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Abstract

A refined progressive damage analysis of fiber-reinforced laminated composites subjected to compressive loads

is presented here. The numerical analysis exploits higher-order theories developed using the Carrera Unified

Formulation, specifically 2D plate theories with Lagrange polynomials to enhance the kinematic approximation

through each ply’s thickness resulting in a layer-wise structural model. The CODAM2 material model, based

on continuum damage mechanics, governs the intralaminar composite damage. The Hashin criteria and the

crack-band approach provides failure initiation and propagation, respectively. Fiber micro-buckling and kinking

is taken into account via the use of nonlinear post-peak softening models. It is shown that linear-brittle stress-

strain softening is effective for accurate compressive strength predictions. A series of numerical assessments on

coupon-level composite laminates is carried out to verify the proposed numerical framework while its validation

is demonstrated by successfully applying the numerical tool to test cases for which experimental data is available

from the literature. Various through-the-thickness structural models are evaluated to provide insights for proper

modeling.
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1 Introduction

Fiber-reinforced laminated structures have been successfully deployed in the aerospace, automotive, and mar-

itime sectors due to their high specific strength and stiffness. The low compressive strength of composites is a

limiting factor in fully harnessing such material systems’ capabilities. It may be critical in various scenarios,

such as in crush or impact analyses, or the determination of the bearing strength of pin-bolted joints. Therefore,

the detailed study of the compressive behavior of laminated composites is a crucial step towards the safe and

reliable design of composite structures. Composite structures’ behavior under compressive loading is signifi-

cantly different - and more complex - than under tensile loading.

A crucial factor in determining composites’ response under compression is the presence of manufacturing imper-

fections, such as fiber misalignment and microstructural voids [1]. For instance, Wisnom reported a significant

reduction of the compressive strength even for small misalignments of the fibers [2]. Such manufacturing imper-

fections lead to various damage mechanisms in composites under compression. The most common failure modes

include fiber buckling and kinking, and longitudinal splitting due to debonding of the fiber/matrix interface

[3–5]. Failure mechanisms often interact with each other, leading to complex pathways for progressive damage

and eventual failure. A detailed overview of the failure of composites subjected to compression is available in

[6, 7].

Virtual testing approaches, in which numerical simulations predict composite laminates’ response under com-

pression, are emerging to support and reduce experimental testing. Failure initiation and propagation require

damage models. Such models are generally of two types: discrete damage models (DDM) and continuum dam-

age models (CDM). DDM explicitly accounts for the formation of intralaminar cracks within the ply, using

techniques such as cohesive interface elements or the eXtended finite element method (x-FEM), to handle dis-

continuities within the finite element (FE) mesh. Such techniques lead to models that can accurately predict

the crack propagation and with high fidelity, but at the cost of significant computational effort. Some exam-

ples of the application of DDM to compressive damage modeling include the analysis of static bearing failure

in laminated composites [8], and the compression-after-impact (CAI) tests of carbon-fiber-reinforced polymers

(CFRP) [9]. CDM techniques remain a prevalent approach due to their ease of implementation and reduced

computational overheads compared to DDM. In CDM approaches, intralaminar cracks are smeared out within

the FE domain, and their effects are accounted for via damage parameters quantifying the reduction of the ma-

terial stiffness. Such models lead to a good compromise between computational cost and solution accuracy, and

are thus used in most of the works dealing with composite damage modeling. Most material models available

in the literature generally focus on progressive damage analysis under tensile loads, and the application of these

models for the simulation of compressive tests is relatively scarce. Some examples of the use of CDM techniques

for the compressive damage modeling of composites include [10–12].

The computational costs associated with progressive damage analysis of composite structures can be prohibitive,

even considering the relative efficiency of CDM models, especially for larger structures. This is usually due to



the requirement of refined, often 3D, meshes, to obtain an accurate stress field, which are important inputs to

the nonlinear material model. Various techniques have been proposed in the literature, to improve the com-

putational efficiency of such analyses. A popular approach is solid/shell coupling, where the global structure

consists of shell elements, and solid elements are present only in the region where damage may occur [13].

Similarly, global/local techniques are useful to study progressive damage and failure in composites [14, 15]. In

recent years, continuum shell models have emerged as an alternative to 3D elements for these problems [16–18].

The current work addresses computational costs and accuracy by using higher-order structural models devel-

oped using the Carrera Unified Formulation (CUF) [19]. Such an approach can accurately evaluate 3D stress

fields in a computationally efficient manner [20]. CUF has been used in recent years for the development of a

numerical platform for the nonlinear analysis of beams [21], contact analysis of laminated and thin-walled struc-

tures [22, 23], progressive tensile damage analysis of composites [24], and, more recently, low-velocity impact

analysis [25]. The present paper extends the findings in progressive damage modeling under tension [24], to

composites loaded in compression. The nonlinear material behavior is described via the COmposite DAMage

model (CODAM), an intralaminar damage model based on continuum damage mechanics, which was originally

developed for the macroscopic sub-laminate level modeling of composites [26]. The CODAM material model

was successfully applied to the compressive damage analysis of composites [27], and the axial crush simulation of

braided composite tubes [28]. The second generation of the model, termed CODAM2, devolves the sub-laminate

strain-softening response into equivalent stress-strain responses in the principal ply directions [29, 30], and has

been implemented in the commercial FE solver LS-DYNA as MAT-219 [18, 31, 32]. The current work aims to

combine CUF-based structural models with the CODAM2 material model to develop a numerical framework

for the efficient and accurate mesoscopic progressive damage analysis of composite structures in compression.

The focus is on evaluating the effect of higher-order terms in 2D theories and providing insights for a proper

modeling strategy. 2D models can lead to significant reductions in the computational overheads compared to

3D, but refinements are necessary to retain the same accuracy [24, 25]. The refinement process must tackle

several characteristics of composites that are particularly relevant for evaluating stress fields and damage initi-

ation and progression, such as anisotropy, shear deformability, and continuity of transverse stress fields [33].

This article is organized as follows - Section 2 provides a brief overview of the FE formulation of higher-order

structural theories based on CUF while the CODAM2 material model for compressive damage modeling is

described in Section 3. A series of numerical assessments is presented as verification and validation cases in

Section 5, and the results are discussed in Section 6. The conclusions of the present work are summarised in

Section 7.
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Figure 1: Layer-wise modeling of composite laminates in CUF.

2 Structural theories and FE formulation

Considering a multi-layered laminate, as shown in Fig. 1, the displacement field is described using layer-wise

2D CUF models in the following manner

u(x, y, z) = Fτ (z)uτ (x, y), τ = 1, 2, . . .M (1)

where Fτ (z) is the expansion function defining the kinematic approximation through the thickness of each layer

of the laminate, M refers to the number of terms in the expansion, and uτ (x, y) is the vector of generalized

displacements. The choice of Fτ (z) and M determines the model’s structural theory and is a user input.

The current work exploits Lagrange polynomials as expansion functions through the layer thickness. Such an

approach, termed Lagrange-Expansion (LE) class in CUF terminology, results in a layer-wise structural model.

Furthermore, LE models are purely based on displacement degrees of freedom (DOF). Further details of CUF

structural models based on the LE class can be found in [19].

The 3D stress and strain fields are

σ = {σxx, σyy, σzz, σxy, σxz, σyz}

ε = {εxx, εyy, εzz, εxy, εxz, εyz}
(2)

By considering the geometrically linear assumptions, the strain-displacement relation is given by

ε = Du (3)



where u is the displacement vector. The linear differential operator D is defined as

D =



∂
∂x 0 0

0 ∂
∂y 0

0 0 ∂
∂z

∂
∂y

∂
∂x 0

∂
∂z 0 ∂

∂x

0 ∂
∂z

∂
∂y


The constitutive relation is

σ = Csecε (4)

where Csec is the material secant stiffness matrix and is obtained from the constitutive model used in the

analysis. The damaged stress state is represented by σ. 2D FE, such as 4-node (Q4) or 9-node (Q9) quadrilateral

elements with shape functions Ni(x, y), are used to discretize the in-plane geometry, and in combination with

1D LE functions, lead to a 3D displacement field as follows

u(x, y, z) = Ni(x, y)Fτ (z)uτi (5)

The semi-discrete balance of momentum is

Mü = Fext − Fint (6)

where M is the mass matrix and ü is the acceleration vector. The external and internal force vectors are denoted

by Fext and Fint, respectively. The nonlinear system of equations is solved using explicit time integration

techniques based on the central difference scheme. Further details on the development of an explicit nonlinear

dynamics framework using CUF structural theories can be found in [24].

3 CODAM2 intralaminar compressive damage model

The CODAM2 material model implemented in the CUF framework has been previously described in [24] and

is briefly recapitulated here for completeness. The basic formulation of the CODAM2 material model is based

on a bilinear stress-strain response, with a linear post-peak softening. In this case, the fiber damage initiation,

F1, is determined using a maximum stress criterion as follows:

F1 =
σ11
XC

(7)



where XC is the fiber compressive strength, σ11 is the stress in the fiber direction, and in general, subscripts

{11, 22, 12} indicate the in-plane stress and strain components in the principal material reference system. The

damage initiation in the direction transverse to the fiber, i.e., matrix damage, is determined using the Hashin

quadratic failure criterion [34] as

F2 =

(
σ22
YC

)2

+

(
τ12
SL

)2

(8)

where YC and SL are the transverse compressive and in-plane shear strengths, respectively. The equivalent

strain measures in the longitudinal and transverse directions are defined as

εeq1 = |ε11| (9)

εeq2 =
√

(γ12)2 + (ε22)2 (10)

where γ12 is the in-plane shear strain component. The corresponding equivalent stress measures are given by

σeq1 = σ11 (11)

σeq2 =
τ12γ12 + σ22ε22√

(γ12)2 + (ε22)2
(12)

The damage initiation strains are computed as

εiα = εeqα |Fα=1, α = 1, 2 (13)

where the subscripts 1 and 2 refer to fiber- and matrix-dominated damage, respectively. The strains at damage

saturation are then evaluated as

εs1 =
2gf1
XC

and εs2 =
2gf2
T

(14)

where gfα is the fracture energy density, and T = σeq2 |F2=1 corresponds to the value of σeq2 at matrix damage

initiation. The spurious mesh dependency is mitigated by scaling the experimentally obtained fracture energy

Gfα with a characteristic length parameter of the element, following the crack-band theory [35], as shown below

gfα =
Gfα
l∗
, α = 1, 2 (15)

where l∗ is the characteristic element length. In the present work, this parameter is computed as l∗ = (VGP )
1
3 ,

where VGP is the volume associated with the given Gauss point of the element. The damage variables ω1 and

ω2, which respectively quantify fiber and matrix damage, are computed as

ωα =

(
〈εeqα − εiα〉
εsα − εiα

)(
εsα
εeqα

)
, α = 1, 2 (16)



where 〈·〉 denotes the Macaulay bracket. The damage variables are used to develop the 3D secant stiffness

matrix, in the damaged state [31], as follows

Cdam =
1

∆



(1−R2ν23ν32)R1E1 (ν21 + ν23ν31)R1R2E1 (ν31 +R2ν21ν32)R1E1 0 0 0

(1−R1ν31ν13)R2E2 (ν32 +R1ν31ν12)R2E2 0 0 0

(1−R1R2ν21ν12)E3 0 0 0

∆R1R2G12 0 0

sym. ∆G23 0

∆G13


(17)

where ∆ = 1−R2ν23ν32 −R1R2ν12ν21 − 2R1R2ν31ν12ν23 −R1ν31ν13, and Rα is the stiffness reduction factor,

defined as

Rα = (1− ωα), α = 1, 2 (18)

The stress fields in the damaged state are then evaluated as

σ = Cdamε (19)

Bilinear constitutive models with linear post-peak fiber softening may suffer in accurately evaluating the material

behavior during compressive damage initiation and propagation. This is mainly due to the instabilities during

the fiber failure initiation leading to fiber micro-buckling, and, eventually, kink-bands. Such a phenomenon is

characterized by a sudden drop in the load-carrying capability, followed by a plateau of the stress response,

and a simple linear post-peak softening curve is inadequate in modeling such a response under compressive

loads [36, 37]. Given this, additional softening curves are implemented to improve the predictive capabilities

of the material model [38], and such a process involves a modification of the damage evolution law (Eq. 16).

Specifically, the current work considers a ‘linear-brittle’ post-peak softening curve to emulate the sudden drop

and subsequent stable stress plateau. A series of such curves have been plotted in Fig. 2. The magnitude of the

residual plateau stress is a percentage of the peak stress, and varying the percentage value leads to the family

of curves shown in Fig. 2. The area under each curve (multiplied by the characteristic element length) remains

constant and represents the fracture energy associated with the fiber constituent, which in the current work is

80 kJ/m2 [39].

4 Verification

This section presents a series of single-element analyses to verify the implementation of the CODAM2 material

model within the CUF framework, since such tests are a convenient method to verify each compressive failure

mode’s initiation and propagation independently. The material system used is the IM7/8552 carbon fiber
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reinforced polymer (CFRP), with a nominal ply thickness of 0.125 mm, and whose elastic and strength properties

are provided in Table 1. It is noted that the tensile strength and fracture toughness values are provided for

completeness’ sake and are not used in the numerical analyses, where only compressive loading is considered. In

Table 1: Material properties of IM7/8552 CFRP.

E1 [GPa] E2 [GPa] E3 [GPa] G12 [GPa] G13 [GPa] G23 [GPa] ν12 ν13 ν23

150.0 11.0 11.0 5.8 5.8 2.9 0.34 0.34 0.48

XT [MPa] XC [MPa] YT [MPa] YC [MPa] S12 [MPa] GT1 [kJ/m2] GT2 [kJ/m2] GC1 [kJ/m2] GC2 [kJ/m2]

2560.0 1690.0 73.0 250.0 90.0 120.0 2.6 80.0 4.2

the current verification tests, the structure is a unidirectional lamina modeled as a single element of size 1 mm

× 1 mm and subjected to compression under uni-axial strain conditions. The in-plane discretization consists

of one Q4 element. Each ply thickness kinematics is modeled via a single linear (LE1) Lagrange polynomial.

The first assessment considers the compressive loading of the single element in the longitudinal direction, i.e.,

along the fiber (0◦). The stress-strain response, predicted by the proposed approach, is shown in Fig. 3a.

Similarly, the predicted response for the transverse compressive loading, i.e., perpendicular to the fiber (90◦), is

shown in Fig. 3b. The final assessment to verify the correct implementation of the CODAM2 material model in

CUF-Explicit is the uniaxial compression of a single element quasi-isotropic [90/45/0/− 45]2s laminate. Figure

4a shows the predicted stress-strain response, along with reference numerical results obtained via the CODAM2



implementation which is built into LS-DYNA [40], for comparison. Figure 4b presents the stress-strain curves

extracted from the DIC measurements within the fracture process zone, obtained from compact compression

tests of [90/45/0/ − 45]4s quasi-isotropic laminate [37]. The data corresponds to a 5 mm × 5 mm window, to

account for the measured damage height of approximately 5 mm. This experimental data is subsequently used

to develop the stress-strain input curve for the MAT81 macroscopic model (another built-in softening material

model in LS-DYNA) and is overlaid in the plot, as explained in detail in [38], thereby forming the basis for the

laminate-level LS-DYNA simulations presented in Section 5. The following observations are made based on the

results of the single element studies:

1. The stress-strain response of single elements, loaded in compression parallel and transverse to the fiber,

follows the bilinear path described by the CODAM2 material model with linear softening, as seen in Fig.

3. The peak stress in both cases corresponds to the input strength values of the fiber (1690 MPa) and

matrix (250 MPa), as shown in Table 1 . Furthermore the area under the stress-strain curve matches

the fracture energy provided as an input to the model (80 kJ/m2 and 4.2 kJ/m2 in the longitudinal and

transverse directions, respectively).

2. The response of the 1 mm × 1 mm [90/45/0/− 45]2s single element laminate, shown in Fig. 4, correlates

well with numerical reference predictions obtained using LS-DYNA, in terms of laminate modulus, strength

and fracture energy (area under the stress-strain curve).

3. The variation in the stress-strain response of the single element laminate, seen in Fig. 4, is attributed to

the different structural modeling approaches used in the CUF and LS-DYNA analyses. The CUF analysis

uses a combination of one Q4 and one LE1, while the LS-DYNA model uses a stacked 3D shell approach

to model the single element laminate.

4. The stress-strain curves predicted by the numerical models with linear softening, shown in Fig. 4a, are

qualitatively different when compared to the experimentally measured stress-strain response, shown in

Fig. 4b, highlighting the limitations of bilinear damage models in describing laminate response under

compressive loads. The CODAM2 implementation in CUF is extended to consider linear-brittle softening

laws as shown in Fig. 2. The isotropic macroscopic model MAT81 uses user-defined stress-strain curves

with arbitrary shapes as input at the laminate level.

The lamina-level single element studies constitute necessary verification tests and confirm the correct implemen-

tation of the CODAM2 material model for compressive damage initiation and progression in the CUF-Explicit

framework.
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5 Numerical examples

This section provides a series of numerical assessments as validation cases to demonstrate the capability of the

proposed approach, based on CUF structural models, for the progressive damage analysis of composite laminates

under compression. The numerical assessments include the influence of fiber post-peak softening curves, and

the choice of through-thickness expansion functions, on the quality of results predicted by the CUF models.

Reference numerical results are also provided for comparison, based on simulations performed in LS-DYNA

using the macroscopic laminate-based MAT81 material model. As presented in detail in [38], quasi-isotropic

laminates can be simulated by means of isotropic material models when delamination is negligible, and is hence

applicable to the sublaminate-scaled, thin-ply laminates considered in the present work.

The material card MAT81 in LS-DYNA models elastoplastic materials with user-defined isotropic stress-

strain curves to account for the coupling of damage and plasticity. This coupling is particularly useful to model

residual deformations in composites subjected to impact or bending loads. In the present study, the macroscopic

response of quasi-isotropic laminates subjected to compressive loadings is described by the stress-strain curve

shown in Fig. 4b. Similar to the outlined linear-brittle softening in the CUF models shown in Fig. 2, the

macroscopic response of the laminate under compression can be described by trilinear softening with stress

plateau to account for fiber kinking.

5.1 Compact compression test

46

18

46
⌀19.1

50

30

55 55

25 85

Figure 5: Schematic representation of the compact compression test specimen made of IM7/8552 CFRP with
a [90/45/0/− 45]4s quasi-isotropic layup (dimensions in mm).

The first numerical assessment is the simulation of the compact compression (CC) test of an IM7/8552

quasi-isotropic laminate with a [90/45/0/ − 45]4s stacking sequence. The laminate is loaded in compression



via prescribed displacements on the loading pins. A schematic representation of the CC specimen is shown in

Fig. 5. The assessment is based on the work of Zobeiry et al. [37], which provides experimental data of the

global force response as well as DIC analysis of the fracture process zone, presented in Fig. 4b. The CUF

models consist of an in-plane mesh with 191 Q9 elements, see Fig. 6(a), which is obtained as the result of a

mesh convergence study. A series of models are used with an increasing refinement in the thickness direction,

using linear (LE1), quadratic (LE2), and cubic (LE3) expansion functions to describe the thickness of each ply

of the laminate. Both linear and linear-brittle fiber softening options are used to investigate their influence on

damage initiation and progression. The simulation of CC tests by the macroscopic (MAT81) model is achieved

by the finite element discretization depicted in Fig. 6(b). The model consists of 4848 shell elements with an

approximate element size of 1 mm × 1 mm in the expected fracture zone around the initial notch.

(a) CUF-2D (b) Macroscopic MAT81 (LS-DYNA)

Figure 6: In-plane discretization of the compact compression specimen. (a) CUF-2D model with 191 Q9
elements, and (b) LS-DYNA model with 4848 shell elements.

The force-displacement response obtained from CUF simulations, considering LE1 and various softening options,

is shown in Fig. 7. The linear-brittle model with 30% residual (plateau) stress, i.e., the Br–30 model, predicts a

peak force that has the least error compared to the experimentally observed peak force (approximately 3.4%),

and hence is selected for further analyses. The effect of higher-order through-thickness expansion functions

in CUF is then studied, and the results are presented as force-displacement plots in Fig. 8, along with those

obtained using a combination of higher-order expansions with a linear softening option. In each case, reference

experimental data and numerical predictions based on the macroscopic MAT81 model, obtained from [37], are

overlaid for comparison. A summary of the predicted peak force and the corresponding pin opening displacement

(POD), according to the various numerical models, is listed in Table 2. The following observations are made:

1. The force-displacement response predicted by the CUF models is in good general agreement with the

experimental curve, as seen in Fig. 7 and Fig. 8, in terms of predicted peak force as well as post-peak



softening behavior, thus validating the proposed framework.

2. The linear strain softening model in the fiber direction over-predicts the peak load by approximately 17%

when compared to experimental observations, as seen in Fig. 7. Using a linear-brittle model, specifically

the Br-30 curve, results in a more accurate prediction of the peak load, with an error of about 3.4%, as

well as the subsequent global softening response due to progressive damage.

3. The peak force predicted by the CUF models with various post-peak softening curves, and their relative

error with respect to experiments (see Table 2), indicate that the Br-30 softening curve is the most suitable

option for the analysis of IM7/8852 composites using the proposed CUF approach.

4. The difference in the slope of the force-displacement curve in the linear regime, between the experimental

and numerical approaches, may stem from limitations in replicating the actual experimental boundary

conditions in the numerical models.

5. A non-negligible amount of noise is observed in the response, seen in Fig. 8, and is attributed to the

inherent issues associated with the numerical modeling of compressive damage using explicit schemes, and

the absence of numerical damping. The sudden loss of stiffness due to linear-brittle softening models may

also contribute to such fluctuations in the response.

6. Considering the in-plane nature of the current problem, LE1 is sufficient to obtain solutions to the required

accuracy. However, when significant interlaminar effects are present, such as delamination and laminate

bending, LE1 may lead to oscillatory results, whereas higher-order (LE2 and LE3) thickness expansions

provide a smooth and stable response, as observed in [25].

7. Similar to the CUF-LE1/Br-30 model, the macroscopic MAT81 model is able to predict the maximum

force and post-peak response with reasonable accuracy, with an approximately 9% error in the peak force

prediction compared to experiments. The macroscopic model predicts a smoother post-peak softening

response due to the direct input of laminate properties in the numerical model. This is in contrast

to the layer-wise approach of the CUF models, where the successive damage initiation and progression

of individual plies lead to more abrupt changes in the stiffness, and could be a source of the observed

oscillatory response.

5.2 Open-hole compression test

The next numerical assessment evaluates the performance of the proposed framework in the strength prediction

of open-hole laminates subjected to compressive loads, schematically shown in Fig. 9. The analysis is based

on the work of Lee and Soutis [41], providing reference to experimental data. Three scales of the open-hole

specimen are studied, and their dimensions are listed in Table 3. The stacking sequence is [45/90/ − 45/0]4s,
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Figure 9: Schematic representation of the IM7/8552 CFRP open-hole compression specimen with a [45/90/−
45/0]4s quasi-isotropic layup.



Table 2: Peak force of the IM7/8552 CFRP [90/45/0/−45]4s quasi-isotropic compact compression test specimen
evaluated by experimental and numerical approaches.

Approach Peak Force [N] Error∗ [%] POD at peak force [mm] Error∗ [%]

Experiment 9092 – 0.932 –

LS-DYNA (macroscopic MAT81) 9912 9.0 1.005 7.8

CUF-LE1/Lin softening 10671 17.4 0.887 -4.8

CUF-LE2/Lin softening 11283 24.1 0.962 3.2

CUF-LE3/Lin softening 11808 29.9 1.074 15.2

CUF-LE1/Br-20 7782 -14.4 0.669 -28.2

CUF-LE1/Br-40 8151 -10.4 0.669 -28.2

CUF-LE1/Br-60 10728 18.0 0.887 -4.8

CUF-LE1/Br-30 9401 3.4 1.037 11.3

CUF-LE2/Br-30 9897 8.9 0.999 7.2

CUF-LE3/Br-30 10341 13.7 1.074 15.2

∗ Error computed with respect to experiments.



resulting in a quasi-isotropic composite laminate with a total thickness of 4 mm. The stacking sequence of the

current case is slightly different from that of the previously described CC test, but involves the same damage

modes due to the dispersed-ply nature of the laminate, with negligible amounts of delamination. A series

of CUF layer-wise models have been developed, with a progressive refinement of the in-plane and through-

thickness discretization. Both post-peak softening models, i.e., linear and linear-brittle softening curves, have

been adopted in the analysis. Experimental data obtained from [41] and numerical predictions using LS-DYNA,

based on the previously introduced macroscopic MAT81 approach, are also reported for comparison.

The first set of assessments investigates the influence of the linear and linear-brittle post-peak softening models

on failure strength for the scale-1 specimen (see dimensions in Table 3). The failure strengths obtained using a

linear softening curve are presented in Fig. 10, while the predictions obtained via the application of linear-brittle

softening curves are presented in Fig. 11. The 48 Q9 in-plane mesh, used for the scale-1 model, is shown in

Fig. 12(a). The scale-2 and scale-3 tests are then simulated, using CUF models with linear-brittle post-peak

softening (Br-30), and the results are presented in Fig. 13. The in-plane mesh of the scale-2 and scale-3 CUF

models consist of 128 Q9 and 256 Q9 elements, respectively, with LE1 over each ply. All the CUF models have

an average element length of approximately 1.25 mm at the hole boundary. For the case of the MAT81 analysis

in LS-DYNA, the scale-1 laminate is discretized using 1202 shell elements, see Fig. 12(b), with an approximate

element size of 1 mm × 1 mm. Details of the various CUF models, such as the discretization used and analysis

(wall) time, are listed in Table 4. The following comments are made:

1. The use of linear post-peak fiber softening leads to an approximately 60% overestimation of the predicted

failure strength in open-hole laminates, as seen in Fig. 10. The error remains constant with the progressive

refinement of the in-plane and through-thickness discretization.

2. Using linear-brittle softening models leads to significant improvements in the results’ quality, as seen in

Fig. 11. In particular, the Br-30 model predicts a failure strength which is in excellent agreement with

experimental data (error below 1.5%), and remains constant with progressive refinement of the mesh.

3. As seen in Fig. 13, the failure strength predictions of the CUF models at all three scales correlate very

well with experimental results, with a maximum error below 4%. Furthermore, the size-effect, which is

experimentally observed by scaling the specimen dimensions, is also evident in the CUF predictions.

4. The macroscopic MAT81 model is able to predict the strength at all three scales with good accuracy with

a maximum error of 7% compared to experiments. It should be noted that this only requires a coarse

discretization of 1202 elements (for the scale-1 specimen). The CUF modeling approach requires even

fewer elements, leading to highly efficient simulation of damage progression in composite laminates.

5. A direct comparison of the computation time between the CUF-Explicit and the LS-DYNA analyses is

not possible, since the layer-wise CUF models use the CODAM2 material model, whereas the LS-DYNA

models are based on the isotropic macroscopic MAT81 approach.



Table 3: Dimensions of the three scales considered for the open-hole compression tests.

Scale Gauge length L [mm] Gauge width W [mm] Diameter d [mm]

scale - 1 32 32 6.35

scale - 2 64 64 12.70

scale - 3 128 128 25.40
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Figure 10: Predicted failure strength of the [45/90/− 45/0]4s quasi-isotropic open-hole compression specimen
based on various CUF models with linear post-peak softening (scale-1 test). Experimental results are from [41].
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Figure 11: Predicted failure strength of the [45/90/− 45/0]4s quasi-isotropic open-hole compression specimen
based on various CUF models with linear-brittle post-peak softening (scale-1 test). Experimental results are
from [41].



(a) CUF-2D (b) Macroscopic MAT81 (LS-DYNA)

Figure 12: In-plane discretization of the scale-1 open-hole compression. (a) CUF-2D model with 48 Q9 elements,
and (b) LS-DYNA model with 1202 shell elements.
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Figure 13: Predicted failure strengths of the the [45/90/− 45/0]4s quasi-isotropic open-hole compression spec-
imen for all the scales by CUF models with linear brittle (Br-30) post-peak softening. Experimental results
from [41].



Table 4: Model information for the [45/90/− 45/0]4s quasi-isotropic open-hole compression test.

Model Discretization of the open-hole specimen DOF Analysis Time∗ [hh:mm:ss]

scale-1 test (L = 32 mm, W = 32 mm)

CUF 48Q9 - 32LE1 48 Q9 elements in-plane (1 LE1/ply) 22,176 00:29:34

CUF 48Q9 - 32LE2 48 Q9 elements in-plane (1 LE2/ply) 43,680 01:20:23

CUF 48Q9 - 32LE3 48 Q9 elements in-plane (1 LE3/ply) 65,184 02:51:20

CUF 72Q9 - 32LE1 72 Q9 elements in-plane (1 LE1/ply) 33,264 00:46:51

scale-2 test (L = 64 mm, W = 64 mm)

CUF 128Q9 - 32LE1 128 Q9 elements in-plane (1 LE1/ply) 57,024 01:49:03

scale-3 test (L = 128 mm, W = 128 mm)

CUF 256Q9 - 32LE1 256 Q9 elements in-plane (1 LE1/ply) 114,048 03:09:29

∗ The reported run-times are based on analyses performed on a desktop computer using 6 cores

5.3 Center-notched compression test

The final numerical assessment extends the failure strength prediction evaluation to the case of center-notched

laminates under compressive loads. The assessment is based on the works of Xu et al. [42], where a series of

4 mm thick [45/90/ − 45/0]4s quasi-isotropic IM7/8552 laminates of varying dimensions were experimentally

investigated. The scale-8 laminate (see Ref. [42]) is analyzed in the present work, and the gauge section is

modeled as shown schematically in Fig. 14. Based on the previous open-hole compression analysis observations,

the current study directly considers LE1 for each ply, and the Br-30 fiber softening model to account for

damage progression. The in-plane geometry is discretized with three successively refined meshes using Q9

elements. For comparison, the macroscopic MAT81 model in LS-DYNA consists of about 20,000 shell elements

with an approximate size of 1 mm × 1 mm. The force-displacement response of the center-notched laminate,

obtained from the CUF models and experimental data, are overlaid in Fig. 15. The experimentally observed

and numerically predicted peak strength values are tabulated in Table 5. The contour plot of the damage state,

at and immediately after the peak load, is shown in Fig. 16. The following comments are made:

1. The modeling options leading to accurate strength predictions of open-hole laminates remain suitable for

analyzing center-notched laminates in compression, as seen in Fig. 15. The peak strength predicted by

the CUF model is in perfect agreement with experimental data (0% error), as seen in Table 5.

2. Similarly, the results obtained from the macroscopic MAT81 analysis are consistent with previous findings

in the simulation of CC and OHC tests, and are in good agreement with experimental data. The peak

strength prediction of 248 MPa is around 5% higher than the experimentally measured strength of the



scale-8 specimen.

3. The fiber damage morphology predicted by the CUF model correlates well with that of the macroscopic

MAT81 model in LS-DYNA, see Fig. 16, and the numerical predictions are in line with experimental

observations, see Fig. 3b of Ref. [42], where cracks initiate at the notch tip, and propagate along the

notch plane. Furthermore, the CUF implementation of CODAM2 allows for the determination of both

fiber and matrix damage, whereas the macroscopic MAT81 model in LS-DYNA computes a single isotropic

damage variable.

25.4

127

1
2
7

y

x

Figure 14: Schematic representation of the [45/90/− 45/0]4s quasi-isotropic center-notched compression spec-
imen (dimensions in mm).

Table 5: Peak force of the the [45/90/−45/0]4s quasi-isotropic center-notched compression specimen evaluated
by experimental and numerical approaches.

Approach Peak Strength [MPa] Error w.r.t experiments [%]

Experiment [42] 235.0(0.4*) –

LS-DYNA (MAT81) 248.0 5

CUF 108Q9-32LE1/Br-30 235.0 0
∗ Coefficient of variation [%]
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specimen. Experimental results from [42].

6 Discussion

The first set of numerical assessments consists of single element studies to verify the correct implementation of

the CODAM2 model for compressive damage within the CUF-explicit numerical framework. A 1mm × 1mm

single element lamina is loaded in compression along the fiber direction, leading to fiber-dominated damage,

and the resulting stress-strain response is shown in Fig. 3a. The predicted peak stress corresponds to the input

fiber strength value XC = 1690 MPa, and the area under the curve (multiplied by the element length of 1 mm)

corresponds to the fiber fracture energy GC1 = 80 kJ/m2. The choice of fiber fracture energy has significant

consequences on damage progression and failure. However, investigating such an influence is beyond the scope of

the present work, and the predictive capabilities of the proposed numerical framework is assessed by considering

a fixed value of the fracture energy. Next, the same single element lamina is loaded in compression transverse

to the fiber, leading to matrix-dominated damage, and the stress-strain response obtained is plotted in Fig. 3b.

As in the case of fiber loading, the predicted peak stress is in agreement with the matrix strength YC = 250

MPa, which is an input parameter. The area under the stress-strain curve corresponds to the matrix fracture

energy GC2 = 4.2 kJ/m2. The value of GC2 was chosen to ensure that matrix cracks lead to brittle failure under

transverse compression. The final single element assessment considers a [90/45/0/ − 45]2s laminate loaded in

uniaxial compression. As seen in Fig. 4, the predicted stress-strain response of the single element laminate is in
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good agreement with numerical reference predictions obtained from the built-in CODAM2 version in LS-DYNA.

The obtained results confirm the correct implementation of the CODAM2 material model in the CUF-Explicit

framework, and the numerical platform can subsequently be used for the analysis of laminates subjected to

compression.

A series of numerical assessments are then presented as validation cases, where the predictive capabilities of

the CUF models are evaluated with respect to experiments. The results are also compared with LS-DYNA

models based on the macroscopic MAT81 model which uses laminate-level properties as input data. The first

numerical assessment is the compact compression test of a [90/45/0/− 45]4s quasi-isotropic laminate. The first

study investigates the influence of the post-peak fiber softening curve used in the model, considering LE1. The

obtained force-displacement curves are presented in Fig. 7. It is seen that the use of linear softening curves leads

to an approximately 17% over-prediction of the peak load carrying capacity, compared to experiments, since the

effects of fiber micro-buckling and kinking are not taken into account in such models. Such phenomenological

effects are accounted for in the linear-brittle fiber softening model, and multiple such curves are considered to

calibrate the magnitude of the residual (plateau) stress after the load drop due to brittle failure (see Fig. 2).

Using the linear-brittle model with 30% residual stress in the fiber direction, i.e. the Br-30 model, results in

an accurate prediction of the peak forces, with an error of about 3.4% compared to experiments, as well as a

better evaluation of the global post-peak softening behavior. Larger magnitudes of the residual stress, such as

Br-40 and Br-60, lead to inaccurate and highly oscillatory results. This observed response is attributed to the

sudden drop of larger stress magnitudes and loss of stiffness (see Fig. 2) upon complete failure of the material

at the evaluated Gauss point, for linear-brittle models with higher residual stresses. The next set of assessments

studies the influence of the ply thickness expansion function on the laminate’s global response. It is seen from

Fig. 8 that higher-order expansions such as LE2 and LE3 do not lead to significant improvements in the quality

of the results, compared to LE1. This is due to the fact that delamination is negligible in fracture tests of dis-

persed quasi-isotropic laminates and intralaminar damage is therefore the primary factor that influences global

structural behavior. However, higher-order thickness expansions are needed when interlaminar effects become

more important, as in the case of delamination-dominated fracture tests of ply-scaled (blocked) laminates, or

when the laminate undergoes bending deformation, based on the findings reported in [25].

An advantage of using Q9 elements to discretize the in-plane geometry is a relaxation of element aspect-ratio

and size constraints, as observed in Fig. 6(a), where the global structure is meshed with very few elements.

This is in contrast to standard linear finite elements, see Fig. 6(b), where a higher number of elements are

required. The second-order interpolation functions used in the Q9 elements allow for the accurate evaluation

of strain and stress fields with a coarser discretization, leading to computationally-efficient structural models.

Only the region ahead of the crack-tip is finely meshed, with an average element dimension of 0.5×3 mm, and is

due to element size requirements for material models based on continuum damage mechanics. The occurrence

of numerical oscillations in the results suggests applying numerical damping techniques as a scope for future



works.

The second numerical assessment is the compressive strength prediction of open-hole [90/45/0/ − 45]4s quasi-

isotropic laminates. The first study investigated the scale-1 open-hole compression specimen, where fiber damage

progression is modeled using a linear softening curve. Similar to the case of the CC test, the limitations of lin-

ear softening curves result in highly over-predicted compressive strengths, see Fig. 10, with an error of about

60% compared to experimental observations. The error remains constant with further mesh refinements of the

structural model, indicating convergence of the solution, and hence stems from the limitations of linear fiber

softening models. Using linear-brittle softening models, specifically the Br-30 curve, results in accurate strength

predictions, with an error of about 1.5% compared to experimental results, as seen in Fig. 11. In the second

part of the assessment, three scales of the open-hole specimen were analyzed using the current approach, and

the predicted strength in each case was in good agreement with reference experimental and numerical data, with

a maximum error under 4% compared to experiments. Furthermore, a size-effect was predicted with increasing

the composite laminate scale, which is consistent with trends observed in experimental data, as seen in Fig. 13.

The analysis of different scales required the use of modified meshes with an increase in the computational cost.

In the case of tension loading [24], on the other hand, the same meshes can be used for different scales, i.e.,

lower computational costs are needed for larger scales.

The final compressive strength assessment considers the center-notched specimen, shown schematically in Fig.

14. Based on the results of previous validation cases, the Br-30 linear-brittle curve was directly utilized to

develop the CUF model, in combination with LE1. From Fig. 15, it is seen that the CUF 108 Q9 - 32 LE1

model prediction of the force-displacement response and peak loads are in good agreement with experimental

curves, and the predicted peak strength is in perfect agreement with experimental observations, see Table 5.

The obtained results confirm the suitability of the Br-30 linear-brittle fiber softening curve for compressive

damage analysis of IM7/8552 composite laminates.

The comparison of the results from experiments and the explicit CUF implementation of CODAM2 to predictions

obtained from macroscopic MAT81 show that the structural response of quasi-isotropic dispersed laminates can

also be represented at the laminate level. Simulations of open-hole compression and center-notch compression

tests yield reasonable strength predictions with errors of less than 10% compared to experiments. Such macro-

scopic material modeling is a practical alternative to mesoscopic models since the characterization of ply-based

properties can be challenging, in particular strength and fracture energy values. However, these macroscopic

material models are limited to quasi-isotropic layups.

7 Conclusion

The present work combines the CODAM2 material model with higher-order 2D structural theories obtained

via the Carrera Unified Formulation to develop a numerical framework for the progressive damage analysis



of unidirectional fiber-reinforced composites loaded in compression. The CODAM2 model is applied at the

ply-level, where damage initiation is determined using Hashin’s failure criteria, and damage evolution and

propagation is governed using a smeared crack approach. The CUF-based structural models are based on

higher-order plate theories, where each ply of the laminate is individually modeled using Lagrange polynomials

and resulting in a layer-wise model. A series of numerical assessments, based on IM7/8552 composite laminates,

have been presented to verify and validate the proposed framework. The initial verification of the model

implementation was carried out via a series of single elements tests. The next set of assessments was the compact

compression test of quasi-isotropic laminates. The final assessment was the failure strength prediction of notched

quasi-isotropic laminates, such as open-hole and center-notched specimens under compression. Multiple post-

peak softening options were used in the numerical models to account for the effects of fiber micro-buckling and

kinking. The use of linear-brittle softening curves was advantageous compared to simple linear softening laws

regarding the accuracy of results. The application of linear-brittle curves resulted in a more accurate prediction

of peak load-carrying capacity and post-peak global response for the compact compression test case compared

to the use of linear softening models. Similarly, the predicted compressive failure strengths of the open-hole

and center-notched laminates were in excellent agreement with experimental data for linear-brittle models. At

the same time, the use of linear softening curves significantly over-predicted the compressive strength. It is

demonstrated that the combination of higher-order 2D structural models based on CUF and the CODAM2

material model constitutes an accurate numerical simulation platform for the progressive damage analysis

of fiber-reinforced composites subjected to compression. Compared to tensile loadings, the compressive case

required higher computational costs.

The present work aimed to develop accurate compressive damage modeling capabilities at the mesoscopic level,

based on layer-wise structural models. This development constitutes a building block approach toward the

high-fidelity analysis of more complex structural problems involving compressive damage. Future works aim to

extend the numerical framework’s capabilities towards compression-after-impact (CAI) analysis of laminated

composites.

Acknowledgements

This research work has been carried out within the project ICONIC (Improving the Crashworthiness of Compos-

ite Transportation Structures), funded by the European Union Horizon 2020 Research and Innovation program

under the Marie Sk lodowska-Curie Grant agreement No. 721256, and the Joint Project for the International-

ization of Research // Polito MUL2 — University of British Columbia. Computational resources were provided

by HPC @ POLITO (http://www.hpc.polito.it).



References

[1] Q Sun, G Zhou, H Guo, Z Meng, Z Chen, H Liu, H Kang, and X Su. Failure mechanisms of cross-ply carbon

fiber reinforced polymer laminates under longitudinal compression with experimental and computational

analyses. Composites Part B: Engineering, 167:147–160, 2019.

[2] MR Wisnom. The effect of fibre misalignment on the compressive strength of unidirectional carbon fi-

bre/epoxy. Composites, 21(5):403–407, 1990.

[3] SH Lee and AM Waas. Compressive response and failure of fiber reinforced unidirectional composites.

International Journal of Fracture, 100(3):275–306, 1999.

[4] Y Yuan, K Niu, and Z Zhang. Compressive damage mode manipulation of fiber-reinforced polymer com-

posites. Engineering Fracture Mechanics, 223:106799, 2020.

[5] X Chen, X Sun, B Wang, J Gu, P Zou, Y Chai, and J Yang. An improved longitudinal failure criterion for

ud composites based on kinking model. Mechanics of Advanced Materials and Structures, In Press.

[6] CR Schultheisz and AM Waas. Compressive failure of composites, part i: testing and micromechanical

theories. Progress in Aerospace Sciences, 32(1):1–42, 1996.

[7] AM Waas and CR Schultheisz. Compressive failure of composites, part ii: experimental studies. Progress

in Aerospace Sciences, 32(1):43–78, 1996.

[8] EV Iarve, KH Hoos, Y Nikishkov, and A Makeev. Discrete damage modeling of static bearing failure in

laminated composites. Composites Part A: Applied Science and Manufacturing, 108:30–40, 2018.

[9] S Rivallant, C Bouvet, and N Hongkarnjanakul. Failure analysis of cfrp laminates subjected to compression

after impact: Fe simulation using discrete interface elements. Composites Part A: Applied Science and

Manufacturing, 55:83–93, 2013.

[10] ZC Su, TE Tay, M Ridha, and BY Chen. Progressive damage modeling of open-hole composite laminates

under compression. Composite Structures, 122:507–517, 2015.

[11] MR Abir, TE Tay, M Ridha, and HP Lee. Modelling damage growth in composites subjected to impact

and compression after impact. Composite Structures, 168:13–25, 2017.

[12] A Riccio, A Sellitto, S Saputo, A Russo, M Zarrelli, and V Lopresto. Modelling the damage evolution in

notched omega stiffened composite panels under compression. Composites Part B: Engineering, 126:60–71,

2017.

[13] XC Sun and SR Hallett. Barely visible impact damage in scaled composite laminates: Experiments and

numerical simulations. International Journal of Impact Engineering, 109:178–195, 2017.



[14] M Akterskaia, E Jansen, SR Hallett, PM Weaver, and R Rolfes. Progressive failure analysis using global-

local coupling including intralaminar failure and debonding. AIAA Journal, pages 3078–3089, 2019.

[15] E Pietropaoli and A Riccio. A global/local finite element approach for predicting interlaminar and in-

tralaminar damage evolution in composite stiffened panels under compressive load. Applied Composite

Materials, 18(2):113–125, 2011.

[16] J Chen, EV Morozov, and K Shankar. Simulating progressive failure of composite laminates including in-

ply and delamination damage effects. Composites Part A: Applied Science and Manufacturing, 61:185–200,

2014.

[17] SI Thorsson, AM Waas, and M Rassaian. Low-velocity impact predictions of composite laminates using a

continuum shell based modeling approach part b: Bvid impact and compression after impact. International

Journal of Solids and Structures, 155:201–212, 2018.

[18] J Reiner, T Feser, D Schueler, M Waimer, and R Vaziri. Comparison of two progressive damage models for

studying the notched behavior of composite laminates under tension. Composite Structures, 207:385–396,

2019.

[19] E Carrera, M Cinefra, M Petrolo, and E Zappino. Finite element analysis of structures through unified

formulation. John Wiley & Sons, 2014.

[20] AG de Miguel, I Kaleel, MH Nagaraj, A Pagani, M Petrolo, and E Carrera. Accurate evaluation of

failure indices of composite layered structures via various fe models. Composites Science and Technology,

167:174–189, 2018.

[21] M Petrolo, MH Nagaraj, I Kaleel, and E Carrera. A global-local approach for the elastoplastic analysis of

compact and thin-walled structures via refined models. Computers & Structures, 206:54–65, 2018.

[22] MH Nagaraj, I Kaleel, E Carrera, and M Petrolo. Contact analysis of laminated structures including

transverse shear and stretching. European Journal of Mechanics-A/Solids, page 103899, 2019.

[23] MH Nagaraj, I Kaleel, E Carrera, and M Petrolo. Nonlinear analysis of compact and thin-walled metallic

structures including localized plasticity under contact conditions. Engineering Structures, page 109819,

2019.

[24] MH Nagaraj, J Reiner, R Vaziri, E Carrera, and M Petrolo. Progressive damage analysis of composite

structures using higher-order layer-wise elements. Composites Part B: Engineering, page 107921, 2020.

[25] MH Nagaraj, E Carrera, and M Petrolo. Progressive damage analysis of composite laminates subjected to

low-velocity impact using 2d layer-wise structural models. International Journal of Non-Linear Mechanics,

page 103591, 2020.



[26] KV Williams, R Vaziri, and A Poursartip. A physically based continuum damage mechanics model for thin

laminated composite structures. International Journal of Solids and Structures, 40(9):2267–2300, 2003.

[27] C Mcgregor, N Zobeiry, R Vaziri, and A Poursartip. A constitutive model for progressive compressive

failure of composites. Journal of composite materials, 42(25):2687–2716, 2008.

[28] C McGregor, N Zobeiry, R Vaziri, A Poursartip, and X Xiao. Calibration and validation of a continuum

damage mechanics model in aid of axial crush simulation of braided composite tubes. Composites Part A:

Applied Science and Manufacturing, 95:208–219, 2017.

[29] A Forghani, N Zobeiry, A Poursartip, and R Vaziri. A structural modelling framework for prediction of

damage development and failure of composite laminates. Journal of Composite Materials, 47(20-21):2553–

2573, 2013.

[30] A Forghani, A Poursartip, and R Vaziri. An orthotropic non-local approach to modeling intra-laminar

damage progression in laminated composites. International Journal of Solids and Structures, 180:160–175,

2019.

[31] M Shahbazi. An efficient virtual testing framework to simulate the progression of damage in notched

composite laminates. PhD thesis, University of British Columbia, 2017.

[32] M Shahbazi, R Vaziri, and N Zobeiry. An efficient virtual testing framework to simulate the interacting

effect of intra-laminar and inter-laminar damage progression in composite laminates. In Proceedings of the

American Society for Composites: Thirty-First Technical Conference, 2016.

[33] M Petrolo and E Carrera. Methods and guidelines for the choice of shell theories. Acta Mechanica,

231:395–434, 2020.

[34] Z Hashin. Failure criteria for unidirectional fiber composites. Journal of applied mechanics, 47(2):329–334,

1980.
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