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ABSTRACT: In the present work we find novel Newtonian gravity models in three space-
time dimensions. We first present a Maxwellian version of the extended Newtonian gravity,
which is obtained as the non-relativistic limit of a particular U(1)-enlargement of an en-
hanced Maxwell Chern-Simons gravity. We show that the extended Newtonian gravity
appears as a particular sub-case. Then, the introduction of a cosmological constant to the
Maxwellian extended Newtonian theory is also explored. To this purpose, we consider the
non-relativistic limit of an enlarged symmetry. An alternative method to obtain our results
is presented by applying the semigroup expansion method to the enhanced Nappi-Witten al-
gebra. The advantages of considering the Lie algebra expansion procedure is also discussed.
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1 Introduction

Non-relativistic (NR) geometry has been of particular interest in condensed matter sys-
tems [1-8] and NR effective field theories [9-12]. In such geometric framework, there has
been a growing interest in studying NR gravity theories [13-27] which could be relevant in
approaching realistic theories.

It is well-known that standard Newtonian gravity, describing the physical gravitational
force, can be geometrized using what is known as Newton-Cartan (NC) geometry. Never-
theless, an interesting open issue has been to construct an action principle for Newtonian
gravity which is based on the Bargmann algebra [28-34]. The aforementioned action has
recently been presented in [35]. Such construction has required, however, an underlying
symmetry algebra which differs from the usual Bargmann algebra as it includes three ad-
ditional generators. Subsequently, a three-dimensional Chern-Simons (CS) formulation
based on this particular extension of the Bargmann algebra has been introduced in [36].
For this formulation it was necessary to introduce a central extension in order to have



a non-degenerate invariant bilinear form. Such NR gauge invariant theory has been de-
noted as extended Newtonian gravity and has been obtained as a contraction of a bi-metric
model being the sum of the Einstein gravity in the Lorentzian and Euclidean signatures.
As pointed out in [36], although the extended Newtonian gravity is based on the central
extension of the algebra that leads to an action for Newtonian gravity, it is distinct from
the Newtonian gravity action constructed in [35]. In addition, both models differ at the
level of matter coupling. In fact, the matter coupling of the extended Newtonian gravity
theory admits backgrounds with non-trivial curvature whenever matter is present, which
makes it resemble to the case of matter-coupled extended Bargmann gravity [34].

The incorporation of a cosmological constant to the extended Newtonian gravity has
then been presented in [37] by introducing by hand a new NR symmetry called exotic
Newtonian algebra. The respective relativistic counterparts of the extended Newtonian
gravity and its exotic version have been recently studied in [38]. In particular, the authors
of [38] showed that the extended Newtonian gravity model and the exotic one appear as NR
limits of relativistic CS gravity theories based on the co-adjoint Poincaré and co-adjoint
AdS algebra, respectively.

Another extension of the Bargmann algebra is given by the recently introduced
Maxwellian extended Bargmann (MEB) algebra allowing to construct a NR CS gravity
action in presence of a covariantly constant electromagnetic field [20] without cosmologi-
cal constant. Such NR model has been obtained as a NR limit of the [Maxwell]®u(1) &
u(l) & u(1) CS gravity. As in the extended Bargmann case [34], the U(1) enlargement
of the relativistic counterpart is crucial to define a proper NR limit leading to a finite
NR gravity action based on a non-degenerate bilinear form. The relativistic Maxwell al-
gebra has been introduced to describe a Minkowski background in presence of a constant
electromagnetic field [39-41]. Such symmetry and its generalizations have been useful to
recover standard General Relativity without cosmological constant as a limit of CS and
Born-Infeld (BI) gravity theories [42-46]. Let us also mention that supersymmetric ex-
tensions of the Maxwell algebra found relevant applications in the development and study
of supergravity models (see, for instance, [47-51] and references therein). More recently,
the dual version of the Maxwell symmetry, denoted as Hietarinta-Maxwell [52], allowed
to recover the topological and minimal massive gravity theories. In particular, both of
these massive gravity theories appear as particular cases of a more general massive gravity
arising from a spontaneous breaking of a local symmetry in a CS gravity theory invariant
under the Hietarinta-Maxwell algebra [53].

One may then ask if the MEB gravity can admit a cosmological constant in a similar
way to the one based on the Newton-Hooke symmetry [54-61]. The answer to the question
is affirmative. Indeed, there is the enlarged extended Bargmann gravity (EEB) which
reproduces the MEB one in the vanishing cosmological constant limit ¢ — oo [23]. The
EEB has been obtained as an Inénii-Wigner (IW) contraction [62, 63] of the [AdS-Lorentz]
@u(l) ® u(l) @ u(l) algebra in three spacetime dimensions. The AdS-Lorentz (AdS-
L, for short) algebra has been first introduced in arbitrary spacetime dimensions as a
semi-simple extension of the Poincaré algebra in [64, 65] and has been useful to recover
pure Lovelock theory [66, 67] as a particular limit of CS and BI gravity theories [68-70].



Moreover, supersymmetric extentions of the AdS-L algebra proved useful in the context of
supergravity (see [71-75] and references therein).

It is natural to address the question whether the extended Newtonian gravity presented
in [36] and its exotic version admit a Maxwell generalization in three spacetime dimensions
which can be formulated as a CS theory. The motivation to consider three-dimensional CS
gravity theories is twofold. First, CS formalism offers us a simple framework to construct
gauge invariant gravity actions. Second, three-dimensional geometry can be seen as an
interesting toy model to approach more difficult theories in higher dimensions. In this
paper we will show that a three-dimensional Maxwellian extended Newtonian (MENt)
gravity theory can be defined by generalizing the results obtained in [38]. In particular,
the MENt algebra appears as a NR limit of a particular enhancement of the Maxwell gravity
enlarged with three u(1) gauge generators. The introduction of a cosmological constant to
the MENt theory is also explored by defining a new NR gravity theory denoted as enlarged
extended Newtonian (EEN) gravity which is the NR version of an enhanced AdS-L£ algebra
enlarged with three u(1) gauge generators. Interestingly, we show that the MENt and EEN
symmetries contain the MEB and EEB algebras as sub-cases, respectively. Nevertheless,
the respective novel NR CS actions do not contain the MEB and EEB gravity actions
as particular cases. This is mainly due to the problematic to define a unique rescaling
for the relativistic parameters of the invariant tensor. Such difficulty can be overcame by
considering the semigroup expansion (S-expansion) method [76]. In particular, we show
that the new NR symmetries presented here can alternatively been obtained as S-expansion
of the enhanced Nappi-Witten algebra introduced in [38]. Remarkably, the S-expansion
procedure not only allows us to obtain the MENt and EEN algebras but also provides us
with the most general non-degenerate invariant tensor for the respective NR algebras.

The organization of the paper is as follows: in section 2, we briefly review the relativistic
Maxwell and AdS-L£ gravity theories in three spacetime dimensions. In section 3, we
present new relativistic algebras enlarged with three u(1) generators which can be seen as
enhancements of the Maxwell and AdS-£ symmetries. The respective CS actions based
on the enhanced algebras are also constructed. In section 4, we present the Maxwellian
version of the extended Newtonian gravity. In particular, we introduce the MENt algebra
as a NR limit of the [enhanced Maxwell] G u(1) ®u(1) @u(l) algebra. The NR limit of the
relativistic CS action is also considered. The generalization of our results to the presence
of a cosmological constant is explored in section 5. A novel NR symmetry denoted as EEN
algebra is introduced by considering the NR limit of the [enhanced AdS-£] @ u(1) ®u(1) ®
u(1) algebra. We work out that the MENt gravity theory appears as a flat limit £ — oo
of the EEN one. In section 6, we show that our results can alternatively be obtained by
considering the S-expansion method. Section 7 concludes our work with some discussions
about future developments.

2 Relativistic Maxwell and AdS-Lorentz gravity theories

In this section, we briefly review the three-dimensional relativistic Maxwell CS gravity [77—
81] and its generalization to the so-called AdS-Lorentz gravity [82-84]. The latter allows
to include a cosmological constant into the Maxwell CS gravity action.



The Maxwell algebra can be seen as an extension and deformation of the Poincaré
algebra and it is spanned by the set of generators {J4, Pa, Z4} which satisfy the following
non-vanishing commutation relations

[Ja,JB] = €apcd®,
[Ja, Pg] = eapcPC,
[Ja,ZB) = €apcZ©,
[Pa, Pg] = eapcZ©, (2.1)

where A, B,C' = 0, 1, 2 are Lorentz indices which are lowered and raised with the Minkowski
metric nap = (—1,1,1) and e4pc is the three-dimensional Levi Civita tensor which satisfy
€012 = —€”12 = 1. Here, J4 correspond to the spacetime rotations, P4 are the spacetime
translations and Z4 are the so-called gravitational Maxwell generators.

Such relativistic algebra admits the following non-vanishing components of the invari-

ant tensor of rank 2,

(JadB) = oonag,
(JaPB) = o1maB ,
(JaZp) = o2naB ,
(PaPp) = oanas , (2.2)

where g, 01, and o9 are arbitrary constants.
On the other hand, the gauge connection one-form A for the Maxwell algebra reads

A=WAJs+ EAPy+ K4Z,4, (2.3)

where W4 denotes the spin-connection, E4 is the vielbein and K4 is the gravitational
Maxwell gauge field. The corresponding curvature two-form is given by

F=RA(W)Js+ RY(E)Ps+ R (K)Zy, (2.4)
with
1
RA(W) 1= dW4 + QeABC WeWe
RA(E) := dEA + AB°WgE,,
1
RA(K) := dK* + B WpKe + §eABCEBEC : (2.5)
Here as well as in the sequel, the index “A” of W4, E4, K4 in the parenthesis on the
left-hand side is understood in order to lighten the notation, meaning, in fact, R* (W) =
RA (WB) and so on.

Considering the gauge connection one-form (2.3) and the non-vanishing components
of the invariant tensor (2.2) in the three-dimensional CS expression,

k 2
I=-— AdA + = A3 2.6
4W/< +3 > : (2.6)



with k being the CS level of the theory related to the gravitational constant G, we find the
following relativistic CS gravity action for the Maxwell algebra [77-79]:

k
Ivaxwell = e /

1
o0 <WAdWA + geABC WAWBWC> + 201 E4RA (W)

+03 (TAEa + 2K 4R (W) ] , (2.7)

where T4 = R4 (F) denotes the torsion two-form. One can see that the CS action contains
three independent sectors proportional to og, 01, and 9. The gravitational Lagrangian [85]
appears along the og constant, while the Poincaré Lagrangian given by the Einstein-Hilbert
term is related to the o; constant. On the other hand, the term proportional to oo contains
a torsional term and the gravitational Maxwell gauge field K coupled to the gravitational
gauge field. As mentioned in [79], the presence of the additional gauge field K 4 modifies
not only the asymptotic sector but also the vacuum of the theory.

Interestingly, an enlarged relativistic algebra allows us to include a cosmological con-
stant into the Maxwell CS gravity theory. Such enlarged algebra is the so-called AdS-L£
algebra {Ja, Pa, Z 4} whose generators satisfy (2.1) along with

1
(Za,ZB] = —seapcZ©,
72
1 c
A, ZB] = —s€apcP”, .
(P, Z5] = pyeancP (2.8)

where £ is a length parameter related to the cosmological constant A. Naturally, the flat
limit ¢ — oo reproduces the Maxwell algebra. One can see that the following redefinition
of the generators

Ja =07y,
Py = Py,
ZA:JAA—EQZA, (2.9)

allows to rewrite the algebra given by (2.1) and (2.8) as the direct sum of the so (2,2) and
50 (2,1) algebras.

The non-vanishing components of the invariant tensor for the AdS-£L algebra are given
by (2.2) along with [84]

01

(ZaPB) = 2B
g
(ZaZp) = 722%3- (2.10)

Then, considering the gauge connection one-form for the AdS-£ algebra which coincides
with the Maxwell one (2.3) and the invariant tensor (2.2) and (2.10) into the general
expression of the CS action (2.6), we find the following three-dimensional relativistic CS



action [84]:
k 1

Tnas-c= / [00 (WAdWA +3 ABC WAWBWC> (2.11)
T

1
— EAFN(K)+ —

+ 01 <2EARA(W) o

; eABCEAEBE(;)

1 1

+ oy <TAEA +7 APCE KpEc+2K AR W)+ e KA Dw KA+ 7
where we have defined the curvature FA(K) = Dy K4 + ﬁeABCKBKC, being Dy, the
Lorentz covariant derivative Dy O4 = dOA+eABCTW 5O ¢. One can see that such relativistic

eABCKAKBKC>

symmetry not only introduces a comological constant term to the Einstein-Hilbert term
but also includes the gauge field K# along the o constant. Furthermore, the term along
o9 is also modified by the presence of the new commutation relations (2.8). Naturally,
the vanishing cosmological constant limit ¢ — oo reproduces the relativistic Maxwell CS
gravity action (2.7).

NR versions of the Maxwell and the AdS-L algebras have been considered in [20, 23, 27,
86, 87] and have required to consider U(1) enlargements in order to have well-defined finite
NR CS actions with non-degenerate bilinear forms. In particular, as shown in [20], the NR
limit of the [Maxwell] @ u(1)* algebra reproduces the MEB algebra. On the other hand,
the EEB appears as a NR limit of the [AdS-£] & u (1)? algebra [23]. Such NR algebras are,
as their relativistic versions, related through a flat limit.

In what follows, we study new enhancements of the Maxwell and AdS-Lorentz algebras
whose IW contraction will lead us to novel NR algebras.

3 Enhanced Maxwell and AdS-Lorentz algebras and U(1) enlargements

In this section, we generalize the results presented in [38] to enlarged symmetries. In
particular, we present new enhancements of the [Maxwell] @ u (1)® and [AdS-£] @u (1)
algebras whose NR limits shall be explored in the next section. We expect to find a
Maxwellian version of the Extended Newtonian gravity [36] and a generalization including
a cosmological constant. The explicit CS action for the relativistic enhancement symmetries
is also constructed.

3.1 Enhanced Maxwell Gu(1) @ u(1) @ u(1l) algebra

A particular extension of the Maxwell algebra can be obtained by adding the set of gen-
erators {Sa,Ta,Va} to the usual Maxwell ones {Ja, Pa, Z4}. Such extension satisfies the
following non-vanishing commutation relations

[Ja,JB] = €apcJ®, [J4,SB] = eapcS©,

[Ja, Pg] = eapcPY, [Ja,TB] = eapcT®

[Ja,ZB) = eapcZ©, [Sa, Pg] = eapcT®

[Pa, Pg] = eapcZ©, [Ja,VB] = ABCV

[Sa, ZB] = eapcV©, (T4, Pp] = eapcV® (3.1)



Such algebra can be seen as an extension and deformation of the coadjoint Poincaré algebra
studied in [38, 88, 89]. Interestingly, the commutation relations (3.1) can also be recovered

as an semigroup expansion (S-expansion) [76] of the Poincaré algebra iso(2,1) = {j A, PA},
whose generators satisfy the non-vanishing commutation relations

[Jads] = eanci®,

[jA,PB} = eapcPC. (3.2)
Indeed, let us consider Sg) = {0, A1, A2, A3} as the relevant semigroup whose elements
satisfy
A if a+8<3
S — 3.3
o {Ag if a+p>3, (3:3)

where A3 = 04 is the zero element of the semigroup such that 0;\, = 0s. Then, one can show
that the enhanced Maxwell algebra (3.1) appears as a 0s-reduction of the expanded algebra
Sg) x 180(2, 1), where the expanded generators are expressed in terms of the Poincaré ones
through the semigroup elements as

Ja=XoJa, Sa = XoPa,
Py=MJa, Ta=M\Py,
A= )\QjA, Vi = )\QPA. (3.4)

Let us note that the possibility to obtain generalizations of the coadjoint Poincaré algebra
by considering S%N)—expansion of the is0(2, 1) algebra has first been discussed in [38]. In
the present analysis, we have shown that considering N = 2 allows to define an enhanced
Maxwell algebra. As we shall see in the next section, by considering a different semigroup,
a new relativistic symmetry will be obtained.

An interesting feature of the S-expansion method is that it immediately provides us
with the non-vanishing components of the invariant tensor of the expanded algebra in terms
of the original ones [76]. In particular, the non-vanishing components of the invariant tensor

for the Poincaré algebra are given by
<jAjB> = WNAB,
<jAPB> = U1NAB - (3.5)

Thus, one can show that the enhanced Maxwell algebra admits the following invariant

tensor:
(JadB) = ponas,
(JaSp) = mnap,
(JaPB) = panap,
(JaTg) = (SaPp) = usnas,
(JaZp) = (PaPp) = puunap,
(JaVB) = (SaZp) = (TaPg) = psnap, (3.6)



where u’s are arbitrary constants and are related to the Poincaré constant as

o = Aol , 11 = Aov1, M2 = Ay,

p3 = Ay, Ha = Aol , Hs = Aavy . (3.7)

Similarly to what happens in the MEB algebra, one can generalize the relativistic
algebra by including three U(1) generators given by Y7, Ya2, and Y3. The inclusion of these
U (1) generators in the case of the original Maxwell algebra assures to have a well-defined
non-degenerate invariant tensor after applying the NR limit. Although these additional
U (1) generators act as central charges in the relativistic algebra, their presence implies
additional components of the invariant tensor given by [20]

(Y1Y1) = po,
(Y1Ya) = pa,
(YiY¥s) = (Ya¥a) = s (3.8)

The non-vanishing components of the invariant tensor (3.6) and (3.8) define an invariant
tensor for the [enhanced Maxwell] & u (1) algebra.

The gauge connection one-form for the [enhanced Maxwell] @ u (1)® algebra now in-
cludes not only three additional bosonic gauge fields, ¥4, L4 and T4 in (2.3) but also three
extra U(1) gauge field one-forms as

A=WAJ 4+ EAPy+ KAZA+ 245, + LATA + T4V, + SY1 + MY, + TY3.  (3.9)
The corresponding curvature two-form is given by

F=RAW)Js+ RY(E)Py+ R*(K)Za+R*(X)Sa+RY(L) T4y + RA () Vy
+R(S)Yi + R(M)Ya+ R(T)Ys,

where R4 (W), R4 (E) and R4 (K) are given by (2.5) and

RA(%) = dxA + eBCWpEe,
RA(L) = dLA 4+ ePWgLe + ABCSpEq
RA(T) = dI' 4 eABCWpI e + eABYSp Ko + APCLpEC . (3.10)

Then, considering the gauge connection one-form (3.9) and the non-vanishing components
of the invariant tensor (3.6) and (3.8) in the general expression of the CS action (2.6), we
find the following relativistic CS action for the [enhanced Maxwell] & u (1)® algebra:

k
Ienh—Maxwell@u(l)S = E

1
Lo (WAdWA + geABC WaWsWe + SdS) + 21 B4R (W)

+2p2 (EARY (W) + MdS) + 2u3 (LaR* (W) + E4R* (%))
+ps (TAE4 + 2K4R (W) + MdM + 2SdT) (3.11)

)

1
+2415 (F AR (W) + EAR* (L) + K4RA (%) — ieABC N AEBEC)




where T4 = Dy EA. Tt is interesting to note that the terms proportional to ps and ps
reproduce the CS action for the coadjoint Poincaré algebra presented in [38]. In particular,
the Einstein-Hilbert term appears along ps. On the other hand, the term pg contains the
usual exotic Lagrangian [85]. The terms proportional to pu1, 13, and ps contains new con-
tributions to the Maxwell CS gravity action given by the additional set of gauge fields. The
non-degeneracy of the invariant tensor implies that the gauge fields are dynamically deter-
mined by the vanishing of every curvature (2.5) and (3.10) provided ps # 0. In particular,
the vanishing of R4 (K) can be seen as the constancy of the background electromagnetic
field in flat spacetime.

As was discussed in [20], the inclusion of three extra U(1) gauge fields to the Maxwell al-
gebra allows to reproduce a non-degenerate invariant tensor at the NR level. Here, we shall
see that the addition of those U(1) gauge fields in the enhanced Maxwell algebra (3.1) will
be crucial to obtain a well-defined Maxwellian version of the extended Newtonian gravity.

3.2 Enhanced AdS-Lorentz ®u(1l) @ u(1l) & u(1l) algebra

A cosmological constant term can be introduced to the [enhanced Maxwell] & u (1)* gravity
theory by enlarging the algebra and introducing a length scale ¢. The new algebra can
be seen as an extension of the AdS-L algebra (2.1)—(2.8) by adding the set of generators
{S4,T4,Va}. Such extension satisfies the non-vanishing commutation relations (3.1) along
with

1 1
(Za,ZB) = —eapcZ©, [T, ZB] = —eapcT®,
0?2 02
1 1
[Pa, Zp| = ZQEABCPC, Va, Pg| = EjGABCTCa
1
[Va, Zp) = EEABcvc. (3.12)

It is interesting to note that such enhanced AdS-L algebra can be rewritten as three copies
of the Poincaré algebra, that is to say

(T3, JE] = eapcJ™C, [jA7 jB} = eapct?,

[J£, PE] = eapcP*C, |, | = eapcPC, (3.13)

by considering the following redefinition of the generators:

JA:jA—I—JX—l-JX, SA:PA+PX+PX>
1 1
1 _ 1 _
Za= L), R LR ) FCRY!

The relativistic enhanced AdS-L£ algebra can also be written as the direct sum of the
coadjoint AdS algebra {j 4, Pa, 5S4, TA} defined in [38] and the Poincaré algebra {j A, PA}



by considering the following redefinition:

Ja=Ja+Ja, Sa=Sa+ Py,
PA:PA, TA:TAa
jA gA

Although the relativistic algebra seems simpler in the form of three copies of the Poincaré
algebra (3.13), we shall consider the basis {Ja, Pa, Z4,S4,Ta,Va} since it allows to estab-
lish a well-defined and evident vanishing cosmological constant limit £ — oo reproducing
the enhanced Maxwell algebra. As we shall see, the same behavior will be inherit to its
NR version.

An alternative procedure to obtain the enhanced AdS-L£ algebra ((3.1) and (3.12)) is
given by the S-expansion method [76]. Indeed, let us consider Sj(a) = {0, A1, A2} as the
relevant semigroup and the Poincaré algebra is0(2,1) as the original one. The semigroup
elements satisfy the following multiplication law:

woa = [ Pars i atB<2, (316)
TN Aagpe if a+B>2. '

Then, one can show that the enhanced AdS-L algebra given by (3.1) and (3.12) appears
as a Sﬁ?-expansion of the Poincaré algebra where the expanded generators are expressed
in terms of the Poincaré ones through the semigroup elements as

Ja=XoJa, Sa = MPa,
0Py =M\Ja, 0Ty =\ Py,
7y =Ny, PV = \Py. (3.17)

Then, following theorem VII.2 of [76], one can show that the non-vanishing components
of the enhanced AdS-L algebra can be expressed in terms of the Poincaré ones. Thus, the
invariant tensor for the present relativistic algebra are given by (3.6) along with

M2
(ZaPB) = 2B

(TaZp) = (VaPp) = %m,
(ZaZp) = %UAB,
(VaZp) = %UAB. (3.18)

Naturally, the flat limit / — oo reproduces the invariant tensor of the enhanced Maxwell
one. Analogously to the procedure to obtain the EEB algebra [23], one can generalize
the relativistic algebra by including three u (1) generators given by Y7, Y3, and Y3 which
provide the following non-vanishing components of the invariant tensor [23]:

(Y1Y1) = po, (YaY2) = pg,
(Y1Y2) = ua, (YaYs) = %7
<Y1Y3> = U4, <Y3Y3> = % . (319)

~10 -



The invariant tensor given by (3.6), (3.18), and (3.19) defines a non-degenerate invariant
bilinear form for the [enhanced AdS-£] & u (1) algebra.

Then, considering the gauge connection one-form for the enhanced algebra which co-
incides with the Maxwell one (3.9) and the non-vanishing components of the invariant
tensor (3.6), (3.18), and (3.8) in the general expression of the CS action (2.6), we find the
following relativistic CS action for the [enhanced AdS-£] @ u (1)® algebra:

I

enh-AdS-Lpu(1)® — 1

k 1
enh—MaxwelléBu(1)3+W/ |:2,U'2 <EAFA (K)+6€ABCEAEBEC+MCZT)

1 1
+ 243 (LAFA (K)— 2eABCEAEBLC+EARA(F)+peABCEAKBFC>

1
+ s <eABC EAKBEC+KADWKA+@6ABC KAKBKC+TdT>

1 1
+2u5 <FAFA (K)+ §6ABCEAEBF0+ §6ABCKAZBKC

+eABC KALBEC> , (3.20)
where
RAY(D) = dI 4 eABCWpT ¢ + B p Ko + APCLpEC,
1
FA(K) = DwK* + —eBYKpKe . (3.21)

202

One can see that the terms proportional to ua, us, p4, and ps contain new contributions
from the new commutation relations (3.12) of the [enhanced AdS-£] @u(1)* algebra. In
particular, a cosmological constant term is added to the uo term together with the gauge
field K4. Interestingly, the flat limit ¢ — oo reproduces the relativistic [enhanced Maxwell]
@ u (1)% gravity action. As we shall see, the presence of the U(1) gauge fields will be essential
to establish a well-defined NR limit allowing us to accommodate a cosmological constant
into the Maxwellian version of the extended Newtonian gravity.

4 Maxwellian extended Newtonian gravity

In this section, we apply a NR limit to the previously introduced [enhanced Maxwell]
du (1)3 gravity theory in three spacetime dimensions. We show that the new NR algebra
corresponds to a Maxwellian version of the extended Newtonian algebra introduced in [36]
and subsequently studied in [37, 38]. The three-dimensional NR CS action based on this
new symmetry is also discussed.

4.1 Maxwellian extended Newtonian algebra and non-relativistic limit

A NR version of the [enhanced Maxwell] @ u(1)3 algebra can be obtained through an TW
contraction. To this end, we consider a dimensionless parameter £ and we express the
relativistic enhanced Maxwell generators as a linear combination of the NR ones (denoted
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with a tilde) as

=3 +5 €8, 1= 56, -$ B,
Py= 0+ €N -, p=Sh -1,
Zo= 5 +&T W, z.-52.- 7,
So = —£23, Sa = —£Ga — & Ba,
Ty =M, T, = —£P, — €8T,
Vo =—¢T, Vi=—8Za— &V, (4.1)

On the other hand, one can express the u (1) generators Y7, Y5 and Y3 in terms of the NR
generators as

|,
po | I
o | N\

V=2 -5+¢'B, Yo == —&2M + 7, Vs=2 T4+ W . (42)

After considering the contraction of the [enhanced Maxwell] @ u(1)? algebra (3.1) and
the limit £ — oo, we find that the generators of the novel NR algebra satisfy the MEB
algebra [20],

[7.G] = e (G Ga] = —eas. (11,6, = b

1.2 = e, (GuBa] = —eatt,  [A.B) = cwh.

(4.2 = e, (G 24] = —eaT 2.Ga] = i,

o By = —eaT, (4.3)
along with

1B = cwBy.  [GuBi = —ewB.  [H.B) = e

R A S T S | & A

D0 =l [GuW =W, [ZB)] = euli,

5.G) =ewbh,  [PuB)=—ea¥.  [W.6.] = e,

5.8 =, [PuB) =W, [WLA] = el

[5, Za| = €aVh, [Zavéb- = —eaW, [T, G| = €arVh, (4.4)
where a = 1,2, €4 = €0qp, €% = €99,

The new NR algebra corresponds to a Maxwellian version of the so-called extended
Newtonian algebra [36] which we have denoted as MENt algebra. In particular, the MENt

algebra contains the MEB generators {j, Go, S, H,P,,M,Z.,Z,, T} together with a set of
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additional generators {Ta, Ba, f/a, B , Y, W} As we shall see, the three central charges B ,

Y, and W, appearing in the MENt algebra as a result of the NR limit, allows to have a
non-degenerate bilinear form, thus assuring the proper construction of a three-dimensional
NR CS gravity action.

4.2 Non-relativistic MENt Chern-Simons gravity action

The construction of a three-dimensional CS action based on this new NR symmetry requires
the non-vanishing components of the invariant tensor for the MEN{t algebra together with
the gauge connection one-form A = A, dx".

The MENt algebra can be equipped with the most general extended Newtonian non-
vanishing components of the invariant tensor [37],

(35) = (38) =,

(PuBy) = (GaTy) = Brdw, (4.5)
along with
(i) = (15) = (258) - (17) - (30 - -
(PTy) = (GaVh) = (ZuBy) = Babus, (4.6)
where the relativistic parameters s were rescaled as
po = =—0o&",  pp=pz=-Et, pa=ps =gt (4.7)

In particular, fy is related to an exotic sector of the extended Newtonian gravity [37].
Furthermore, the MENt algebra also admits the MEB non-vanishing components of the
invariant tensor given by [20] (see also [23])

(78) = —a0,

(GuGiy) = agdar,

(73 = (15) ==
(GaPy) = a1,

(JT) = (H) = —a

< a ~b> = <]5a15b> = 20ap, (4.8)

which can be obtained by setting ug = ue = pg = 0 and considering the following rescaling
of the relativistic parameters pu’s:

p = —apé?, ps = —an&?, pis = —a2g? . (4.9)
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Nevertheless, at the level of the MENt algebra, the invariant tensor (4.8) alone results to
be degenerate. On the other hand, putting (4.5), (4.6), and (4.8) all together one would
obtain a non-degenerate bilinear form. However, we observe that (4.5), (4.6), and (4.8)
pertain to two different NR limits. Thus, in the sequel we will construct a CS action
based on the MENt algebra by exploiting the components given by (4.5) and (4.6) which
describe non-degenerate invariant tensor for the MENt algebra. As we shall see in section
6, the complete set of invariant tensor given by (4.5), (4.6), and (4.8) can alternatively be
obtained through the S-expansion procedure allowing to write the most general CS action
based on the MEN{t algebra.
The gauge connection one-form A for the MENt algebra reads

A=71H+e"P,+wJ +w'Gy+ kZ + k*Zy + mM + sS + T + t*T, + b°B,
+0 "V, +bB + yY + wW . (4.10)

The curvature two-form F = dA + § [A, A] is given by

F =R(r)H+ R b) B, + R(w)J + R (wb> G.+R(k)Z + R (kb) Za

1+ R
+R(m) M + /
+R(b)B+R

(e
R(s)S+R(OT + R () T+ B (") B+ B (v") Vs
Y)Y + R (=)W, (4.11)
where the explicit definition of every curvature can be found in appendix A.

A CS gravity action based on the MENt algebra can be constructed by combining (4.5)
and (4.6) with the gauge connection 1-form (4.10), and it reads, up to boundary terms, as
follows:

Ivene = ﬁ / { Bo [baR“ (wb> + wa R <bb) ~ 2R (w) — sds} (4.12)
+ 25 [eaR“ (bb) +to R (wb> —yR(w) —mR(s) — TR (b)}
+ B [eaR“ <tb) 4 t,R (eb) + ky R (bb) + ba R (kb) + v R (wb>

+ weR® (vb) —2bR (k) — 2wR (w) — 2yR (7) — 2tds — mdm] } :

The CS gravity action (4.12) is invariant under the MENt algebra given by (4.3) and (4.4)
by construction, and it is split into three different independent terms. In particular, the
term proportional to 8y corresponds to an exotic sector of the extended Newtonian gravity
term introduced in [37] which can be obtained as a NR limit of an U(1)-extension of the
exotic Einstein term [85]. The term proportional to f; is the standard extended Newtonian
gravity action presented in [36]. On the other hand, the piece proportional to 2 contains
some terms appearing in the CS action invariant under the exotic Newtonian algebra!
introduced in [37], together with some completely new terms.

! Also known as enhanced Bargmann-Newton-Hooke algebra [38].
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It is interesting to note that an enhancement of the Maxwell algebra allows to construct
a Maxwellian version of the extended Newtonian gravity containing known NR gravity
theories as sub-cases. Although the field content is bigger than the extended Newtonian
one, the present NR theory does not contain a cosmological constant term. As we shall
see in the next section, in order to accommodate a cosmological constant to (4.12), it is
necessary to consider a different NR algebra which can be obtained as an IW contraction of
the relativistic [enhanced AdS-L£] @u(1)? algebra. The NR limit and a possible vanishing
cosmological constant limit are not the only ways to obtain the present MENt gravity
theory. Indeed, as we shall show, the MENt algebra and its most general invariant tensor
can alternatively be found using the semigroup expansion method.

The non-degeneracy of the invariant tensor has allowed to achieve a well-defined NR
CS gravity action whose equations of motion are given by the vanishing of all the curva-
tures (4.11).

The CS action (4.12) can equivalently be obtained as NR limit of (3.11). To see this,
one shall express the relativistic enhanced Maxwell 1-form fields as a linear combination of
the NR ones as

WO:w+21§23—224b, W“zéw“—;b“,
EO:T—|—21€2m—224y, E“—éea—;st“,
Ko—k+222t—224 , K“_ék“—;gv“,

Zoz—és, E“_—;g a—223a7
LO:—;Qm, a _ 21§a_223a,

= —51215, e = —21€ka— 2237;“. (4.13)

and the gauge fields dual to the u(1) generators Y7, Y3, and Y3 (namely S, M, and T,
respectively) as

1 1 1 1

TS e e 2

L1

2¢4
Then, substituting back (4.13) and (4.14), together with (4.7), in (3.11), omitting boundary
terms and taking the limit £ — oo, one precisely recovers (4.12).

w. (4.14)

Finally, one can see that each independent term of the action (4.12) is invariant under
the gauge transformation laws A = d\ + [4, A\], being

A= AH + AP, + QJ +Q%Go + kZ + k*Zy + XM + ¢S + 7T + 7T, + p°B,
+1V, + pB+~Y + oW (4.15)

the gauge parameter. The gauge transformations of the theory can be found in appendix B.
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5 Enlarged extended Newtonian gravity and flat limit

In this section, we apply a NR limit to the [enhanced AdS-£] &u(1)* algebra previously
introduced. We show that the new NR algebra can be seen as an enlargement of the
extended Newtonian algebra [36] (which we have denoted as EEN algebra) and reproduces
the MENt algebra (4.3)—(4.4) in the vanishing cosmological constant limit ¢ — oo.

5.1 Enlarged extended Newtonian algebra and non-relativistic limit

In the previous section we have constructed a Maxwellian version of the extended Newto-
nian algebra by applying an Inénii-Wigner contraction to the [enhanced Maxwell] ©u (1)3
algebra (3.1). In order to obtain a NR version of the [enhanced AdS-£] @u (1) alge-
bra (where the latter is given by (3.1) and (3.12)), we consider the same redefinitions of
the relativistic generators as in (4.1)—(4.2) which provides us with a well-defined £ — oo
limit. The new NR algebra is then generated by the set of generators of the EEB alge-
bra {j, éa,g,ﬁ[,pa,M, Z, Za,T}, a set of additional generators {TQ,BG,VQ}, and three
central charges given by B, Y, W. Such generators satisfy the commutation relations (4.3)-
(4.4) along with

)= et [P =it [52] = e

2.2] = pewt, |7 B) = geal (5.1)
and

0] = s [P = feals 2] = et

7.5 = eaTs, 2] = gealW,  [T2] = geati.  62)

Note that the commutation relations (4.3) and (5.1) define a subalgebra corresponding to
the EEB algebra introduced in [23]. The novel non-relativistic algebra obtained here can be
seen as an enlargement of the extended Newtonian algebra, and we will denote it as EEN
algebra. An interesting feature of such NR algebra is given by the explicit presence of a scale
£ which allows us to accommodate a cosmological constant into the Maxwellian version of
the extended Newtonian gravity (4.3)—(4.4). Naturally, the vanishing cosmological constant
limit £ — oo reproduces the MENt algebra.

Let us note that the EEN algebra can be rewritten as three copies of the enhanced
Nappi-Witten algebra defined in [38]. Indeed, the EEN algebra can be written as

[J5,GE] = Gy, (GE, G5 ] = —eawnS™T, [S%,GE] = e By,
[J*,BE] = e Bf, (GE,Bf] = —ewB*,

[7,Ga) = e [Ga o] = —cas$, [8,Ga] = cwBy.,

[j, Ba} = ewBy, [@G,Bb} = —ewB, (5.3)
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by considering the following redefinition of the generators:

J=J+J"+J", H=1/¢(J"T—-J7), Z=1/(JT+J7),
Go=G.+GH+G;, P,=1/0 (GF - Gy), Z, =1/ (GF+Gy)
S=85+85T+S", M=1/t (ST -57), T=1/*(ST+57),
B,=B,+ B} +B;, T,=1/¢t (Bf - B;) , V.=1/* (Bf +B;) ,
B=B+B"+B", Y =1/t (B"-B") W =1/ (BT +B")

On the other hand, a different redefinition of the generators of the EEN algebra can be
considered. In particular, the redefinition

J=J+J, H=%", Z=1/*7,
Go=Ga+ Ga, Py ="Pa, Zo = 1/0*Ga,
S=8+S§5, M=M, T=1/*8,
B, =B, + B, To="Ta, Vo =1/ B,
B=B+B, Y=Y, W =1/°B,

allows to rewrite the EEN algebra (4.3), (4.4), (5.1), and (5.2) as the direct sum of the
exotic Newtonian algebra [37],

[T, Gal = €y, Ga, O] = —€arS (H,Ga] = €aPy,
[\77 Pa] = 6(1be7 [gzu b] _EabM [H7 Ba] = Eab,ﬁn
[T, Ba] = €aBy, (Ga, By] = —€anBB, (T, Ta] = € Ts
[S, ga] = 6abBln [gm 7;)] = faby [87 Pa] = Eabln)y
1
[M ga] Eab%) [P(u Bb] = Eaby7 [Hv Pa] = ﬁeabgln
1 1
[H7 7:L] 62 ﬁabBb 9 [Paa Pb] = _ﬁfab's }
1 1
M, P,] = 7 — By, [P, To] = _[266056’ (5.4)
and the enhanced Nappi-Witten algebra,
|:ja éa:| = Eabébv [Ga7 Gb] = _Eabg7 [S’a éa:| = EabBb7
[J.5.) = cwbh. (G Bs] = —eas. (55)

The exotic Newtonian algebra has been recently introduced in [37] and subsequently studied
in [38] and allows us to accommodate a cosmological constant into the extended Newtonian
gravity theory. One can see that, as we have shown previously, the same behavior appears
at the relativistic level. Indeed the enhanced AdS-Lorentz algebra can also be rewritten
as three copies of the Poincaré algebra and as the direct sum of the coadjoint AdS and
Poincaré algebra after an appropriate redefinition of the generators. In particular, the
enhanced Nappi-Witten algebra (5.5) appears as an IW contraction of the Poincaré & u (1)
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algebra, while the exotic Newtonian algebra can be obtained as a NR limit of the coadjoint
AdS algebra [38].

In what follows we present the NR CS action based on the EEN alge-
bra (4.3), (4.4), (5.1), and (5.2). Such basis is preferred in order to make clear the flat
limit leading to the MENt gravity. Furthermore, as we shall see, such basis present an
alternative way to include a cosmological constant into a three-dimensional NR CS gravity
action diverse to the one discussed in [37].

5.2 Non-relativistic EEN Chern-Simons gravity action and flat limit

A well-defined CS action requires invariant non-degenerate bilinear form. Interestingly, the
presence of the central charges B, Y, and W assures to have a non-degenerate invariant
tensor for the EEN algebra. In particular, the non-vanishing components of the invariant
tensor for the EEN algebra are given by the MENt ones (4.5)—-(4.6) along with

(17) = (27} (1) =4

PVy) = (Z.Th) = 521 Oab »
14
() - 49) -2
<Za ~b> = %%b, (5.6)

where the relativistic parameters u’s have been rescaled as

po = p1 = —Bo&?, p2 = pz = —pi&*, fa = p5 = — P&t (5.7)

On the other hand, one can show that the EEN algebra can also admit the MEB invariant
tensor (4.8) along with

(17) - (7).

<15 b>:Z;5aba

(o) -2

<Z > Ogdab, (5.8)

when we set pug = pz = pg = 0 and consider the following rescaling of the relativistic
parameters p’s:

p = —apé?, 3 = —a1€?, s = —ank?. (5.9)

One can see that the components of the invariant tensor proportional to the a’s are the
respective components of the invariant tensor of the EEB algebra introduced in [23]. On
the other hand, those related to the §’s shall reproduce the enlarged extended Newtonian
gravity action. As it was discussed in the MENt case, the NR limit does not allow to
have both types of invariant tensor. In this section we shall focus on those proportional to
the §’s constants allowing to construct a novel NR CS action. In section 6, we shall see
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that the complete set containing both the a’s and the §’s constants appearing in the full
invariant tensor can be properly obtained considering the S-expansion method.

Although the gauge connection one-form A is the same than the MENt one, the cor-
responding curvature two-form F' is different due to the presence of new commutation
relations involving the ¢ parameter. Indeed, the curvature two-form F' reads

+R(m)M+R(s)S+R(t)T + R (t”) T, + R (bb> B, + R° (vb> Vv,
+R(MbL)B+R(y)Y + R(m) W , (5.10)
where the explicit expression of every curvature two-form is given in appendix A.
A CS gravity action based on the EEN algebra can be constructed by combining (4.5)—

(4.6) and (5.6) with the gauge connection 1-form (4.10), and it reads, up to boundary terms,
as follows:

Inpy = g / { Bo [baRa <wb>+waR“ (bb)—sz(w)—sds}

+51 e <bb) +b, R <eb) +t,R” (wb) +wa R (tb> —2yR(w)—2bR(T)—2mds
<t R (kb> +4 (eb> Fea R <vb) t kRO <tb> —2yR(k)—2wR(7) —det)]
18y | eaR <tb) Yt R ( ) + ko R (bb) bR (k:b) Fua R ( )
+w, R < ) 2bR(k)—2wR(w)—2yR(T)—2tds—mdm

(vaR“ (k:b) ke R“( )—2wR(k)—tdt>] } (5.11)

The CS action (5.11) is invariant under the EEN algebra by construction. One can notice,
looking also at (4.12), that there are three independent sectors proportional to the different
coupling constants By, B1, and B2. The term proportional to [y is exactly the same as
n (4.12). On the other hand, the terms proportional to 51 and B2 involve, besides the
MENt contributions, also new pieces. In the flat limit £ — oo of (5.11) we recover the
MEN¢t gravity action (4.12). Observe that our construction gives an alternative way to
include a cosmological constant into the three-dimensional NR CS gravity action (4.12).

The non-degeneracy of the invariant tensor has allowed to achieve a well-defined CS
gravity action whose equations of motion are given by the vanishing of all the curva-
tures (A.1).

The CS action (5.11) we have just constructed can equivalently be obtained as NR limit
of the CS action (3.20) based on the [enhanced AdS-£] @ u(1)? algebra. Indeed, expressing
the relativistic enhanced AdS-£ 1-form fields in (3.20) as a linear combination of the NR
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ones as in (4.13) and the gauge fields S, M, and T as in (4.14), together with (5.7), and
taking the limit & — oo, one precisely recovers the NR CS action (5.11) for the EEN algebra.
Concluding, we can see that each independent term of the action (5.11) is invariant un-
der the gauge transformation laws 6 A = dA+[A, A\] with gauge parameter A given by (4.15).
Specifically, the explicit gauge transformations of the theory are defined in appendix B.

6 Non-relativistic algebras and semigroup expansion method

In this section, we present an alternative procedure to recover the new NR algebras pre-
viously introduced. In particular, we show that the MENt and EEN algebras can be
alternatively obtained by considering the S-expansion procedure. The Lie algebra expan-
sion method has first been introduced in [90] in the context of AdS superstring and then
developed by considering the Maurer-Cartan equations in [91-93]. The expansion based on
semigroups has then been introduced in [76] and subsequently developed in [94-99]. The
S-expansion consists in defining a new expanded Lie algebra & = S x g, by combining the
elements of the structure constants of a Lie algebra g with the semigroup S. Such pro-
cedure provides us not only with the commutation relations, but also with the complete
set of non-vanishing components of the invariant tensor for the expanded algebra. At the
NR level, the Lie algebra expansion method has been used by diverse authors leading to
interesting results [100-105].

Here we shall consider the S-expansion of the enhanced Nappi-Witen algebra (5.5)
formerly discussed. The motivation to consider the enhanced Nappi-Witten algebra as the
original algebra is twofold. First, as was shown in [23, 86], the S-expansion of the Nappi-
Witten algebra allows us to recover diverse NR algebras. Second, since the iso(2,1) & u(1)
algebra can be used to obtain the respective relativistic counterparts, it seems natural to
expect the same behavior for the NR version of the iso(2,1) & u(1) algebra, which is given
by the enhanced Nappi-Witten algebra.

Let us first recall the enhanced Nappi-Witten algebra g, whose generators satisfy

[J) Ga] = Eabi7 [Gaa Gb] = —GabS, [Sv Ga] = EabBb,
[J, Ba] = GabBb, [Ga, Bb] = _eabB . (61)

This algebra appears as a particular IW contraction of the iso(2,1) @ u(1) algebra. In-
deed, as was mentioned in [38], one can write the relativistic Poincaré and u (1) generators
{Ja, Pa,Y1} in terms of the enhanced Nappi-Witten ones as

_J S &
J0—2 fBa Ja—2Ga 2Baa
Py=-¢S-¢'B, P,=—£G,—&B,,
= % +¢'B. (6.2)

Then, the aforesaid algebra (6.1) is revealed after applying the limit £ — oco. Naturally,
the Nappi-Witten algebra [106, 107] spanned by {J, G4, S} appears as a subalgebra.
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Let us now consider Sg) = { )Xo, A\1, A2, A3} as the relevant semigroup whose elements
satisfy the following multiplication law,

)\a+,3 if a+8<3,
Aadg = 6.3
s {Ag if a+pB>3, (6:3)

where A3 = 04 is the zero element of the semigroup such that O;A, = 0s. Then,
after considering a 0Os-reduction of the expanded algebra S](EZ) x g (g being the en-
hanced Nappi-Witten algebra), we find an expanded algebra spanned by the genera-
tors {J, Ga, 8, H, Py, M, 2, 2, T} and { T, By, Vay B, ¥, W } which are related to the en-
hanced Nappi-Witten ones through the semigroup elements as

J=XoJ . H=\J, Z = X\oJ,
Ga = MG, P, = MG,, Z0 = MG,
S = XS, M =)\S, T = XS,
By = XoBa, Tu = MBa, Vo = Ao B,
B = )\B, Y =\ B, W = X\B. (6.4)

Using the multiplication law of the semigroup (6.3) and the enhanced Nappi-Witten com-
mutators (6.1), one finds that the expanded generators satisfy the MENt algebra (4.3)
and (4.4). Additionally, one can express the non-vanishing components of the invariant
tensor of the S-expanded algebra in terms of the original ones. Interestingly, consider-
ing the Theorem VII. of [76], one can show that the non-vanishing components of the
invariant tensor for the MENt algebra are given not only by (4.5)—(4.6) but also by the
MEB ones (4.8). This can be seen directly from the invariant tensor of the enhanced
Nappi-Witten algebra whose components are given by

(JS) = —m,
(GaG) = 16ab,
(55) = (SB) = =2,
(GaBp) = 720ab - (6.5)
The expanded invariant tensor coming from (JS) and (G,Gp) generate the non-vanishing

components of the invariant tensor for the MEB algebra proportional to a’s given by (4.8).
In particular, the a’s constants can be expressed in terms of ~; as

ap = A1, a1 =\, ay = A1 . (6.6)

The invariant tensor for the MENt algebra (4.5)—(4.6), proportional to the 8’s, are obtained
from (SS), (SB), and (G,By) with

Bo = Xo2 B1 = A2, B2 = Aaya . (6.7)

As we have previously discussed, both classes of invariant tensor can be obtained separately
by considering different NR limits. Although the complete set of invariant tensor (4.5)—
(4.6) along with (4.8) are non-degenerate for the MENt algebra, they cannot be obtained

- 21 —



simultaneously considering a unique NR limit. Here, the semigroup expansion procedure
provides us with both components of the invariant tensor. In particular, the MEB ones
are related to the v, appearing in the invariant tensor of the enhanced Nappi-Witten
algebra (6.5), while the MENt ones proportional to the /3’s have origin in 75. Such feature is
an additional advantage of considering the semigroup expansion method in the NR context.
In particular, as the MENt algebra (4.3)—(4.4), the MENt CS gravity action constructed
using the S-expansion procedure contains also the MEB gravity action [20] as a sub-case.

It is interesting to note that the semigroup chosen is the same used to obtain the
MEB algebra from the Nappi-Witten algebra [23, 86]. Furthermore, as we have shown in
section 3, the same semigroup is used to obtain its respective relativistic algebra from the
i50(2,1) @ u (1) algebra. The fact that the same semigroup can be used in two diverse
regimes has already appeared in other contexts. Indeed, the same semigroup can be used to
relate diverse finite- and infinite-dimensional Lie (super)algebras [108-110] or higher-spin
Lie algebras [111].

On the other hand, considering a different semigroup allows us to find a different NR
algebra. One can show that the EEN algebra can alternatively be obtained by applying a
S/(\Z/[)—expansion of the enhanced Nappi-Witten algebra. Indeed, considering the multiplica-
tion law of the S/(\%t) = {0, A1, A2} semigroup given by

)\a+6 lf a+/8§2,
Aadg = 6.8
p {)\a+5_2 if a+8>2, (6:8)

one obtains an S-expanded algebra whose generators are related to the enhanced Nappi-
Witten ones as in (6.4) and satisfy the EEN algebra (4.3), (4.4), (5.1), and (5.2). Fur-
thermore, considering the Theorem VII. of [76], one can show that the non-vanishing
components of the invariant tensor for the EEN algebra are given not only by (5.6) but
also by the EEB ones (5.8). As discussed in previous sections, both of the invariant tensors
cannot be obtained from a unique NR limit. Here, the S-expansion gives us the complete
set of invariant tensors considering only one semigroup, and allowing to write an EEN CS
gravity action containing the EEB gravity [23] as a sub-case. In particular, the arbitrary
constants a’s and (’s are related to the original ones as in (6.6) and (6.7), respectively.

As an ending remark, let us mention that one could obtain new NR algebras by ex-
panding the enhanced Nappi-Witten algebra using the same semigroup used to obtain their
respective relativistic algebras from the iso (2,1) & u (1) algebra. It would be interesting
to extend the present results to supersymmetric extensions of NR gravity theories.

7 Discussion

In this work we have presented a Maxwellian version of the three-dimensional extended
Newtonian gravity theory introduced in [36]. We have shown that the MENt algebra ap-
pears as an IW contraction of the [enhanced Maxwell] @ u(1) @ u(1) @ u(1) algebra. The
additional U(1) gauge fields are necessary to have a finite and non-degenerate invariant ten-
sor allowing the proper construction of a NR CS action. Furthermore, we have also applied
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the NR limit at the level of the CS action. We have then extended our results to accommo-
date a cosmological constant in the MENt gravity theory. To this end we have presented a
new NR symmetry which can be seen as an enlargement of the extended Newtonian algebra
and we have denoted it as EEN algebra. Such novel NR symmetry can be rewritten either
as three copies of the enhanced Nappi-Witten algebra defined in [38] or as the direct sum
of the exotic Newtonian algebra introduced in [37] with the enhanced Nappi-Witten one.

We have also explored an alternative procedure to recover our results by considering
the semigroup expansion of the enhanced Nappi-Witten symmetry. In particular, we have
shown that the same semigroup used to relate relativistic algebras can be adopted to
reproduce their NR counterparts. In addition, we have pointed out that the vanishing
cosmological constant limit appearing at the relativistic level is inherited in the NR version.

The S-expansion method has the advantage to provide not only the new Newtonian
algebras but also to reproduce the most general invariant tensor for the respective NR
algebras. Interestingly, the MENt and EEN gravity theories constructed with expanded
invariant tensor contain known extended Bargmann gravity actions as sub-cases. One can
notice that the scenario graphically displayed in figure 1 also holds for the particular sub-
cases. In particular, as was noticed in [23], the MEB and the EEB algebras can alternatively
be obtained as S-expansions of the Nappi-Witten algebra.

Let us stress that our novel CS models can be seen as generalizations of the extended
Newtonian gravity [35], and thus they differ from the standard Newtonian gravity for which
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no action is known. Although we did not approach in the present work the matter coupling,
we could argue that as in the extended Bargmann gravity and extended Newtonian gravity
cases, the equations of motion derived form our models coupled with matter would allow
a wider class of background geometries than the ones presented in standard Newtonian
gravity. Besides, also in our case matter would source all components of the Riemann
tensor. Consequently, the MENt and EEN gravities would admit backgrounds with non-
trivial curvature whenever matter is present similarly as it happens in the case of the
extended Bargmann gravity and extended Newtonian gravity. Then, as a consequence of
our Maxwellian generalization, we would obtain a modified version of the Poisson equation
as equation of motion.

Our results could be seen as a starting point for diverse studies. It would be interesting
to explore the extensions of our analysis to supergravity. Although the large amount of
NR gravity models, the supersymmetric extension of NR gravity theories has only been
approached recently [34, 36, 87, 112-114] due to the difficulty to define a proper NR limit.
One way to avoid such problem could be through the S-expansion method considered
here. Indeed, one could conjecture that figure 1 can be generalized to the presence of
supersymmetry. A supersymmetric action for the Maxwellian and enlarged version of the
extended Newtonian superalgebra could serve to approach the construction of NR field
theories on curved background by means of localization [115-117]. The supersymmetric
extension of the Maxwellian extended Newtonian gravity and its exotic version shall be
approached in a future work.

At the relativistic level, the Maxwell symmetries describe a relativistic particle in a con-
stant electromagnetic field background [39, 40]. Here, we have shown that an enhancement
of the Maxwell algebra allows us to establish a well-defined IW contraction producing the
Maxwellian version of the extended Newtonian algebra. It would be interesting to analyze
the physical interpretation by studying the consequences of the additional gauge fields and
central charges of the MENt CS gravity theory and by analyzing the geodesic equation for
a massive particle from a gauge theory point of view. On the other hand, it would be com-
pelling to explore the coupling of well-known relativistic matter systems to the Newtonian
gravity theories presented here. For example, one could consider a relativistic point particle.

It would be worth it to study the generalization of the results presented here to the
ultra-relativistic regime. In particular, a Maxwellian version of the three-dimensional Car-
roll gravity theory [118, 119] could be constructed analogously to the MEB one. Then, a
cosmological constant could be accommodated in a very similar way to the one considered
in the AdS-Caroll CS gravity [120-122]. Another natural extension of our results is the
generalization of the obtained NR symmetries to four and higher spacetime dimensions.

Another point that deserves further investigation is the physical implications of the
additional gauge fields appearing in the enhanced Maxwell and AdS-L£ gravity theories
introduced here. As it was discussed in [79], the additional gauge generator Z, appearing
in the Maxwell algebra influences not only the asymptotic sector but also its vacuum energy
and vacuum angular momentum. On the other hand, the boundary dynamics of the AdS-L£
CS gravity is described by three copies of the Virasoro algebra [84]. One may then ask how
the conserved charges and solutions are modified by the presence of the additional set of
relativistic generators {S4,Ta,Va}.

— 24 —



Acknowledgments

This work was funded by the National Agency for Research and Development ANID (ex-
CONICYT) — PAI grant No. 77190078 (P.C.) and the FONDECYT Project N°3170438
(E.R.). P.C. would like to thank to the Direccién de Investigaciéon and Vice-rectoria de
Investigacién of the Universidad Catdlica de la Santisima Concepcién, Chile, for their
constant support. L.R. would like to thank the Department of Applied Science and Tech-
nology of the Polytechnic University of Turin, and in particular Professors F. Dolcini and
A. Gamba, for financial support.

A Curvature two-forms

The curvature two-forms for the EEN algebra are given by

R(w) = dw,
R® (wb) = dw® + *“wwe ,
R(r) =dr,
Da 1 ac
R 7 6—26 ke,

d

eb) = de® + €*we, + €*°Tw, + i6“7’/66 +
d
dk® + €*“wk. + e*“1e. + €*kw, + iﬁackkc ,

62

1
R(s) =ds+ ieacwawc,

A 1 1
R(t) = dt 4+ €*“w.ke + 56“6[1@0 + Tegeackakm
> 1 1
R® (tb) = dt® + e*wt, + €*“7b, + €*“se. + €*“mw,. + E—zeacﬂic + ﬁeacktc
+ 1 acmk . + i acy
e mke + petiiec,

R (bb) = db® + €*“wb, + €*“sw, ,
R® (vb) = dv® + €*“wu, + "1t + €*°kb. + €*“sk. + €*“me, + *“tw,

1 1
+ﬁ€ackvc =+ ﬁﬁactkc N
R (b) = db+ €*“wgbe. ,
] 1 1
R(y) = dy + €*watc + €*bgec + ﬁeaceavc + g—zeackatc,
) 1
R (w) = dw + €*“wav. + €*“tgec + €*kabe + ﬁeackavc . (A.1)
The vanishing cosmological constant limit £ — oo naturally reproduces the curvature two-
forms of the MENt algebra. In particular, in the flat limit, the curvature two-forms with
an hat reduce to the MENt ones (4.11).
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B Gauge transformations

The gauge transformations for the EEN gauge fields are given by

dw = dQ2,
ow® = dQ* + e*“w. — ¥ Qug,
0T = dA,
1
0e® = dA? +e€*“wA,. — Qe+ €17, — e Aw, + 6—26“7%6 - ﬁe“CAk
1 1
E €*kA.— 7 —%ke,,
ok = dk,
1 1
O0k® = dr® 4+ €*“wke — €*Qke +€*°TA; — €*“ANe. + €kQ — € kw. + ﬁlmc — E—anc ,
1
om = dx+¢e*“e,Qe — e*“Aqwe+ ﬁeaceanc 6—26“6/\ ke,
08 = ds+€*w, e,
0t = drm+€*wake— € Quke+€*egAe + — EQ *koke,
0t = dr+ e wme — € Q.+ €*“Tpe — € Ab. + €% sAc — €*“ce. + €7“mQ. — €*“xwe
1 1 1 1 1 1
EQ —e*Ty,— ﬁe“CAvc 72 e*“km.— 7 okt E—Qeacm/ﬂc — E—Qeacxkc + E—QeaCtA oz 5T,

0b* = dp® 4 €*wp. — €* Qb+ €*° Q. — €*“we
v = dv+e*wr, — ¥ Que+ €T — €At + € kpe. — € kb + €% sk — €%k,

1 1
+e*mA. —e*“xec+ €t — e*rw. + 7 kv, — 7 — %Ko+ 72 €“the — Ee ‘rke,
0b = dp+e*wep. — €*Qybe,
1 1
0y = dy+e€*wame — € Qute + €% b A — €% paec+ E—ze“ceauc — E—QeacAavc
1 1
—i—g—geackawc — g—zeacnatc ,
0w = do+e*“wale — €*Qque+ €%t A — €¥“maec + €k pe — €% Ko be
1 1
gt it )

Let us note that, in the limit £ — oo, (B.1) reproduces the gauge transformations for the
MENt gauge fields (4.10).
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