World Meteorological Organization (WMO) report on global climate,
recent years have seen a continued increase in greenhouse gas concentration, global mean
temperature, global sea level, and melting cryosphere [1]. The fifth assessment report (AR5)
of the Intergovernmental Panel on Climate Change (IPCC) points out that if the emissions
continue to rise, the global average temperature will be 2.6-4.8 degrees Celsius (◦C) higher
than the present by the end of the 21st century. Even if the greenhouse gas emissions stop
immediately, the temperature increase will persist for centuries due to the effect of already
present greenhouse gases in the atmosphere [2].

In addition to the changes in average temperature trend, extreme events intensify in
frequency and magnitude; as an example, over the period 1880 to 2005, the frequency of
heat waves in Europe has doubled, and longer heatwaves are more than 90% definite as
the climate pattern has been disrupted [3]. The August 2003 heatwave was responsible for
around 45,000 excess deaths across 12 European countries [4]. From 2015 to 2019, heatwaves
were the deadliest meteorological hazard in many countries, particularly in Europe and
North America [1], with an increase of mortality [5] and morbidity, especially for the
elderly [6]. Consequences of these extremes included higher energy uses in buildings [5–7],
infrastructure failures [8,9], and negative economic impacts [10,11].
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Future climate scenarios affirm these trends, projecting different warming rates built
upon a number of possible scenarios of future anthropogenic greenhouse gas emissions.
The first set of scenarios was Emissions Scenarios (SRES), which were introduced in the
IPCC 4th Special Report in 1996 [12]. Later, in 2014, the IPCC adopted a new series of
scenarios called “Representative Concentration Pathways (RCPs)” that are established
using hypotheses about economic growth, choices of technology, and land use [2]. RCPs
are identified by their associated warming effect (radiative forcing, which is measured in
units of watts per meter squared) in the year 2100. Radiative forcing is a direct measure
of the amount Earth’s energy imbalance. The four RCPs (RCP2.6, RCP4.5, RCP6.0, and
RCP8.5) span a range of assumptions about future controls on greenhouse gas (and other)
emissions. The lowest RCP represents a very aggressive Green House Gases (GHG) mit-
igation scenario aimed at limiting global warming to about 2 ◦C, while the highest RCP
corresponds to minimal effort to reduce GHG emissions this century. The RCP 8.5 assumes
that atmospheric concentrations of CO2 are three to four times higher than pre-industrial
levels by 2100 [2].

Insights from these future scenarios demonstrate the urgent need for emission reduc-
tion in a wide range of relevant sectors. Among these sectors, the building stock is one of
the main greenhouse gas emitters, which in the European Union accounts for 50% of the
CO2 emissions [13]. In addition, buildings will be also subjected to a warmer climate due to
their long lifespan. The existing body of research on the effect of climate change on the fu-
ture performance of buildings predicts that there will be a paradigm shift in building energy
performance. Unsurprisingly, a drastic rise in cooling energy use and a moderate decrease
in heating energy use is predicted [14–16]. Recently, in the study of Soutullo et al. [17], for
two reference buildings in Madrid, the annual heating and cooling requirements were
shown to be around 22% lower and higher, respectively, just by considering the effect of
climate change in the last decade. In addition, many studies revealed that this trend may
happen even in energy efficient dwellings. Da Guarda et al. [18] analyzed the vulnerability
of a zero-energy building (ZEB) to the impact of climate change in 2020 (2011 to 2040),
2050 (2041 to 2070), and 2080 (2071 to 2100). Results showed that due to the increase in
cooling energy consumption, there will be a power generation gap up to 40.2% for the
2080 period. In addition, the climate change impact magnitude is not equal for different
scenarios, case studies, and regions. Zhai and Helman [19] studied a campus building
stock energy prediction, using four future climate models, which are representative of
56 model scenarios for seven climate zones in US. The results demonstrated that cooling
energy increases variously (5%, 28%, 20%, and 52%) for different scenarios. In another
study, Chai et al. [20] analyzed the life cycle of a net zero energy building in typical climate
regions of China. It was concluded that among the different climate regions, the impact
of climate change on energy balance and thermal comfort varies significantly. So, in a
changing climate, it becomes necessary to prepare buildings for the future at the regional
scale, considering different scenarios, to avoid problems such as overheating and power
outage, which brings health risks for the occupants.

To investigate the future performance of a building in the context of climate change,
building energy simulation (BES) is a vital support tool. BES needs a robust weather
dataset that defines the external boundary conditions the building will face during its
lifetime. Typically, a representative year of hourly weather data is required to represent
the typical regional climate condition and to define the dynamic energy behavior of the
building. Several methodologies have been developed to create this one-year climate
data from historical climate records [21]. The most commonly used methodology is the
Typical meteorological year (TMY), which was introduced in 1978 [22]. TMY is a fictive
year constructed of twelve representative typical months [23]. Representative months
are selected by comparing the distribution of each month with the long-term distribution
of that month for the available climate dataset (the Finkelstein–Schafer statistics) [24].
The analysis of the present climate is based on the observation of climate variables and
the application of statistical methods for understanding the current trends. On the other
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hand, the analysis of future climate is based on future scenarios and the projections of
climate models.

Future scenarios are the input data used to provide initial conditions for General
Circulation Models or Global Climate Models (GCMs), which are models for forecasting
climate change. GCMs provide climate information on the global scale with a typical
spatial resolution of 150–600 km2 [2]. Consequently, if they are used for building energy
simulation, the climate change effect and related weather extremes at the local level will
not be considered. In this case, the GCMs should be downscaled to applicable spatial
(less than 100 km2) and temporal resolution (less than monthly value). There are two
main approaches to downscale GCMs: dynamical and statistical downscaling. Several
studies compared different methodologies that use these approaches for the generation of
future weather data. Jentsch et al. indicate that weather variability is not generated in the
statistically downscaled weather dataset and this approach includes the effect of climate
change independently between the variables [25]. On the other hand, Dias et al. point out
that the statistical downscaling approach has the advantage of reducing the computational
time so that various climate change scenarios can be applied [26], besides providing enough
information to study the performance of the building [27]. In light of these studies, there is
still a need to deeply analyze different methodologies for future weather data generation.

This study aims to contribute to evaluating the suitability and robustness of different
future weather data for analyzing the future performance of reference buildings both in
terms of thermal comfort and energy performance. It represents a comparative study
of four future weather datasets. Three of them were produced using common weather
generator tools available today (WeatherShift, Meteonorm, and CCWorldWeatherGen),
which apply statistical downscaling. The other one is a TMY created using a high-quality
regional climate models database (from Euro-Coordinated Regional Climate Downscaling
Experiment (CORDEX)) that applies the dynamical downscaling. The study investigates
the impact of each type of these future weather data in the building energy performance
and thermal comfort predictions. It evaluates the heating and cooling demand, the over-
all energy performance in the presence of heating and cooling systems with continuous
operation, and the overheating risk in a free-floating regime of two building types, which
are representative of the existing residential building stock in Italy, using the EnergyPlus
simulation engine [28]. The analysis was carried out for Rome, as it is one of the represen-
tative cities of Mediterranean hot summer climates according to Köppen classification [29].
Representative Concentration Pathways 8.5 (business as usual) [2] have been applied in
this study for the mid-century period from 2040 to 2060. This period was used for the
analysis, since GCMs uncertainties due to internal climate variability, climate model, and
future scenarios increase significantly over time [30,31].

The next section provides a short background on downscaling of the global climate
models for generating future weather files for BES. The following sections present the
methods and case studies used in this study, the results and discussion, and the conclusion.

2. Review of GCMs Downscaling Methods

Global climate models are complicated numerical models that simulate the state and
evolution of the atmosphere, including the atmospheric circulation and energy exchanges
in terms of radiation, heat, and moisture. They simulate the processes related to cloud
formation and precipitation and take into account the interaction with the ocean and the
land [32]. To check if GCMs can simulate the evolution of the climate systems, they are
validated against past climate conditions [33]. After verification and validation, GCMs are
set to run by forcing greenhouse gas concentration scenarios as an initial condition. GCMs
results have global or continental scale spatial resolution and long temporal resolution
such as seasonal or annual periods. Due to these coarse resolutions, the direct use of GCMs
outputs for building performance assessment is not possible. As previously mentioned,
to reach local climate and applicable temporal resolution, downscaling of the GCMs is
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required. Statistical downscaling and dynamical downscaling are two main approaches;
they are presented in Sections 2.1 and 2.2.

2.1. Statistical Downscaling

Statistical downscaling develops and applies statistical relationships between regional
or local climate variables and large-scale climate data using deterministic or stochastic
approaches [27]. This downscaling approach is a computationally less demanding alter-
native that facilitates achieving various sets of results. The simplicity of this method—in
comparison with dynamical downscaling—persuades many researchers to favor it. This
method is mostly applied to GCM projections, while it may also be applied to RCM output
as being a better representative for the local climate [34]. In the two following sub-sections,
major approaches for applying statistical downscaling are explained in more detail.

2.1.1. Stochastic Weather Generation

Stochastic weather generators are among statistical models, which fill in missing
data and enable the production of long synthetic weather series indefinitely. This becomes
possible through simulating major properties of observed meteorological records, including
daily means, variances and covariances, frequencies, extremes, etc. [35]. These models
rely on statistical analysis of recorded climate data in which a few independent weather
variables—such as solar radiation—are adequate to derive all other relevant variables.
The stochastic weather generation method has the advantage of enabling the integration
of the distribution used for the climate change signal. In addition, it is accountable for
potential changes in weather patterns and climate variability [32]. However, what appears
to be a limitation of this method is the need for a large amount of data to train the model,
since distributions for generating future data are based on the baseline data given to the
model [35]. The well-known tool that uses this method is Meteonorm. More details about
this software and the way it becomes applied in this study will be explained in Section 3.1.1.

2.1.2. Time Series Adjustment: Morphing

Morphing is the most common statistical downscaling method for the adjustment of
time series toward the future. This method was firstly presented by Belcher et al. in 2005,
assuming the current weather data as baseline [35]. In order to transform this baseline
to a future time series, monthly climate change signals given by a GCM or Regional
Climate Model (RCM) are used. There are three ways to morph data—shifting, scaling, or
a combination of them—depending on the climate variable and expression of the climate
change signal (absolute, relative):

• The Shift is applied when absolute monthly mean change (∆xm) derived from a GCM
or RCM is predicted for a given variable (x0) such as atmospheric pressure, for the
month m, according to Equation (1):

xm = x0 + ∆xm. (1)

• The Stretch is applied when a relative monthly mean change (αm) derived from a GCM
or RCM is predicted for a given variable (x0) such as wind speed, for the month m,
according to Equation (2):

xm = αm · x0. (2)

• The combination of Shift and Stretch is applied when both absolute and relative
monthly mean changes derived from a GCM or RCM are predicted for a given variable
(x0) such as dry-bulb temperature, for the month m, according to Equation (3):

xm = x0 + ∆xm + αm (x0 − x0,m) (3)

where x0,m is the variable x0 average over month m for all the considered averaging
years of future data provided by the climate models.
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CCWorldWeatherGen and WeatherShift are two available tools that use the morphing
method to create future weather data. More details about these tools and their application
in this study will be explained in Sections 3.1.2 and 3.1.3.

2.2. Dynamical Downscaling

Dynamical downscaling uses a nesting strategy to obtain climate information at a
resolution of 2.5–100 km2. To this aim, a Regional Climate Model (RCM) is used to derive
local or regional climate information. This method simulates “atmospheric and land surface
processes, while accounting for high resolution topographical data, land–sea contrasts,
surface characteristics, and other components of the Earth-system” [36]. The climate
information generated by RCMs has much finer spatial resolution compared to GCMs. This
allows RCMs to better represent the spatial and temporal variability of local climate and
guarantee physically consistent datasets [37]. However, a large amount of computational
power and storage for data creation is one of the limitations of this method. Furthermore,
the accuracy of the relevant GCM determines the overall quality of the output. In order to
evaluate such uncertainties, different GCM–RCM pairings are combined, and a series of
simulations are performed. ENSEMBLES [38] and EURO-CORDEX [39] projects are two of
such efforts.

EURO-CORDEX—as the main reference framework for regional downscaling research—
aims to facilitate the process of knowledge exchange and communication. Many sectors—
e.g., building sector, agriculture, heat and fire risk, and air quality—utilize EURO-CORDEX,
since it provides a consistent database of downscaled multi-year projections for various
regions all over the world [40]. In addition, by providing a better understanding of the
regional and local climate and its associated uncertainties, EURO-CORDEX evaluates and
enhances different RCMs. CORDEX includes a large RCM database, and it is updated by
new climate data from available domains all over the globe [41]. For European countries,
the grid resolution provided by EURO-CORDEX projections equals 12.5 km. For Middle
East and North Africa, this quantity is 25 km, while the rest of the world has the grid
resolution of 50 km. The time scales—on which the data in the multi-layer format are
available—include monthly, daily, every six hours, every three hours, and hourly during
the historical period from 1976 to 2005 and for the future period, from 2006 to 2100. The
data are available either for RCP 4.5 or RCP 8.5 scenarios, depending on the model [42].
Although most of the available data on the platform are not bias-adjusted, a number of
bias-adjusted data are available for some specific models and climate variables. In this
study, the hydrostatic version of the regional model REMO-2015 (from 0.11◦ resolution of
the CORDEX European domain), developed by the Max Planck Institute for Meteorology
in Hamburg, Germany and currently maintained at the Climate Service Center Germany
(GERICS) in Hamburg is used [43,44]. The utilization of this model in creating future TMY
for this study is discussed in Section 3.1.4.

3. Materials and Methods
3.1. Describing Future Weather Data Generation for Rome

Four future weather datasets to be analyzed in this work were generated for Rome,
using Meteonorm, CCWorldWeatherGen, and WeatherShift weather generator tools, and
one RCM (GERICS-REMO-2015) from the EURO-CORDEX project. The weather datasets
were developed for the mid-century period from 2040 to 2060. In the study of Hawkins
and Sutton, this period (around 2050) is indicated as the period in which temperature
predictions will be best in comparison with other periods during the century. Uncertainties
of GCMs due to the internal climate variability, climate model, and future scenarios
increase significantly over time [30,31]. The following sub-sections describe the applied
methodology in detail.
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3.1.1. Meteonorm

By integrating the climate database with spatial interpolation of the principal weather
variables and a stochastic weather generator, Meteonorm generates hourly weather data
for any site in the world [45]. These data can be used as an input for building performance
simulation. Weather variables such as global irradiance on a horizontal plane at the ground
level, dry-bulb temperature, dew-point temperature, and wind speed are provided by
Meteonorm. This tool can be also used for climate change studies. GCMs under the
IPCC fourth assessment report (AR4) [46] are used in this tool to generate future weather
data for different emission scenarios (B1, A1B, and A2), with 10-year intervals from 2010
until 2100 [47]. The Meteonorm version 7.2 was used in this study to generate a typical
meteorological year of 2050 for the A2 emission scenario (pessimist scenarios) for the city
of Rome.

3.1.2. CCWorldWeatherGen

The CCWorldWeatherGen is a Microsoft® Excel based tool developed by the Sus-
tainable Energy Research Group of Southampton University [25]. It uses the Morphing
methodology to create future weather datasets in Energy Plus Weather (EPW) format for
different locations all over the world. The output data of UK Met-office, the Hadley Center
Coupled Model 3 (HadCM3) [48] global climate model, forced with IPCC A2 emission
scenarios is used in this tool. The HadCM3 climate model was chosen since by the time—
in comparison with 29 other climate models—this model was the only one that had all
necessary climate variables for the morphing procedure [49]. What HadCM3 provides
as input for the Morphing procedure in CCWorldWeatherGen is the monthly value of
relative changes regarding the period of 1961–1990. The Excel tool superimposes this
input on the weather variables of the baseline weather data stored in an EPW file. The
tool generates future weather data sets for 3 time slices: 2001–2040 (referred as ‘2020s’),
2041–2070 (referred as ‘2050s’), and 2071–2100 (referred as ‘2080s’). Being a free online tool
is an advantage that makes it widely used. However, due to possible differences in the
reference time frame between HadCM3 and the EPW data, inaccuracy in the outputs of the
tool may occur [50]. In this study, the International Weather for Energy Calculation (IWEC)
TMY file of Rome—downloaded from the Energy Plus database—was used to be morphed
for the time slice of 2050s.

3.1.3. WeatherShift

The WeatherShift TM tool was developed upon morphing methodology by Arup and
Argos Analytics for creating future weather data [51]. “The tool blends 14 of the more
recently simulated GCMs (BCC-CSM1.1, BCC-CSM1.1(m), CanESM2, CSIRO- Mk3.6.0,
GFDL-CM3, GFDL-ESM2G, GFDL-ESM2M, GISS-E2-H, GISS-E2-R, HadGEM2-ES, IPSL-
CM5A-LR, IPSL-CM5A-MR, IPSL-CM5B-LR, NorESM1-M) into cumulative distribution
functions (CDF) [52]. It is based on RCP 4.5 and 8.5 emission scenarios of the IPCC
fifth assessment report. Creating CDFs allows a percentile distribution (called warming
percentile factor) and “smooths out” the inter-modal uncertainty and stochastic climate
behavior [53]. The tool produces future weather data for time periods of 20 years starting
from 2011 and ending in 2100. The morphing method in this tool is applied in 8 climate
variables of the reference TMY: the mean, maximum, and minimum daily temperature,
relative humidity, daily total solar irradiance, wind speed, atmospheric pressure, and
precipitation. The future projections are relative to the baseline period of 1976-2005. In
this study, the 50th percentile and the RCP 8.5 emission scenarios were selected to set
the tool for generating future weather datasets of Rome for the period of 2041–2060. The
IWEC-TMY was the baseline for this procedure.

3.1.4. TMY out of GERICS-REMO-2015

As mentioned earlier, the GERICS-REMO-2015 regional climate model was used
in this study to apply the dynamical downscaling method. The data for this model
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were downloaded from the EURO-CORDEX entry point through the Earth System Grid
Federation (ESGF) for the Europe domain on a 0.11◦ grid in rotative coordinates (equivalent
to a 12.5 km grid). These data are available in the NetCDF4 format, which is a file format
for storing multidimensional scientific data. The extraction of the data for our case study
(city of Rome) was performed through the Cordex Data Extractor software [54] that allows
finding the closest data point on the grid to the desired latitude and longitude. The RCP
8.5 scenario was adapted to extract these data for the 2041–2060 period. The driving model
considered in this study is MPI-M-MPI-ESM-LR, which is well supported according to the
IPCC report on the evaluation of climate models [55].

In order to create a future typical meteorological year (F-TMY) for the city of Rome
out of the 20 years of extracted data, the methodology of standard EN ISO 15927-4 [56]
was used. This international standard covers the selection of appropriate meteorological
data for the assessment of the long-term mean energy use for heating and cooling. TMY is
constructed from 12 representative months (Best Months) from multi-year records. The
selection of Best Months is done by comparing the cumulative distribution function of the
single and reference years through the Finkelstein–Schafer (FS) statistics [24]. This method
was used in this study since the criteria for selecting the Best Month is not merely limited
to dry-bulb air temperature; it also takes the global solar irradiance, relative humidity, and
wind speed into account.

3.2. Energy Performance and Thermal Comfort Assessment

The building energy performance was assessed by means of a detailed dynamic
simulation model using EnergyPlus (version 9.0) with an hourly time-step. The results
are discussed in terms of annual thermal energy need for space heating and space cooling
(EPH/C,nd) and electrical energy demand per unit of area (Eel /Af). The latest indicator
(Eel /Af) was calculated according to Equation (4):

Eel / Af =
EPH,nd

ηH,u.ηH,g
+

EPC,nd

ηC,u.ηC,g
(4)

where EPH/C,nd is the annual thermal energy need for space heating/cooling, ηH/C,u
is the mean seasonal efficiency of the heating/cooling utilization (including emission,
control, and distribution) subsystems, and ηH/C,g is the mean seasonal efficiency of the
heating/cooling generation subsystem.

The reference mean seasonal efficiency values of the utilization subsystems were
assumed in compliance with the Italian Interministerial Decree of June 26th, 2015 [57].
As a reversible heat pump has been selected as a generation subsystem type to carry out
the analysis, a future value of the mean seasonal generation efficiency was adopted to
take into account the increase of the ambient temperature due to climate change. The
generation efficiency was calculated assuming proportionality between the coefficient of
performance (COP) and its maximum theoretical efficiency over different temperatures, as
in Equation (5):

ηH,g ∼
∑heating season ΦH

∑heating season

(
ΦH·

Tcond,out
Tcond,out−Tevap,in

) (5)

where ΦH is the thermal energy load for heating, Tcond,out is the condenser outlet tempera-
ture (hot water), and Tevap,in is the evaporator inlet air temperature.

In the same way, proportionality between the energy-efficiency ratio (EER) and its
maximum theoretical efficiency over different temperatures has been assumed, as in
Equation (6):

ηC,g ∼
∑cooling season ΦC

∑cooling season

(
ΦC·

Tevap,out
Tcond,in−Tevap,out

) (6)

where ΦC is the thermal energy load for cooling, Tevap,out is the evaporator outlet tempera-
ture (chilled water), and Tcond,in is the condenser inlet air temperature.
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The thermal comfort was assessed in accordance with the EN 16798-1 standard [58].
The adaptive comfort model was adopted to predict how the pattern of outside weather
conditions affect the indoor thermal sensation of the user in free-floating condition. In this
model, the optimal operative temperature (θo,c, in ◦C) is calculated as in Equation (7):

θo,c = 0.33·θr,m + 18.8 (7)

where θr,m is the outdoor running mean temperature, which is defined as an exponential
running mean of the outdoor air temperature.

In this research, a medium level of occupant expectation (i.e., second category of
indoor environmental quality, as defined in [58]) was applied, in which the range of
comfort is between θo,c + 3 ◦C (highest limit) and θo,c − 4 ◦C (lowest limit). In addition, the
hours of exceedance (HE) were calculated as an indicator to quantify indoor overheating.
The HE indicator is equal to the number of hours during the cooling period in which
the operative temperature of the zone is greater than the upper limit temperature of the
thermal comfort range.

3.3. Definition of Case Studies

Representative buildings of the Italian residential building stock were used to carry
out the comparison between the future weather datasets. The buildings have been selected
from the Italian Building Typology Matrix developed in the Intelligent Energy Europe-
Typology Approach for Building Stock Energy Assessment (IEE-TABULA) research project [59],
which aimed at creating a harmonized definition of the residential building typology at
the European level. The two selected building types (Figure 1) belong to the categories of
single-family house (SFH) and apartment block (AB), respectively, and both were built in
the construction period 1946–1960. The two building sizes present a significantly different
shape factor—0.73 m−1 for the SFH and 0.46 m−1 for the AB—and window-to-wall ratio:
0.09 for the SFH and 0.23 for the AB.
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Figure 1. Italian residential building-types of the construction period 1946–1960, according to the 
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for present and different future weather data to assess the building energy performance 
of the case studies. The heating energy demand for the mono family house (MFH) domi-
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Figure 1. Italian residential building-types of the construction period 1946–1960, according to the
IEE-TABULA project: single-family house (a) and apartment block (b).

The buildings have uninsulated envelope components, as the construction period
predates the first Italian law on energy savings issued in 1976. The opaque external
wall is a solid brick masonry (U = 1.48 W·m−2 K−1 the SFH, and U = 1.15 W·m−2 K−1

the AB), while the horizontal envelope components are reinforced brick–concrete slabs
(U = 1.65 W·m−2 K−1). The transparent envelope components are single glazing (ggl,n = 0.85)
and wood-frame windows (U = 4.90 W·m−2 K−1) with exterior wooden Venetian blinds
(ggl + sh = 0.35).

A reference technical building system was assumed for the case studies in the present
work. It consists in an electrical reversible air-to-water heat pump coupled with fan coils.

The energy performance of the buildings was assessed assuming a standard user
behavior for the quantification of the internal heat gains and the airflow rates by natural
ventilation [60]. A continuous operation of the heating and cooling systems was set,
considering 20 ◦C and 26 ◦C temperature set points, respectively. The heating season
covers the period between October 15th and April 15th as fixed by the Italian energy
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regulations. The availability of the cooling system was assumed in the remaining part of
the year (from April 16th to October 14th).

4. Results and Discussion

The aim of this research is to analyze different types of future weather datasets by
comparing their relative impact on building energy performance predictions. In the first set
of results, boxplots of the outdoor dry-bulb temperature (a) and the global horizontal solar
irradiance during daily hours (b), which are the weather key variables in building energy
simulation, are plotted (Figure 2). Boxplots show a pattern of increase in both variables
due to climate change. All future weather files show almost similar mean values higher
than the present weather file. Nevertheless, F-TMY—which is derived from a dynamical
downscaling method—shows lower dispersion compared to other future files (statistically
downscaling methods).
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Below, Figure 3 presents net thermal energy needs for heating and cooling normalized
by the conditioned floor area for a mono family house (a) and apartment block (b) for
present and different future weather data to assess the building energy performance of the
case studies. The heating energy demand for the mono family house (MFH) dominates over
cooling demand. In addition, MFH has also higher energy demand for heating compared
to the apartment block (AB). This is due to the higher shape factor (S/V) ratio, which
entails that heat transfer by transmission is the most relevant term of the energy balance,
and outdoor temperature is the main driving force. Consequently, the decrease of EPH,nd
in the future prevails over the increase of EPC,nd. On the opposite, the AB shows closer
values of EPH,nd and EPC,nd. It appears that the heating need is slightly dominant in the
present, but it will be overtaken by cooling in the future. For all future weather data except
F-TMY, the relative change of EPH,nd is in the range of 30% to 34% for both buildings,
while the relative change of EPC,nd is above 160% for MFH and above 100% for AB. This
unevenness in relative variation is mainly related to the different magnitude of the present
energy need. As regards F-TMY, lower values of EPH,nd and EPC,nd are shown compared
to the other future weather data, meaning that EPH,nd will decrease more and EPC,nd will
increase less. This trend is strictly dependent on the lower dispersion of temperature
values for F-TMY compared to the other future weather datasets. Comparing the four
sets of weather data, Weathershift (WS), Meteonorm (MET), and CCWorldWeatehrGen
(CCW) show almost similar variations in EPH,nd and EPC,nd, while the F-TMY presents a
significantly different variations in the two indicated parameters. This comes from the fact
that WS, MET, and CCW are all statistically downscaled weather datasets, and F-TMY is a
dynamically downscaled weather dataset.
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In order to better present this trend, the box plots of thermal energy load for heating in
the month of January and for cooling in the month of August are shown in Figures 4 and 5.
The figures indicate that both for MFH and AB, the mean values for the month of January
are almost the same for all future weather files, while the deviation of F-TMY is lower
than the three other files. On the other hand, for the month of August, the mean values
of WS, MET, and CCW are significantly higher than F-TMY. The reason lies in the fact
that the dynamical downscaled weather data in comparison with the statistical ones better
represents the temporal variability of climate, which leads to a more consistent dataset.
As another outcome of the inconsistency in the statistical downscaled weather files, both
figures demonstrate the overestimation of the data in the thermal energy load for cooling
in August.
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The adaptive comfort analysis in free floating condition, of MFH and AB for IWEC
(Present), Weathershift (WS), Meteonorm (MET), CCWorldWeatehrGen (CCW), and F-TMY
is presented in Figure 6. The graphs show the distribution of hours of the cooling period
(April 16th until October 14th: 4368 hours) in three ranges: comfort, warm discomfort, and
cold discomfort. The discrepancy between F-TMY and other future weather data is pointed
out. The percentage of warm discomfort hours for the WS, MET, and CCW is almost the
same and equals around 40% for MFH and 90% for AB. For the F-TMY, the percentage
of warm discomfort hours is less for both cases (29% for MFH and 72% for AB). This
discrepancy can be found in Figure 7 where boxplots of last floor operative temperature of
MFH (a) and AB (b) in August for present and different future weather data are presented.
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In this case, despite having similar dispersions, the mean values of last floor operative
temperature of F-TMY is significantly lower than the mean value of the other three future
weather datasets for both MFH and AB. This is strongly dependent on the lower dispersion
of temperature values for F-TMY. If we now turn to the comparison of the two building
types, occupants in AB will experience overheating much more often than the occupants
in MFH because of a reduced potentiality of exploiting the heat transfer in AB through
the envelope for ejecting heat produced by internal and solar sources. This is due to the
lower S/V value and larger window-to-wall ratio (WWR) of the AB compared to MFH.
In addition, hours of exceedance (HE) for all the weather datasets for MFH and AB are
presented in Table 1. It is observed that the absolute change of the increase in the HE for
statistically downscaled future weather datasets is almost the same, while for dynamically
downscaled future weather, data are significantly lower.
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Table 1. Electrical energy demand per unit of area and hours of exceedance for a mono family house (MFH) and apartment
block (AB), for IWEC (Present), Weathershift (WS), Meteonorm (MET), CCWorldWeatehr-Gen (CCW), and F-TMY. All
future weather files are for 2050s considering RCP 8.5.

IWEC
WS MET CCW TMY-R

Absolute
Change

Absolute
Change

Absolute
Change

Absolute
change

SFH
Eel/Af

[kWh m−2 ] 38.7 40.7 2 41.5 2.8 40.5 1.8 29.8 −8.9

HE[h] 222 887 665 877 655 910 688 638 416

AB
Eel/Af

[kWh m−2 ] 22.9 29 6.1 29.5 6.6 28.1 5.2 19.4 −3.5

HE[h] 1273 1995 722 2060 787 1984 711 1596 323

In addition, Table 1 also summarizes the values of the electrical energy demand per
unit of area (Eel/Af). The Eel/Af increases in MFH and AB similarly for WS, MET, and
CCW, while the absolute change is not significantly high. On the other hand, Eel/Af slightly
decreases for F-TMY in both cases. The reason can be explained below: as mentioned
before, a future value for the mean seasonal efficiency of the heating (ηH,g) and the cooling
(ηC,g) generation subsystem was adopted to consider the increase of ambient temperature
due climate change. The mean seasonal efficiency increases for the heating and decreases
for the cooling for all the future weather datasets. However, due to the lower discrepancy
of the temperature values for F-TMY compared to other future weather datasets, the
increase for ηH,g in the dynamical downscaled model is more, while the decreases in
the ηC,g is less. Consequently, according to Equation (4), the reduction in the energy for
winter conditioning outweighs the cooling demand in the case of F-TMY. Finally, if the
variation of Eel/Af for MFH and AB are compared, the absolute changes are lower for MFH,
which comes from its higher S/V value that skews the energy usage of it more toward
the heating regime.

5. Conclusions

Statistical and dynamical are two main approaches to downscale global climate models
for creating weather datasets to be used in building energy simulation. Considering
there are different methodologies that use these approaches, evaluating their suitability
and robustness is vital. This study set out to compare WeatherShift, Meteonorm, and
CCWorldWeatherGen—which are common weather generator tools applying statistical
downscaling—in addition to a TMY created using a high-quality regional climate models
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database (from Euro-CORDEX) that applies the dynamical downscaling. All future weather
files are for the 2050s considering RCP 8.5. Two representative buildings of the Italian
residential building stock, including a mono family house (MFH) and an apartment block
(AB), were selected to perform the analysis.

The results of this investigation show that different statistical downscaled future
weather datasets created by weather generators predict the future energy performance and
comfort analysis of the buildings quite similarly, compared to the dynamical one. This
is demonstrated by almost the same values in the mean outdoor dry-bulb temperature,
relative changes of thermal energy need for heating and cooling normalized by the condi-
tioned floor area, mean value of thermal energy load for heating and cooling, the hours
of discomfort, and the absolute changes in the electrical energy demand per unit of area.
However, when it comes to the dynamical downscaled weather data, the above-mentioned
parameters follow a different pattern. As an example, while the discomfort hours per-
centage for the WS, MET, and CCW equals around 40% for MFH and 90% for AB, for the
F-TMY, this percentage is 29% for MFH and 72% for AB. Consequently, it was verified that
dynamical downscaling, by better representing the spatial and temporal variability of local
climate, provides physically consistent datasets.

The other significant result of this study is reached by comparing different building
types. In more detail, the observed discrepancy between the future predictions of statistical
and dynamical downscaling is affected not only by using different approaches for creating
future weather datasets but also by building type. As an example, the thermal energy
need for cooling in MFH for statistical downscaled datasets increases around 170%, and
for the dynamical one, it increases around 70%. On the other hand, in AB, this parameter
increases 100% for statistical downscaled data and around 40% for the dynamical one. This
inequality in relative variation comes from the different magnitude of the present energy
need for different building types. For buildings with a higher shape factor (MFH), the
heating energy demand dominates the cooling energy demand, which also make them
more sensitive to the climate change.

Overall, this study has provided a deeper insight into analyzing the effect of climate
change on the future energy performance of buildings by considering different future
weather datasets and building types. Firstly, it was shown that the climate change impact
magnitude is not equal for different case studies, so that in a changing climate, performing
a regional and localized analysis becomes vital. In addition, the results demonstrated that
morphing method—regardless of its way of application—can provide adequate information
to perform comparative analysis on long-term changes in energy building performance.
However, the existing inconsistency within this method may lead to high prediction errors.
In this case, the dynamical downscaling method is found to be more reliable when the aim
is to develop, assess, and communicate resilient solutions to withstand as well as prevent
the future impacts of climate change on building energy performance. Further studies
are suggested to be carried out to consider model uncertainties of RCMs by following an
ensemble-based approach. In addition, it is important to bear in mind that RCMs have
been run not only for future but also for historical period. So, they can be compared with
the real data, and the biases associated with the climate model data can be adjusted to
reduce uncertainties and increase their physical consistency. This possibility does not exist
for statistical downscaling method tools, as they are based on transforming the actual real
data; it is possible to say they are often “black-box” tools.
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11. Herbel, I.; Croitoru, A.-E.; Rus, A.V.; Roşca, C.F.; Harpa, G.V.; Ciupertea, A.-F.; Rus, I. The impact of heat waves on surface urban
heat island and local economy in Cluj-Napoca city, Romania. Theor. Appl. Clim. 2018, 133, 681–695. [CrossRef]

12. Nakicenovic, N.; Alcamo, J.; Davis, G.; Vries, B.D.; Fenhann, J.; Gaffin, S.; Gregory, K.; Grubler, A.; Jung, T.Y.; Kram, T.; et al.
Special Report on Emissions Scenarios; IPCC: Geneva, Switzerland, 2000.

13. Dimoudi, A.; Tompa, C. Energy and environmental indicators related to construction of office buildings. Resour. Conserv. Recycl.
2008, 53, 86–95. [CrossRef]

14. Shen, P. Impacts of climate change on U.S. building energy use by using downscaled hourly future weather data. Energy Build.
2017, 134, 61–70. [CrossRef]

15. Berardi, U.; Jafarpur, P. Assessing the impact of climate change on building heating and cooling energy demand in Canada.
Renew. Sustain. Energy Rev. 2020, 121, 109681. [CrossRef]

16. Flores-Larsen, S.; Filippín, C.; Barea, G. Impact of climate change on energy use and bioclimatic design of residential buildings in
the 21st century in Argentina. Energy Build. 2019, 184, 216–229. [CrossRef]

17. Soutullo, S.; Giancola, E.; Jiménez, M.J.; Ferrer, J.A.; Sánchez, M.N. How Climate Trends Impact on the Thermal Performance of a
Typical Residential Building in Madrid. Energies 2020, 13, 237. [CrossRef]

18. Da Guarda, E.L.A.; Domingos, R.M.A.; Jorge, S.H.M.; Durante, L.C.; Sanches, J.C.M.; Leão, M.; Callejas, I.J.A. The influence
of climate change on renewable energy systems designed to achieve zero energy buildings in the present: A case study in the
Brazilian Savannah. Sustain. Cities Soc. 2020, 52, 101843. [CrossRef]

19. Zhai, Z.J.; Helman, J.M. Implications of climate changes to building energy and design. Sustain. Cities Soc. 2019, 44, 511–519.
[CrossRef]

20. Chai, J.; Huang, P.; Sun, Y. Investigations of climate change impacts on net-zero energy building lifecycle performance in typical
Chinese climate regions. Energy 2019, 185, 176–189. [CrossRef]

21. Herrera, M.; Natarajan, S.; Coley, D.A.; Kershaw, T.; Ramallo-González, A.P.; Eames, M.; Fosas, D.; Wood, M. A review of current
and future weather data for building simulation. Build. Serv. Eng. Res. Technol. 2017, 38, 602–627. [CrossRef]

22. Hall, I.J.; Prairie, R.R.; Anderson, H.E.; Boes, E.C. Generation of a Typical Meteorological Year (No. SAND-78-1096C; CONF-780639-1);
Sandia Labs: Albuquerque, NM, USA, 1978.

23. Barnaby, C.S.; Crawley, D.B. Weather data for building performance simulation. In Building Performance Simulation for Design and
Operation; Routledge: London, UK, 2011.

24. Finkelstein, J.M.; Schafer, R.E. Improved goodness-of-fit tests. Biometrika 1971, 58, 641–645. [CrossRef]

https://energyplus.net/weather-location/europe_wmo_region_6/ITA//ITA_Rome.162420_IWEC
https://energyplus.net/weather-location/europe_wmo_region_6/ITA//ITA_Rome.162420_IWEC
https://esgf-node.llnl.gov/search/esgf-llnl/
http://doi.org/10.1029/2007JD008510
http://doi.org/10.3390/atmos8110224
http://doi.org/10.1186/1476-069X-9-37
http://www.ncbi.nlm.nih.gov/pubmed/20637065
http://doi.org/10.1007/s00484-009-0256-x
http://www.ncbi.nlm.nih.gov/pubmed/19727842
http://doi.org/10.1016/j.scs.2019.101948
http://doi.org/10.1080/13549839.2012.678320
http://doi.org/10.1016/j.jclepro.2017.10.069
http://doi.org/10.1007/s00704-017-2196-4
http://doi.org/10.1016/j.resconrec.2008.09.008
http://doi.org/10.1016/j.enbuild.2016.09.028
http://doi.org/10.1016/j.rser.2019.109681
http://doi.org/10.1016/j.enbuild.2018.12.015
http://doi.org/10.3390/en13010237
http://doi.org/10.1016/j.scs.2019.101843
http://doi.org/10.1016/j.scs.2018.10.043
http://doi.org/10.1016/j.energy.2019.07.055
http://doi.org/10.1177/0143624417705937
http://doi.org/10.1093/biomet/58.3.641


Climate 2021, 9, 37 15 of 16

25. Jentsch, M.F.; James, P.A.; Bourikas, L.; Bahaj, A.S. Transforming existing weather data for worldwide locations to enable energy
and building performance simulation under future climates. Renew. Energy 2013, 55, 514–524. [CrossRef]

26. Dias, J.B.; Da Graça, G.C.; Soares, P.M. Comparison of methodologies for generation of future weather data for building thermal
energy simulation. Energy Build. 2020, 206, 109556. [CrossRef]

27. Moazami, A.; Nik, V.M.; Carlucci, S.; Geving, S. Impacts of future weather data typology on building energy performance—
Investigating long-term patterns of climate change and extreme weather conditions. Appl. Energy 2019, 238, 696–720. [CrossRef]

28. U.S. Department of Energy’s (DOE). Energy Plus Software, v. 9.0. Available online: https://energyplus.net/ (accessed on 2
September 2020).

29. Köppen, W. Die Wärmezonen der Erde, nach der Dauer der heissen, gemässigten und kalten Zeit und nach der Wirkung der
Wärme auf die organische Welt betrachtet. Meteoro. Z. 1884, 1, 5–226.

30. Hawkins, E.; Sutton, R.T. The Potential to Narrow Uncertainty in Regional Climate Predictions. Bull. Am. Meteorol. Soc. 2009, 90,
1095–1108. [CrossRef]

31. Hawkins, E.; Sutton, R. The potential to narrow uncertainty in projections of regional precipitation change. Clim. Dyn. 2011, 37,
407–418. [CrossRef]

32. Ramon, D.; Allacker, K.; Van Lipzig, N.P.M.; De Troyer, F.; Wouters, H. Future Weather Data for Dynamic Building Energy
Simulations: Overview of Available Data and Presentation of Newly Derived Data for Belgium. Energy Environ. Sustain. 2018,
111–138. [CrossRef]

33. Uppala, S.M.; Kållberg, P.W.; Simmons, A.J.; Andrae, U.; Bechtold, V.D.C.; Fiorino, M.; Gibson, J.K.; Haseler, J.; Hernandez, A.;
Kelly, G.A.; et al. The ERA-40 re-analysis. Q. J. R. Meteorol. Soc. 2005, 131, 2961–3012. [CrossRef]

34. Laflamme, E.M.; Linder, E.; Pan, Y. Statistical downscaling of regional climate model output to achieve projections of pre-cipitation
extremes. Weather. Clim. Extrem. 2016, 12, 15–23. [CrossRef]

35. Belcher, S.; Hacker, J.; Powell, D. Constructing design weather data for future climates. Build. Serv. Eng. Res. Technol. 2005, 26,
49–61. [CrossRef]

36. American Meteorological Society. Regional climate model. In Glossary of Meteorology; American Meteorological Society: Boston,
MA, USA, 2013.

37. Soares, P.M.; Cardoso, R.M.; Miranda, P.M.; de Medeiros, J.; Belo-Pereira, M.; Espirito-Santo, F. WRF high resolution dynam-ical
downscaling of ERA-Interim for Portugal. Clim. Dyn. 2012, 39, 2497–2522. [CrossRef]

38. Van der Linden, P.; Mitchell, J.E. ENSEMBLES: Climate Change and its Impacts: Summary of Research and Results from the ENSEMBLES
Project; Met Office Hadley Centre: Exeter, UK, 2009.

39. Jacob, D.; Petersen, J.; Eggert, B.; Alias, A.; Christensen, O.B.; Bouwer, L.M.; Braun, A.; Colette, A.; Déqué, M.; Georgievski, G.; et al.
EURO-CORDEX: New high-resolution climate change projections for European impact research. Reg. Environ. Chang. 2014, 14, 563–578.
[CrossRef]

40. Giorgi, F. Thirty Years of Regional Climate Modeling: Where Are We and Where Are We Going next? J. Geophys. Res. Atmos. 2019,
124, 5696–5723. [CrossRef]

41. World Research Climate Program (WRCP) Coordinated Downscaling Experiment—European Domain. Available online: https:
//www.eurocordex.net/ (accessed on 2 December 2020).

42. EUROCORDEX: Cordex Archive Specifications. Available online: https://is-enes-data.github.io/cordex_archive_specifications.
pdf (accessed on 2 December 2020).

43. Jacob, D.; Podzun, R. Sensitivity studies with the regional climate model REMO. Theor. Appl. Clim. 1997, 63, 119–129. [CrossRef]
44. Jacob, D. A note to the simulation of the annual and inter-annual variability of the water budget over the Baltic Sea drain-age

basin. Meteorol. Atmos. Phys. 2001, 77, 61–73. [CrossRef]
45. Remund, J.; Kunz, S. METEONORM: Global Meteorological Database for Solar Energy and Applied Climatology; Meteotest: Bern,

Switzerland, 1997.
46. Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the

Intergovernmental Panel on Climate Change. In Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K.,
Resinger, A., Eds.; IPCC: Geneva, Switzerland, 2007.

47. Remund, J.; Müller, S.C.; Schilter, C.; Rihm, B. The use of Meteonorm weather generator for climate change studies. In Proceedings
of the10th EMS Annual Meeting 2010, Zürich, Switzerland, 13–17 September 2010. EMS2010-417.

48. Met Office HadCM3: Met Office Climate Prediction Model. Available online: https://www.metoffice.gov.uk/research/approach/
modelling-systems/unified-model/climate-models/hadcm3 (accessed on 2 December 2020).

49. Jentsch, M.F. Technical Reference Manual for the CCWeatherGen and CCWorldWeatherGen Tools Version 1.2. 2012. Available
online: http://blog.soton.ac.uk/serg/files/2013/06/manual_weather_tool1.pdf (accessed on 2 December 2020).

50. Jentsch, M.F.; Bahaj, A.S.; James, P.A. Climate change future proofing of buildings—Generation and assessment of building
simulation weather files. Energy Build. 2008, 40, 2148–2168. [CrossRef]

51. WeatherShift. Available online: http://www.weather-shift.com (accessed on 2 December 2020).
52. Pachauri, R.K.; Reisinger, A. Climate Change 2007. Synthesis Report. Contribution of Working Groups I, II and III to the fourth Assessment

Report; IPCC: Geneva, Switzerland, 2008.
53. Troup, L.; Fannon, D. Morphing Climate Data to Simulate Building Energy Consumption. In Proceedings of the ASHRAE and

IBPSA-USA SimBuild 2016: Building Performance Modeling Conference, Salt Lake City, UT, USA, 12–10 August 2016; Volume 6.

http://doi.org/10.1016/j.renene.2012.12.049
http://doi.org/10.1016/j.enbuild.2019.109556
http://doi.org/10.1016/j.apenergy.2019.01.085
https://energyplus.net/
http://doi.org/10.1175/2009BAMS2607.1
http://doi.org/10.1007/s00382-010-0810-6
http://doi.org/10.1007/978-981-13-3284-5_6
http://doi.org/10.1256/qj.04.176
http://doi.org/10.1016/j.wace.2015.12.001
http://doi.org/10.1191/0143624405bt112oa
http://doi.org/10.1007/s00382-012-1315-2
http://doi.org/10.1007/s10113-013-0499-2
http://doi.org/10.1029/2018JD030094
https://www.eurocordex.net/
https://www.eurocordex.net/
https://is-enes-data.github.io/cordex_archive_specifications.pdf
https://is-enes-data.github.io/cordex_archive_specifications.pdf
http://doi.org/10.1007/BF01025368
http://doi.org/10.1007/s007030170017
https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadcm3
https://www.metoffice.gov.uk/research/approach/modelling-systems/unified-model/climate-models/hadcm3
http://blog.soton.ac.uk/serg/files/2013/06/manual_weather_tool1.pdf
http://doi.org/10.1016/j.enbuild.2008.06.005
http://www.weather-shift.com


Climate 2021, 9, 37 16 of 16

54. CORDEX Data Extractor. Available online: https://agrimetsoft.com/CordexDataExtractor (accessed on 2 December 2020).
55. Flato, G.; Marotzke, J.; Abiodun, B.; Braconnot, P.; Chou, S.C.; Collins, W.; Cox, P.; Driouech, F.; Emori, S.; Eyring, V.; et al.

Evaluation of climate models. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth
Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014; pp. 741–866.

56. European Committee for Standardization. EN ISO 15927-4. Hygrothermal Performance of Buildings Calculation and Presentation
of Climatic Data, Part 4: Hourly Data for Assessing the Annual Energy Use for Heating and Cooling; European Committee for
Standardization: Brussels, Belgium, 2005.

57. O. J. of the Italian Republic. Italian Republic, Interministerial Decree of June 26th, 2015—Calculation Methodologies of the Building
Energy Performance and Minimum Energy Performance Requirements (in Italian); O. J. of the Italian Republic: Rome, Italy, 2015.

58. European Committee for Standardization. EN ISO 16798-1. Energy Performance of Buildings—Ventilation for Buildings—Part 1:
Indoor Environmental Input Parameters for Design and Assessment of Energy Performance of Buildings Addressing Indoor Air Quality,
Thermal Environment, Lighting, and Acoustics—Module M1-6; European Committee for Standardization: Brussels, Belgium, 2019.

59. Ballarini, I.; Corgnati, S.P.; Corrado, V. Use of reference buildings to assess the energy saving potentials of the residential building
stock: The experience of TABULA project. Energy Policy 2014, 68, 273–284. [CrossRef]

60. Comitato Termotecnico Italiano. Technical Commission 241, doc. no. 181, Italian National Annex of the EN 16798-1 Technical Standard
(Working Draft for Internal Use); Comitato Termotecnico Italiano: Milan, Italy, 2020.

https://agrimetsoft.com/CordexDataExtractor
http://doi.org/10.1016/j.enpol.2014.01.027

	Introduction 
	Review of GCMs Downscaling Methods 
	Statistical Downscaling 
	Stochastic Weather Generation 
	Time Series Adjustment: Morphing 

	Dynamical Downscaling 

	Materials and Methods 
	Describing Future Weather Data Generation for Rome 
	Meteonorm 
	CCWorldWeatherGen 
	WeatherShift 
	TMY out of GERICS-REMO-2015 

	Energy Performance and Thermal Comfort Assessment 
	Definition of Case Studies 

	Results and Discussion 
	Conclusions 
	References

