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Strong anomalous diffusion is characterized by asymptotic power-law growth of the moments of displacement,
with exponents that do not depend linearly on the order of the moment. The exponents concerning small-order
moments are dominated by random motion, while higher-order exponents grow by faster trajectories, such
as ballistic excursions or “light fronts.” Often such a situation is characterized by two linear dependencies
of the exponents on their order. Here, we introduce a simple exactly solvable model, the fly-and-die (FnD)
model, that sheds light on this behavior and on the consequences of light fronts on displacement autocorrelation
functions in transport processes. We present analytical expressions for the moments and derive a scaling form that
expresses the long-time asymptotics of the autocorrelation function 〈x(t1) x(t2)〉 in terms of the dimensionless
time difference (t2 − t1)/t1. The scaling form provides a faithful collapse of numerical data for vastly different
systems. This is demonstrated here for the Lorentz gas with infinite horizon, polygonal billiards with finite
and infinite horizon, the Lévy-Lorentz gas, the slicer map, and Lévy walks. Our analysis also captures the
system-specific corrections to scaling.

DOI: 10.1103/PhysRevResearch.3.013067

I. INTRODUCTION

A transport process x(t ) is called anomalous if its mean-
square displacement does not grow linearly in time [1–3].
Anomalous transport is found in a broad set of phenomena
including molecules moving in a living cell [4], dynamics
on cell membranes [5], solid-state disordered systems [6],
telomeres inside the nucleus of mammalian cells [7], soil
transport [8], and heat transport in low-dimensional sys-
tems [9]. Much work has been devoted to explore its
microscopic origin [1,10–17].

The statistical properties of transport are given by the prob-
ability density of the displacement P(�x, t ). However, in most
situations this density is unknown and transport is studied in
terms of the asymptotic behavior of its moments in time

〈|�x(t )|p〉 ∼ tγ (p) , (1)

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

where 〈·〉 denotes the average over an ensemble of trajectories,
p ∈ R is the order of the moment, and the function γ (p) is
called the spectrum of the moments of the displacement.

The exponent η = γ (2) characterizes the mean-square dis-
placement. Transport is called subdiffusive for 0 < η < 1,
diffusive for η = 1, superdiffusive for 1 < η < 2, and ballistic
when η = 2.

Transport is termed scale invariant when the probability
density of displacements �x admits a scaling P(�x, t ) =
t−νF (�x/tν ) with ν constant, i.e., when all moments of the
displacement are characterized by a single scale tν . The spec-
trum of the moments of the displacement will then be a linear
function of p: γ (p) = ν p.

When the spectrum γ (p) is nonlinear, transport is called
strong anomalous diffusion [18]. This phenomenon has been
observed in a variety of simple stochastic systems [19],
Hamiltonian systems with mixed phase space [18], polyg-
onal billiard channels [20,21], billiards with infinite hori-
zon [22–24], one-dimensional maps [25,26] and intermittent
maps [18,27], running sand piles [28], stochastic models of
inhomogeneous media [29,30], the diffusion in laser-cooled
atoms [31], in experiments on the mobility of particles in-
side living cancer cells [32], particles passively advected by
dynamical membranes [33], and in the bulk-mediated diffu-
sion on lipid bilayers [34]. A widely investigated case is the
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one in which different scalings of the bulk and the tail of the
probability distribution give rise to a piecewise linear form of
the scaling exponent γ (p),

γ (p) =
{
ν p for p < pc,

p − (1 − ν) pc for p � pc .
(2)

Strong anomalous diffusion is believed to be generic
[35–38] for dynamics with fat-tailed waiting-time distribu-
tions. In recent years its dynamical basis has been analyzed
through generalizations of the central limit theorem and
non-normalizable densities [17,35,38,39]. At the same time,
numerous studies have addressed the relation between the
properties of deterministic dynamics and transport. Roughly
speaking, chaos is commonly associated with fast decay of
correlations and normal diffusion, while nonchaotic dynamics
often leads to anomalous transport and slow decay of cor-
relations [1,3,12,21,26]. Stochastic processes, on the other
hand, are often considered to resemble chaotic dynamics,
but they can give rise to normal as well as anomalous dif-
fusion, depending on their correlations decay rate [40,41].
Thus, numerous questions remain open [3,12,15,29,42–45].
In particular, the asymptotic behavior of correlation functions
is not understood in general, although it is relevant, e.g., to
distinguish transport processes that arise from different mi-
croscopic mechanisms but have the same moments [15,36,46–
48].

In Ref. [26] a deterministic map named slicer map (SM)
was introduced to shed light on these issues. It was shown that
for an appropriate matching of parameters its moments of the
displacement, of order 2 and higher, scale in time like those
of the Lévy-Lorentz gas (LLg) [29], a transport model [26,49]
where strong anomalous diffusion emerges as a consequence
of scattering in an environment with quenched disorder. In
Ref. [49] it was found that the matching of exponents also en-
tails the equality of the large-time scaling of the displacement
autocorrelation function,

φ(t1, t2) = 〈�x(t1) �x(t2)〉, (3)

making two entirely different systems hardly distinguishable
on the level of the statistics of displacements.

Here, we introduce the fly-and-die (FnD) model as a
minimal exactly solvable deterministic model where strong
anomalous diffusion emerges due to a light front, i.e., ballistic
trajectories that did not undergo transitions up to any finite
time t . Unlike the SM the FnD is continuous in time and
space. Otherwise, it closely mimics the asymptotic transport
properties of the SM (and hence of the LLg). We present
analytic expressions for its spectrum of the moments γ (p)
and its displacement autocorrelation function φ(t, t + h). Our
main result is a scaling form expressing the autocorrelation
function as a function of the reduced time h/t ,

φ(t, t + h)

φ(t, t )
− 1 = C

(
h

t

)
. (4)

This result is interesting for two reasons: (i) There are
only very few analytic results about position-position au-
tocorrelation function for strong anomalous diffusion. To
our knowledge they have only been calculated for Lévy
walks [50,51] and the slicer map [49], and those studies
did not introduce the scaling form, Eq. (4). (ii) We propose

that Eq. (4) is universally valid. It applies for every system
showing strong anomalous diffusion where the mean-square
displacement is governed by the light front. This claim is
underpinned in the second part of the paper by showing that
the correspondence between the transport properties of the
FnD, the SM, and the LLg extends to a much broader class of
systems. To this end we compare the analytical dependencies
of the FnD with the scaling function for Lévy walks that is
derived here based on analytical results of Ref. [51], and with
numerical results for systems where analytical treatments are
beyond reach. For all dynamics the scaling form, Eq. (4), pro-
vides a very good data collapse. However, careful inspection
reveals that there are small systematic corrections to scaling
with system-specific features, or related to nonasymptotic
effects.

This paper is organized as follows: In Sec. II, we introduce
the FnD dynamics and obtain analytical expressions for the
spectrum of moments and the autocorrelation function. In
Sec. III, we revisit the slicer map (Sec. III A), Lévy walks
(Sec. III B), the Lévy Lorentz gas (Sec. III C), the Lorentz
gas (Sec. III D), and a family of polygonal billiard channels
(Sec. III E), comparing their spectrum of moments, γ (p), with
that of the FnD dynamics. The scope of this discussion is
strictly confined to material required to address the correlation
function in a self-contained manner. We provide links to the
literature for relevant further work. In Sec. IV, the comparison
concerns the scaling of the autocorrelation function φ(t1, t2),
which is not treated elsewhere. Section V highlights predic-
tions of the FnD model that apply universally for all models
from the perspective of scaling theory and the Buckingham-Pi
theorem, and it addresses model-specific features. Section VI
summarizes our findings.

II. THE FLY-AND-DIE MODEL

In this section we introduce the fly-and-die (FnD) model.

A. Dynamics

The FnD dynamics addresses the motion of a particle on
the semi-infinite line [0,∞). Different trajectories are labeled
by initial conditions x0 ∈ [0, 1]. Starting at x0 the particle
initially moves along the positive x axis with unit velocity (it
flies). At a time tc(x0) it stops and never resumes motion (it
dies). Hence, at time t a particle is found in position

x(x0, t ) =
{

x0 + t for t � tc(x0),
x0 + tc(x0) for t > tc(x0) .

(5a)

Anomalous transport emerges when the distribution of the
flight times tc(x0) has a power-law tail. Here, we consider the
case

tc(x0) =
(

b

x0

)1/ξ

, (5b)

with ξ and b positive constants, and initial conditions x0 uni-
formly distributed in the interval [0, 1]. The minimum flight
time is tM = b1/ξ .

In simple words, the FnD dynamics evolves an ensemble of
initial conditions in the unit interval. Each point is associated
to a trajectory that flies independently and without turning
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back for a time that is determined by the initial condition x0

via the function tc(x0). The distribution of the flight times tc
determines the transport properties of the FnD dynamics.

B. Moments of displacement

For the FnD dynamics the spectrum of the moments of the
displacement is obtained straightforwardly: Initial conditions,
x0, that perform a flight longer than t , lie in the interval
[0, (tM/t )ξ ). Therefore, adopting the uniform distribution of
initial conditions in the unit interval, the probability to fly for
a time larger than t is given by

P(> t ) = b

t ξ
, for t � tM . (6)

In the following we only consider times t � tM .
For p �= ξ the pth moment of the displacement �x(t ) takes

the form

〈|�x(t )|p〉 = 〈|x(x0, t ) − x0|p〉

=
∫ 1

0
dx0 |x(x0, t ) − x0|p

=
∫ P(>t )

0
dx0 t p +

∫ 1

P(>t )
dx0 (tc(x0))p

= t ξ
M t p−ξ + ξ t p

M

ξ − p

[
1 −

( t

tM

)p−ξ
]

= t ξ
M t p−ξ

p − ξ

[
p − ξ

( tM
t

)p−ξ
]
, for p �= ξ . (7a)

For p = ξ an analogous calculation yields

〈|�x(t )|p〉 =
∫ P(>t )

0
dx0 t p +

∫ 1

P(>t )
dx0

t ξ
M

x0

= t ξ
M t p−ξ + t ξ

M ln
( t

tM

)ξ

= t ξ
M

(
1 + ξ ln

t

tM

)
, for p = ξ . (7b)

This expression can also be found as the p → ξ limit
of Eq. (7a), by observing that (tM/t )p−ξ = exp(−(p −
ξ ) ln(t/tM )) = 1 − (p − ξ ) ln(t/tM ) up to corrections of or-
der (p − ξ )2.

At large times, t 	 b1/ξ , the spectrum of the moments
takes the form:

〈|�x(t )|p〉 


⎧⎪⎪⎨
⎪⎪⎩

ξ

ξ−p t p
M for p < ξ,

ξ t ξ
M ln(t/tM ) for p = ξ,

p
p−ξ

t ξ
M t p−ξ for p > ξ .

(7c)

The FnD exhibits piecewise-linear scaling in the statistics of
the displacement with an exponent γ (p) that is zero for p < ξ

and linear, γ (p) = p − ξ , for p > ξ . The mean-square dis-
placement, 〈|�x|2〉, approaches a constant value (localization)
for ξ > 2, it grows logarithmically for ξ = 2, and it grows as a
power law with a mean-square displacement scaling exponent
η = 2 − ξ for 0 < ξ < 2. Then, ξ ∈ (0, 1) corresponds to
superdiffusive behavior, ξ = 1 to normal diffusion, and ξ ∈

(1, 2) to subdiffusion: The FnD gives rise to all anomalous
transport regimes.

C. Displacement autocorrelation function

We now turn our attention to the autocorrelation function

φ(t1, t2) := 〈(x(x0, t1) − x0) (x(x0, t2) − x0)〉

=
∫ 1

0
dx0 (x(x0, t1) − x0) (x(x0, t2) − x0) .

Without loss of generality, we set t2 > t1. Accordingly, we
split the integration range in three intervals

0 < x0 < P(> t2): The trajectory is still flying at time t2,
hence �x(t1) = t1 and �x(t2) = t2.

P(> t2) < x0 < P(> t1): The trajectory was still flying at
time t1, but it died by the time t2. Consequently, �x(t1) = t1
and �x(t2) = tc(x0).

P(> t1) < x0 < 1: The trajectory died before t1. Conse-
quently, �x(t1) = �x(t2) = tc(x0).

Performing calculations analogous to the derivation of
Eq. (7a), one finds for η > 0 that

φ(t1, t2) = t2−η
M t1 tη−1

2

η − 1
− (2 − η) t2−η

M tη

1

η (η − 1)
− (2 − η) t2

M

η
.

(8)
It is convenient to normalize this expression by

φ(t1, t1) = 〈|�x(t1)|2〉 = 2t2−η
M tη

1

η

[
1 − 2 − η

2

( tM
t1

)η
]

.

(9)
Subtracting one and denoting the time difference by h = t2 −
t1, one obtains

C

(
h

t1

)
= φ(t1, t2)

φ(t1, t1)
− 1 = 1

2

η

η − 1

(
1 + h

t1

)η−1 − 1

1 − 2−η

2

( tM
t1

)η . (10)

In the large-time limit tM/t1 → 0 for a fixed value of h/t1, i.e.,
for a finite ratio t2/t1, this entails a scaling form

C

(
h

t1

)
=

{
1
2

η

η−1

[(
1 + h

t1

)η−1 − 1
]

for η �= 1,

1
2 ln

(
1 + h

t1

)
for η = 1 .

(11a)

Here, again the η = 1 case is found as the η → 1 limit of the
η �= 1 case. Equation (11a) connects the large-time behavior
of the correlation function to the dependence of the mean-
square displacement.

It has the following asymptotic scaling for small and large
values of h/t1,

C

(
h

t1

)



⎧⎪⎪⎪⎨
⎪⎪⎪⎩

η

2
h
t1

for h
t1

� 1,

1
2

η

η−1

(
h
t1

)η−1
for h

t1
	 1, η > 1,

1
2 ln

(
h
t1

)
for h

t1
	 1, η = 1,

const for h
t1

	 1, η < 1 .

(11b)

As anticipated in Eq. (4) the scaling form, Eq. (11), represents
the time dependence of the displacement autocorrelation func-
tion φ(t1, t2) in terms of a single dimensionless time ratio
h/t1 = (t2 − t1)/t1.
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D. A remark on the equivalence of statistics

Equation (7c) entails that the moments of the FnD dynam-
ics show a piecewise-linear behavior, as in the case of strong
anomalous diffusion.

For p > ξ the moments of the FnD dynamics grow in time
with an exponent γ (p) = p − ξ . A linear behavior with slope
one for γ (p) is typical when the contributions to the higher
cumulants are asymptotically dominated by ballistic flights or
light fronts [18,37,38]. For Lévy processes this was explicitly
discussed in Ref. [36]. Recently, it has been suggested that the
scaling holds in general due to a “big jump principle” [37,38].
The mean-square displacement of the FnD dynamics follows
this behavior when ξ < 2. In the next section we will explic-
itly verify that the matching of the value of the mean-square
displacement will then also fix all other moments in the large-
p branch of the piecewise-linear behavior of γ (p).

For the FnD dynamics, the moments p < ξ are constant in
time. This is a peculiarity of the dynamics that is nongeneric:
The FnD dynamics does not mimic the lower moments of
displacement for other dynamics. This is a strong point of
the FnD model. It allows us to clearly pin down features
of dynamics that derive from rare ballistic flights. The FnD
prediction, Eq. (11), for the displacement correlation function
φ(t1, t2) is of particular interest. It suggests a scaling form,
Eq. (4), that turns out to be astonishingly robust in vastly
different settings.

III. MODELS AND MOMENTS

In this section, we investigate how the spectrum of the
moments of the displacement in dynamics with light fronts
can be mapped to the spectrum of the FnD. First, we address
the relation of the FnD to the slicer map (SM). Then, we
consider a Lévy-walk model that is the most widely studied
model featuring strong anomalous diffusion. Subsequently,
we discuss a continuous-time stochastic process, the Lévy-
Lorentz gas (LLg), a chaotic billiard with infinite horizon,
the periodic Lorentz gas (LG), and some polygonal billiard
channels (PBC). For each system we also briefly revisit key
features of its dynamics.

A. The slicer map (SM)

The SM is a one-parameter deterministic exactly solvable
model Sα : [0, 1] × Z → [0, 1] × Z defined by [26,49]:

Sα (x, m)

=
{

(x, m − 1) if 0 � x � 	m(α) or 1
2 < x � 1 − 	m(α),

(x, m + 1) if 	m(α) < x � 1
2 or 1 − 	m(α) < x � 1 .

(12)

For all integers m the so-called “slicer” 	m(α) is defined by

	m(α) := 1

(|m| + 21/α )α
with α ∈ R+ . (13)

For 1/2 < x < 1 each iteration of the map increases the values
of m by one, until x > 	m(α). Subsequently, the trajectory
enters a stable period-two cycle, oscillating back and forth
between the two neighboring sites m and m − 1. Similarly, for
0 < x < 1/2 each iteration of the map decreases the values of

m by one, until x < −	m(α), and then the trajectory enters a
stable period-two cycle.

The SM was inspired by the dynamics of polygonal bil-
liards, which have vanishing Lyapunov exponents, because
their trajectories separate substantially only at a countable
set of points [11,20,21]. Analogously, the distance between
two points x1 and x2 of the SM jumps discontinuously when
they reach a cell m where 	m(α) ∈ [x1, x2]. The corners of
polygons act as slicers of the bundle of initial conditions (cf.
the discussion of polygonal billiards in Sec. III E).

The moments of the displacement of an ensemble where
particles are initially distributed uniformly in the interval [0,1]
were obtained in Ref. [26],

〈|xn − x0|p〉 = 2
n−1∑
k=1

k
p
�k (α) (1 + O(k−1))

+ 2 n
p

∞∑
k=n

�k (α),

where �k (α) = 	k−1(α) − 	k (α). In the large-time limit, n 	
21/α , this expression has the asymptotic behavior

〈|xn − x0|p〉 


⎧⎪⎪⎨
⎪⎪⎩

const for p < α,

2 ln nα

2 for p = α,

2 p

p − α
np−α for p > α .

(14)

The SM exhibits strong anomalous diffusion with a piecewise-
linear spectrum γ (p) and threshold order pc = α. The SM
exhibits all transport regimes upon varying the parameter α.
It features subdiffusion for 2 � α > 1, diffusion for α = 1,
and superdiffusion for 1 > α > 0.

Comparing Eq. (14) with Eq. (7c), we see that the spectrum
of the moments of the displacement of the FnD dynamics and
the SM coincide when taking ξ = α and b = t ξ

M = 2. These
expressions for ξ and b can also be found by matching the
mean-square displacement, i.e., the expressions for p = 2, and
observing that the two branches of γ (p) have slope zero and
one, respectively.

B. Lévy walks (LW)

Lévy walks refer to dynamics where an agent walks with
constant speed v along straight line segments of length r that
are sampled from a probability distribution with a power-
law tail [16,19,36]. In the simplest case the dynamics is one
dimensional. At the end of each segment there is a random
decision taken to go left or right, and the length r is sampled
from the probability distribution

λ(r) ≡ βLW

r0

( r

r0

)−βLW−1
, r ∈ [r0,∞), (15)

where the exponent βLW > 0 characterizes the power-law de-
cay of the distribution, and r0 > 0 is the minimum distance
between scatterers.
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The moments of displacement of an ensemble of particles
that start a LW at x = 0 were obtained in Refs. [19,39],

γ (p) =
⎧⎨
⎩

p for βLW < 1,

p/βLW for βLW > 1 ∧ 0 < p < βLW,

p + 1 − βLW for βLW > 1 ∧ βLW < p.
(16)

For βLW < 1 the LW exhibits anomalous diffusion with ballis-
tic scaling, η = 2. For βLW > 1 it features strong anomalous
diffusion with a piecewise-linear spectrum γ (p) and threshold
order pc = βLW. For βLW > 2 there is subdiffusion with ex-
ponent η = 2/βLW, and for 1 < βLW < 2 superdiffusion with
exponent 3 − βLW.

Comparing Eq. (16) with Eq. (7c), we see that the spectrum
of the moments of the displacement of the FnD dynamics and
the LW coincide for large moments p, when one matches
parameters as ξ = −1 + βLW. In the superdiffusive regime
this follows from matching the mean-square displacement and
acknowledging that superdiffusion emerges in the models due
to rare, very long ballistic trajectories, i.e., that γ (p) has slope
one.

C. The Lévy-Lorentz gas (LLg)

The Lévy-Lorentz gas (LLg) was introduced in Ref. [44]
(and studied further in, e.g., Refs. [29,45]) as a one-
dimensional model of anomalous transport in semiconductor
devices. In the LLg model a particle is randomly scattered
with probability 1/2 at randomly fixed positions on the line.
Between two consecutive collisions the particle moves at
constant velocity ±v. The distances r between neighboring
scatterers are sampled from a Lévy distribution with probabil-
ity density

λ(r) ≡ βLLg

r0

( r

r0

)−βLLg−1
, r ∈ [r0,∞), (17)

i.e., the same probability distribution also adopted for the LW,
cf. Eq. (15).

The spectrum of the moments of the displacement was
derived under the assumption that higher moments are domi-
nated by the light front, an assumption also denoted as single
long jump principle. For nonequilibrium initial conditions,
i.e., an ensemble of trajectories starting all at the same scat-
terer position, it entails [29]

γ (p) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p
1+βLLg

for βLLg < 1, p < βLLg,

p − β2
LLg

1+βLLg
for βLLg < 1, p > βLLg,

p
2 for βLLg � 1, p < 2βLLg − 1,
1
2 + p − βLLg for βLLg � 1, p > 2βLLg − 1.

(18)
The LLg shows strong anomalous diffusion with mean-square
displacement 〈r2(t )〉 ∼ tη growing as a power law in time with
exponent

η =

⎧⎪⎨
⎪⎩

2 − β2
LLg

1+βLLg
for βLLg � 1,

5
2 − βLLg for 1 < βLLg � 3

2 ,

1 for 3
2 < βLLg.

(19)

It exhibits superdiffusive transport for 0 < βLLg < 3/2 and
diffusive transport for βLLg � 3/2. Unlike the FnD dynamics
and the SM, it has no subdiffusive transport regime. On the
other hand, the LLg dynamics is much more complex as
compared to the former models. Only its moments of displace-
ment, Eq. (18), have been analytically expressed.

In Ref. [26] it was established that the exponent η charac-
terizing the mean-square displacement of the LLg, Eq. (19),
agrees with the relation η = 2 − α for the SM dynamics if

α =

⎧⎪⎨
⎪⎩

β2
LLg

1+βLLg
for βLLg � 1,

βLLg − 1
2 for 1 < βLLg � 3

2 ,

1 for 3
2 < βLLg .

(20)

For βLLg < 3/2 the mean-square displacement, p = 2, lies in
one of the large-p branches of γ (p), such that the match-
ing of the mean-square displacement entails an agreement of
the spectrum of the moments of the displacement for p >

βLLg when 0 < βLLg < 1 and for p > 2βLLg − 1 when 1 <

βLLg < 3/2. On the other hand, for βLLg > 3/2 the match-
ing only works for the mean-square displacement because
Eq. (7c) requires γ (p) = p − ξ = p − 1, while Eq. (18) stip-
ulates γ (p) = p/2.

We conclude that the matching of the mean-square dis-
placement extends to the large-p branch of the spectrum γ (p)
of the LLg by taking ξ = α. The matching of the parameter
α of the SM with βLLg of the LLg involves three branches,
Eq. (20), while there is a single linear relation required for
the matching of the SM and the FnD dynamics. The authors
of [26] took this nontrivial matching as evidence that the
equivalence is not complete.

D. The Lorentz gas (LG)

Billiards with infinite horizon are a class of deterministic
dynamics where the length of free flights is not bounded. The
resulting light fronts induce rare ballistic excursions of the
displacement and hence strong anomalous diffusion [22]. A
distinguished example is the Lorentz gas (LG), which is a
paradigmatic model of deterministic diffusion [52,53].

The periodic LG consists of an array of circular scatterers
of radius R periodically placed on a triangular lattice of the
plane. The separation between nearest-neighbor scatterers is
set to � = 8

3 cos π
6 so that the horizon is infinite for R < 1 (see

inset of Fig. 1). The dynamics consists of free flights of point
particles of unit velocity that are started in a region close to
the origin and undergo specular collisions with the scatterers.

With infinite horizon the variance of trajectory lengths
diverges because the probability of a trajectory segment with
no collision and length between l and l + dl decays as l−3.
In a seminal work Bleher showed that for every periodic
configuration of scatterers with infinite horizon the displace-
ment scaled by

√
t ln(t ) converges in distribution to Gaussian

statistics [54]. This weak superdiffusion is hard to observe
numerically as the time scales at which it sets in are physically
unobservable. Since Bleher’s result the existence of this weak
superdiffusion in infinite horizon billiard tables has generated
a great deal of research [22,55–58]. Recently in Ref. [59] a
refined central limit theorem in which the

√
t ln(t ) scaling to

the displacement is substituted by a rescaled Lambert function
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FIG. 1. Spectrum of the moments of displacement γ (p) for a LG
billiard with infinite horizon, R = 0.1 (green solid squares), and finite
horizon, R = 1.1 (blue open squares). The dashed curves correspond
to the scaling given by the two linear functions in Eq. (21). Inset:
Schematic geometry of the LG. The gray hexagonal lines are to guide
the eye.

has shown to appropriately describe the mean-square dis-
placement, at least for some geometries of the infinite horizon
periodic LG (see also Ref. [60]).

At infinite horizon (R < 1), it was observed that the LG
exhibits strong anomalous diffusion [22], with spectrum

γ (p) =
{ p

2 for p < 2,

p − 1 for p > 2 .
(21)

When the horizon is finite (R � 1), transport is diffusive, and
the moments of displacement scale in time with exponent
γ (p) = p/2 for any order p. For R < 1, the mean-square
displacement is at the crossover of the two branches of the
spectrum of the moments of the displacement: For moments
p < 2 the spectrum shows normal diffusive transport, while it
is dominated by the ballistic excursion for p > 2. The latter
branch agrees with the FnD dynamics with ξ = 1.

This is shown in Fig. 1, where results are reported for
numerical simulations of 106 trajectories lasting a total time
of 106, with randomly chosen initial positions r(0) and ve-
locities v(0). Solid squares show the spectrum γ (p) for the
infinite-horizon case with R = 0.1 and open squares for the
finite-horizon case with R = 1.1.

E. Polygonal billiard channels (PBC)

The scatterers of the Lorentz gas are dispersive such that
its dynamics is chaotic. Drastically different are the polyg-
onal billiard channels (PBC) [20,21,23,61]. Their dynamics
is that of point particles undergoing specular reflections with
upper and lower straight walls, periodically arranged in one
direction. The geometry of the elementary cell is specified
by four parameters as shown in the inset of Fig. 2, where we
follow the notation that has been used in Ref. [21]. When
�yb + �yt < H the channel has an infinite horizon, mean-
ing that a trajectory can move for arbitrarily large distances
without colliding with a wall.

0 2 4 6 8
p

0

1

2

3

4

5

6

7

γ(
p)

H

Δx

Δy
b

Δy
t

FIG. 2. Spectrum of the moments of displacement γ (p) for
the polygonal channel with �x = 1, �yt = 0.77, �yb = 0.45, and:
H = 1.27 (blue solid circles), H = 1.17 (green open circles), and
H = 1.07 (red open squares). The first set (solid circles) has infi-
nite horizon while the other two have finite horizon. The dashed
line corresponds to γ (p) = p/2 while the dotted curves are γ (p) =
p − pc/2 with (from top to bottom) pc = 2, 3, and 4, respectively.
Inset: Schematic geometry of the polygonal channel.

We consider in this case an ensemble of particles that start
at a random position in a random direction in a unit cell of
the periodic channel. Similarly to the action of the SM, a
bundle of nearby trajectories only separates when “sliced”
by a corner. The resulting subpopulations of the bundle will
follow qualitatively different paths after they hit separate line
segments of the wall. Analogously to the LG case, the prob-
ability density of trajectory segments of length l scales as
∼l−3. For all PBCs there are families of trajectories which
travel arbitrarily large distances in a given direction without
reversing their motion [20,21,23], effectively acting as light
fronts.

In other aspects the dynamics of the PBC differ substan-
tially from the LG. Firstly, in the PBC the separation of
trajectories produced by the channel corners is not exponen-
tially fast. Secondly, the ballistic excursions appear not only
as the result of an infinite horizon but also because of the poor
mixing due to nondefocusing collisions [20,21].

In Fig. 2 we show the spectrum γ (p) for three different
PBC with �x = 1, �yt = 0.77, �yb = 0.45 and different
widths H (previously considered in Ref. [20]). The spectrum
γ (p) is described by

γ (p) =
{ p

2 for p < pc,

p − pc

2 for p > pc .
(22)

with pc = 2, 3, and 4 for H = 1.27, 1.17, and 1.07, respec-
tively.

For H = 1.27 the PBC has an infinite horizon, and we ob-
serve the same spectrum of the moments of the displacement
as for the LG. Quite interesting is the behavior of PBCs with
finite horizon, H = 1.17 (green open circles) and H = 1.07
(red open squares). All trajectories experience collisions with
the walls within a maximum finite time. However, the bundles
of trajectories that mimic light fronts have a weaker impact on
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the spectrum of the moments of the displacement [21]. In par-
ticular they do not dominate the mean-square displacement.
Moments dominated by the light front arise for p > pc > 2.
For H = 1.17 the ballistic scaling sets in at pc = 3 and for
H = 1.07 at pc = 4. Therefore, matching the mean-square
displacement with that of the FnD dynamics does not provide
information on the spectrum of the moments of the displace-
ment for any other value of p. On the other hand, for ξ = pc/2
the FnD dynamics will describe the spectrum for p > pc.

F. Summary

The large-p branch of the spectrum of the moments of the
displacement of strong anomalous diffusion can be matched
with the FnD dynamics by an appropriate choice of its pa-
rameter ξ . When the mean-square displacement falls into
this branch, i.e., when 2 � pc, the matching is obtained by
equating the exponent η of the mean-square displacement of
the considered model with 2 − ξ for the FnD dynamics and
observing that the large p branch of γ (p) has slope one for
systems with light fronts.

IV. DISPLACEMENT AUTOCORRELATIONS

In this section, we discuss the scaling form, Eq. (4), of
the displacement autocorrelation functions. We verify that
the scaling holds for the analytical expressions known for
the SM [49] and the LW [51]. Subsequently, we analyze the
autocorrelation functions for the LLg, the LG, and the PBC,
where the correlation functions are not analytically known. A
data collapse based on Eq. (4) works in all cases. For small h/t
the systems even follow the functional form of the function
C(h/t ) of the FnD, up to system-specific corrections for the
billiard systems. For large h/t the functions C(h/t ) for the
different systems may differ. In all cases the comparison to
the expression Eq. (11) for the FnD provides valuable insights
into the scaling of the autocorrelations.

A. The slicer map (SM)

The autocorrelation function of the SM, φ(m, n) =
〈(xm − x0) (xn − x0)〉, was obtained in Ref. [49]. In the limit
of large times m and n one has

φ(m, n) ∼ 2

1 − α
m n1−α − 2 α

(1 − α) (2 − α)
m2−α + const.

(23)

For m = n, the expression reduces to the mean-square
displacement:

φ(m, m) = 〈(xm − x0)2〉

∼ 4

2 − α
m2−α + 2

(α − 1) (α − 2)
22/α .

The autocorrelation function of the SM, Eq. (23), exhibits
the same scaling as Eq. (11) after identifying η = 2 − α, as
established for the spectrum of moments in Eq. (14). The
constant terms are subdominant for η > 0 and n > m 	 1.
Hence, we find

φ(m, n)

φ(m, m)
− 1 = 1

2

η

η − 1

[(
1 + n − m

m

)η−1

− 1

]
. (24)

FIG. 3. Scaling plot of numerical data for the autocorrelation
function φ(t1, t2) of the LW for βLW = 0.1, βLW = 0.3, βLW = 1.2,
and βLW = 1.5 (from top to bottom). The curves are successively
shifted upwards by a decade for better visibility. The predictions,
Eq. (11a), are shown as gray solid lines, and the curves of the LW
result, Eqs. (25), by black dotted lines. Different shades of colors
indicate different choices of t1, ranging from red for t1 = 103 to
violet for t1 = 108. The symbols refer to specific choices of the time
difference h = t2 − t1 = 10n/3, as follows n ∈ {0, 12} (+), {1, 13}
(×), {2, 14} (∗), {3, 15} (�), {4, 16} (�); {5, 17} (�), {6, 18} (•),
{7, 19} (�), {8, 20} (�), {9, 21} (�), {10, 22} (�), {11, 23} (♦). The
insets show the ratio of the data and the prediction for βLW = 1.2 (top
left) and βLW = 1.5 (bottom right), i.e., the two lowermost curves.
For better visibility of the symbols the insets only show data where
h is a power of ten.

Taking m = t1 and n = t2, this expression coincides with
Eq. (11a) for the FnD dynamics.

B. Lévy walks (LW)

In Fig. 3 we show numerical data for the correlation func-
tions of the LW at times t1 = 10m/2 and t2 = t1 + 10n/2 with
6 � m, n � N for (from top to bottom) βLW = 0.1 (N = 16),
βLW = 0.3 (N = 16), βLW = 1.2 (N = 14), and βLW = 1.5
(N = 12). For better visibility of the small h/t1 regimes, the
data for different βLW are shifted by successive factors of ten.
The predictions, Eq. (11a), are shown as gray solid lines. The
value of the time t1 is indicated by rainbow colors ranging
from red for t1 = 103 to violet for t1 = 108. The time dif-
ference h is indicated by symbols, as specified in the figure
caption. The FnD predictions, Eq. (11a), are shown as thick
gray solid lines. The dotted black curves show the scaling
function derived from the exact solution of Froemberg and
Barkai [51] (details are given below). There is a perfect data
collapse for all values of βLW. For h/t1 � 10−2 there even is
quantitative agreement between the LW and the FnD predic-
tion, Eq. (11a).

For βLW = 0.1 we followed 2 × 106 trajectories for a time
109, and for βLW = 0.3 we followed 5 × 105 trajectories to
the same time 109. This provides data for N � 16 that allows
us to explore the correlation function in the range of reduced
times, 10−8 � h/t1 � 105, i.e., for 13 orders of magnitude.
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For all values βLW < 1 the LW shows ballistic transport with
exponent η = 2 such that Eq. (11a) reduces to the linear func-
tion C(h/t1) = h/t1. For h/t1 � 1 the data follow the predicted
linear scaling. However, for larger h/t1 it is better described
by power laws with exponents 0.9 and 0.7, respectively (not
shown). In this range the data characterize the decay of
correlations.

Froemberg and Barkai [51] showed that in the ballistic
regime the correlation function involves a sum of three incom-
plete Bessel functions of t1/t2 with parameters that depend on
η and prefactors proportional to t1 t2, t2

2 , and t2
1 , respectively.

This entails the scaling form, Eq. (4), since φ(t1, t1) ∼ t2
1 .

Moreover, in their Eq. (15) they provide the asymptotic scal-
ing of φ(t1, t1 + h) for small and large h/t1. In combination
with the mean-square displacement their result provides for
η = 2

CLW

(
h

t1

)
=

{
h
t1

for h
t1

� 1,
sin(π βLW )

π βLW (1−β2
LW )

(
h
t1

)1−βLW for h
t1

	 1 .

(25a)

For h/t1 	 1 this result predicts the observed crossover
to power laws with exponent 1 − βLW = 0.9 and 0.7, re-
spectively. This exponent depends on βLW and clearly FnD
tells nothing about this crossover. However, for h/t1 � 1 the

functional dependences agree. This agreement is remarkable
because for ballistic transport the LW shows single-scale bal-
listic scaling. There is not even strong anomalous diffusion.

For βLW = 1.2 we followed 1.2 × 105 trajectories to a time
108, providing data covering 11 orders of magnitude, 10−7 �
h/t1 � 104. Equation (16) provides η(βLW = 1.2) = 1.8 and
accordingly Eq. (11b) predicts a crossover from a power law
with exponent 1 for h/t1 � 1 to an exponent 0.8 for h/t1 	
1. The upper left inset of Fig. 3 shows the ratio of the data
and the FnD prediction. For small h/t1 the data approach the
FnD asymptotics with deviations of only a few percent that
lie within the scatter of our data. For large h/t1 the data lie
below the FnD dependence. In the main panel one sees that
for h/t1 	 10 the function is constant to within our numerical
resolution.

For βLW = 1.5 the numerical simulations are still more
challenging: We only followed 9 × 104 trajectories until time
107, providing data for 10−6 � h/t1 � 105. For h/t1 � 10−2

they follow the FnD prediction with a scatter of about 20%,
as demonstrated in the lower right inset of Fig. 3. Also these
data fall below the FnD dependence for larger values of h/t1,
taking approximately constant values for h/t1 	 1.

According to Ref. [51] the correlation function of a LW
with length and velocity scales r0 = v = 1 takes the following
form in the superdiffusive regime

φ(t1, t1 + h) = βLW − 1

βLW

∣∣∣∣(1 − βLW)

(4 − βLW)

∣∣∣∣ t3−βLW
1

[
βLW −

(
h

t1

)3−βLW

+
(

1 + h

t1

)3−βLW

+ (βLW − 3)

(
1 + h

t1

)2−βLW
]
.

After substituting η = 3 − βLW this provides the following scaling form for the LW correlation function

CLW

(
h

t1

)
= η − 1 − (

h
t1

)η + (
1 + h

t1

)η − η
(
1 + h

t1

)η−1

2 (2 − η)
=

{
η

2
h
t1

for h
t1

� 1, 1 < η < 2,

η−1
2 (2−η) for h

t1
	 1, 1 < η < 2 .

(25b)

For small h/t1 this is identical to the FnD expression,
Eq. (11a), and for large h/t1 it accounts for the observed
saturation of the scaling function.

We conclude that an important qualitative prediction of
the FnD model holds for all data sets: The displacement
autocorrelation function of the LW admits a data collapse in
the form of Eq. (4). Moreover, the FnD provides an accurate,
parameter-free description for small values of the reduced
time h/t1. On the other hand, for h/t1 	 1 the functional
dependence of the reduced correlation functions for FnD and
the LW differ. Indeed, for a strongly ergodic system the cor-
relation φ(t1, t2) = 〈x(t1) x(t2)〉 should factorize in the limit
of t1, t2, h/t1 → ∞ and decay to zero for a symmetric dy-
namics, 〈x(t1)x(t2)〉 → 〈x(t1)〉〈x(t2)〉 = 0. As a consequence,
φ(t1, t2)/φ(t1, t1) − 1 → −1 for large h/t1. However, neither
the FnD nor the LW enjoy such ergodic features [16].

C. The Lévy-Lorentz gas (LLg)

For the LLg comprehensive numerical simulations for
the autocorrelation function, Eq. (3), have been reported in
Ref. [49]. For the present study we performed additional
simulations where we evaluated the correlation functions for

the times t1 = 10m/3 and t2 = t1 + 10n/3 with 9 � m, n �
N . Figure 4 shows the scaling representation, Eq. (4), for
three different parameter values of the LLg, βLLg = 0.1 (up-
per curve, N = 24), βLLg = 0.3 (middle curve, N = 24), and
βLLg = 0.6 (lower curve, N = 21), respectively. The value of
the time t1 and h are indicated by the same choice of rainbow
colors and symbols as in Fig. 3. Again the data for different
βLLg are shifted by successive factors of ten.

As suggested by Eq. (4) all correlations collapse in a
master curve when φ(t1, t2)/φ(t1, t1) − 1 is plotted as func-
tion of h/t1. The FnD expression for the asymptotic scaling,
Eq. (11a), is provided by solid gray lines.

For βLLg = 0.1 we performed simulations where we fol-
lowed 103 trajectories in each of 2200 realizations of the
positions of the scatterers for times up to 1010. This al-
lows us to explore the correlation function over 14 orders
of magnitude in the reduced times, 10−8 � h/t1 � 106. The
mean-square displacement grows like t1.991. Consequently, the
slopes of the small and large h/t1 branches of the scaling func-
tion are almost identical, 1 and η − 1 = 0.991, respectively.
The data lie right on the prediction over the full parameter
range of h/t1. Our estimate of the statistical errors of the
data are shown by error bars. They are smaller than the data
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FIG. 4. Scaling plot of numerical data for the autocorrelation
function φ(t1, t2) of the LLg for βLLg = 0.1 (upper curve), βLLg = 0.3
(middle curve), and βLLg = 0.6 (bottom curve), respectively. Succes-
sive curves are shifted vertically by a decade for better visibility. The
predictions, Eq. (11a), are shown as gray solid lines. The choice of
colors and symbols matches with those in Fig. 3. The insets show the
ratio of the data and the prediction for βLLg = 0.1 (top left) and for
βLLg = 0.6 (bottom right), respectively. Also here we only show data
where h is a power of ten.

points in this figure. No parameter is adjusted to achieve this
remarkable agreement.

For increasing values of βLLg the trajectories perform more
collisions per unit time. Hence, it becomes harder to reach
large times in the simulations, but at the same time one needs
fewer realizations of disorder to achieve faithful averages.
For βLLg = 0.3 we followed 103 trajectories in each of 1150
realizations of the scatterers up to a time 109. This allows
us to follow the correlation function in the range of reduced
times, 10−8 � h/t1 � 105. Estimates of the statistical errors
are smaller than the points for most data. The mean-square
displacement grows with η = 1.93 such that the two branches
have slopes 1 and η − 1 = 0.93, respectively. The change of
slope is then becoming noticeable for our numerical data.
Also in this case the data lie on the prediction over the full
parameter range of h/t1 that is 13 orders of magnitude wide.

For βLLg = 0.6 we followed 103 trajectories in each of 260
realizations of the scatterers up to a time of 108. This allows
us to explore the correlation function in the range of reduced
times, 10−7 � h/t1 � 104, i.e., for 11 orders of magnitude.
The mean-square displacement grows with η = 1.775 such
that the two branches have clearly different slopes, 1 and
0.775, respectively. For h/t1 � 1 the data follow exactly the
predicted linear scaling. However, for larger h/t1 they tend to
lie slightly below the prediction.

In the inset to the upper left we show the ratio of the data
for βLLg = 0.1 and the FnD prediction. There is a perfect
match for h/t1 � 10−2, and the data deviate systematically
towards smaller values for larger h/t1. However, the deviation
is smaller when both t1 and h are large. The same is observed
for βLLg = 0.3 with a maximum deviation of 50%.

FIG. 5. Scaling plot for the autocorrelation function φ(t1, t2) of
the LG with infinite horizon R = 0.1. The time t1 takes values 200 �
t1 < 5 × 105 that are marked by rainbow colors ranging from red
for t1 = 200 until violet for t1 = 5 × 105 on a logarithmic scale. The
symbols refer to specific choices of the time difference h = t2 − t1

that takes the values 10 (∗), 50 (�), 100 (�), 500 (�), 1000 (•),
or 5000 (�), respectively. The prediction, Eq. (11a), with η = 2 is
shown by a thick solid black line. The inset to the upper left shows
the ratio of the data and the prediction. The dotted gray line indicates
the logarithmic law 4.1 − 0.6 log(h/t1). The inset to the lower right
shows the ratio of the data and the power law 1.75 (h/t1)0.69 that is
shown by a thin black solid line in the main panel.

The inset to the lower right shows the corresponding
plot for βLLg = 0.6. Also in this case there is a very good
match for h/t1 � 10−2, and the data deviate systematically to-
wards smaller values for larger h/t1. The maximum deviation
reaches a factor of five for h/t1 
 102, and we see the same
trend, that it becomes smaller again for still larger values of
h/t1.

In accordance with our expectation for a correction to scal-
ing the deviations differ for different times t1 at a fixed ratio
h/t1, as indicated by the different colors of the symbols. In
contrast, according to Eq. (10) the corrections to scaling in the
FnD dynamics approach one from above when t1 is increased.

For all data sets an important qualitative prediction of the
FnD model holds: The displacement autocorrelation func-
tion of the LLg obeys the scaling form Eq. (4). Moreover,
the FnD expression, Eq. (11), provides a rather accurate,
parameter-free description of the two-variable correlation
function φ(t1, t2) in terms of the time ratio h/t1. There are
deviations in particular at intermediate times. They constitute
a nonuniversal correction to Eq. (11a), and they behave quali-
tatively differently in the LLg and the FnD dynamics.

D. The Lorentz gas (LG)

We have numerically computed the autocorrelation func-
tion of the Lorentz gas φ(t1, t2) = 〈�x(t1)�x(t2)〉, where 〈·〉
refers to an average over an ensemble of 1.8 × 108 trajectories
that is evaluated for 200 � t1 � 5 × 105 and different time
increments h = t2 − t1 ∈ {10, 50, 100, 500, 1000, 5000}. The
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FIG. 6. Scaling plot for the autocorrelation function φ(t1, t2) of a PBC with infinite horizon (H = 1.27, left) and with finite horizon
(H = 1.07, right). Data are evaluated for the same values of t1 and h as for the LR, see Fig. 5. The prediction, Eq. (11a), with η = 2 is shown
as thick solid black curve. The theory curve is the same as for the LG and we also adopt the same symbols and colors to indicate h and t1,
respectively. The upper left insets show the ratio of the data and the FnD prediction, Eq. (11a). The dashed gray lines show offset values and
a logarithmic law, 1.3 − 0.33 log(h/t1), that are discussed in the main text. The lower right insets show the ratio of the data and power law
1.52 (h/t1)0.57 that provides a good fit to the large h/t1 asymptotics of the data for both channels. The fit is shown by thin solid black lines in
the main panels. For visual inspection the data for the other channel are indicated by smaller gray symbols in the respective plots.

results for the infinite-horizon case, R = 0.1, are shown in
Fig. 5, where time t1 is marked by color and h by symbols,
as indicated in the figure caption. As for the LLg, the data
accurately collapse to a line when the reduced correlation
function φ(t1, t2)/φ(t1, t1) − 1 is plotted as a function of h/t1.
The mean-square displacement grows with exponent η = 1,
and the prediction Eq. (11a) is provided by the thick solid
black line. The parameter-free prediction provides values that
are smaller by about one order of magnitude than the observed
data.

The ratio of the data and the prediction is provided in
the upper left inset: The deviation for h/t1 � 1 amounts to
leading order to a logarithmic law. Encountering logarithmic
corrections to scaling is not unexpected for the LG, where
they also arise in the mean-square displacement [54,59,60].
Likewise, we see here numerical evidence for a logarithmic
contribution, ln(h/t1), to the asymptotic scaling function. On
top of that there are noticeable finite-time corrections. The
data for different time increments h bend away from the log-
arithmic line, taking a minimum towards right for t1 
 5000,
and they increase for larger values of h/t1. Similarly to the
finite-time corrections of the FnD, the asymptotic scaling is
approached from above.

For h/t1 	 1 the FnD prediction, that is shown by the thick
solid line in the main panel, looks qualitatively different than
the numerical data. Rather than following the η = 1 case of
Eq. (11a) the numerical data are better described by a power
law. A guide to the eye is provided by the thin black line that
shows the dependence 1.75 (h/t1)0.69. The ratio of the data
and this power law is shown in the lower right inset. It reveals
that the fit refers only to the final decade of the h = 5000
dependence. Much longer simulations are required, therefore,
to make qualified statements about the large h/t1 asymptotics
of the correlation function. In particular, when the correlation
decays for vastly different times t1 and t2 we would again

expect that the scaling function must eventually approach −1
in the large-time limit, 1 � t1 � t2.

We conclude that the important qualitative prediction,
Eq. (4), of the FnD model holds also for the LG: In the
large-time limit the ratio of the displacement autocorrelation
function and the mean square displacement is a function of
only h/t1. However, in this case the FnD prediction of the
scaling function, Eq. (11), provides only a rough idea of the
form of the scaling function. It misses logarithmic terms in
the small h/t1 limit, and for large h/t1 it is off even to leading
order.

E. Polygonal billiard channels (PBC)

For PBCs we have numerically computed the autocorrela-
tion function φ(t1, t2) for the polygonal channel with infinite
horizon H = 1.27 and with finite horizon H = 1.07. The re-
sults are shown in the left (H = 1.27) and right (H = 1.07)
panel of Fig. 6. We show data for the same combinations
of h and t1 as adopted for the LG and also use the same
color coding and symbols. The scaling form provides a data
collapse also for these billiards.

For both channels the mean-square displacement scales
with η = 1, i.e., with the same exponent as the LG. Hence, the
FnD model suggests the same scaling function for these three
types of vastly different billiards. However, the data differ for
the different billiards.

The data for the infinite-horizon case, H = 1.27, deviate
by a factor of 3.5 ± 1 from the FnD prediction, as indicated
by the horizontal dashed gray line in the upper left inset in
the left panel. Moreover, for small h/t1 the infinite horizon
PBC also shows logarithmic corrections to the FnD predic-
tion, analogous to the correction observed for the LG with
infinite horizon. Also for large h/t1 the data do not follow
the logarithmic law predicted by Eq. (11), but they are better
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described by a power law with an exponent 0.57 that is shown
by a thin solid black line in the main panel. The ratio of the
data and this power law is shown in the lower right inset.
The data for different times t1 collapse considerably better
in this case than in the LG, and they all nicely approach the
asymptotic power law. However, also in this case much longer
simulations are required to make qualified statements about
the large h/t1 asymptotics of the correlation function.

For H = 1.07 the data lie closer to the FnD prediction. For
h/t1 � 10−2 there is a fixed factor of 1.5 between the data and
the FnD prediction. This is indicated by a horizontal dashed
gray line in the upper left inset, which shows the ratio of the
data and the FnD prediction. For the PBC with a finite horizon
the FnD prediction therefore provides the right scaling of the
data, and it is off in the prefactor of the scaling by 50%.
This indicates that the subleading logarithmic contribution of
the scaling function for h/t1 � 1 is indeed a property of the
infinite horizon.

In the range 0.002 < t1 < 0.2 the offset of the finite-
horizon PBC increases to a factor of 3.5 that is indicated by
another dashed line in the inset. For still larger h/t1 the scaling
functions of both PBCs coincide. This suggests that the decay
of correlations for h/t1 	 1 follows the same dependence for
PBC with finite and infinite horizon.

We conclude that the important qualitative prediction,
Eq. (4), of the FnD model holds also for the PBC: In the
large-time limit the ratio of the displacement autocorrelation
function and the mean-square displacement is a function of
only h/t1. In this case the FnD prediction of the scaling func-
tion, Eq. (11), provides an accurate description of the small
h/t1 dependence of the billiards with finite horizon, up to a
constant factor of 1.5. This agreement is remarkable because
the FnD dynamics does not even describe the mean-square
displacement of the PBC with finite horizon. This suggests
that for h/t1 � 1 the scaling form, Eq. (11), is a generic fea-
ture of strong anomalous diffusion.

V. DEVIATIONS FROM SCALING

The scaling form, Eq. (4), of the displacement correlation
function, Eq. (3), provides a data collapse for all dynam-
ics. For the LLg with small parameter values βLLg we find
quantitative agreement between our numerical data and the
parameter-free prediction of the FnD model over the full range
of the dimensionless time difference h/t1, that is varied over
14 orders of magnitude for βLLg = 0.1 (uppermost curve in
Fig. 4), for 13 orders of magnitude for βLLg = 0.3 (middle
curve) and 11 orders for βLLg = 0.6 (bottom curve). This
data closely follows the FnD prediction, showing systematic
deviations from scaling only at intermediate values of h/t1.
We attributed these deviations to corrections to the scaling
prediction for finite values of t1. For the FnD model such
deviations have been established in Eq. (10). These correc-
tions for nonasymptotic regimes are nonuniversal, as may be
expected. For the FnD model finite-time data are larger than
the asymptotic values, for the LLg we find smaller values. For
small values of h/t1 the numerical data agree quantitatively
with the FnD prediction, and the quantitative differences are
small over the full range of h/t1: The differences increase from
10% for βLLg = 0.1 to 60% for βLLg = 0.6.

For the LW the scaling prediction, Eq. (4), provides a
data collapse without appreciable finite-time corrections. For
h/t1 � 0.01 the FnD model even provides a quantitative de-
scription without adjustable parameters. The upper two curves
in Fig. 3 demonstrate that this even applies in the ballistic
regime. For large h/t1 the LW data lie below the FnD predic-
tion, with increasing deviations for larger βLW. Comparison
with the scaling function for the LW, Eq. (25), reveals that the
scaling form, Eq. (4), holds over the full range of h/t1, and that
the scaling functions of the LW and of FnD match for small
h/t1.

For the LG with infinite horizon the data show a collapse
with a scaling function that follows the trend predicted by
FnD (upper curve in Fig. 5). However, there is no quantitative
agreement of the scaling functions in this case. For small h/t1
we identified logarithmic corrections that we expect to persist
in this system (dashed line in the upper left inset). Such cor-
rections are in accordance with the logarithmic contribution
to the scaling of the statistics of displacements [54]. However,
they take the qualitatively new form of a log(h/t1) depen-
dence. For large h/t1 the FnD model predicts a logarithmic
dependence, while the data are better described by a power
law. The correlation φ(t1, t2) does not decay to the ensemble
average if such a power law describes the h/t1 asymptotics.
After all, due to the left-right symmetry of the LG the steady-
state equilibrium value of 〈x(t1)x(t2)〉 must vanish in the limit
1 � t1 � t2. The very long transients of the LG [59,60] make
it impossible for us to explore this crossover.

The PBC with infinite horizon also enjoys a faithful data
collapse with very small scatter for data evaluated at finite
times. All data lie in a band that differs only by a factor of
3.5 ± 1 from the FnD prediction (left panel in Fig. 6). Still,
the deviations are systematic, of exactly the same type as for
the LG. For small h/t1 the PBC with infinite horizon shows
logarithmic corrections. For large h/t1 the data are better
described by a power law than by the logarithmic dependence
predicted by the FnD model. The data for the PBC with finite
horizon also show a faithful data collapse, with noticeable
deviations from the master curve only for the smaller time
increment h = 10. For h/t1 � 10−2 the data follow the FnD
prediction up to a factor 1.5. Subsequently, they cross over
to the dependence also observed for the PBC with infinite
horizon. This agreement for large values of h/t1 indicates
a common mechanism for the decay of correlations in the
PBC; this is characterized by the autocorrelation function for
t2 	 t1 	 1.

It is remarkable that the FnD model does not only suggest
a scaling form, Eq. (4), for the displacement correlation func-
tion that is followed by all models investigated here, but that
there even is quantitative agreement between the predicted
scaling function and the numerical data for the LW, LLg,
and the PBC with finite horizon. We suggest that this can
be explained based on the Buckingham-Pi theorem [62,63].
To this end we consider the following choices of scales and
dimensionless parameters:

FnD: The time scale is set by the minimum flight time
tM = b1/ξ , Eq. (5b) and below, while space and time scales
are related by the unit velocity of the particles. There are no
dimensionless groups in this model.
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SM: The length scale is set by the box size, while space
and time scales are related by the unit velocity of the particles.
There are no dimensionless groups in this model.

LW: The length scale is set by the minimum length of
trajectory segments, while space and time scales are related by
the unit velocity of the particles. There are no dimensionless
groups in this model.

LLg: The length scale is set by the minimum distance of
scatterers, while space and time scales are related by the unit
velocity of the particles. There are no dimensionless groups in
this model.

LG: The length scale is set by the scatterer separation �

while space and time scales are related by the unit velocity
of the particles. The ratio of scatterer distance and scatterer
radius provides a dimensionless parameter �/R (cf. the inset
of Fig. 1).

PBC: The length scale is set by the periodicity 2 �x of
the channel, while space and time scales are related by the
unit velocity of the particles. Three dimensionless groups are
required to fully characterize the channel, �yt/�x, �yb/�x,
and H/�x (cf. the inset of Fig. 2).

For small h/t1 the FnD model provides a prediction,
Eq. (11), on the exponents, while the prefactors of the power
laws will in general depend on the dimensionless groups of
the models [62,63]. From this perspective, we expect full
agreement of the FnD, SM, LW, and the LLg, while the
prefactors of the power laws are expected to depend on the
system geometry for the LG and PBCs. The scaling behavior
for large h/t1 is not expected to be universal. It will depend
on the relaxation to the nonequilibrium distribution and may
suffer from breaking of ergodicity and persistent transients.

VI. CONCLUSIONS

The moments of the displacement of many systems that
show strongly anomalous superdiffusive transport are domi-
nated by ballistic trajectories or light fronts [18,37,38]. Often
they lead to a two-piece linear scaling of the exponent γ (p) of
the temporal growth of the pth moment of the probability dis-
tribution of the displacement, Eq. (2). Here, we presented the
very simple fly-and-die (FnD) model that arguably is the sim-
plest dynamics in this class of systems. Due to the simplicity
of its dynamics one can derive analytical expressions for the
exponents γ (p) and the displacement autocorrelation function
φ(t1, t2). Based on the FnD model we have proven that the
correlation function follows a universal scaling, Eq. (4), for a
range of systems showing strong anomalous diffusion. For all
systems where the second moment is governed by a light front
the ratio φ(t1, t2)/φ(t1, t1) is a function 1 + C(h/t1) of a sin-
gle argument, h/t1 = (t2 − t1)/t1 with t2 > t1. We thus relate
the scalings of the position-position displacement correlation
function and of the mean-square displacement, connecting
the most widely studied and best characterized property of
these systems to a feature that is not known for most strongly
anomalous systems. The prediction applies for all systems
mentioned in the Introduction.

In the second part of the paper we underpinned our claim
by discussing representative models from five classes of
widely studied systems: (i) the slicer map, a deterministic,
time-discrete dynamical system, (ii) Lévy walks, where strong

anomalous diffusion arises from following a route of straight
line segments whose length are sampled from a distribution
with a power-law tail [16,36], (iii) the Lévy-Lorentz gas, a
random-walk model featuring quenched disorder [29], (iv)
the Lorentz gas, a chaotic billiard with infinite horizon [22],
and (v) polygonal billiard channels, where trajectories only
separate when they hit different walls of the polygon [21].
For the billiards we considered systems with finite and infinite
horizon.

The FnD model makes two predictions that are robust in
the sense that they apply universally to all systems:

(1) When the offset value (1 − ν) pc in Eq. (2) is fixed for
one of the moments in the large p regime, then the scaling
for all higher moments follows without further adjustable
parameters. Microscopic details of the dynamics are reflected
solely by different values of ν. Specifically, ν = 0 for the FnD
dynamics and the SM, ν = 1/2 for the billiard systems, and
ν depends on the parameter βLW for the LW and βLLg for the
LLg [cf. Eqs. (16) and (18)].

(2) For the FnD dynamics we derived a scaling form,
Eq. (11), of the displacement correlation function, Eq. (3). It
applies also to the SM, whose correlation function can also
be calculated analytically. Due to the peculiarities of the FnD
and the SM one cannot expect that the functional form of
Eq. (11) is universal. However, it suggests that in general
the autocorrelation functions admits a data collapse of the
form Eq. (4). This is indeed true for the LW that features the
predicted scaling (cf. Fig. 3), but with a different functional
form, Eqs. (25). In addition to the LW we tested the data
collapse with numerical data for the LLg model with data
spanning to the least eleven orders of magnitude in the re-
duced dimensionless time (Fig. 4), and more than six orders of
magnitude for the LG with open horizon and PBCs with open
and closed horizon (Fig. 6). For all investigated models the
suggested representation of the data provides a data collapse.
For the LW and LLg the FnD prediction even provides a
parameter-free prediction of the prefactors of the asymptotic
scaling laws for small h/t1. For the billiards the FnD predic-
tion faithfully describes the trends and the order of magnitude
of the correlation function. In Sec. V we related the offset to
the presence of dimensionless parameters in the billiards that
affect the prefactors of the predicted power-law dependences.
Special care is needed in situations where the crossover, pc,
of the branches of the spectrum γ (p) arises at the exponent
p = pc = 2 of the mean-square displacement. This is the case
for billiards with infinite horizon. For the LG and PBC with
infinite horizon we observed logarithmic corrections to the
scaling prediction of the FnD dynamics that emerge for small
h/t1. Moreover, the case η = η(2) = 1 is a critical dimension
where the FnD takes a logarithmic dependence for large h/t1.
All considered billiard systems fall into this class, but their
scaling in this range can better be fitted by a power law than
by a logarithmic dependence. More analytical and numerical
work will be needed to fully understand these dependencies.
They will be addressed in forthcoming work that focuses on
the intriguing features of billiard systems, rather than address-
ing universal features of correlation functions.

In Eq. (10) we also provided the small t1 corrections to scal-
ing for the FnD model. These corrections take a nonuniversal,
system-specific form. For the FnD model the asymptotic
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theory is approached from above. The LW data show no
noticeable finite time corrections. The LLg data show devi-
ations towards smaller values. For the LG there are noticeable
deviations towards larger values. The PBC show deviations
towards smaller values only for the smallest considered time
difference, h = 10.

We conclude that the FnD model captures the essential
features of strong anomalous transport with two underlying
scales. Only the presence of a light front and a much slower
dynamics are kept, and all surplus features are removed.
In the spirit of normal forms in mathematical models our
model only accounts for a single long jump. Its simplicity
entails a straightforward analytical solution. The present pa-
per scrutinized the resulting predictions for the moments of
the displacement and the displacement autocorrelation func-
tion. Vastly different dynamics follow the FnD predictions
for the high moments of the displacement, Eq. (1) for large
p where γ (p) has slope one, and the long-time asymptotics
of the displacement autocorrelation function, Eq. (3) for times
1 � t2 � 2 t1 � 2t2. Moreover, the FnD establishes a scaling
form for the correlations, Eq. (4). In the longtime regime,
1 � t1 � t2, it provides a data collapse for all investigated
models, with model-specific scaling functions for t2 	 t1. In
the opposite limit t2 − t1 � t1 � t2 the moments and the cor-
relations are governed by the light front. As a consequence,
the parameter-free FnD prediction is followed quantitatively,
except that prefactors of scaling laws may differ: Length and
time scales shift if and only if a model has dimensionless
groups not addressed by the normal form. This finding applies

to all systems with strong anomalous diffusion where the sec-
ond moment is governed by a light front, and it thus calls for
experimental verification in a vast range of different physical
settings.
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