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Abstract: Cell migration in highly constrained environments is fundamental in a wide variety of
physiological and pathological phenomena. In particular, it has been experimentally shown that
the migratory capacity of most cell lines depends on their ability to transmigrate through narrow
constrictions, which in turn relies on their deformation capacity. In this respect, the nucleus, which
occupies a large fraction of the cell volume and is substantially stiffer than the surrounding cytoplasm,
imposes a major obstacle. This aspect has also been investigated with the use of microfluidic devices
formed by dozens of arrays of aligned polymeric pillars that limit the available space for cell
movement. Such experimental systems, in particular, in the designs developed by the groups of
Denais and of Davidson, were here reproduced with a tailored version of the Cellular Potts model, a
grid-based stochastic approach where cell dynamics are established by a Metropolis algorithm for
energy minimization. The proposed model allowed quantitatively analyzing selected cell migratory
determinants (e.g., the cell and nuclear speed and deformation, and forces acting at the nuclear
membrane) in the case of different experimental setups. Most of the numerical results show a
remarkable agreement with the corresponding empirical data.

Keywords: Cellular Potts model; cell migration; nucleus deformation; microchannel device

MSC: 34K34; 37N25; 92C17

1. Introduction

The ability of cells to move within different environments is crucial in a diverse array
of processes. For instance, during development, the coordinated movement of cells of
different origin is fundamental for both shaping the growing embryo and organogenesis:
migratory defects at all stages may in fact lead to severe malformations [1]. In mature
organisms, immune cells are mobilized from the bloodstream to enter sites of infection,
and then into the lymph nodes for effector functions [2]. Moreover, the migration of ep-
ithelial cells and fibroblasts is vital for proper wound healing and the repair of basement
membranes and connective tissues. In pathological conditions, cell migration is involved in
chronic inflammatory diseases, such as arteriosclerosis, and in cancer invasion and metas-
tasization [3]. The process of cell migration is finally exploited in biomedical engineering
applications for the regeneration of various tissues, such as cartilage, skin, or peripheral
nerves in vivo or in vitro [4–7].

The migratory efficacy of cells is determined, to a large extent, by their capacity to
squeeze through strictly confined environments. For instance, tissue membranes and
vessel walls, as well as dense regions of structural extracellular matrices (ECMs), rep-
resent physical barriers characterized by significantly small openings and pores [8,9].
Under these conditions, cells can achieve substantial movement by degrading/modifying
their surroundings to create sufficient space, for example, by the secretion of matrix metallo-
proteinases (MMPs) or by squeezing to fit through the available space [10–12]. In the latter
option, the elasticity of the cell becomes an important factor. In this respect, the cytoplasm
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is very flexible and can undergo large deformations. On the other hand, the voluminous
nucleus is much stiffer: it is therefore a hampering factor for cell movement [13–16].

The relation between cell mobility and remodeling ability is efficiently studied with
two experimental systems. On the one hand, cultured cells are stimulated to move in
engineered fibrous scaffolds, which mimic highly confined in vivo connective tissues [17].
On the other hand, they are seeded and allowed to locomote within microfluidic-based
devices, characterized by the presence of constrictions formed by fixed and insoluble
polymeric structures (e.g., extended walls or arrays of pillars) [18–21].

Such a second type of experimental system, in particular, in the design version pro-
posed by Denais and coworkers in [19] and by Davidson and colleagues in [18], was here
reproduced and simulated using an extended Cellular Potts model (CPM, [22–27]). This
is a grid-based Monte Carlo technique that employs a stochastic energy minimization
principle to determine system evolution. The approach proposed in this work is similar
to those proposed in [28–30], which employed a compartmental representation of cells to
analyze selected aspects of their movement within matrix environments. However, it is
characterized by some relevant novelties and features, namely:

• The definition of a Boltzmann law for lattice updates specific for each type of proposed
cell dynamics (e.g., cytosolic extension or retraction, and nucleus deformation);

• An analysis of the forces that act on the nuclear envelope at different stages of individ-
ual locomotion;

• A continuous and close feedback and feedforward between computational and exper-
imental results, in a perspective of a data-driven model refinement.

In this respect, as an outcome, we focused on experimentally addressable characteristics
of cell shape and locomotion (e.g., the velocity and transit time within a constriction, and
nucleus deformation ratio). In particular, we predicted how these quantities were affected
by selected manipulations either of cell properties or of channel layout. In this respect,
we successfully replicated most of the experimental results proposed in the two reference
papers [18,19]. For the sake of completeness, we investigated the rationale underlying the
few discrepancies that emerged between the computational and in vitro outcomes.

The rest of the paper is organized as follows. In Section 2, we clarify the assumptions
on which our approach was based and describe each model component. In this part of the
work, we also introduce and provide an estimation of the model parameters and define
how we quantified and characterized cell movement. The computational findings are then
presented in Section 3, where we separately deal with simulations relative to the channel
layouts proposed in [18,19], respectively. Finally, the proposed results are discussed in the
last Section 4, which also contains some hints for future perspectives.

2. Mathematical Model

The Cellular Potts model (CPM) is a grid-based stochastic approach that realistically
preserves the identity of cell-scale elements and describes their behavior and mutual
interactions in energetic terms and constraints. An extended version of the CPM was
employed here to schematically reproduce cell migratory behavior within the two types of
microfluidic-based devices developed in [18,19]. As shown in Figure 1A, both experimental
systems are composed of dozens of arrays of aligned polymeric pillars, which form a series
of parallel channels. Such structural elements are fixed and represent a constriction for cell
movement because they limit the free space and form bottlenecks: their dimensions and
distributions can be varied to mimic different patterns of spatial limitations. An extended
group of cells, initially disposed just outside the entrance of the channels, then individually
moves up to a chemical gradient, which is established by the diffusion of a molecular factor
from a sink reservoir located on the opposite side of the devices; see, again, Figure 1A.
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Figure 1. (A) Schematic representation of the microfluidic devices proposed in [18,19]. (B) Simulation
domain Ω replicating a representative channel of the migration device employed in [19]. (C) Simula-
tion domain Ω reproducing a representative migratory channel of the migration device employed
in [18]. (D) Portion of a 2D Cellular Potts model (CPM) lattice with a generic lattice site x, its border
∂x, and its first-nearest neighbors x′. (E) The virtual cell is compartmentalized into a central nuclear
cluster, the object Σ1 of type N (in yellow), and in the surrounding cytosolic region, the element Σ2 of
type C (in green). The rigid pillars are reproduced by CPM objects Σσ≥3 of type P (in gray). The rest
of the domain is formed by an extended undifferentiated element Σ0 of type M (in black).

In order to reduce the computational complexity of the problem, a two-dimensional
CPM domain Ω ⊂ R2 is used to reproduce a planar section of a single migratory channel,
taken as representative of each of the two reference devices; see Figure 1B,C. In both cases,
Ω is a regular lattice, formed by identical square grid sites that, with an abuse of notation,
are identified by their center x = (x, y) ∈ R2. Each grid site is assigned a unique index,
i.e., an integer number σ(x) ∈ N, that can be interpreted as a degenerate spin, a name
originally inherited from statistical physics [31,32]. The border of a lattice site x is identified
as ∂x, and one of its neighbors, as x′, while its overall Moore neighborhood is identified as
Ω
′
x, i.e., Ω

′
x = {x′ ∈ Ω : x′ is a neighbor of x}; see Figure 1D. The subdomains of contiguous

sites with identical spin form discrete objects Σσ (e.g., Σσ = {x ∈ Ω : σ(x) = σ}), which
have an associated type τ(Σσ).

A single representative cell is then included in Ω. Following the approach proposed
in [27], the simulated agent, labeled by the integer η = 1, is defined as a compartmentalized
element. It is composed of two subregions, which, in turn, are classical CPM objects Σσ:
the nucleus, a central cluster Σσ=1 of type τ = N, and the surrounding cytosol Σσ=2 of
type τ = C; see Figure 1E. Both cell compartments share, as an additional attribute, the
individual identification number η = 1. In other words, the entire cell is identified by
η = 1, whereas its internal compartments are identified by the pairs (η = 1, σ = 1) (the
nucleus) and (η = 1, σ = 2) (the cytoplasm).

The extracellular environment is then differentiated into a polymeric component,
τ = P, and a medium component, τ = M, as done in [30,33,34]. The polymeric state is
assigned to identify the rigid pillars forming the migratory channel. In particular, each
of them is a disconnected CPM element Σσ, identified by its own identification number
σ ≥ 3 (since σ-values ∈ {1, 2} are used for the intracellular compartments; see above).
The dimensions and positions of such structures are specified later on. The medium-like
state instead identifies the free surface of the microchannel, i.e., where the cell moves
and the chemical substances diffuse: it is conventionally assumed to be a single object
Σσ=0 isotropically distributed throughout the simulation domain, as shown in panel (E) of
Figure 1.

Cell movement results from an iterative and stochastic minimization of a free energy,
defined by a Hamiltonian functional H (whose components are defined below). The em-
ployed algorithm consists of a series of elementary steps of a modified Metropolis method
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for Monte Carlo–Boltzmann dynamics [25,35], which is able to implement the natural
exploratory behavior of biological individuals. Procedurally, at each time step t, called
a Monte Carlo step (MCS, the basic unit of time of the model), a lattice site xso (so for
source) belonging to a cell compartment Σσ(xso) is selected at random and attempts to copy

its spin, σ(xso), into one of its unlike neighbors, xta ∈ Ω
′
xso : xta /∈ Σσ(xso) (ta for target),

also randomly selected. In particular, if σ(xso) = 2 and σ(xta) = 0, the cell is protruding,
i.e., extending its motile membrane structures within the extracellular space, whereas if
σ(xso) = 0 and σ(xta) = 2, the cell is retracting. Finally, if σ(xso) = 1 and σ(xta) = 2
or if σ(xso) = 2 and σ(xta) = 1, the cell is reorganizing, i.e., it is undergoing internal
remodeling. Polymeric pillars are instead fixed and immutable, i.e., they are not allowed to
move or be deformed by the cell. The proposed trial of spin update is finally accepted with
a Boltzmann-like probability function P(σ(xso)→ σ(xta)), whose form is slightly changed
here with respect to the general version given in [27]:

P(σ(xso)→ σ(xta)) = tanh(T(σ(xso), σ(xta)))min
{

1 , exp
(

−∆H
T(σ(xso), σ(xta))

)}
. (1)

In Equation (1), ∆H is the net difference of the system energy due to the proposed change
of domain configuration, whereas the parameter T(σ(xso), σ(xta)) ∈ R+ is a Boltzmann
temperature that accounts for the trial cell behavior. The retraction/protrusion dynamics
are in fact dictated by the intensity and the frequency of plasma membrane (PM) ruffles,
which, on a molecular level, are determined by polarization/depolarization processes in
the actin cytoskeleton (refer to [36–38] and references therein). Cell internal reorganization
instead depends on the agitation rate for the nuclear cluster. According to the above
considerations, we indeed have

T(σ(xso), σ(xta)) =



Tτ(σ(xso)), if σ(xso) = 2 and σ(xta) = 0;

Tτ(σ(xta)), if σ(xso) = 0 and σ(xta) = 2;

Tτ(σ(xso)), if σ(xso) = 1 and σ(xta) = 2;

Tτ(σ(xta)), if σ(xso) = 2 and σ(xta) = 1,

(2)

with the stochastic law regulating cell movement that can be finally specified as

P(σ(xso)→ σ(xta)) =



tanh(TC)min
{

1 , exp
(
−∆H

TC

)}
,

if the cell is protruding or retracting;

tanh(TN)min
{

1 , exp
(
−∆H

TN

)}
,

if the cell is reorganizing.

(3)

In particular, we set a sufficiently high TC > 1 since cells moving in confined environments
are widely shown to have an active fluid-like cytoplasm. A lower TN < 1 < TC is instead
fixed since the nucleus does not have active movement dynamics (i.e., self-propulsion), but
it only displaces passively, i.e., is dragged by the surrounding cytoskeleton elements; see,
also, [39] for a more detailed mechanical explanation.

Remark. The acceptance probability resulting from Equations (2) and (3) differs from
the general version given in [27], and used in [28–30], as a consequence of the fact that the
Boltzmann temperature T depends both on the type of moving cell compartment, as in our
previous papers, and on the characteristics of the target grid element. According to us, this
is a significant improvement of the CPM algorithm. For instance, it allows differentiating
cases of the same cell cytosolic element that tries either to extend in the free extracellular
domain or to occupy the space belonging to the nucleus. In fact, in the former case,
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the possibility of cell morphological updates is biologically determined by the cytoskeletal
agitation rate (i.e., by a determinant of the source site), whereas, in the latter case, it relies
on the resistance to movement exerted by the stiff organelle (i.e., on a determinant of the
target site). The transition probability functions employed in our previous papers did not
allow capturing such aspects.

The Hamiltonian functional establishing the system energy is then given by the sum of
three contributions:

H(t) = Hadhesion(t) + Hshape(t) + Hchemotaxis(t). (4)

Hadhesion is the general extension of Steinberg’s differential adhesion hypothesis
(DAH) [25,40,41]. In particular, it is differentiated in the contributions due to either the
generalized contact tension between the nucleus and the cytoplasm within the cell, or the
effective adhesion between the migrating individual and an extracellular component:

Hadhesion(t) = Hint
adhesion(t) + Hext

adhesion(t) = ∑
(∂x∈∂Σ1)∩
(∂x′∈∂Σ2)

Jint
N,C + ∑

(∂x∈∂Σ2)∩
(∂x′∈∂Σ0)

Jext
C,M + ∑

(∂x∈∂Σ2)∩
(∂x′∈∂Σσ≥3)

Jext
C,P, (5)

where x and x′ are two neighboring sites (i.e., x′ ∈ Ω
′
x) and Σσ(x) and Σσ(x′), two neigh-

boring elements. ∂Σσ is instead intended as the border of Σσ (i.e., ∂Σσ =
⋃

x∈Σσ
∂x).

The coefficients Js ∈ R are the binding forces per unit area and are obviously symmetric
w.r.t. their indices. In particular, Jint

N,C implicitly models the forces exerted by intermediate
actin filaments and microtubules to anchor the nucleus to the cell cytoskeleton. In the
perspective of energy minimization, Jint

N,C < 0 is set to prevent cell fragmentation, as done
in [28–30]. Jext

C,M and Jext
C,P, in principle, evaluate the heterophilic contact interactions between

the cell and the extracellular elements: however, both are here fixed equal to zero. This
choice, successfully employed in [29,39], was made to directly analyze the influence of cell
deformability on the motile behavior. The experimental literature also demonstrates that
most cell lines display a sustained ameboid movement, characterized by a poorly adhesive
mode, when crawling in confined environments [21,42,43].

Hshape models the geometrical attributes of the subcellular compartments, which are
written as nondimensional relative deformations in the following quadratic form:

Hshape(t) = Hsurface(t) + Hperimeter(t) =

∑
σ=1,2

[
κΣσ

(
sΣσ (t)− sΣσ (0)

sΣσ (t)

)2

+ νΣσ

(
pΣσ (t)− pΣσ (0)

pΣσ (t)

)2
]

.
(6)

Such an energy term indeed depends on the actual surface and perimeter of the subcellular
units, i.e., sΣσ (t) and pΣσ (t), respectively, as well as on the corresponding target quantities,
i.e., sΣσ (0) and pΣσ (0), respectively, which are here assumed to be characteristic of the
relaxed/initial individual configuration. κΣσ and νΣσ ∈ R+ represent, instead, mechanical
moduli in units of energy: in particular, κΣσ refer to surface changes of the subcellular
compartments, while νΣσ relate to their deformability/elasticity, i.e., to the ease with which
they are able to remodel, changing their perimeter. Both parameters are here taken to be
constant: however, they may vary in time as a consequence, for example, of intracellular
chemical dynamics, as commented on in the conclusive section of the work.

The fluctuations of the cell surface are kept negligible by setting high constant values
κΣ1 = κN = κΣ2 = κC > 1. This choice was based on the assumptions that the migrating cell
has an adequate amount of nutrients to avoid volume loss and that it does not significantly
grow during movement, as confirmed by experimental images in [18,19]. A low νΣ2 =
νC < 1 then allows the large cytosolic deformations experimentally observed in the
cases of cell movement in confined environments. Empirical evidence also shows that
the nucleus is able (when needed) to undergo morphological reorganization but to a
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lower extent than the surrounding cytosolic compartment. Accordingly, we opted to set
1 > νΣ1 = νN > νΣ2 = νC.

Hchemotaxis reproduces the effect of cell preferential migration towards zones with
higher concentrations of a diffusing chemoattractant, which was constantly used in the
experiments to obtain a sustained cell movement [18,19]. Such an energy contribution
was implemented by a local linear-type relation of the form that was firstly used in [44] to
reproduce Dictyostelium discoideum aggregation and then constantly adopted in most
CPM-based approaches:

∆Hchemotaxis = µ(σ(xso), σ(xta))[ct(xta, t)− ct(xso, t)], (7)

where xso and xta are, respectively, the source and the final lattice site randomly selected
during a trial update in an MCS and ct(x, t) = c(x, t) + ∑x′∈Ω′x c(x′, t), where x ∈ {xso, xta}
is a nonlocal measure of the molecular substance sensed by the moving cell site, since
c denotes the chemical concentration; see Equation (9). Finally, µ ∈ R+ represents the
strength of the chemotactic response: in particular, we set

µ(σ(xso), σ(xta)) =


µτ(σ(xso)) = µC, if σ(xso) = 2 and σ(xta) = 0;

µτ(σ(xta)) = µC, if σ(xso) = 0 and σ(xta) = 2;

0, else.

(8)

Equation (8) implies that only cytosolic dynamics are affected by molecular signals. Finally,
the full expression and activity of cell chemical receptors was set by a high µC > 1.

Evolution of the molecular variable. According to the experimental designs in [18,19],
we assume that the virtual molecular substance is released (i.e., produced) at a constant
rate from the top edge of the domain (denoted as ∂Ωprod), homogeneously, and constantly
diffuses and decays, being eventually taken up by the cell. In mathematical terms, we have
the following reaction–diffusion (RD) law:

∂c(x, t)
∂t

= Dc∆c(x, t)δσ(x),{0}︸ ︷︷ ︸
diffusion

− λcc(x, t)︸ ︷︷ ︸
decay

−min{cmax, χcc(x, t)}δσ(x),{1,2}︸ ︷︷ ︸
cell uptake

in x ∈ Ω;

c(∂x) = cprod at ∂x ∈ ∂Ωprod;

c(∂x) = 0 at ∂x ∈ ∂Ω\∂Ωprod,

(9)

where δx,y = {1, x = y; 0, x 6= y} is the Kronecker delta. Equation (9) indeed states that
the chemical substance (i) diffuses only through the domain grid sites not occupied by the
cell or by a rigid pillar, (ii) locally decays everywhere, and (iii) undergoes consumption
only at the domain grid sites occupied by a cell compartment. In particular, cell chemical
absorption follows a piecewise-linear approximation of a Michaelis–Menten law. This
simplification is realistic since cells’ capacity to internalize diffusing substances is limited.
We finally set λc < χc, as the natural decay of a molecule is typically negligible compared
to the cell uptake. We remark that Equation (9) neglects the diffusion of the chemical within
the cell after its uptake: such dynamics would imply the definition of specific coefficients,
i.e., characterizing the diffusion of the substance within each of the two intracellular
compartments. However, the inclusion of this aspect would not have had an impact on
the topic of our study, which was, rather, the dependence of the migratory potential of an
individual on its remodeling ability.
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3. Results

Model parameters and computational details. The characteristic size (lateral edge) of the
domain grid sites is hereafter denoted by |∂x| and was fixed equal to 0.5 µm. The temporal
resolution of the model was, as seen, the MCS, which was constantly set to correspond
to 2 s, as previously done in [28–30]. The PDE for the evolution of the chemical factors
was numerically solved with a finite difference scheme on a grid with the same spatial
resolution as Ω, characterized by 30 diffusion steps per MCS. This temporal scale was
sufficiently small to guarantee the stability of the numerical method.

In all the simulations, the representative motile cell was initially seeded at the bottom
region of the channel, displaying a nonpolarized morphology, with a perimeter and surface
given by pΣi (0), sΣi (0), for i = 1, 2, respectively. In particular, its initially round nucleus lay
in the center of the individual. All the forthcoming computational realizations started with
100 annealed MCSs to have a realistic arrangement of the cell body within the structure.
Such system configuration updates obeyed the following rule:

P(σ(xso)→ σ(xta))(t) =


0, if ∆H > 0;
0.5, if ∆H = 0;
1, if ∆H < 0.

(10)

During such annealed MCSs, chemical kinetics did not occur yet. The entire set of model
parameters, labeled as P , can be divided in two groups:

P = P1 ∪ P2 ={
sΣ1(0), pΣ1(0), sΣ2(0), pΣ2(0), Dc, λc, χc, cmax, cprod, µC

}
∪
{

Jint
N,C, κN, κC, νN, νC, TN, TC

}
.

(11)

P1 is composed of coefficients that directly relate to biological quantities and therefore
depend on the specific experimental system. In this respect, the cell dimensions and
channel measures were derived from images and movies presented in [18,19] (both in
the text and in the Supplementary Material). The kinetic coefficients of the chemicals
used in that work were instead evaluated using data from the literature. In particular,
the maximal cell uptake was calculated as in [33,39]. The chemotactic response µC was
finally established by comparing experimental and numerical cell velocities in open spaces
(i.e., in regions of the channels far from structural constrictions). The parameters belonging
to P2, listed in Table 1, are instead more technical and do not depend on the specific
empirical device. In this respect, they were taken from previous published CPMs dealing
with cell migration within two- and three-dimensional matrix environments. However,
preliminary simulations showed that the behavior of the model proposed in this paper was
fairly robust in large regions of the parameter space around this estimate.

Table 1. Values of the Cellular Potts model (CPM) technical parameters, i.e., those included in the set P2 (see Equation (11)),
which were used for both experimental settings.

CPM Parameter Value Reference(s)

Contact force between the nucleus and the cytosol Jint
N,C = −20 [28–30]

Surface rigidity of the nucleus κN = 10 In the range of values used in [28–30]
Surface rigidity of the cytosol κC = 10 In the range of values used in [28–30]
Stiffness of the nucleus νN = 0.9 [28]
Stiffness of the cytosol νC = 0.5 In the range of values used in [28–30]
Motility of the nucleus TN = 0.5 In the range of values used in [28–30]
Motility of the cytosol TC = 10 In the range of values used in [28–30]

Quantification of the numerical results. The position of the cell η = 1 at any time t was
established by the position of its center of mass xCM

η (t) = (xCM
η (t), yCM

η (t)). Coherently,
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the position of its nucleus was established by the position of its center of mass xCM
Σ1

(t) =
(xCM

Σ1
(t), yCM

Σ1
(t)).

A cell was denoted as invasive if at least one of its membrane sites touched the top
border of the domain. It was denoted as invasive with respect to a constriction if the center
of mass of its nucleus passed the midpoint of that constriction.

The instantaneous directional velocity of the cell at a given location ỹ along the represen-
tative microchannel was defined as vη(yCM

η = ỹ) =
[
ỹ− yCM

η (t̃− ∆t)
]
/∆t, where t̃ is such

that yCM
η (t̃) = ỹ and ∆t = 1 MCS (2 s). Similarly, the instantaneous directional velocity of the

nucleus was given by vN(yCM
Σ1

= ỹ) =
[
ỹ− yCM

Σ1
(t̃− ∆t)

]
/∆t.

Morphological changes of the nucleus were quantified by its deformation ratio. This
was given, for any given location ỹ within the representative microchannel, by the ratio
between its geometrical moments of inertia evaluated with respect to the horizontal and
vertical axes that passed through its center of mass, i.e.,

rN(yCM
Σ1

= ỹ) = ixCM
Σ1

(t̃)/iyCM
Σ1

(t̃) = ∑
x=(x,y)∈Σ1

at time t̃

(y− ỹ)2/ ∑
x=(x,y)∈Σ1

at time t̃

(x− xCM
Σ1

(t̃))2, (12)

where t̃ has the same meaning as before. In particular, rN ≈ 1 corresponded to an almost
round shape of the nucleus, whereas rN � 1 (or�1) corresponded to its horizontal (or
vertical) elongation.

The transit time of the cell within a constriction was evaluated as the period of time
from its first to its last contact with one of the two pillars that formed that constriction.

We finally calculated the force acting on any nuclear border site by adapting the
algorithmic procedure described and employed in [45]. In particular, we started with the
consideration that local forces can be related to the negative gradient of the Hamiltonian H,
i.e., F(x) = (Fx(x), Fy(x)) = −∇H = −(∂H/∂x, ∂H/∂y), x ∈ Ω being a generic lattice site.
We then employed a centered approximation to the first partial derivative, also observing
that the nuclear cluster could extend or retract in any of the two principal directions by
a small step |∂x| (the characteristic size of the domain grid elements). As a result, we
obtained that, for each x such that σ(x) = 1,

− Fx(x) ≈
(

HN(Σσ(x) +4xΣσ(x))− HN(Σσ(x) −4xΣσ(x))
)

/(2|∂x|), (13)

where HN includes only the energetic contributions relative to the organelle and4xΣσ(x)
denotes the one-site-large possible variation of its extension along the horizontal axis.
The y-component of the force analogously read as

− Fy(x) ≈
(

HN(Σσ(x) +4yΣσ(x))− HN(Σσ(x) −4yΣσ(x))
)

/(2|∂x|). (14)

3.1. Cell Motion between Structural Elements with Different Geometries

In this section, we specifically focus on cell migration within a channel representative
of the device developed in [19]. In this respect, the simulation lattice Ω was formed by
80 × 400 (respectively, in x and y) sites, which corresponded to an experimental domain of
40 µm × 200 µm. As shown in Figure 1B, it contained only three pairs of pillars. The dis-
tance between the rectangular elements was kept fixed and equal to 15 µm, whereas the
distance between the two pairs of round pillars, hereafter denoted by d, was varied in
the different simulation settings. All the performed simulations lasted 1.8× 104 MCSs
(≈600 min). The estimate of the model parameters belonging to P1 here refers to breast
cancer cells and to epidermal growth factor (EGF), in accordance with the experimental
materials used in [19] (cf. Table 2). In particular, the cell had an initial nuclear diameter
dN = 14 µm and an overall size equal to 24 µm.
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Table 2. Values of the model parameters whose estimates relate to the experimental system proposed in [19]. They belong
to the set P1 defined in Equation (11).

Cell dimensions Value Reference(s)

Initial surface of the nucleus sΣ1 (0) = 155 µm2 [19]
Initial perimeter of the nucleus pΣ1 (0) = 44 µm [19]
Initial surface of the cytosol sΣ2 (0) = 452 µm2 [19]
Initial perimeter of the cytosol pΣ2 (0) = 116 µm [19]

Device dimensions Value Reference(s)

Horizontal width 40 µm [19]
Vertical length 200 µm [19]
Width between each pair of rectangular structures 15 µm [19]
Width between each pair of round structures d (variable) [19]

Coefficients of EGF kinetics Value Reference(s)

EGF diffusion rate Dc = 16 · 10−7 cm2s−1 [46]
EGF decay rate λc = 1.8 · 10−4 s−1 [47]
EGF production rate cprod = 0.78 h−1 [47]
EGF internalization rate χc = 4.3 · 10−4 s−1 [48]
Maximal EGF internalization cmax = 1.2 · 10−3 µM s−1 Estimated as in [33,39]
Cell chemotactic strength µC = 8 · 103 µM−1 Fitting with empirical measures in [19]

As shown in Figure 2, when the constriction between the round pillars was large
enough (i.e., d ≥ 12 µm, so that d/dN ≥ 0.85), the cell was constantly able to crawl along
the entire structure, guided by the chemical signals. Reductions of d then resulted in
decrements in the cell invasive capacity, which was completely lost when d fell below 4 µm
(i.e., for d/dN < 0.28).

The top panels in Figure 3 show the cell dynamics in the case of complete channel
invasion. First, a long and thin cytoplasmic pseudopodium emerged at the front of the cell,
towards the chemical source, and infiltrated between the first pair of round pillars. Such
a membrane protrusion then dragged the rest of the cell to enter the pore. In particular,
the nucleus adopted a cigar-like shape to overcome the spatial constriction, which was
possible since it had a certain degree of elasticity.

Figure 2. Percentage of invasive cells (i.e., of cells able to touch the upper border of the domain) in
the case of reproduction of the device developed in [19]. Values were calculated over 100 numeri-
cal realizations.
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Figure 3. Simulation image sequences of the cell invading the virtual migratory channel in the
representative cases d = 8 µm (top panels) and d = 4 µm (bottom panels), d being the distance
between each pair of round pillars. We remark that, for d = 8 µm, the cell was able to fully invade the
microfluidic structure in only ∼30% of cases, while for d = 4 µm, this never happened (cf. Figure 2).
We remark that the initial diameter of the nucleus was dN = 14 µm.

When the cell had passed the first pair of round elements, it relaxed, and its nucleus
stabilized in a quasi-spheroidal shape. A constant sustained migration was then maintained
by the individual along the rectangular structures: the space between them did not in fact
require further morphological deformation. Both cell compartments had to finally squeeze
again when the individual approached the second pair of round pillars.

From a modeling perspective, the migratory behavior of the virtual cell was the result
of a sequence of action/reaction mechanisms. First, the exogenous chemical stimulus
caused the border sites of the cell cytosol to locally protrude in the direction of increasing
EGF gradients, with a speed of protrusion that was approximately proportional to the mod-
ulus of the local chemotactic strength µC. Dragged by the leading front, the overall cytosolic
region then moved forward (eventually deforming) and pulled onto the nucleus with the
same force, transmitted by the contact energy Hint

adhesion. However, as a consequence of the
higher rigidity and lower motility (i.e., νN > νC and TN < TC, respectively), the nuclear
cluster took more time to deform and displace than the surrounding compartment and,
therefore, constantly lay at the trailing part of the individual body.

Such a mechanistic explanation is consistent with experimental and modeling observa-
tions presented in [49]. Therein, the authors in fact comment that a cell usually translocates
almost the entire cytosol before effective nuclear transmigration, mainly in the case of
small-enough pores. They also claim that the hourglass shape adopted by the nucleus in
the case of passage within small constrictions is due to the pulling forces exerted by the
frontal actomyosin networks. The pushing from the rear part of the cytoskeleton would
instead result in an inverted bolt shape, which would not allow successful individual
passage within the pore.

As captured in Figure 3 (bottom panels), in the case of small-enough interpillar
distances d, the front end of the cell cytoplasm extended, as usual, between the first pair of
round structures. However, the deformability of the nucleus was no longer sufficient for
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it to pass through such a confined space. The cell therefore remained stuck, being unable
to invade.

These results are indicative of the fact that the presence of the voluminous nucleus
represents a steric hindrance for the entire cell and that the degree of nuclear deformability
determines its capacity to move within confined spaces. Our numerical outcomes are in
remarkable agreement with the experimental evidence provided in the reference work [19].
Denais and coworkers in fact demonstrated that cells of different lineages can pass within
subnuclear constrictions by only temporarily rupturing the integrity of the nuclear envelope
(NE), so that the organelle becomes as fluid as the cytoplasm. Interestingly, the nuclear
membrane can be restored during migration: this is the reason why subsequent NE ruptures
are observed within the same cell.

Cell speed and nucleus deformation have complementary behavior, as shown by their
time evolution plotted in Figure 4 (for three representative values of d). In the case of
complete channel invasion (for d = 8 and 12 µm, i.e., for d/dN ≈ 0.57 and 0.85), the cell
reached and maintained its maximal velocity when crawling between the rectangular
elements, whose spacing required minimal nuclear deformation (i.e., rN ≈ 1). The cell
speed was instead reduced in the proximity of the pairs of round pillars. In particular,
the closer they were to each other, the more time the cell took to pass the constriction (and
then to relax), as a consequence of the necessarily larger nuclear deformations. Finally, in the
case of minimal space between the round structures (for d = 4 µm, i.e., for d/dN ≈ 0.28),
the nuclear deformation quickly went to a maximum threshold, whereas the cell speed
dropped to almost zero (the cell remained stuck).

Figure 4. Quantification of cell migratory behavior in the experimental design employed in [19].
Time evolution of cell instantaneous directional velocity vη (panel (A)) and of nucleus deformation
ratio rN (panel (B)) for three representative values of the distance d between the pairs of round pillars.
In both graphs, each value is the mean over 10 simulations. We have not plotted error bars, to avoid
unnecessary graphical overcomplication. However, the standard deviations were very small (of
the order of 10−2). We also remark that, in the simulation settings employed in this part, the initial
nuclear diameter was dN = 14 µm.

We then turned to analyze the force field at the nuclear boundary at different stages of
cell migration. As shown in Figure 5 (left panel), when the nucleus was squeezing through
a constriction, its side edges were characterized by significant inward stresses. Outward
forces were instead active at the trailing and leading borders, due to the fact that it had to
preserve its surface without perimeter shrinking. As soon as the nucleus had overcome
the midpoint of the constriction, the inward stresses momentarily pointed almost towards
the top edge of the domain, thereby acting as an instantaneous push for cell movement
(see the middle panel in Figure 5). Finally, when the cell crawled within the rectangular
elements, its nucleus was in a rounded relaxed configuration. In particular, its leading edge
was subjected to cytosolic adhesive-based dragging forces, whereas its lateral and trailing
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borders were subjected only to the forces necessary to keep the surface constant while
maximizing the contact with the surrounding cell compartment; see Figure 5 (right panel).

Figure 5. Representative force field at the nuclear boundary at different cell migratory stages.
(Left panel) cell squeezing within a pair of round pillars. (Middle panel) cell overcoming the
midpoint of the constriction. (Right panel) cell moving within the rectangular elements. For graphical
purposes, we have only plotted selected force vectors, which are magnified, with intensity normalized
with respect to the maximal value. Force components are defined in Equations (13) and (14).

Our numerical outcomes are in remarkable agreement with the analysis of the spatial
distribution of nuclear envelope ruptures provided in [49] in the case of breast adenocar-
cinoma cells. Cao and colleagues, in fact, showed that, when a malignant individual is
passing within a small pore, damage mainly occurs at the front and at the back edge of
the nuclear envelope (NE), due to the significant tension. In particular, higher chances of
ruptures characterize the leading border, since it is even more stretched than the trailing
part. These authors also observed that NE buckling is instead located at the side regions of
the organelle, i.e., those subjected to compression. Our results are also in line with those
obtained in [45], where static CPM cells were shown to have inward forces at boundary
convex sites and outward forces at concave border grid elements.

3.2. Cell Movement between Round Pillars with Different Spacing

Focusing on the microfluidic device used in [18], the CPM lattice Ω had 60 × 468
(respectively, in x and y) grid elements that replicated a 30 µm × 234 µm representative
channel. The polymeric pillars located in the structure were round, with a diameter of
either 15 or 30 µm. The space between pairs of smaller elements was kept fixed and equal
to 15 µm, whereas the distances between the three couples of larger pillars were identified
by di (with i = 1, 2, 3) and varied to reproduce different channel designs; see Figure 1C. All
the forthcoming simulations lasted nearly 24 h (4.3 × 104 MCSs), in accordance with the
temporal scale of the corresponding experiments in [18].

The biologically related parameters, i.e., those grouped in P1 in Equation (11), here
refer to human fibroblasts and to platelet-derived growth factor (PDGF), in accordance
with the materials mainly used in [18] (refer, also, to the Supplementary Material). They are
summarized in Table 3. In particular, the cell nucleus had an initial diameter dN = 16 µm
while the extension of the overall individual amounted to 28 µm. We finally remark that the
CPM technical parameters, i.e., those included in the set P2 introduced in Equation (11),
were kept unaltered with respect to the values fixed in the previous section and listed in
Table 1. In particular, we maintained νN = 0.9.
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Table 3. Values of the model parameters whose estimates were specifically designed to reproduce the experimental setup
used in [18]. They belonged to the set P1 introduced in Equation (11).

Cell Dimensions Value Reference(s)

Initial surface of the nucleus sΣ1 (0) = 200 µm2 [18]
Initial perimeter of the nucleus pΣ1 (0) = 50 µm [18]
Initial surface of the cytosol sΣ2 (0) = 416 µm2 [18]
Initial perimeter of the cytosol pΣ2 (0) = 138 µm [18]

Channel Dimensions Value Reference(s)

Horizontal width 30 µm [18]
Vertical length 234 µm [18]
Width between each pair of smaller pillars 15 µm [18]
Widths between the three pairs of larger pillars di, with i = 1, 2, 3 (variable) [18]

Coefficients of PDGF Kinetics Value Reference(s)

PDGF diffusion rate Dc = 1.13 · 10−10 m2s−1 [18] (Supplementary Material)
PDGF decay rate λc = 4 · 10−6 s−1 Fitting with empirical measures in [18]
PDGF production rate cprod = 0.2 h−1 Fitting with empirical measures in [18]
PDGF internalization rate χc = 1 · 10−5 s−1 Fitting with empirical measures in [18]
Maximal PDGF internalization cmax = 5 · 10−4 µM s−1 Estimated as in [33,39]
Cell chemotactic strength µC = 4 · 102 µM−1 Fitting with empirical measures in [18]

We first assessed the effectiveness of chemotactic-driven cell migration in the case
of a channel design characterized by a sequence of constrictions with decreasing widths
(d1 = 5 µm, d2 = 3 µm, and d3 = 2 µm, which resulted in d1/dN ≈ 0.31, d2/dN ≈ 0.18,
and d3/dN ≈ 0.12). Such a domain layout was used hereafter unless explicitly said. As it
is possible to see in Figure 6A, the virtual cell was constantly unable to invade the entire
structure: it in fact overcame the first (largest) constriction only in a few cases. Such nu-
merical results are not surprising if compared with those summarized in Figure 2. In fact,
glioblastoma cells and fibroblasts (used as representative cell lines for the simulations of
this and of the previous section, respectively) have almost the same dimensions (compared
to the spacing between the pairs of rigid pillars), and their characteristic model parame-
ters were kept unchanged. However, this set of numerical outcomes disagrees with the
corresponding empirical evidence. As shown in the Supplementary Figure S4b in [18],
a significant number of experimental cells (i.e., nearly 40%) are able to penetrate the entire
channel, in the case of stable chemical gradients. The underlying reason relies on the fact
that the cell lines used in [18] have a more deformable nucleus than those used in [19] and
simulated in the previous section, as a consequence of their deficiency of lamins A and C.
These molecules are, in fact, the primary components of the nuclear lamina, the dense pro-
tein meshwork underlying the nuclear membrane that has been largely shown to determine
the stiffness of the organelle [19,50–52]. To have a closer replication of the in vitro evidence
in [18], we indeed reduced the rigidity of the nucleus of our virtual cell by decreasing
the corresponding parameter νN, which, however, had to remain larger than νC = 0.5.
As shown in Figure 6B, a remarkable data fitting was obtained when νN ≤ 0.7.

A representative time sequence of a cell able to invade the entire channel, owing to
the increased nuclear elasticity, is then proposed in Figure 7: it clearly shows the enhanced
nuclear squeezing necessary to promote full invasion. A definitive confirmation in this
respect is provided by Figure 8A, which quantifies the nucleus remodeling for different
values of νN. From the same graph, we observe a residual deformation of the organelle
after its passage through a constriction, as also captured in Figure 4B.
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Figure 6. Quantification of chemotactic-driven cell migratory behavior in the case of the experimental
setup used in [18]. (A) Percentage of cells that were able to overcome each constriction for the
default value of the nucleus stiffness, i.e., for νN = 0.9. (B) Percentage of cells that were able to
overcome each constriction upon variations in the nuclear stiffness. Values were calculated over 100
numerical realizations. We remark that, in the simulation settings proposed in this paragraph, the
initial diameter of the nucleus is dN = 16 µm.

Figure 7. Simulation image sequences of cell invasion within a representative migratory channel
characterized by d1 = 5, d2 = 3, and d3 = 2 µm. The virtual individual had an enhanced nuclear
elasticity (i.e., νN = 0.7) that allowed full invasion in approximately 40% of cases (see Figure 6B).
The initial diameter of the cell nucleus was dN = 16 µm.
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Figure 8. Quantification of cell migratory behavior in the case of the experimental setup used
in [18]. (A) Time evolution of the deformation ratio of the nucleus, rN, defined in Equation (12),
for two different values of its elasticity νN. Each value is given as the mean over 10 simulations. We
have not plotted error bars, to avoid unnecessary graphical overcomplication. However, standard
deviations were very small (of the order of 10−2). (B) Percentage of cells that were able to overcome
each constriction upon independent variations either in the nuclear motility TN or in the nuclear
compressibility κN (in the case of νN = 0.9). As usual, values were calculated over 100 numerical
realizations. We again remark that the initial diameter of the cell nucleus was dN = 16 µm.

With a predictive perspective, we then asked if cell migratory behavior could be
promoted by variations of other biophysical determinants of the nucleus. In this respect,
we no longer reduced the rigidity of the organelle (we kept a high νN = 0.9) but indepen-
dently enhanced either its motility or its compressibility (which meant, in this context,
the possibility of reducing its surface) by altering TN or κN, respectively. Some reasonable
parameter constraints (i.e., κN > νN > νC and TC > TN) were, however, maintained.
As shown in Figure 8B, significant increments in cell invasive potential were observed only
for substantial variations of the two coefficients (i.e., of at least one order of magnitude
from their default values employed up to that point and listed in Table 1). However, such
parametric changes led to unrealistic cell dynamics: too high values of TN, in fact, resulted
in implausibly high cell and nuclear velocities, whereas too high values of κN allowed
an unreasonable shrinking of the organelle (that, in a realistic scenario, would cause the
pathological death of the individual).

These results are experimentally confirmed in [18], where the invasive cells were
not observed to undergo significant volumetric changes when passing through small
constrictions. Substantial variations in nuclear shape not accompanied by similar changes
in nuclear volume were also captured in [49] in the case of breast adenocarcinoma cells.
Analogously, in [13], glioma cell lines were shown to transmigrate through narrow locations
in a brain model in vivo, thereby increasing their metastatic potential, by only a significant
squeezing of their nucleus due to a recruitment of nonmuscle myosin II (NMMII). Moreover,
very recently, Irimia and Toner, in [53], demonstrated that the directional persistence of
cancer cells in microsized structures is completely dependent on the steric hindrance
represented by the presence of a rigid and voluminous nucleus.

We further quantified the migration profile of a cell with an enhanced nuclear elasticity
(i.e., with νN = 0.7). As shown in panel (A) of Figure 9, an asymmetry emerged between
the velocity of the overall cell, vη , and the velocity of its organelle, vN. On one hand,
as expected, the cell had a maximal speed when crawling between the pairs of smaller
pillars. Velocity reductions were instead observed when it approached and passed between
the three pairs of larger pillars: in particular, the decrements depended on the width of
the constrictions. On the other hand, the speed of the nucleus (i) was constant in the case
of locomotion within larger spaces, (ii) completely stalled as a constriction impeded its
forward movement, (iii) reached an instantaneous peak once the center of the intracellular
compartment had passed the midpoint of the pore, and (iv) finally decreased back to the
regime value. The underlying rationale, supported by the numerical results summarized
in Figure 5 (middle panel), is the following: once the organelle had passed the midpoint of
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a constriction, the lateral inward compressive forces temporarily aligned in the direction
of cell movement. An instantaneous push then emerged, which allowed the nucleus to
rapidly slip out from the constriction.

We then assessed whether successful passages through subsequent equal constrictions
facilitated cell migration. We indeed compared the transit time within each pore in the
case of a channel characterized by d1 = d2 = d3 = 3 µm (i.e., by d1/dN = d2/dN =
d3/dN ≈ 0.18). Additionally, in this case, we fixed νN = 0.7. As it is possible to see from
Figure 9B (left graph), the virtual cell showed a trend towards faster dynamics in the
case of transmigration between the second and the third pair of large pillars. A possible
explanation relies on the residual deformation that characterized the nucleus after its
passage within a constriction, as previously captured in Figures 5B and 9A.

Figure 9. Quantification of cell migratory behavior in the case of reproduction of the device developed
in [18]. (A) Time evolution of the instantaneous directional velocity of the cell, vη , and of its nucleus,
vN, in the case of enhanced elasticity of the intracellular organelle, given by νN = 0.7. In the graph,
each value is the mean over 10 simulations. We have not plotted error bars, to avoid unnecessary
graphical overcomplication. However, standard deviations were very small (of the order of 10−2).
(B) Transit time, i.e., time needed by the cell to overcome a constriction, in the case of a channel
characterized by three (left) or two (right) equal pores (each 3 µm-wide). In the latter case, the two
constrictions were largely-spaced, as shown in the inset reproducing the employed domain. In both
plots, values were calculated over 100 numerical realizations. We recall that the initial diameter of
the cell nucleus was dN = 16 µm.

To further support this hypothesis, we ran a series of simulations based on a channel
characterized by two 3 µm-wide constrictions that were separated by nearly 120 µm (i.e.,
by a sufficient spacing for the nucleus to relax and recover its original shape; see the
inset in Figure 9B). The rest of the parameter settings were kept unaltered, with νN = 0.7.
As shown in Figure 9B (right graph), the transit time was the same for the passage within
both pores. Such computational outcomes support our prediction but are in partial contrast
with the corresponding experimental evidence. In [18], the authors in fact claim that the
facilitated cell movement observed in the case of subsequent constrictions is not due to
temporary residual nuclear deformations, since a reduction in the transit time was also
captured in the case of spaced-enough pores. They indeed suggest that migrating cells may
undergo long-lasting biochemical adaptations such as, for instance, further degradation
of lamin proteins or reorganization of the cytoskeletal elements to which the nucleus is
anchored. In this respect, Cao and coworkers, in [49], found that (i) the nuclei of lamin
A/C-deficient cells (as those used in [18]) behave as plastic materials undergoing large
irreversible deformation in the case of passages within small pores and that (ii) the nuclei
of malignant cells with expressed and active A/C lamins are instead characterized by the
coexistence of elastic dynamics in their envelopes and of plastic dynamics in their interiors.
Such two competing effects often result in an ellipsoidal configuration of the nucleus after
the exit from a pore, which is then followed by its relaxation towards a more round shape
(as captured by our model).
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4. Discussion

The analysis of the mechanisms underlying cell migration within confined environ-
ments has recently become a major topic in experimental research, due to cell migration’s
recognized importance in physiopathological phenomena and its exploitation for tissue
engineering. In this respect, an increasing number of in vitro models have been developed:
they mainly consist of the use either of matrix scaffolds, which mimic in vivo fibrous
connective tissues, or of micropatterned devices characterized by predefined channel-
like structures.

The resulting evidence has, first, provided insight into selected adhesive and prote-
olytic mechanisms that motile individuals activate to achieve efficient locomotion in narrow
spaces. Furthermore, it has been largely shown that pivotal regulators of cell movement,
and, therefore, potential targets for pharmacological interventions in human diseases, are
represented by the elastic properties of the cell and of its internal organelles. More specifi-
cally, experimental outcomes have revealed the implications of nuclear deformation capac-
ity in the migratory behavior of the overall individual (see, for example, [13–16,20,21,53]).

However, despite the development of such a variety of empirical approaches, little
has been done, to our knowledge, from a theoretical point of view, except for a pair of
chemomechanical approaches [49,54]. We recently tackled this shortcoming by a series of
ad hoc versions of the Cellular Potts model (CPM), which analyzed selected aspects of
single cell locomotion within matrix environments [28–30]. As a common feature of the
proposed approaches, the moving individuals have been represented as physical objects
compartmentalized into the nucleus and cytoplasm, whereas the extracellular domain has
been, in turn, differentiated into a medium and a polymeric component. In particular,
the introduction of distinct subcellular units has been a fundamental aspect for achieving a
detailed description of cell motile behavior within structures of microsized dimensions.

Such models were, here, improved by (i) the use of a tailored Boltzmann transition
probability, able to account for the specific type of cell configuration update (i.e., the
retraction/extension of the cytosol or reorganization of the nuclear cluster), and (ii) the
definition of a procedure to evaluate the force field that acted on the nuclear boundary
during the different phases of cell migration.

The resulting CPM was then employed to reproduce the experimental systems used
in [18,19], which consisted of microfluidic-based devices composed of dozens of arrays of
polymeric pillars with different geometries and dimensions.

Taken together, our results first confirm that mobile cells are able to overcome the
effects of size exclusion in the case of small-enough pores by only a substantially high
deformability of their nucleus, in accordance with a wide range of empirical studies,
e.g., [10,13–16,18,19] and references therein. The proposed numerical outcomes further
reveal that, during the passage within a constriction, (i) inward stresses are active along
the compressed side edges of the organelle and (ii) outward forces act at its leading and
trailing borders. Interestingly, our simulations also showed that, as soon as the nucleus
had overcome the midpoint of a pore, inward forces temporarily aligned with the direction
of cell movement, representing, therefore, an instantaneous push for nuclear locomotion.
This, according to us, is the rationale underlying the peak in the nuclear velocity that was
experimentally captured in [18].

We also observed that passages within successive constrictions were facilitated by
residual nuclear deformation. This result, as commented in the text, is in contrast with
the corresponding empirical evidence in [18]: such a discrepancy may be due to the fact
CPM objects have a full elastic behavior, whereas biological cells can instead undergo
long-lasting biochemical adaptations that impact the deformation capacity of their internal
organelles, an aspect not included in the CPM used here.

Summing up, our computational results are mostly characterized by a remarkable
agreement with their experimental counterparts, representing further complementary
determinations as well. In the case of discrepancy between numerical and empirical
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outcomes, we either adapted our approach in order to tackle the issue or found out a
plausible underlying rationale.

Of course, a more realistic reproduction of the proposed experimental settings would
be obtained by three-dimensional simulations. This computational refinement would allow
having a closer quantitative comparison between in vitro and in silico results, mainly in
terms of observables such as the cell and nuclear speed and time taken by the cell to
squeeze between channel constrictions. In this respect, it is reasonable to hypothesize
that the displacement and the deformation of a 3D cell body would be slower than the
corresponding 2D dynamics. However, the qualitative fitting of our results w.r.t. their
empirical counterparts would not change. In fact, the cells seeded within the microfluidic
devices used in [18,19] did not experience spatial limitations in the direction orthogonal to
the plane of movement, as the rigid pillars (and, therefore, the entire channels) seemed to
be “tall” enough to allow a comfortable arrangement of the cell body in this respect. This
aspect is confirmed by the fact that, in the experimental images and videos, the cells were
constantly adherent to the substrate and subjected only to lateral deformations. For the
sake of completeness, we finally remark that a 3D extension of the model would be straight-
forward: it would only amount to a revision of the parameter estimates, whereas the main
aspects of the proposed approach (i.e., the tailored Boltzmann probability, the terms in the
Hamiltonian and the law regulating the chemical kinetics) would not require any modification.

Despite the limitations typical of the theoretical modeling, it would be biologically
relevant to apply our approach to scenarios not strictly related to experimental assays. First,
our study may contribute to a more detailed understanding of how cancer cells invade
surrounding confined tissues, permeating through the stroma and eventually entering
the vasculature. In fact, these processes mainly involve the ability of single metastatic
malignant cells to squeeze and crawl within confined environments with a limited space
available due to the presence of dense matrices and cell linings.

It would also be interesting to analyze if the relation between nuclear deformability
and cell invasive potential varies, in terms of relevance, in the case of collective migration,
which is typically involved in most in vivo phenomena. In these cases, a differentiation
may in fact occur among individuals within the same ensemble, such as the emergence
of tip and stalk cells during angiogenic processes, which may imply differentiated motile
phenotypes [55,56].

The proposed approach could be finally applied to the design of synthetic implant
materials, i.e., acellular scaffolds with optimal values of pore size that may accelerate cell
in-growth, critical for regenerative treatments [4,5,57].

However, to increase the realism of the future model applications, some mecha-
nisms/processes, here disregarded but that play a major role in establishing cell migratory
ability, should be included, such as (i) matrix digestion and deposition by moving individ-
uals, which alter the surrounding space by opening paths, generating traction, increasing
adhesion, and contact guidance, and (ii) possible pressure-driven displacements of tissue
walls, which result in an adjustment of the geometry of the surrounding environment that
may facilitate individual locomotion [56].

A significant model improvement would finally amount to the inclusion of intracel-
lular chemical pathways, triggered by external stimuli of distinct natures. For instance,
chemotactic substances (e.g., EGF and PDGF) typically activate PM receptors and therefore
initiate downstream cascades that involve the biosynthesis, in the sub-plasma-membrane
regions, of molecular mediators such as PI3K and MAPK [58]. Such molecules in turn in-
duce the production of small GTPases [59], which are able to regulate several cell responses,
including adhesion, migration, and, eventually, proliferation (which is not relevant for
our study). From a modeling perspective, one could first focus on a subgroup of these
endogenous chemicals and describe their interconnected kinetics by a system of PDEs,
solved within the cytosolic compartment of the virtual cell. Constitutive laws should then
be set to establish the dependence of CPM parameters, such as the Boltzmann temperatures
T and the mechanical moduli κ and ν (i.e., those that describe cell properties), on the
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amount and the distribution of the endogenous chemicals included in the picture. We
employed such a strategy to analyze the role of intracellular calcium signals, stimulated by
an exogenous chemoattractant, in the process of vascular formation; see [39,60].

Intracellular pathways can be also activated by mechanical stimuli. In this respect, it
would be relevant to relate lamin dynamics, which, as seen, regulate nuclear deformability,
to the intensity of the stresses to which the nuclear envelope is subjected (that can be
measured in terms of the moduli of the forces Fx and Fy or of the deformation ratio rN).
Coherently, the parameter νN should be defined as a function of the actual amount of
lamins present within the cell.

Molecular inside-out signaling also occurs between moving cells and ECM elements,
which are able to change the activity of intracellular molecular motors such as the already-
cited GTP proteins, thereby mediating cytoskeletal contractility (Rac and Rho) [11].

It is useful to remark that the inclusion of one or more of the above-described intracel-
lular dynamics is facilitated by the compartmentalization approach at the basis of our cell
representation: it in fact allows a proper localization of the endogenous pathways of inter-
est. However, we have to underline that such model refinements would be computationally
expensive (especially in the case of the inclusion of complex-enough chemical cascades).
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