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Viña del Mar, Chile

E-mail: patrick.concha@ucsc.cl, lucrezia.ravera@polito.it,

evelyn.rodriguez@edu.uai.cl, gustavo.rubio@ucsc.cl

Abstract: In the present work we find novel Newtonian gravity models in three space-

time dimensions. We first present a Maxwellian version of the extended Newtonian gravity,

which is obtained as the non-relativistic limit of a particular U(1)-enlargement of an en-

hanced Maxwell Chern-Simons gravity. We show that the extended Newtonian gravity

appears as a particular sub-case. Then, the introduction of a cosmological constant to the

Maxwellian extended Newtonian theory is also explored. To this purpose, we consider the

non-relativistic limit of an enlarged symmetry. An alternative method to obtain our results

is presented by applying the semigroup expansion method to the enhanced Nappi-Witten al-

gebra. The advantages of considering the Lie algebra expansion procedure is also discussed.

Keywords: Chern-Simons Theories, Gauge Symmetry, Classical Theories of Gravity,

Space-Time Symmetries

ArXiv ePrint: 2006.13128

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP10(2020)181

mailto:patrick.concha@ucsc.cl
mailto:lucrezia.ravera@polito.it
mailto:evelyn.rodriguez@edu.uai.cl
mailto:gustavo.rubio@ucsc.cl
https://arxiv.org/abs/2006.13128
https://doi.org/10.1007/JHEP10(2020)181


J
H
E
P
1
0
(
2
0
2
0
)
1
8
1

Contents

1 Introduction 1

2 Relativistic Maxwell and AdS-Lorentz gravity theories 3

3 Enhanced Maxwell and AdS-Lorentz algebras and U(1) enlargements 6

3.1 Enhanced Maxwell ⊕u(1)⊕ u(1)⊕ u(1) algebra 6

3.2 Enhanced AdS-Lorentz ⊕u(1)⊕ u(1)⊕ u(1) algebra 9

4 Maxwellian extended Newtonian gravity 11

4.1 Maxwellian extended Newtonian algebra and non-relativistic limit 11

4.2 Non-relativistic MENt Chern-Simons gravity action 13

5 Enlarged extended Newtonian gravity and flat limit 16

5.1 Enlarged extended Newtonian algebra and non-relativistic limit 16

5.2 Non-relativistic EEN Chern-Simons gravity action and flat limit 18

6 Non-relativistic algebras and semigroup expansion method 20

7 Discussion 22

A Curvature two-forms 25

B Gauge transformations 26

1 Introduction

Non-relativistic (NR) geometry has been of particular interest in condensed matter sys-

tems [1–8] and NR effective field theories [9–12]. In such geometric framework, there has

been a growing interest in studying NR gravity theories [13–27] which could be relevant in

approaching realistic theories.

It is well-known that standard Newtonian gravity, describing the physical gravitational

force, can be geometrized using what is known as Newton-Cartan (NC) geometry. Never-

theless, an interesting open issue has been to construct an action principle for Newtonian

gravity which is based on the Bargmann algebra [28–34]. The aforementioned action has

recently been presented in [35]. Such construction has required, however, an underlying

symmetry algebra which differs from the usual Bargmann algebra as it includes three ad-

ditional generators. Subsequently, a three-dimensional Chern-Simons (CS) formulation

based on this particular extension of the Bargmann algebra has been introduced in [36].

For this formulation it was necessary to introduce a central extension in order to have
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a non-degenerate invariant bilinear form. Such NR gauge invariant theory has been de-

noted as extended Newtonian gravity and has been obtained as a contraction of a bi-metric

model being the sum of the Einstein gravity in the Lorentzian and Euclidean signatures.

As pointed out in [36], although the extended Newtonian gravity is based on the central

extension of the algebra that leads to an action for Newtonian gravity, it is distinct from

the Newtonian gravity action constructed in [35]. In addition, both models differ at the

level of matter coupling. In fact, the matter coupling of the extended Newtonian gravity

theory admits backgrounds with non-trivial curvature whenever matter is present, which

makes it resemble to the case of matter-coupled extended Bargmann gravity [34].

The incorporation of a cosmological constant to the extended Newtonian gravity has

then been presented in [37] by introducing by hand a new NR symmetry called exotic

Newtonian algebra. The respective relativistic counterparts of the extended Newtonian

gravity and its exotic version have been recently studied in [38]. In particular, the authors

of [38] showed that the extended Newtonian gravity model and the exotic one appear as NR

limits of relativistic CS gravity theories based on the co-adjoint Poincaré and co-adjoint

AdS algebra, respectively.

Another extension of the Bargmann algebra is given by the recently introduced

Maxwellian extended Bargmann (MEB) algebra allowing to construct a NR CS gravity

action in presence of a covariantly constant electromagnetic field [20] without cosmologi-

cal constant. Such NR model has been obtained as a NR limit of the [Maxwell]⊕ u(1) ⊕
u(1) ⊕ u(1) CS gravity. As in the extended Bargmann case [34], the U(1) enlargement

of the relativistic counterpart is crucial to define a proper NR limit leading to a finite

NR gravity action based on a non-degenerate bilinear form. The relativistic Maxwell al-

gebra has been introduced to describe a Minkowski background in presence of a constant

electromagnetic field [39–41]. Such symmetry and its generalizations have been useful to

recover standard General Relativity without cosmological constant as a limit of CS and

Born-Infeld (BI) gravity theories [42–46]. Let us also mention that supersymmetric ex-

tensions of the Maxwell algebra found relevant applications in the development and study

of supergravity models (see, for instance, [47–51] and references therein). More recently,

the dual version of the Maxwell symmetry, denoted as Hietarinta-Maxwell [52], allowed

to recover the topological and minimal massive gravity theories. In particular, both of

these massive gravity theories appear as particular cases of a more general massive gravity

arising from a spontaneous breaking of a local symmetry in a CS gravity theory invariant

under the Hietarinta-Maxwell algebra [53].

One may then ask if the MEB gravity can admit a cosmological constant in a similar

way to the one based on the Newton-Hooke symmetry [54–61]. The answer to the question

is affirmative. Indeed, there is the enlarged extended Bargmann gravity (EEB) which

reproduces the MEB one in the vanishing cosmological constant limit ` → ∞ [23]. The

EEB has been obtained as an Inönü-Wigner (IW) contraction [62, 63] of the [AdS-Lorentz]

⊕ u(1) ⊕ u(1) ⊕ u(1) algebra in three spacetime dimensions. The AdS-Lorentz (AdS-

L, for short) algebra has been first introduced in arbitrary spacetime dimensions as a

semi-simple extension of the Poincaré algebra in [64, 65] and has been useful to recover

pure Lovelock theory [66, 67] as a particular limit of CS and BI gravity theories [68–70].
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Moreover, supersymmetric extentions of the AdS-L algebra proved useful in the context of

supergravity (see [71–75] and references therein).

It is natural to address the question whether the extended Newtonian gravity presented

in [36] and its exotic version admit a Maxwell generalization in three spacetime dimensions

which can be formulated as a CS theory. The motivation to consider three-dimensional CS

gravity theories is twofold. First, CS formalism offers us a simple framework to construct

gauge invariant gravity actions. Second, three-dimensional geometry can be seen as an

interesting toy model to approach more difficult theories in higher dimensions. In this

paper we will show that a three-dimensional Maxwellian extended Newtonian (MENt)

gravity theory can be defined by generalizing the results obtained in [38]. In particular,

the MENt algebra appears as a NR limit of a particular enhancement of the Maxwell gravity

enlarged with three u(1) gauge generators. The introduction of a cosmological constant to

the MENt theory is also explored by defining a new NR gravity theory denoted as enlarged

extended Newtonian (EEN) gravity which is the NR version of an enhanced AdS-L algebra

enlarged with three u(1) gauge generators. Interestingly, we show that the MENt and EEN

symmetries contain the MEB and EEB algebras as sub-cases, respectively. Nevertheless,

the respective novel NR CS actions do not contain the MEB and EEB gravity actions

as particular cases. This is mainly due to the problematic to define a unique rescaling

for the relativistic parameters of the invariant tensor. Such difficulty can be overcame by

considering the semigroup expansion (S-expansion) method [76]. In particular, we show

that the new NR symmetries presented here can alternatively been obtained as S-expansion

of the enhanced Nappi-Witten algebra introduced in [38]. Remarkably, the S-expansion

procedure not only allows us to obtain the MENt and EEN algebras but also provides us

with the most general non-degenerate invariant tensor for the respective NR algebras.

The organization of the paper is as follows: in section 2, we briefly review the relativistic

Maxwell and AdS-L gravity theories in three spacetime dimensions. In section 3, we

present new relativistic algebras enlarged with three u(1) generators which can be seen as

enhancements of the Maxwell and AdS-L symmetries. The respective CS actions based

on the enhanced algebras are also constructed. In section 4, we present the Maxwellian

version of the extended Newtonian gravity. In particular, we introduce the MENt algebra

as a NR limit of the [enhanced Maxwell] ⊕ u(1)⊕ u(1)⊕ u(1) algebra. The NR limit of the

relativistic CS action is also considered. The generalization of our results to the presence

of a cosmological constant is explored in section 5. A novel NR symmetry denoted as EEN

algebra is introduced by considering the NR limit of the [enhanced AdS-L] ⊕ u(1)⊕ u(1)⊕
u(1) algebra. We work out that the MENt gravity theory appears as a flat limit ` → ∞
of the EEN one. In section 6, we show that our results can alternatively be obtained by

considering the S-expansion method. Section 7 concludes our work with some discussions

about future developments.

2 Relativistic Maxwell and AdS-Lorentz gravity theories

In this section, we briefly review the three-dimensional relativistic Maxwell CS gravity [77–

81] and its generalization to the so-called AdS-Lorentz gravity [82–84]. The latter allows

to include a cosmological constant into the Maxwell CS gravity action.

– 3 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
1

The Maxwell algebra can be seen as an extension and deformation of the Poincaré

algebra and it is spanned by the set of generators {JA, PA, ZA} which satisfy the following

non-vanishing commutation relations

[JA, JB] = εABCJ
C ,

[JA, PB] = εABCP
C ,

[JA, ZB] = εABCZ
C ,

[PA, PB] = εABCZ
C , (2.1)

where A,B,C = 0, 1, 2 are Lorentz indices which are lowered and raised with the Minkowski

metric ηAB = (−1, 1, 1) and εABC is the three-dimensional Levi Civita tensor which satisfy

ε012 = −ε012 = 1. Here, JA correspond to the spacetime rotations, PA are the spacetime

translations and ZA are the so-called gravitational Maxwell generators.

Such relativistic algebra admits the following non-vanishing components of the invari-

ant tensor of rank 2,

〈JAJB〉 = σ0ηAB ,

〈JAPB〉 = σ1ηAB ,

〈JAZB〉 = σ2ηAB ,

〈PAPB〉 = σ2ηAB , (2.2)

where σ0, σ1, and σ2 are arbitrary constants.

On the other hand, the gauge connection one-form A for the Maxwell algebra reads

A = WAJA + EAPA +KAZA , (2.3)

where WA denotes the spin-connection, EA is the vielbein and KA is the gravitational

Maxwell gauge field. The corresponding curvature two-form is given by

F = RA (W ) JA +RA (E)PA +RA (K)ZA , (2.4)

with

RA (W ) := dWA +
1

2
εABCWBWC ,

RA (E) := dEA + εABCWBEC ,

RA (K) := dKA + εABCWBKC +
1

2
εABCEBEC . (2.5)

Here as well as in the sequel, the index “A” of WA, EA, KA in the parenthesis on the

left-hand side is understood in order to lighten the notation, meaning, in fact, RA (W ) =

RA
(
WB

)
and so on.

Considering the gauge connection one-form (2.3) and the non-vanishing components

of the invariant tensor (2.2) in the three-dimensional CS expression,

I =
k

4π

∫ 〈
AdA+

2

3
A3

〉
, (2.6)
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with k being the CS level of the theory related to the gravitational constant G, we find the

following relativistic CS gravity action for the Maxwell algebra [77–79]:

IMaxwell =
k

4π

∫ [
σ0

(
WAdWA +

1

3
εABCWAWBWC

)
+ 2σ1EAR

A (W )

+σ2
(
TAEA + 2KAR

A (W )
) ]

, (2.7)

where TA = RA (E) denotes the torsion two-form. One can see that the CS action contains

three independent sectors proportional to σ0, σ1, and σ2. The gravitational Lagrangian [85]

appears along the σ0 constant, while the Poincaré Lagrangian given by the Einstein-Hilbert

term is related to the σ1 constant. On the other hand, the term proportional to σ2 contains

a torsional term and the gravitational Maxwell gauge field KA coupled to the gravitational

gauge field. As mentioned in [79], the presence of the additional gauge field KA modifies

not only the asymptotic sector but also the vacuum of the theory.

Interestingly, an enlarged relativistic algebra allows us to include a cosmological con-

stant into the Maxwell CS gravity theory. Such enlarged algebra is the so-called AdS-L
algebra {JA, PA, ZA} whose generators satisfy (2.1) along with

[ZA, ZB] =
1

`2
εABCZ

C ,

[PA, ZB] =
1

`2
εABCP

C , (2.8)

where ` is a length parameter related to the cosmological constant Λ. Naturally, the flat

limit ` → ∞ reproduces the Maxwell algebra. One can see that the following redefinition

of the generators

JA = `2ẐA ,

PA = P̂A ,

ZA = ĴA − `2ẐA , (2.9)

allows to rewrite the algebra given by (2.1) and (2.8) as the direct sum of the so (2, 2) and

so (2, 1) algebras.

The non-vanishing components of the invariant tensor for the AdS-L algebra are given

by (2.2) along with [84]

〈ZAPB〉 =
σ1
`2
ηAB ,

〈ZAZB〉 =
σ2
`2
ηAB . (2.10)

Then, considering the gauge connection one-form for the AdS-L algebra which coincides

with the Maxwell one (2.3) and the invariant tensor (2.2) and (2.10) into the general

expression of the CS action (2.6), we find the following three-dimensional relativistic CS

– 5 –
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action [84]:

IAdS-L=
k

4π

∫ [
σ0

(
WAdWA+

1

3
εABCWAWBWC

)
(2.11)

+ σ1

(
2EAR

A(W )+
2

`2
EAF

A(K)+
1

3`2
εABCEAEBEC

)
+ σ2

(
TAEA+

1

`2
εABCEAKBEC +2KAR

A(W )+
1

`2
KADWK

A+
1

3`4
εABCKAKBKC

)]
,

where we have defined the curvature FA(K) := DWK
A + 1

2`2
εABCKBKC , being DW the

Lorentz covariant derivative DWΘA = dΘA+εABCWBΘC .One can see that such relativistic

symmetry not only introduces a comological constant term to the Einstein-Hilbert term

but also includes the gauge field KA along the σ1 constant. Furthermore, the term along

σ2 is also modified by the presence of the new commutation relations (2.8). Naturally,

the vanishing cosmological constant limit ` → ∞ reproduces the relativistic Maxwell CS

gravity action (2.7).

NR versions of the Maxwell and the AdS-L algebras have been considered in [20, 23, 27,

86, 87] and have required to consider U(1) enlargements in order to have well-defined finite

NR CS actions with non-degenerate bilinear forms. In particular, as shown in [20], the NR

limit of the [Maxwell] ⊕ u (1)3 algebra reproduces the MEB algebra. On the other hand,

the EEB appears as a NR limit of the [AdS-L] ⊕ u (1)3 algebra [23]. Such NR algebras are,

as their relativistic versions, related through a flat limit.

In what follows, we study new enhancements of the Maxwell and AdS-Lorentz algebras

whose IW contraction will lead us to novel NR algebras.

3 Enhanced Maxwell and AdS-Lorentz algebras and U(1) enlargements

In this section, we generalize the results presented in [38] to enlarged symmetries. In

particular, we present new enhancements of the [Maxwell] ⊕ u (1)3 and [AdS-L] ⊕ u (1)3

algebras whose NR limits shall be explored in the next section. We expect to find a

Maxwellian version of the Extended Newtonian gravity [36] and a generalization including

a cosmological constant. The explicit CS action for the relativistic enhancement symmetries

is also constructed.

3.1 Enhanced Maxwell ⊕u(1) ⊕ u(1) ⊕ u(1) algebra

A particular extension of the Maxwell algebra can be obtained by adding the set of gen-

erators {SA, TA, VA} to the usual Maxwell ones {JA, PA, ZA}. Such extension satisfies the

following non-vanishing commutation relations

[JA, JB] = εABCJ
C , [JA, SB] = εABCS

C ,

[JA, PB] = εABCP
C , [JA, TB] = εABCT

C ,

[JA, ZB] = εABCZ
C , [SA, PB] = εABCT

C ,

[PA, PB] = εABCZ
C , [JA, VB] = εABCV

C ,

[SA, ZB] = εABCV
C , [TA, PB] = εABCV

C . (3.1)

– 6 –
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Such algebra can be seen as an extension and deformation of the coadjoint Poincaré algebra

studied in [38, 88, 89]. Interestingly, the commutation relations (3.1) can also be recovered

as an semigroup expansion (S-expansion) [76] of the Poincaré algebra iso(2, 1) =
{
ĴA, P̂A

}
,

whose generators satisfy the non-vanishing commutation relations[
ĴA, ĴB

]
= εABC Ĵ

C ,[
ĴA, P̂B

]
= εABC P̂

C . (3.2)

Indeed, let us consider S
(2)
E = {λ0, λ1, λ2, λ3} as the relevant semigroup whose elements

satisfy

λαλβ =

{
λα+β if α+ β ≤ 3 ,

λ3 if α+ β > 3 ,
(3.3)

where λ3 = 0s is the zero element of the semigroup such that 0sλα = 0s. Then, one can show

that the enhanced Maxwell algebra (3.1) appears as a 0s-reduction of the expanded algebra

S
(2)
E × iso(2, 1), where the expanded generators are expressed in terms of the Poincaré ones

through the semigroup elements as

JA = λ0ĴA , SA = λ0P̂A ,

PA = λ1ĴA , TA = λ1P̂A ,

ZA = λ2ĴA , VA = λ2P̂A . (3.4)

Let us note that the possibility to obtain generalizations of the coadjoint Poincaré algebra

by considering S
(N)
E -expansion of the iso(2, 1) algebra has first been discussed in [38]. In

the present analysis, we have shown that considering N = 2 allows to define an enhanced

Maxwell algebra. As we shall see in the next section, by considering a different semigroup,

a new relativistic symmetry will be obtained.

An interesting feature of the S-expansion method is that it immediately provides us

with the non-vanishing components of the invariant tensor of the expanded algebra in terms

of the original ones [76]. In particular, the non-vanishing components of the invariant tensor

for the Poincaré algebra are given by〈
ĴAĴB

〉
= ν0ηAB ,〈

ĴAP̂B

〉
= ν1ηAB . (3.5)

Thus, one can show that the enhanced Maxwell algebra admits the following invariant

tensor:

〈JAJB〉 = µ0ηAB ,

〈JASB〉 = µ1ηAB ,

〈JAPB〉 = µ2ηAB ,

〈JATB〉 = 〈SAPB〉 = µ3ηAB ,

〈JAZB〉 = 〈PAPB〉 = µ4ηAB ,

〈JAVB〉 = 〈SAZB〉 = 〈TAPB〉 = µ5ηAB , (3.6)

– 7 –
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where µ’s are arbitrary constants and are related to the Poincaré constant as

µ0 = λ0ν0 , µ1 = λ0ν1 , µ2 = λ1ν0 ,

µ3 = λ1ν1 , µ4 = λ2ν0 , µ5 = λ2ν1 . (3.7)

Similarly to what happens in the MEB algebra, one can generalize the relativistic

algebra by including three U(1) generators given by Y1, Y2, and Y3. The inclusion of these

U (1) generators in the case of the original Maxwell algebra assures to have a well-defined

non-degenerate invariant tensor after applying the NR limit. Although these additional

U (1) generators act as central charges in the relativistic algebra, their presence implies

additional components of the invariant tensor given by [20]

〈Y1Y1〉 = µ0 ,

〈Y1Y2〉 = µ2 ,

〈Y1Y3〉 = 〈Y2Y2〉 = µ4 . (3.8)

The non-vanishing components of the invariant tensor (3.6) and (3.8) define an invariant

tensor for the [enhanced Maxwell] ⊕ u (1)3 algebra.

The gauge connection one-form for the [enhanced Maxwell] ⊕ u (1)3 algebra now in-

cludes not only three additional bosonic gauge fields, ΣA, LA and ΓA in (2.3) but also three

extra U(1) gauge field one-forms as

A = WAJA + EAPA +KAZA + ΣASA + LATA + ΓAVA + SY1 +MY2 + TY3 . (3.9)

The corresponding curvature two-form is given by

F = RA (W ) JA +RA (E)PA +RA (K)ZA +RA (Σ)SA +RA (L)TA +RA (Γ)VA

+R (S)Y1 +R (M)Y2 +R (T )Y3 ,

where RA (W ), RA (E) and RA (K) are given by (2.5) and

RA (Σ) = dΣA + εABCWBΣC ,

RA (L) = dLA + εABCWBLC + εABCΣBEC ,

RA (Γ) = dΓA + εABCWBΓC + εABCΣBKC + εABCLBEC . (3.10)

Then, considering the gauge connection one-form (3.9) and the non-vanishing components

of the invariant tensor (3.6) and (3.8) in the general expression of the CS action (2.6), we

find the following relativistic CS action for the [enhanced Maxwell] ⊕ u (1)3 algebra:

Ienh-Maxwell⊕ u(1)3 =
k

4π

∫ [
µ0

(
WAdWA +

1

3
εABCWAWBWC + SdS

)
+ 2µ1ΣAR

A (W )

+2µ2
(
EAR

A (W ) +MdS
)

+ 2µ3
(
LAR

A (W ) + EAR
A (Σ)

)
+µ4

(
TAEA + 2KAR

A (W ) +MdM + 2SdT
)

(3.11)

+2µ5

(
ΓAR

A (W ) + EAR
A (L) +KAR

A (Σ)− 1

2
εABCΣAEBEC

)]
,

– 8 –
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where TA = DWE
A. It is interesting to note that the terms proportional to µ2 and µ3

reproduce the CS action for the coadjoint Poincaré algebra presented in [38]. In particular,

the Einstein-Hilbert term appears along µ2. On the other hand, the term µ0 contains the

usual exotic Lagrangian [85]. The terms proportional to µ1, µ3, and µ5 contains new con-

tributions to the Maxwell CS gravity action given by the additional set of gauge fields. The

non-degeneracy of the invariant tensor implies that the gauge fields are dynamically deter-

mined by the vanishing of every curvature (2.5) and (3.10) provided µ5 6= 0. In particular,

the vanishing of RA (K) can be seen as the constancy of the background electromagnetic

field in flat spacetime.

As was discussed in [20], the inclusion of three extra U(1) gauge fields to the Maxwell al-

gebra allows to reproduce a non-degenerate invariant tensor at the NR level. Here, we shall

see that the addition of those U(1) gauge fields in the enhanced Maxwell algebra (3.1) will

be crucial to obtain a well-defined Maxwellian version of the extended Newtonian gravity.

3.2 Enhanced AdS-Lorentz ⊕u(1) ⊕ u(1) ⊕ u(1) algebra

A cosmological constant term can be introduced to the [enhanced Maxwell] ⊕ u (1)3 gravity

theory by enlarging the algebra and introducing a length scale `. The new algebra can

be seen as an extension of the AdS-L algebra (2.1)–(2.8) by adding the set of generators

{SA, TA, VA}. Such extension satisfies the non-vanishing commutation relations (3.1) along

with

[ZA, ZB] =
1

`2
εABCZ

C , [TA, ZB] =
1

`2
εABCT

C ,

[PA, ZB] =
1

`2
εABCP

C , [VA, PB] =
1

`2
εABCT

C ,

[VA, ZB] =
1

`2
εABCV

C . (3.12)

It is interesting to note that such enhanced AdS-L algebra can be rewritten as three copies

of the Poincaré algebra, that is to say[
J±A , J

±
B

]
= εABCJ

±C ,
[
ĴA, ĴB

]
= εABC Ĵ

C ,[
J±A , P

±
B

]
= εABCP

±C ,
[
ĴA, P̂B

]
= εABC P̂

C , (3.13)

by considering the following redefinition of the generators:

JA = ĴA + J+
A + J−A , SA = P̂A + P+

A + P−A ,

PA =
1

`

(
J+
A − J

−
A

)
, TA =

1

`

(
P+
A − P

−
A

)
,

ZA =
1

`2
(
J+
A + J−A

)
, VA =

1

`2
(
P+
A + P−A

)
. (3.14)

The relativistic enhanced AdS-L algebra can also be written as the direct sum of the

coadjoint AdS algebra
{
J̃A, P̃A, S̃A, T̃A

}
defined in [38] and the Poincaré algebra

{
J̌A, P̌A

}
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by considering the following redefinition:

JA = J̃A + J̌A , SA = S̃A + P̌A ,

PA = P̃A , TA = T̃A ,

ZA =
J̃A
`2
, VA =

S̃A
`2

. (3.15)

Although the relativistic algebra seems simpler in the form of three copies of the Poincaré

algebra (3.13), we shall consider the basis {JA, PA, ZA, SA, TA, VA} since it allows to estab-

lish a well-defined and evident vanishing cosmological constant limit ` → ∞ reproducing

the enhanced Maxwell algebra. As we shall see, the same behavior will be inherit to its

NR version.

An alternative procedure to obtain the enhanced AdS-L algebra ((3.1) and (3.12)) is

given by the S-expansion method [76]. Indeed, let us consider S
(2)
M = {λ0, λ1, λ2} as the

relevant semigroup and the Poincaré algebra iso(2, 1) as the original one. The semigroup

elements satisfy the following multiplication law:

λαλβ =

{
λα+β if α+ β ≤ 2 ,

λα+β−2 if α+ β > 2 .
(3.16)

Then, one can show that the enhanced AdS-L algebra given by (3.1) and (3.12) appears

as a S
(2)
M -expansion of the Poincaré algebra where the expanded generators are expressed

in terms of the Poincaré ones through the semigroup elements as

JA = λ0ĴA , SA = λ0P̂A ,

`PA = λ1ĴA , `TA = λ1P̂A ,

`2ZA = λ2ĴA , `2VA = λ2P̂A . (3.17)

Then, following theorem VII.2 of [76], one can show that the non-vanishing components

of the enhanced AdS-L algebra can be expressed in terms of the Poincaré ones. Thus, the

invariant tensor for the present relativistic algebra are given by (3.6) along with

〈ZAPB〉 =
µ2
`2
ηAB ,

〈TAZB〉 = 〈VAPB〉 =
µ3
`2
ηAB ,

〈ZAZB〉 =
µ4
`2
ηAB ,

〈VAZB〉 =
µ5
`2
ηAB . (3.18)

Naturally, the flat limit ` → ∞ reproduces the invariant tensor of the enhanced Maxwell

one. Analogously to the procedure to obtain the EEB algebra [23], one can generalize

the relativistic algebra by including three u (1) generators given by Y1, Y2, and Y3 which

provide the following non-vanishing components of the invariant tensor [23]:

〈Y1Y1〉 = µ0 , 〈Y2Y2〉 = µ4 ,

〈Y1Y2〉 = µ2 , 〈Y2Y3〉 =
µ2
`2
,

〈Y1Y3〉 = µ4 , 〈Y3Y3〉 =
µ4
`2
. (3.19)
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The invariant tensor given by (3.6), (3.18), and (3.19) defines a non-degenerate invariant

bilinear form for the [enhanced AdS-L] ⊕ u (1)3 algebra.

Then, considering the gauge connection one-form for the enhanced algebra which co-

incides with the Maxwell one (3.9) and the non-vanishing components of the invariant

tensor (3.6), (3.18), and (3.8) in the general expression of the CS action (2.6), we find the

following relativistic CS action for the [enhanced AdS-L] ⊕ u (1)3 algebra:

Ienh-AdS-L⊕u(1)3 = Ienh-Maxwell⊕u(1)3 +
k

4π`2

∫ [
2µ2

(
EAF

A(K)+
1

6
εABCEAEBEC+MdT

)
+ 2µ3

(
LAF

A(K)− 1

2
εABCEAEBLC+EAR

A(Γ)+
1

`2
εABCEAKBΓC

)
+µ4

(
εABCEAKBEC+KADWK

A+
1

3`2
εABCKAKBKC+TdT

)
+2µ5

(
ΓAF

A(K)+
1

2
εABCEAEBΓC+

1

2
εABCKAΣBKC

+εABCKALBEC

)]
, (3.20)

where

RA (Γ) = dΓA + εABCWBΓC + εABCΣBKC + εABCLBEC ,

FA (K) = DWK
A +

1

2`2
εABCKBKC . (3.21)

One can see that the terms proportional to µ2, µ3, µ4, and µ5 contain new contributions

from the new commutation relations (3.12) of the [enhanced AdS-L] ⊕ u (1)3 algebra. In

particular, a cosmological constant term is added to the µ2 term together with the gauge

field KA. Interestingly, the flat limit `→∞ reproduces the relativistic [enhanced Maxwell]

⊕ u (1)3 gravity action. As we shall see, the presence of the U(1) gauge fields will be essential

to establish a well-defined NR limit allowing us to accommodate a cosmological constant

into the Maxwellian version of the extended Newtonian gravity.

4 Maxwellian extended Newtonian gravity

In this section, we apply a NR limit to the previously introduced [enhanced Maxwell]

⊕ u (1)3 gravity theory in three spacetime dimensions. We show that the new NR algebra

corresponds to a Maxwellian version of the extended Newtonian algebra introduced in [36]

and subsequently studied in [37, 38]. The three-dimensional NR CS action based on this

new symmetry is also discussed.

4.1 Maxwellian extended Newtonian algebra and non-relativistic limit

A NR version of the [enhanced Maxwell] ⊕ u(1)3 algebra can be obtained through an IW

contraction. To this end, we consider a dimensionless parameter ξ and we express the

relativistic enhanced Maxwell generators as a linear combination of the NR ones (denoted
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with a tilde) as

J0 =
J̃

2
+ ξ2S̃ − ξ4B̃ , Ja =

ξ

2
G̃a −

ξ3

2
B̃a ,

P0 =
H̃

2
+ ξ2M̃ − ξ4Ỹ , Pa =

ξ

2
P̃a −

ξ3

2
T̃a ,

Z0 =
Z̃

2
+ ξ2T̃ − ξ4W̃ , Za =

ξ

2
Z̃a −

ξ3

2
Ṽa ,

S0 = −ξ2S̃ , Sa = −ξG̃a − ξ3B̃a ,
T0 = −ξ2M̃ , Ta = −ξP̃a − ξ3T̃a ,
V0 = −ξ2T̃ , Va = −ξZ̃a − ξ3Ṽa . (4.1)

On the other hand, one can express the u (1) generators Y1, Y2 and Y3 in terms of the NR

generators as

Y1 =
J̃

2
− ξ2S̃ + ξ4B̃ , Y2 =

H̃

2
− ξ2M̃ + ξ4Ỹ , Y3 =

Z̃

2
− ξ2T̃ + ξ4W̃ . (4.2)

After considering the contraction of the [enhanced Maxwell] ⊕ u(1)3 algebra (3.1) and

the limit ξ → ∞, we find that the generators of the novel NR algebra satisfy the MEB

algebra [20],[
J̃ , G̃a

]
= εabG̃b ,

[
G̃a, G̃b

]
= −εabS̃ ,

[
H̃, G̃a

]
= εabP̃b ,[

J̃ , P̃a

]
= εabP̃b ,

[
G̃a, P̃b

]
= −εabM̃ ,

[
H̃, P̃a

]
= εabZ̃b ,[

J̃ , Z̃a

]
= εabZ̃b ,

[
G̃a, Z̃b

]
= −εabT̃ ,

[
Z̃, G̃a

]
= εabZ̃b ,[

P̃a, P̃b

]
= −εabT̃ , (4.3)

along with[
J̃ , B̃a

]
= εabB̃b ,

[
G̃a, B̃b

]
= −εabB̃ ,

[
H̃, B̃a

]
= εabT̃b ,[

J̃ , T̃a

]
= εabT̃b ,

[
G̃a, T̃b

]
= −εabỸ ,

[
H̃, T̃a

]
= εabṼb ,[

J̃ , Ṽa

]
= εabṼb ,

[
G̃a, Ṽb

]
= −εabW̃ ,

[
Z̃, B̃a

]
= εabṼb ,[

S̃, G̃a

]
= εabB̃b ,

[
P̃a, B̃a

]
= −εabỸ ,

[
M̃, G̃a

]
= εabT̃b ,[

S̃, P̃a

]
= εabT̃b ,

[
P̃a, T̃b

]
= −εabW̃ ,

[
M̃, P̃a

]
= εabṼb ,[

S̃, Z̃a

]
= εabṼb ,

[
Z̃a, B̃b

]
= −εabW̃ ,

[
T̃ , G̃a

]
= εabṼb , (4.4)

where a = 1, 2, εab ≡ ε0ab, εab ≡ ε0ab.
The new NR algebra corresponds to a Maxwellian version of the so-called extended

Newtonian algebra [36] which we have denoted as MENt algebra. In particular, the MENt

algebra contains the MEB generators
{
J̃ , G̃a, S̃, H̃, P̃a, M̃ , Z̃, Z̃a, T̃

}
together with a set of
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additional generators
{
T̃a, B̃a, Ṽa, B̃, Ỹ , W̃

}
. As we shall see, the three central charges B̃,

Ỹ , and W̃ , appearing in the MENt algebra as a result of the NR limit, allows to have a

non-degenerate bilinear form, thus assuring the proper construction of a three-dimensional

NR CS gravity action.

4.2 Non-relativistic MENt Chern-Simons gravity action

The construction of a three-dimensional CS action based on this new NR symmetry requires

the non-vanishing components of the invariant tensor for the MENt algebra together with

the gauge connection one-form A = Aµdx
µ.

The MENt algebra can be equipped with the most general extended Newtonian non-

vanishing components of the invariant tensor [37],〈
S̃S̃
〉

=
〈
J̃B̃
〉

= −β0 ,〈
G̃aB̃b

〉
= β0δab ,〈

M̃S̃
〉

=
〈
H̃B̃

〉
=
〈
J̃ Ỹ
〉

= −β1 ,〈
P̃aB̃b

〉
=
〈
G̃aT̃b

〉
= β1δab , (4.5)

along with 〈
M̃M̃

〉
=
〈
T̃ S̃
〉

=
〈
Z̃B̃
〉

=
〈
H̃Ỹ

〉
=
〈
J̃W̃

〉
= −β2 ,〈

P̃aT̃b

〉
=
〈
G̃aṼb

〉
=
〈
Z̃aB̃b

〉
= β2δab , (4.6)

where the relativistic parameters µ’s were rescaled as

µ0 = µ1 = −β0ξ4 , µ2 = µ3 = −β1ξ4 , µ4 = µ5 = −β2ξ4 . (4.7)

In particular, β0 is related to an exotic sector of the extended Newtonian gravity [37].

Furthermore, the MENt algebra also admits the MEB non-vanishing components of the

invariant tensor given by [20] (see also [23])〈
J̃ S̃
〉

= −α0 ,〈
G̃aG̃b

〉
= α0δab ,〈

J̃M̃
〉

=
〈
H̃S̃

〉
= −α1 ,〈

G̃aP̃b

〉
= α1δab ,〈

J̃ T̃
〉

=
〈
H̃M̃

〉
= −α2 .〈

G̃aZ̃b

〉
=
〈
P̃aP̃b

〉
= α2δab , (4.8)

which can be obtained by setting µ0 = µ2 = µ4 = 0 and considering the following rescaling

of the relativistic parameters µ’s:

µ1 = −α0ξ
2 , µ3 = −α1ξ

2 , µ5 = −α2ξ
2 . (4.9)
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Nevertheless, at the level of the MENt algebra, the invariant tensor (4.8) alone results to

be degenerate. On the other hand, putting (4.5), (4.6), and (4.8) all together one would

obtain a non-degenerate bilinear form. However, we observe that (4.5), (4.6), and (4.8)

pertain to two different NR limits. Thus, in the sequel we will construct a CS action

based on the MENt algebra by exploiting the components given by (4.5) and (4.6) which

describe non-degenerate invariant tensor for the MENt algebra. As we shall see in section

6, the complete set of invariant tensor given by (4.5), (4.6), and (4.8) can alternatively be

obtained through the S-expansion procedure allowing to write the most general CS action

based on the MENt algebra.

The gauge connection one-form A for the MENt algebra reads

A = τH̃ + eaP̃a + ωJ̃ + ωaG̃a + kZ̃ + kaZ̃a +mM̃ + sS̃ + tT̃ + taT̃a + baB̃a

+vaṼa + bB̃ + yỸ +$W̃ . (4.10)

The curvature two-form F = dA+ 1
2 [A,A] is given by

F = R (τ) H̃ +Ra
(
eb
)
P̃a +R (ω) J̃ +Ra

(
ωb
)
G̃a +R (k) Z̃ +Ra

(
kb
)
Z̃a

+R (m) M̃ +R (s) S̃ +R (t) T̃ +Ra
(
tb
)
T̃a +Ra

(
bb
)
B̃a +Ra

(
vb
)
Ṽa

+R (b) B̃ +R (y) Ỹ +R ($) W̃ , (4.11)

where the explicit definition of every curvature can be found in appendix A.

A CS gravity action based on the MENt algebra can be constructed by combining (4.5)

and (4.6) with the gauge connection 1-form (4.10), and it reads, up to boundary terms, as

follows:

IMENt =
k

4π

∫ {
β0

[
baR

a
(
ωb
)

+ ωaR
a
(
bb
)
− 2bR (ω)− sds

]
(4.12)

+ 2β1

[
eaR

a
(
bb
)

+ taR
a
(
ωb
)
− yR (ω)−mR (s)− τR (b)

]
+ β2

[
eaR

a
(
tb
)

+ taR
a
(
eb
)

+ kaR
a
(
bb
)

+ baR
a
(
kb
)

+ vaR
a
(
ωb
)

+ ωaR
a
(
vb
)
− 2bR (k)− 2$R (ω)− 2yR (τ)− 2tds−mdm

]}
.

The CS gravity action (4.12) is invariant under the MENt algebra given by (4.3) and (4.4)

by construction, and it is split into three different independent terms. In particular, the

term proportional to β0 corresponds to an exotic sector of the extended Newtonian gravity

term introduced in [37] which can be obtained as a NR limit of an U(1)-extension of the

exotic Einstein term [85]. The term proportional to β1 is the standard extended Newtonian

gravity action presented in [36]. On the other hand, the piece proportional to β2 contains

some terms appearing in the CS action invariant under the exotic Newtonian algebra1

introduced in [37], together with some completely new terms.

1Also known as enhanced Bargmann-Newton-Hooke algebra [38].
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It is interesting to note that an enhancement of the Maxwell algebra allows to construct

a Maxwellian version of the extended Newtonian gravity containing known NR gravity

theories as sub-cases. Although the field content is bigger than the extended Newtonian

one, the present NR theory does not contain a cosmological constant term. As we shall

see in the next section, in order to accommodate a cosmological constant to (4.12), it is

necessary to consider a different NR algebra which can be obtained as an IW contraction of

the relativistic [enhanced AdS-L] ⊕u(1)3 algebra. The NR limit and a possible vanishing

cosmological constant limit are not the only ways to obtain the present MENt gravity

theory. Indeed, as we shall show, the MENt algebra and its most general invariant tensor

can alternatively be found using the semigroup expansion method.

The non-degeneracy of the invariant tensor has allowed to achieve a well-defined NR

CS gravity action whose equations of motion are given by the vanishing of all the curva-

tures (4.11).

The CS action (4.12) can equivalently be obtained as NR limit of (3.11). To see this,

one shall express the relativistic enhanced Maxwell 1-form fields as a linear combination of

the NR ones as

W 0 = ω +
1

2ξ2
s− 1

2ξ4
b , W a =

1

ξ
ωa − 1

ξ3
ba ,

E0 = τ +
1

2ξ2
m− 1

2ξ4
y , Ea =

1

ξ
ea − 1

ξ3
ta ,

K0 = k +
1

2ξ2
t− 1

2ξ4
$ , Ka =

1

ξ
ka − 1

ξ3
va ,

Σ0 = − 1

ξ2
s , Σa = − 1

2ξ
ωa − 1

2ξ3
ba ,

L0 = − 1

ξ2
m, La = − 1

2ξ
ea − 1

2ξ3
ta ,

Γ0 = − 1

ξ2
t , Γa = − 1

2ξ
ka − 1

2ξ3
va . (4.13)

and the gauge fields dual to the u(1) generators Y1, Y2, and Y3 (namely S, M , and T ,

respectively) as

S = ω − 1

2ξ2
s+

1

2ξ4
b , M = τ − 1

2ξ2
m+

1

2ξ4
y , T = k − 1

2ξ2
t+

1

2ξ4
$ . (4.14)

Then, substituting back (4.13) and (4.14), together with (4.7), in (3.11), omitting boundary

terms and taking the limit ξ →∞, one precisely recovers (4.12).

Finally, one can see that each independent term of the action (4.12) is invariant under

the gauge transformation laws δA = dλ+ [A, λ], being

λ = ΛH̃ + ΛaP̃a + ΩJ̃ + ΩaG̃a + κZ̃ + κaZ̃a + χM̃ + ςS̃ + πT̃ + πaT̃a + ρaB̃a

+νaṼa + ρB̃ + γỸ + %W̃ (4.15)

the gauge parameter. The gauge transformations of the theory can be found in appendix B.
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5 Enlarged extended Newtonian gravity and flat limit

In this section, we apply a NR limit to the [enhanced AdS-L] ⊕ u (1)3 algebra previously

introduced. We show that the new NR algebra can be seen as an enlargement of the

extended Newtonian algebra [36] (which we have denoted as EEN algebra) and reproduces

the MENt algebra (4.3)–(4.4) in the vanishing cosmological constant limit `→∞.

5.1 Enlarged extended Newtonian algebra and non-relativistic limit

In the previous section we have constructed a Maxwellian version of the extended Newto-

nian algebra by applying an Inönü-Wigner contraction to the [enhanced Maxwell] ⊕ u (1)3

algebra (3.1). In order to obtain a NR version of the [enhanced AdS-L] ⊕ u (1)3 alge-

bra (where the latter is given by (3.1) and (3.12)), we consider the same redefinitions of

the relativistic generators as in (4.1)–(4.2) which provides us with a well-defined ξ → ∞
limit. The new NR algebra is then generated by the set of generators of the EEB alge-

bra
{
J̃ , G̃a, S̃, H̃, P̃a, M̃ , Z̃, Z̃a, T̃

}
, a set of additional generators

{
T̃a, B̃a, Ṽa

}
, and three

central charges given by B̃, Ỹ , W̃ . Such generators satisfy the commutation relations (4.3)–

(4.4) along with[
H̃, Z̃a

]
=

1

`2
εabP̃b ,

[
P̃a, Z̃b

]
= − 1

`2
εabM̃ ,

[
Z̃, P̃a

]
=

1

`2
εabP̃b ,[

Z̃, Z̃a

]
=

1

`2
εabZ̃b ,

[
Z̃a, Z̃b

]
= − 1

`2
εabT̃ , (5.1)

and [
H̃, Ṽa

]
=

1

`2
εabT̃b ,

[
P̃a, Ṽb

]
= − 1

`2
εabỸ ,

[
Z̃, T̃a

]
=

1

`2
εabT̃b ,[

Z̃, Ṽa

]
=

1

`2
εabṼb ,

[
Z̃a, T̃b

]
= − 1

`2
εabỸ ,

[
M̃, Z̃a

]
=

1

`2
εabT̃b ,[

T̃ , P̃a

]
=

1

`2
εabT̃b ,

[
Z̃a, Ṽb

]
= − 1

`2
εabW̃ ,

[
T̃ , Z̃a

]
=

1

`2
εabṼb . (5.2)

Note that the commutation relations (4.3) and (5.1) define a subalgebra corresponding to

the EEB algebra introduced in [23]. The novel non-relativistic algebra obtained here can be

seen as an enlargement of the extended Newtonian algebra, and we will denote it as EEN

algebra. An interesting feature of such NR algebra is given by the explicit presence of a scale

` which allows us to accommodate a cosmological constant into the Maxwellian version of

the extended Newtonian gravity (4.3)–(4.4). Naturally, the vanishing cosmological constant

limit `→∞ reproduces the MENt algebra.

Let us note that the EEN algebra can be rewritten as three copies of the enhanced

Nappi-Witten algebra defined in [38]. Indeed, the EEN algebra can be written as[
J±, G±a

]
= εabG

±
b ,

[
G±a , G

±
b

]
= −εabS± ,

[
S±, G±a

]
= εabB

±
b ,[

J±, B±a
]

= εabB
±
b ,

[
G±a , B

±
b

]
= −εabB± ,[

Ĵ , Ĝa

]
= εabĜb ,

[
Ĝa, Ĝb

]
= −εabŜ ,

[
Ŝ, Ĝa

]
= εabB̂b ,[

Ĵ , B̂a

]
= εabB̂b ,

[
Ĝa, B̂b

]
= −εabB̂ , (5.3)
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by considering the following redefinition of the generators:

J̃ = Ĵ + J+ + J− , H̃ = 1/`
(
J+ − J−

)
, Z̃ = 1/`2

(
J+ + J−

)
,

G̃a = Ĝa +G+
a +G−a , P̃a = 1/`

(
G+
a −G−a

)
, Z̃a = 1/`2

(
G+
a +G−a

)
,

S̃ = Ŝ + S+ + S− , M̃ = 1/`
(
S+ − S−

)
, T̃ = 1/`2

(
S+ + S−

)
,

B̃a = B̂a +B+
a +B−a , T̃a = 1/`

(
B+
a −B−a

)
, Ṽa = 1/`2

(
B+
a +B−a

)
,

B̃ = B̂ +B+ +B− , Ỹ = 1/`
(
B+ −B−

)
W̃ = 1/`2

(
B+ +B−

)
.

On the other hand, a different redefinition of the generators of the EEN algebra can be

considered. In particular, the redefinition

J̃ = J + Ĵ , H̃ = H , Z̃ = 1/`2 J ,
G̃a = Ga + Ĝa , P̃a = Pa , Z̃a = 1/`2 Ga ,
S̃ = S + Ŝ , M̃ =M , T̃ = 1/`2 S ,
B̃a = Ba + B̂a , T̃a = Ta , Ṽa = 1/`2 Ba ,
B̃ = B + B̂ , Ỹ = Y , W̃ = 1/`2B ,

allows to rewrite the EEN algebra (4.3), (4.4), (5.1), and (5.2) as the direct sum of the

exotic Newtonian algebra [37],

[J ,Ga] = εabGb , [Ga,Gb] = −εabS , [H,Ga] = εabPb ,
[J ,Pa] = εabPb , [Ga,Pb] = −εabM , [H,Ba] = εabTb ,
[J ,Ba] = εabBb , [Ga,Bb] = −εabB , [J , Ta] = εabTb ,
[S,Ga] = εabBb , [Ga, Tb] = εabY , [S,Pa] = εabTb ,

[M,Ga] = εabTb , [Pa,Bb] = εabY , [H,Pa] =
1

`2
εabGb ,

[H, Ta] =
1

`2
εabBb , [Pa,Pb] = − 1

`2
εabS ,

[M,Pa] =
1

`2
εabBb , [Pa, Tb] = − 1

`2
εabB , (5.4)

and the enhanced Nappi-Witten algebra,[
Ĵ , Ĝa

]
= εabĜb ,

[
Ĝa, Ĝb

]
= −εabŜ ,

[
Ŝ, Ĝa

]
= εabB̂b ,[

Ĵ , B̂a

]
= εabB̂b ,

[
Ĝa, B̂b

]
= −εabB̂ . (5.5)

The exotic Newtonian algebra has been recently introduced in [37] and subsequently studied

in [38] and allows us to accommodate a cosmological constant into the extended Newtonian

gravity theory. One can see that, as we have shown previously, the same behavior appears

at the relativistic level. Indeed the enhanced AdS-Lorentz algebra can also be rewritten

as three copies of the Poincaré algebra and as the direct sum of the coadjoint AdS and

Poincaré algebra after an appropriate redefinition of the generators. In particular, the

enhanced Nappi-Witten algebra (5.5) appears as an IW contraction of the Poincaré ⊕ u (1)
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algebra, while the exotic Newtonian algebra can be obtained as a NR limit of the coadjoint

AdS algebra [38].

In what follows we present the NR CS action based on the EEN alge-

bra (4.3), (4.4), (5.1), and (5.2). Such basis is preferred in order to make clear the flat

limit leading to the MENt gravity. Furthermore, as we shall see, such basis present an

alternative way to include a cosmological constant into a three-dimensional NR CS gravity

action diverse to the one discussed in [37].

5.2 Non-relativistic EEN Chern-Simons gravity action and flat limit

A well-defined CS action requires invariant non-degenerate bilinear form. Interestingly, the

presence of the central charges B̃, Ỹ , and W̃ assures to have a non-degenerate invariant

tensor for the EEN algebra. In particular, the non-vanishing components of the invariant

tensor for the EEN algebra are given by the MENt ones (4.5)–(4.6) along with〈
M̃T̃

〉
=
〈
Z̃Ỹ
〉

=
〈
H̃W̃

〉
= −β1

`2
,〈

P̃aṼb

〉
=
〈
Z̃aT̃b

〉
=
β1
`2
δab ,〈

T̃ T̃
〉

=
〈
Z̃W̃

〉
= −β2

`2
,〈

Z̃aṼb

〉
=
β2
`2
δab , (5.6)

where the relativistic parameters µ’s have been rescaled as

µ0 = µ1 = −β0ξ4 , µ2 = µ3 = −β1ξ4 , µ4 = µ5 = −β2ξ4 . (5.7)

On the other hand, one can show that the EEN algebra can also admit the MEB invariant

tensor (4.8) along with 〈
H̃T̃

〉
=
〈
Z̃M̃

〉
= −α1

`2
,〈

P̃aZ̃b

〉
=
α1

`2
δab ,〈

Z̃T̃
〉

= −α2

`2
,〈

Z̃aZ̃b

〉
=
α2

`2
δab , (5.8)

when we set µ0 = µ2 = µ4 = 0 and consider the following rescaling of the relativistic

parameters µ’s:

µ1 = −α0ξ
2 , µ3 = −α1ξ

2 , µ5 = −α2ξ
2 . (5.9)

One can see that the components of the invariant tensor proportional to the α’s are the

respective components of the invariant tensor of the EEB algebra introduced in [23]. On

the other hand, those related to the β’s shall reproduce the enlarged extended Newtonian

gravity action. As it was discussed in the MENt case, the NR limit does not allow to

have both types of invariant tensor. In this section we shall focus on those proportional to

the β’s constants allowing to construct a novel NR CS action. In section 6, we shall see
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that the complete set containing both the α’s and the β’s constants appearing in the full

invariant tensor can be properly obtained considering the S-expansion method.

Although the gauge connection one-form A is the same than the MENt one, the cor-

responding curvature two-form F is different due to the presence of new commutation

relations involving the ` parameter. Indeed, the curvature two-form F reads

F = R (τ) H̃ + R̂a
(
eb
)
P̃a +R (ω) J̃ +Ra

(
ωb
)
G̃a +R (k) Z̃ + R̂a

(
kb
)
Z̃a

+R̂ (m) M̃ +R (s) S̃ + R̂ (t) T̃ + R̂a
(
tb
)
T̃a +Ra

(
bb
)
B̃a + R̂a

(
vb
)
Ṽa

+R (b) B̃ + R̂ (y) Ỹ + R̂ ($) W̃ , (5.10)

where the explicit expression of every curvature two-form is given in appendix A.

A CS gravity action based on the EEN algebra can be constructed by combining (4.5)–

(4.6) and (5.6) with the gauge connection 1-form (4.10), and it reads, up to boundary terms,

as follows:

IEEN =
k

4π

∫ {
β0

[
baR

a
(
ωb
)

+ωaR
a
(
bb
)
−2bR(ω)−sds

]
+β1

[
eaR

a
(
bb
)

+baR̂
a
(
eb
)

+taR
a
(
ωb
)

+ωaR̂
a
(
tb
)
−2yR(ω)−2bR(τ)−2mds

+
1

`2

(
taR̂

a
(
kb
)

+vaR̂
a
(
eb
)

+eaR̂
a
(
vb
)

+kaR̂
a
(
tb
)
−2yR(k)−2$R(τ)−2mdt

)]

+β2

[
eaR̂

a
(
tb
)

+taR̂
a
(
eb
)

+kaR
a
(
bb
)

+baR̂
a
(
kb
)

+vaR
a
(
ωb
)

+ωaR̂
a
(
vb
)
−2bR(k)−2$R(ω)−2yR(τ)−2tds−mdm

+
1

`2

(
vaR̂

a
(
kb
)

+kaR̂
a
(
vb
)
−2$R(k)−tdt

)]}
. (5.11)

The CS action (5.11) is invariant under the EEN algebra by construction. One can notice,

looking also at (4.12), that there are three independent sectors proportional to the different

coupling constants β0, β1, and β2. The term proportional to β0 is exactly the same as

in (4.12). On the other hand, the terms proportional to β1 and β2 involve, besides the

MENt contributions, also new pieces. In the flat limit ` → ∞ of (5.11) we recover the

MENt gravity action (4.12). Observe that our construction gives an alternative way to

include a cosmological constant into the three-dimensional NR CS gravity action (4.12).

The non-degeneracy of the invariant tensor has allowed to achieve a well-defined CS

gravity action whose equations of motion are given by the vanishing of all the curva-

tures (A.1).

The CS action (5.11) we have just constructed can equivalently be obtained as NR limit

of the CS action (3.20) based on the [enhanced AdS-L] ⊕ u(1)3 algebra. Indeed, expressing

the relativistic enhanced AdS-L 1-form fields in (3.20) as a linear combination of the NR
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ones as in (4.13) and the gauge fields S, M , and T as in (4.14), together with (5.7), and

taking the limit ξ →∞, one precisely recovers the NR CS action (5.11) for the EEN algebra.

Concluding, we can see that each independent term of the action (5.11) is invariant un-

der the gauge transformation laws δA = dλ+[A, λ] with gauge parameter λ given by (4.15).

Specifically, the explicit gauge transformations of the theory are defined in appendix B.

6 Non-relativistic algebras and semigroup expansion method

In this section, we present an alternative procedure to recover the new NR algebras pre-

viously introduced. In particular, we show that the MENt and EEN algebras can be

alternatively obtained by considering the S-expansion procedure. The Lie algebra expan-

sion method has first been introduced in [90] in the context of AdS superstring and then

developed by considering the Maurer-Cartan equations in [91–93]. The expansion based on

semigroups has then been introduced in [76] and subsequently developed in [94–99]. The

S-expansion consists in defining a new expanded Lie algebra G = S × g, by combining the

elements of the structure constants of a Lie algebra g with the semigroup S. Such pro-

cedure provides us not only with the commutation relations, but also with the complete

set of non-vanishing components of the invariant tensor for the expanded algebra. At the

NR level, the Lie algebra expansion method has been used by diverse authors leading to

interesting results [100–105].

Here we shall consider the S-expansion of the enhanced Nappi-Witen algebra (5.5)

formerly discussed. The motivation to consider the enhanced Nappi-Witten algebra as the

original algebra is twofold. First, as was shown in [23, 86], the S-expansion of the Nappi-

Witten algebra allows us to recover diverse NR algebras. Second, since the iso(2, 1)⊕ u(1)

algebra can be used to obtain the respective relativistic counterparts, it seems natural to

expect the same behavior for the NR version of the iso(2, 1)⊕ u(1) algebra, which is given

by the enhanced Nappi-Witten algebra.

Let us first recall the enhanced Nappi-Witten algebra g, whose generators satisfy

[J,Ga] = εabGb , [Ga, Gb] = −εabS , [S,Ga] = εabBb ,

[J,Ba] = εabBb , [Ga, Bb] = −εabB . (6.1)

This algebra appears as a particular IW contraction of the iso(2, 1) ⊕ u(1) algebra. In-

deed, as was mentioned in [38], one can write the relativistic Poincaré and u (1) generators

{JA, PA, Y1} in terms of the enhanced Nappi-Witten ones as

J0 =
J

2
− ξ4B , Ja =

ξ

2
Ga −

ξ3

2
Ba ,

P0 = −ξ2S − ξ4B , Pa = −ξGa − ξ3Ba ,

Y1 =
J

2
+ ξ4B . (6.2)

Then, the aforesaid algebra (6.1) is revealed after applying the limit ξ → ∞. Naturally,

the Nappi-Witten algebra [106, 107] spanned by {J,Ga, S} appears as a subalgebra.
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Let us now consider S
(2)
E = {λ0, λ1, λ2, λ3} as the relevant semigroup whose elements

satisfy the following multiplication law,

λαλβ =

{
λα+β if α+ β ≤ 3 ,

λ3 if α+ β > 3 ,
(6.3)

where λ3 = 0s is the zero element of the semigroup such that 0sλα = 0s. Then,

after considering a 0s-reduction of the expanded algebra S
(2)
E × g (g being the en-

hanced Nappi-Witten algebra), we find an expanded algebra spanned by the genera-

tors
{
J̃ , G̃a, S̃, H̃, P̃a, M̃ , Z̃, Z̃a, T̃

}
and

{
T̃a, B̃a, Ṽa, B̃, Ỹ , W̃

}
which are related to the en-

hanced Nappi-Witten ones through the semigroup elements as

J̃ = λ0J , H̃ = λ1J , Z̃ = λ2J ,

G̃a = λ0Ga , P̃a = λ1Ga , Z̃a = λ2Ga ,

S̃ = λ0S , M̃ = λ1S , T̃ = λ2S ,

B̃a = λ0Ba , T̃a = λ1Ba , Ṽa = λ2Ba ,

B̃ = λ0B , Ỹ = λ1B , W̃ = λ2B . (6.4)

Using the multiplication law of the semigroup (6.3) and the enhanced Nappi-Witten com-

mutators (6.1), one finds that the expanded generators satisfy the MENt algebra (4.3)

and (4.4). Additionally, one can express the non-vanishing components of the invariant

tensor of the S-expanded algebra in terms of the original ones. Interestingly, consider-

ing the Theorem VII. of [76], one can show that the non-vanishing components of the

invariant tensor for the MENt algebra are given not only by (4.5)–(4.6) but also by the

MEB ones (4.8). This can be seen directly from the invariant tensor of the enhanced

Nappi-Witten algebra whose components are given by

〈JS〉 = −γ1 ,
〈GaGb〉 = γ1δab ,

〈SS〉 = 〈SB〉 = −γ2 ,
〈GaBb〉 = γ2δab . (6.5)

The expanded invariant tensor coming from 〈JS〉 and 〈GaGb〉 generate the non-vanishing

components of the invariant tensor for the MEB algebra proportional to α’s given by (4.8).

In particular, the α’s constants can be expressed in terms of γ1 as

α0 = λ0γ1 , α1 = λ1γ1 , α2 = λ2γ1 . (6.6)

The invariant tensor for the MENt algebra (4.5)–(4.6), proportional to the β’s, are obtained

from 〈SS〉, 〈SB〉, and 〈GaBb〉 with

β0 = λ0γ2 , β1 = λ1γ2 , β2 = λ2γ2 . (6.7)

As we have previously discussed, both classes of invariant tensor can be obtained separately

by considering different NR limits. Although the complete set of invariant tensor (4.5)–

(4.6) along with (4.8) are non-degenerate for the MENt algebra, they cannot be obtained
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simultaneously considering a unique NR limit. Here, the semigroup expansion procedure

provides us with both components of the invariant tensor. In particular, the MEB ones

are related to the γ1 appearing in the invariant tensor of the enhanced Nappi-Witten

algebra (6.5), while the MENt ones proportional to the β’s have origin in γ2. Such feature is

an additional advantage of considering the semigroup expansion method in the NR context.

In particular, as the MENt algebra (4.3)–(4.4), the MENt CS gravity action constructed

using the S-expansion procedure contains also the MEB gravity action [20] as a sub-case.

It is interesting to note that the semigroup chosen is the same used to obtain the

MEB algebra from the Nappi-Witten algebra [23, 86]. Furthermore, as we have shown in

section 3, the same semigroup is used to obtain its respective relativistic algebra from the

iso (2, 1) ⊕ u (1) algebra. The fact that the same semigroup can be used in two diverse

regimes has already appeared in other contexts. Indeed, the same semigroup can be used to

relate diverse finite- and infinite-dimensional Lie (super)algebras [108–110] or higher-spin

Lie algebras [111].

On the other hand, considering a different semigroup allows us to find a different NR

algebra. One can show that the EEN algebra can alternatively be obtained by applying a

S
(2)
M -expansion of the enhanced Nappi-Witten algebra. Indeed, considering the multiplica-

tion law of the S
(2)
M = {λ0, λ1, λ2} semigroup given by

λαλβ =

{
λα+β if α+ β ≤ 2 ,

λα+β−2 if α+ β > 2 ,
(6.8)

one obtains an S-expanded algebra whose generators are related to the enhanced Nappi-

Witten ones as in (6.4) and satisfy the EEN algebra (4.3), (4.4), (5.1), and (5.2). Fur-

thermore, considering the Theorem VII. of [76], one can show that the non-vanishing

components of the invariant tensor for the EEN algebra are given not only by (5.6) but

also by the EEB ones (5.8). As discussed in previous sections, both of the invariant tensors

cannot be obtained from a unique NR limit. Here, the S-expansion gives us the complete

set of invariant tensors considering only one semigroup, and allowing to write an EEN CS

gravity action containing the EEB gravity [23] as a sub-case. In particular, the arbitrary

constants α’s and β’s are related to the original ones as in (6.6) and (6.7), respectively.

As an ending remark, let us mention that one could obtain new NR algebras by ex-

panding the enhanced Nappi-Witten algebra using the same semigroup used to obtain their

respective relativistic algebras from the iso (2, 1) ⊕ u (1) algebra. It would be interesting

to extend the present results to supersymmetric extensions of NR gravity theories.

7 Discussion

In this work we have presented a Maxwellian version of the three-dimensional extended

Newtonian gravity theory introduced in [36]. We have shown that the MENt algebra ap-

pears as an IW contraction of the [enhanced Maxwell] ⊕ u(1) ⊕ u(1) ⊕ u(1) algebra. The

additional U(1) gauge fields are necessary to have a finite and non-degenerate invariant ten-

sor allowing the proper construction of a NR CS action. Furthermore, we have also applied
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Figure 1. Expansions and limits.

the NR limit at the level of the CS action. We have then extended our results to accommo-

date a cosmological constant in the MENt gravity theory. To this end we have presented a

new NR symmetry which can be seen as an enlargement of the extended Newtonian algebra

and we have denoted it as EEN algebra. Such novel NR symmetry can be rewritten either

as three copies of the enhanced Nappi-Witten algebra defined in [38] or as the direct sum

of the exotic Newtonian algebra introduced in [37] with the enhanced Nappi-Witten one.

We have also explored an alternative procedure to recover our results by considering

the semigroup expansion of the enhanced Nappi-Witten symmetry. In particular, we have

shown that the same semigroup used to relate relativistic algebras can be adopted to

reproduce their NR counterparts. In addition, we have pointed out that the vanishing

cosmological constant limit appearing at the relativistic level is inherited in the NR version.

The S-expansion method has the advantage to provide not only the new Newtonian

algebras but also to reproduce the most general invariant tensor for the respective NR

algebras. Interestingly, the MENt and EEN gravity theories constructed with expanded

invariant tensor contain known extended Bargmann gravity actions as sub-cases. One can

notice that the scenario graphically displayed in figure 1 also holds for the particular sub-

cases. In particular, as was noticed in [23], the MEB and the EEB algebras can alternatively

be obtained as S-expansions of the Nappi-Witten algebra.

Let us stress that our novel CS models can be seen as generalizations of the extended

Newtonian gravity [35], and thus they differ from the standard Newtonian gravity for which
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no action is known. Although we did not approach in the present work the matter coupling,

we could argue that as in the extended Bargmann gravity and extended Newtonian gravity

cases, the equations of motion derived form our models coupled with matter would allow

a wider class of background geometries than the ones presented in standard Newtonian

gravity. Besides, also in our case matter would source all components of the Riemann

tensor. Consequently, the MENt and EEN gravities would admit backgrounds with non-

trivial curvature whenever matter is present similarly as it happens in the case of the

extended Bargmann gravity and extended Newtonian gravity. Then, as a consequence of

our Maxwellian generalization, we would obtain a modified version of the Poisson equation

as equation of motion.

Our results could be seen as a starting point for diverse studies. It would be interesting

to explore the extensions of our analysis to supergravity. Although the large amount of

NR gravity models, the supersymmetric extension of NR gravity theories has only been

approached recently [34, 36, 87, 112–114] due to the difficulty to define a proper NR limit.

One way to avoid such problem could be through the S-expansion method considered

here. Indeed, one could conjecture that figure 1 can be generalized to the presence of

supersymmetry. A supersymmetric action for the Maxwellian and enlarged version of the

extended Newtonian superalgebra could serve to approach the construction of NR field

theories on curved background by means of localization [115–117]. The supersymmetric

extension of the Maxwellian extended Newtonian gravity and its exotic version shall be

approached in a future work.

At the relativistic level, the Maxwell symmetries describe a relativistic particle in a con-

stant electromagnetic field background [39, 40]. Here, we have shown that an enhancement

of the Maxwell algebra allows us to establish a well-defined IW contraction producing the

Maxwellian version of the extended Newtonian algebra. It would be interesting to analyze

the physical interpretation by studying the consequences of the additional gauge fields and

central charges of the MENt CS gravity theory and by analyzing the geodesic equation for

a massive particle from a gauge theory point of view. On the other hand, it would be com-

pelling to explore the coupling of well-known relativistic matter systems to the Newtonian

gravity theories presented here. For example, one could consider a relativistic point particle.

It would be worth it to study the generalization of the results presented here to the

ultra-relativistic regime. In particular, a Maxwellian version of the three-dimensional Car-

roll gravity theory [118, 119] could be constructed analogously to the MEB one. Then, a

cosmological constant could be accommodated in a very similar way to the one considered

in the AdS-Caroll CS gravity [120–122]. Another natural extension of our results is the

generalization of the obtained NR symmetries to four and higher spacetime dimensions.

Another point that deserves further investigation is the physical implications of the

additional gauge fields appearing in the enhanced Maxwell and AdS-L gravity theories

introduced here. As it was discussed in [79], the additional gauge generator ZA appearing

in the Maxwell algebra influences not only the asymptotic sector but also its vacuum energy

and vacuum angular momentum. On the other hand, the boundary dynamics of the AdS-L
CS gravity is described by three copies of the Virasoro algebra [84]. One may then ask how

the conserved charges and solutions are modified by the presence of the additional set of

relativistic generators {SA, TA, VA}.
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A Curvature two-forms

The curvature two-forms for the EEN algebra are given by

R (ω) = dω ,

Ra
(
ωb
)

= dωa + εacωωc ,

R (τ) = dτ ,

R̂a
(
eb
)

= dea + εacωec + εacτωc +
1

`2
εacτkc +

1

`2
εackec ,

R (k) = dk ,

R̂a
(
kb
)

= dka + εacωkc + εacτec + εackωc +
1

`2
εackkc ,

R̂ (m) = dm+ εaceaωc +
1

`2
εaceakc ,

R (s) = ds+
1

2
εacωaωc ,

R̂ (t) = dt+ εacωakc +
1

2
εaceaec +

1

2`2
εackakc ,

R̂a
(
tb
)

= dta + εacωtc + εacτbc + εacsec + εacmωc +
1

`2
εacτvc +

1

`2
εacktc

+
1

`2
εacmkc +

1

`2
εactec ,

Ra
(
bb
)

= dba + εacωbc + εacsωc ,

R̂a
(
vb
)

= dva + εacωvc + εacτtc + εackbc + εacskc + εacmec + εactωc

+
1

`2
εackvc +

1

`2
εactkc ,

R (b) = db+ εacωabc ,

R̂ (y) = dy + εacωatc + εacbaec +
1

`2
εaceavc +

1

`2
εackatc ,

R̂ ($) = d$ + εacωavc + εactaec + εackabc +
1

`2
εackavc . (A.1)

The vanishing cosmological constant limit `→∞ naturally reproduces the curvature two-

forms of the MENt algebra. In particular, in the flat limit, the curvature two-forms with

an hat reduce to the MENt ones (4.11).

– 25 –



J
H
E
P
1
0
(
2
0
2
0
)
1
8
1

B Gauge transformations

The gauge transformations for the EEN gauge fields are given by

δω = dΩ ,

δωa = dΩa+εacωΩc−εacΩωc ,
δτ = dΛ ,

δea = dΛa+εacωΛc−εacΩec+εacτΩc−εacΛωc+
1

`2
εacτκc−

1

`2
εacΛkc

+
1

`2
εackΛc−

1

`2
εacκec ,

δk = dκ,

δka = dκa+εacωκc−εacΩkc+εacτΛc−εacΛec+εackΩc−εacκωc+
1

`2
kκc−

1

`2
κkc ,

δm = dχ+εaceaΩc−εacΛaωc+
1

`2
εaceaκc−

1

`2
εacΛckc ,

δs = dς+εacωaΩc ,

δt = dπ+εacωaκc−εacΩakc+εaceaΛc+
1

`2
εackaκc ,

δta = dπa+εacωπc−εacΩtc+εacτρc−εacΛbc+εacsΛc−εacςec+εacmΩc−εacχωc

+
1

`2
εacτνc−

1

`2
εacΛvc+

1

`2
εackπc−

1

`2
κtc+

1

`2
εacmκc−

1

`2
εacχkc+

1

`2
εactΛc−

1

`2
πec ,

δba = dρa+εacωρc−εacΩbc+εacsΩc−εacςωc ,
δva = dνa+εacωνc−εacΩvc+εacτπc−εacΛtc+εackρc−εacκbc+εacsκc−εacςkc

+εacmΛc−εacχec+εactΩc−εacπωc+
1

`2
εackνc−

1

`2
εacκvc+

1

`2
εactκc−

1

`2
εacπkc ,

δb = dρ+εacωaρc−εacΩabc ,

δy = dγ+εacωaπc−εacΩatc+εacbaΛc−εacρaec+
1

`2
εaceaνc−

1

`2
εacΛavc

+
1

`2
εackaπc−

1

`2
εacκatc ,

δ$ = d%+εacωaνc−εacΩavc+εactaΛc−εacπaec+εackaρc−εacκabc

+
1

`2
εackaνc−

1

`2
εacκavc . (B.1)

Let us note that, in the limit ` → ∞, (B.1) reproduces the gauge transformations for the

MENt gauge fields (4.10).
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Coadjoint Poincaré Symmetry, JHEP 08 (2020) 092 [arXiv:2006.11725] [INSPIRE].

[90] M. Hatsuda and M. Sakaguchi, Wess-Zumino term for the AdS superstring and generalized

Inonu-Wigner contraction, Prog. Theor. Phys. 109 (2003) 853 [hep-th/0106114] [INSPIRE].

[91] J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Generating Lie and gauge free

differential (super)algebras by expanding Maurer-Cartan forms and Chern-Simons

supergravity, Nucl. Phys. B 662 (2003) 185 [hep-th/0212347] [INSPIRE].

[92] J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Extensions, expansions, Lie

algebra cohomology and enlarged superspaces, Class. Quant. Grav. 21 (2004) S1375

[hep-th/0401033] [INSPIRE].

– 31 –

https://doi.org/10.1063/1.2390659
https://arxiv.org/abs/hep-th/0606215
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0606215
https://doi.org/10.1103/PhysRevD.89.084077
https://arxiv.org/abs/1401.3653
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3653
https://doi.org/10.1103/PhysRevD.90.084008
https://doi.org/10.1103/PhysRevD.90.084008
https://arxiv.org/abs/1402.0320
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1402.0320
https://doi.org/10.1007/JHEP10(2018)079
https://arxiv.org/abs/1805.08834
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1805.08834
https://doi.org/10.1016/j.physletb.2018.08.050
https://arxiv.org/abs/1807.00194
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1807.00194
https://doi.org/10.1016/j.physletb.2019.03.060
https://arxiv.org/abs/1903.03081
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1903.03081
https://doi.org/10.1088/1751-8113/45/25/255207
https://doi.org/10.1088/1751-8113/45/25/255207
https://arxiv.org/abs/1311.2215
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1311.2215
https://doi.org/10.1016/j.physletb.2018.10.066
https://arxiv.org/abs/1401.3697
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1401.3697
https://doi.org/10.1007/JHEP02(2019)002
https://doi.org/10.1007/JHEP02(2019)002
https://arxiv.org/abs/1810.12256
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1810.12256
https://doi.org/10.1016/0550-3213(88)90143-5
https://doi.org/10.1016/0550-3213(88)90143-5
https://inspirehep.net/search?p=find+J%20%22Nucl.Phys.%2CB311%2C46%22
https://doi.org/10.1016/j.physletb.2019.135005
https://arxiv.org/abs/1906.02161
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1906.02161
https://doi.org/10.1007/JHEP04(2020)051
https://arxiv.org/abs/1912.09477
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1912.09477
https://doi.org/10.1142/S0217751X20500098
https://arxiv.org/abs/1910.11682
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A1910.11682
https://doi.org/10.1007/JHEP08(2020)092
https://arxiv.org/abs/2006.11725
https://inspirehep.net/search?p=find+EPRINT%2BarXiv%3A2006.11725
https://doi.org/10.1143/PTP.109.853
https://arxiv.org/abs/hep-th/0106114
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0106114
https://doi.org/10.1016/S0550-3213(03)00342-0
https://arxiv.org/abs/hep-th/0212347
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0212347
https://doi.org/10.1088/0264-9381/21/10/010
https://arxiv.org/abs/hep-th/0401033
https://inspirehep.net/search?p=find+EPRINT%2Bhep-th%2F0401033


J
H
E
P
1
0
(
2
0
2
0
)
1
8
1

[93] J.A. de Azcarraga, J.M. Izquierdo, M. Picón and O. Varela, Expansions of algebras and

superalgebras and some applications, Int. J. Theor. Phys. 46 (2007) 2738 [hep-th/0703017]

[INSPIRE].

[94] R. Caroca, I. Kondrashuk, N. Merino and F. Nadal, Bianchi spaces and their

three-dimensional isometries as S-expansions of two-dimensional isometries, J. Phys. A 46

(2013) 225201 [arXiv:1104.3541] [INSPIRE].

[95] L. Andrianopoli, N. Merino, F. Nadal and M. Trigiante, General properties of the expansion

methods of Lie algebras, J. Phys. A 46 (2013) 365204 [arXiv:1308.4832] [INSPIRE].

[96] M. Artebani, R. Caroca, M.C. Ipinza, D.M. Peñafiel and P. Salgado, Geometrical aspects of
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